
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

CENTERS FOR THE KUKLES HOMOGENEOUS
SYSTEMS WITH ODD DEGREE

JAUME GINÉ1, JAUME LLIBRE2 AND CLAUDIA VALLS3

Abstract. For the polynomial differential system ẋ = −y, ẏ =
x+Qn(x, y), where Qn(x, y) is a homogeneous polynomial of degree
n there are the following two conjectures done in 1999. (1) Is it
true that the previous system for n ≥ 2 has a center at the origin if
and only if its vector field is symmetric about one of the coordinate
axes? (2) Is it true that the origin is an isochronous center of the
previous system with the exception of the linear center only if the
system has even degree? We prove both conjectures for all n odd.

1. Introduction and statement of the main results

Kukles [11] in 1944 examined the conditions under which the origin
for the differential system of the form

(1) ẋ = −y, ẏ = x+a1x
2+a2xy+a3y

2+a4x
3+a5x

2y+a6xy2+a7y
3,

is a center. For long time it had been thought that the conditions given
by Kukles were necessary and sufficient conditions, but some new cases
have been found, see [2, 4, 10]. In [4] the center problem for the class of
system (1) with a7 = 0 (reduced Kukles system) was resolved, moreover
it was shown that at most five limit cycles bifurcate from the origin. In
[12] it was solved the center problem for system (1) in the case a2 = 0
and it was shown that at most six limit cycles bifurcate from the origin,
see also [13]. The first complete solution of the center-focus problem
for Kukles’ system (1) was obtained in [13]. In [16] it was also given the
complete solution using the Cherkas’ method of passing to a Liénard
equation, see also the works [14, 17]. The study of this family exhibits
properties and issues which are important in the problem of the full
classification of cubic systems with a center.

In this paper we continue the characterization of the centers for a
linear center perturbed by homogeneous polynomials, i.e., systems of
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the form

(2) ẋ = −y, ẏ = x + Qn(x, y),

where Qn(x, y) is a homogeneous polynomial of degree n, i.e.

(3) Qn(x, y) =
n∑

j=0

cjx
jyn−j, cj ∈ R.

These systems are called Kukles homogeneous systems, see [8]. An-
other important problem is to characterize the isochronous centers of
systems of the form (2). We recall that a center is isochronous if all
periodic solutions have the same constant period. For a survey about
the isochronicity see for instance [18] and the bibliography therein. In
[18] and in relation to systems of the form (2) the following two open
problems are established.

Conjecture 1. Is it true that a system (2) with nonlinearities of de-
gree higher than two has a center at the origin if and only if its vector
field is symmetric about one of the coordinate axes?

Conjecture 2. Is it true that the origin is an isochronous center of
system (2) with the exception of the linear center only if the system has
even degree and is reduced to system

(4) ẋ = −y, ẏ = x + x2m−1y(x2 + y2),

after a change of variables an a possible scaling of the time?

From previous works, see for instance [18], it is known that system (2)
for n = 2 and n = 3 has no isochronous centers at the origin. Moreover
in [18] it is proved that there is exactly one isochronous system for
n = 4 which corresponds to system (4) with m = 1, and if n = 5 or
n = 7 then the origin never can be an isochronous center. In [8] it is
given a positive answer to the Conjecture 1 for n = 4 and n = 5. In
this paper we go further in the study of these two problems. In this
paper we prove both conjectures for n ≥ 5 odd.

We remark that there are very few results characterizing centers
for polynomial systems of arbitrary degree. One of these results is
due to Christopher [3] who characterizes the centers for the Liénard
polynomial differential systems of arbitrary degree. In the next result
we characterize all the center of the polynomial differential system (2)
for degree n ≥ 7 odd.
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Theorem 1. System (2) with n ≥ 7 odd has a center at the origin if
and only if c2j = 0 for j = 0, . . . , (n − 1)/2.

Note that Theorem 1 is equivalent to say that system (2) with n ≥ 7
odd has a center at the origin if and only if it is invariant under the
change of variables (x, y, t) → (−x, y, −t) and consequently the phase
portrait of the system is symmetric to the y–axis. So Theorem 1 proves
the Conjecture 1 for n odd.

Instead of proving Theorem 1 we will prove a more general result
that will lead to the proof of Theorem 1.

Consider the following system

(5) ẋ = −y, ẏ = x + (x2 + y2)(d−n)/2Qn(x, y),

where Qn(x, y) is the homogeneous polynomial of degree n, given in
(3) and d ≥ n is odd.

Theorem 2. System (5) with n ≥ 5 odd and d ≥ n odd has a center
at the origin if and only if c2j = 0 for j = 0, . . . , (n − 1)/2.

Note that Theorem 2 clearly implies Theorem 1. The proof of The-
orem 2 will be done by induction over n and is given in section 2.

The second main result in the paper is the following, which proves
Conjecture 2 for n odd.

Theorem 3. System (2) with n ≥ 7 odd has no isochronous centers.

Instead of proving Theorem 3 we will prove a more general result
that will lead to the proof of Theorem 3.

Consider again system (5). In view of Theorem 2 in order that
system (5) has a center at the origin we must have c2j = 0 for j =
0, . . . , (n − 1)/2. Hence, system (5) with a center at the origin can be
written as

(6) ẋ = −y, ẏ = x + (x2 + y2)(d−n)/2x

(n−1)/2∑

j=0

c2j+1x
2jyn−2j.

We will prove the following theorem

Theorem 4. System (6) with n ≥ 5 odd and d ≥ n odd has no
isochronous centers.

Note that Theorem 4 clearly implies Theorem 3. The proof of The-
orem 4 will be done by induction over n and is given in section 3.
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2. Proof of Theorem 2

In this section we prove Theorem 2 by induction over n. We start
with the case n = 5. To prove Theorem 2 when n = 5, we have to
prove the following result.

Proposition 5. System (5) with n = 5 and d ≥ 5 odd has a center at
the origin if and only if c2j = 0 for j = 0, 1, 2.

Proof. We first prove sufficiency. If c2j = 0 for j = 0, 1, 2 then system
(5) becomes

(7) ẋ = −y, ẏ = x + (x2 + y2)(d−5)/2x(c1y
4 + c3x

2y2 + c5x
4).

System (7) is invariant under the symmetry (x, y, t) 7→ (−x, y, −t).
Hence it is invariant with respect to the y-axis and it is clear that in
this situation system (7) has a center at the origin.

Now we shall prove necessity. To do that we first write the system
is complex notation of the form
(8)

ż = iz + (zz̄)
d−5
2 (A1z

5 + A2z
4z̄ + A3z

3z̄2 + A4z
2z̄3 + A5zz̄

4 + A6z̄
5),

where z = x + iy, d ≥ 5 is an arbitrary odd integer, and

A1 = a1 + ia2, A2 = a3 + ia4, A3 = a5 + ia6,

A4 = a7 + ia8, A5 = a9 + ia10, A6 = a11 + ia12,

where ai ∈ R. Now we write system (8 in the real variables (x, y) and
impose that it has the form (5), this implies that

a7 = −a5, a8 = a6, a9 = −a3,

a10 = a4, a11 = −a1, a12 = a2.
(9)

Now we write system (5) with n = 5 and satisfying conditions (9) in
polar coordinates, i.e., doing the change of variables x = r cos θ and
y = r sin θ, and we obtain

(10) ṙ = F (θ) rd, θ̇ = 1 + G(θ) rd−1,

where F (θ) and G(θ) are the homogeneous trigonometric polynomials

F (θ) = 2 sin θ (a6 cos θ + a4 cos 3θ + a2 cos 5θ + a5 sin θ

+a3 sin 3θ + a1 sin 5θ),

G(θ) = a6 + (a4 + a6) cos 2θ + (a2 + a4) cos 4θ + a2 cos 6θ

+(a3 + a5) sin 2θ + (a1 + a3) sin 4θ + a1 sin 6θ.
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In order to determine the necessary conditions to have a center we
propose the Poincaré series

(11) H(r, θ) =
∞∑

n=2

Hn(θ)rn,

where H2(θ) = 1/2 and Hn(θ) are homogeneous trigonometric poly-
nomials respect to θ of degree n. Imposing that this power series is a
formal first integral of system (10) we obtain

Ḣ(r, θ) =
∞∑

k=2

V2kr
2k.

where V2k are in fact the Poincaré-Liapunov constants that depend
on the parameters of system (8). Due to the Hilbert Basis theorem,
the ideal J =< V2, V4, ... > generated by the Poincaré-Liapunov con-
stants is finitely generated, i.e. there exist W1,W2, ..., Wk in J such
that J =< W1,W2, ..., Wk >. This set of generators is called a basis
of J and the conditions Wj = 0 for j = 1, . . . , k provide a finite set of
necessary conditions to have a center. The set of coefficients for which
all the Poincaré-Liapunov constants V2k vanish is called the complex
center variety of the family and it is an algebraic set. First we deter-
mine a number of Poincaré-Liapunov constants assuming that inside
this number there is the set of generators. The next step is to decom-
pose this algebraic set into its irreducible components. We must to use
a computer algebra system. The computational tool which we use is
the routine minAssGTZ [5] of the computer algebra system Singular
[9] which is based on the Gianni-Trager-Zacharias algorithm [7]. The
computations in this case can be completed in the field of rational num-
bers. Hence, all the points of the center variety have been found. That
is, we know that all the encountered points belong to the decomposi-
tion of the center variety and we do know that the given decomposition
is complete.

We have compute V2k for k = 1, . . . , 7. The decomposition of the
ideal J7 =< V2, V4, ..., V14 > gives a unique case which is a1 = a3 =
a5 = 0 and we obtain system (7). This completes the proof of the
proposition. �

It follows from Proposition 5 that Theorem 2 is true for n = 5 and
d ≥ 5 odd. Now assume it is true for n = 5, 7, . . . , ℓ with ℓ ≥ 5 odd
and we shall prove it for n = ℓ + 2. We thus have that system

(12) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ)/2

ℓ∑

j=0

cjx
jyℓ−j, cj ∈ R
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with d ≥ ℓ odd has a center at the origin if and only if c2j = 0 for
j = 0, . . . , [(ℓ − 1)/2]. Now we consider the system

(13) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ−2)/2

ℓ+2∑

j=0

cjx
jyℓ+2−j, cj ∈ R.

First we prove sufficiency. If c2j = 0 for j = 0, . . . [(ℓ + 1)/2] then
system (13) becomes

(14) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ−2)/2x

(ℓ+1)/2∑

j=0

c2j+1x
2jyℓ+1−2j.

Since system (14) is invariant under the symmetry (x, y, t) 7→ (−x, y, −t),
it is clear that in this situation system (14) has a center at the origin.

Now we shall prove necessity. Note that we can write

(15)
ℓ+2∑

j=0

cjx
jyℓ+2−j =

(ℓ+1)/2∑

j=0

c2jx
2jyℓ+2−2j +

(ℓ+1)/2∑

j=0

c2j+1x
2j+1yℓ+1−2j.

Dividing the first summand on the right-hand side of (15) by x2 + y2

we get

(16)

(ℓ+1)/2∑

j=0

c2jx
2jyℓ+2−2j = (x2 + y2)

(ℓ−1)/2∑

j=0

d2jx
2jyℓ−2j + dℓ+1y

ℓ+2,

and dividing the second summand on the right-hand side of (15) by
x2 + y2 we get

(ℓ+1)/2∑

j=0

c2j+1x
2j+1yℓ+1−2j = (x2+y2)

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j +dℓ+2xyℓ+1.

Hence it follows from (15) that

ℓ+2∑

j=0

cjx
jyℓ+2−j = (x2 + y2)

(ℓ−1)/2∑

j=0

d2jx
2jyℓ−2j + dℓ+1y

ℓ+2

+ (x2 + y2)

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j + dℓxyℓ+1

= (x2 + y2)
ℓ∑

j=0

djx
jyℓ−j + dℓ+1y

ℓ+2 + dℓ+2xyℓ+1.

(17)
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Thus we write (13) as

ẋ = −y,

ẏ = x + (x2 + y2)(d−ℓ)/2

ℓ∑

j=0

djx
jyℓ−j + dℓ+1(x

2 + y2)(d−ℓ−2)/2yℓ+2

+ dℓ+2(x
2 + y2)(d−ℓ−2)/2xyℓ+1

(18)

with dj ∈ R for j = 0, . . . , ℓ + 2.

Now assume that system (18) has a center at the origin and some
d2j ̸= 0 for j = 0, . . . , (ℓ − 1)/2. Since system (18) has a center at
the origin, there exists a first integral H = Hdℓ+1,dℓ+2

(x, y) defined
in a neighborhood of the origin which is analytic in the parameters
dℓ+1 and dℓ+2. Hence, if we expand Hdℓ+1,dℓ+2

(x, y) in the parameters
dℓ+1 and dℓ+2 we see that system (18) restricted to dℓ+1 = dℓ+2 = 0
has the analytic first integral H0,0(x, y) defined in a neighborhood of
the origin. This in particular implies that system (18) restricted to
dℓ+1 = dℓ+2 = 0, i.e., system

(19) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ)/2

ℓ∑

j=0

djx
jyℓ−j

has a center at the origin. But by hypothesis (see (12)) this is not
possible since system (19) has a center at the origin if and only if
d2j = 0 for j = 0, . . . , (ℓ − 1)/2.

In short, if system (18) has a center at the origin then d2j = 0 for
j = 0, . . . , (ℓ − 1)/2. We then have that system (18) becomes

ẋ = − y,

ẏ = x + (x2 + y2)(d−ℓ)/2

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j

+ dℓ+1(x
2 + y2)(d−ℓ−2)/2yℓ+2 + dℓ+2(x

2 + y2)(d−ℓ−2)/2xyℓ+1,

(20)

that we write as

(21) ẋ = −y, ẏ = x + Pℓ+2(x, y) + dℓ+1(x
2 + y2)(d−ℓ−2)/2yℓ+2,

where

Pℓ+2(x, y) =(x2 + y2)(d−ℓ)/2

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j

+ dℓ+2(x
2 + y2)(d−ℓ−2)/2xyℓ+1.
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Consider now the system

(22) ẋ = −y, ẏ = x + Pℓ+2(x, y).

Note that system (22) is invariant under the symmetry (x, y, t) 7→
(−x, y, −t), and this symmetry insures that origin is a center. Hence,
system (22) has a center at the origin. Moreover, the cross product
between the vector fields to systems (22) and (21) is locally positive or
locally negative in a neighborhood of the origin unless dℓ+1 vanishes.
Since (22) has a center, (21) can only have a center if dℓ+1 = 0. Hence,
a necessary condition for system (13) to have a center at the origin is
that c2j = 0 for j = 0, . . . , (ℓ + 1)/2 (see also equations (15) and (16)).
This concludes the proof of the induction process and completes the
proof of Theorem 2.

3. Proof of Theorem 4

In this section we prove Theorem 4 by induction over n. We start
with the case n = 5. To prove Theorem 4 when n = 5, we have to
prove the following result.

Proposition 6. System (6) with n = 5 and d ≥ 5 odd, has no
isochronous centers.

Proof. System (10) is equivalent to

(23)
dr

dθ
=

F (θ) rd

1 + G(θ) rd−1
.

It is clear that equation (23) is well defined in a sufficient small neigh-
borhood of the origin. The transformation (r, θ) → (ρ, θ) introduced
by Cherkas [1] defined by

(24) ρ =
rd−1

1 + G(θ)rd−1
, whose inverse is r =

ρ1/(d−1)

(1 − ρG(θ))1/(d−1)
,

is a diffeomorphism from the region θ̇ > 0 into its image. If we trans-
form equation (23) using the transformation (24), we obtain the Abel
equation

(25)
dρ

dθ
= −(d − 1)G(θ)F (θ)ρ3 + [(d − 1)(F (θ) − G ′(θ)]ρ2.

The solution ρ(θ, ρ0) of (25) satisfying that ρ(0, ρ0) = ρ0 can be
expanded in a convergent series of ρ0 ≥ 0 sufficiently small of the form

(26) ρ(θ, ρ0) = ρ1(θ)ρ0 + ρ2(θ)ρ
2
0 + ρ3(θ)ρ

3
0 + · · ·

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, ρ̃0] → R be
the Poincaré return map defined by P (ρ̃0) = ρ(2π, ρ̃0) for a convenient
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ρ̃0. System (8) has a center at the origin if and only if ρk(2π) = 0
for every k ≥ 2. If we assume that ρ2(2π) = · · · = ρm−1(2π) = 0 we
say that vm = ρm(2π) is the m-th Poincaré-Liapunov-Abel constant of
system (8). Of course the set of coefficients for which all the Poincaré-
Liapunov-Abel constants vm vanish is the same that the set for which
all the Poincaré-Liapunov constants V2k vanish. If we compute these
constants when system (10) has a center then all the vm are null. How-
ever we also can to determine which of these centers are isochronous.

From the second equation of (10) we have

(27) T =

∫ 2π

0

dθ

θ̇
=

∫ 2π

0

1

1 + G(θ)r(θ)d−1
dθ.

Using the change (24) the previous integral becomes

T =

∫ 2π

0

(1 − G(θ)ρ(θ))dθ = 2π −
∫ 2π

0

G(θ)ρ(θ)dθ,

where ρ(θ) =
∑

j≥1 ρj(θ)ρ
j
0 is the solution given in (26). System (8) has

an isochronous center at the origin if the origin is a center and satisfies
∫ 2π

0

G(θ)ρ(θ)dθ =
∑

j≥1

(∫ 2π

0

G(θ)ρj(θ)dθ

)
ρj

0 = 0.

That is T =

∫ 2π

0

dθ/θ̇ = 2π −
∑

j≥1

Tjρ
j
0 = 2π, where

(28) Tj =

∫ 2π

0

G(θ)ρj(θ)dθ,

are called the period Abel constants. For system (6) with n = 5 and
d ≥ 5 odd, the first period Abel constants are

T1 = a6, T2 = −25a2
2 − 24a2a4 − 27a2

4 + a2
2d + 3a2

4d,

T3 = 625a3
2 + 1017a2

2a4 + 900a2a
2
4 + 594a3

4 − 50a3
2d − 84a2

2a4d

−69a2a
2
4d − 135a3

4d + a3
2d

2 + 3a2
2a4d

2 − 3a2a
2
4d

2 + 9a3
4d

2.

The decomposition of the ideal generate by the period Abel constants
gives a unique case which is a6 = a4 = a2 = 0, and we obtain that the
unique isochronous system is the linear one. This completes the proof
of the proposition. �

It follows from Proposition 6 that Theorem 4 is true for n = 5 and
d ≥ 5 odd. Now assume it is true for n = 5, 7 . . . , ℓ with ℓ ≥ 5 odd and
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we shall prove it for n = ℓ + 2. We thus have that system

(29) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ)/2

(ℓ+1)/2∑

j=0

c2j+1x
2j+1yℓ−1−2j

with d ≥ ℓ odd has no isochronous centers. Now we consider the system

(30) ẋ = −y, ẏ = x + (x2 + y2)(d−ℓ−2)/2

(ℓ+1)/2∑

j=0

c2j+1x
2j+1yℓ+1−2j.

We will prove that system (30) has no isochronous centers.

As in the proof of Theorem 2 we write

(31)

(ℓ+1)/2∑

j=0

c2j+1x
2j+1yℓ+1−2j =

= (x2 + y2)

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j + dℓ+2xyℓ+1.

Thus we write (30) as

ẋ = − y,

ẏ =x + (x2 + y2)(d−ℓ)/2

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j

+ dℓ+2(x
2 + y2)(d−ℓ−2)/2xyℓ+1,

(32)

with dj ∈ R for j = 0, . . . , ℓ + 2.

Now assume that system (32) has an isochronous center and some
d2j+1 ̸= 0 for j = 0, . . . , (ℓ−1)/2. Since system (32) has an isochronous
center then the period is constant. Since the period is constant, and
the solution r(θ) depends continuously on the parameter dℓ+2, we get
that T = T (dℓ+2) is constant and only depends (analytically) on dℓ+2.
Expanding T in power series in dℓ+2 we have that T (0) is constant and
is indeed the period of the system

ẋ = −y,

ẏ = x + (x2 + y2)(d−ℓ)/2

(ℓ−1)/2∑

j=0

d2j+1x
2j+1yℓ−1−2j.

(33)

But this implies that system (33) has an isochronous center. But
by hypothesis (see (29)) this is not possible since system (33) has an
isochronous center if and only if d2j+1 = 0 for j = 0, . . . , (ℓ − 1)/2.



CENTERS FOR THE KUKLES HOMOGENEOUS SYSTEMS 11

In short, if system (32) has an isochronous center then d2j+1 = 0 for
j = 0, . . . , (ℓ − 1)/2. We then have that system (32) becomes

(34) ẋ = −y, ẏ = x + dℓ+2(x
2 + y2)(d−ℓ−2)/2xyℓ+1.

We have the following proposition.

Proposition 7. If system (34) has an isochronous center, then dℓ+2 =
0.

Proof. We take polar coordinates x = r cos θ and y = r sin θ and system
(34) takes the form

ṙ = k rd cos θ sin2+ℓ θ, θ̇ = 1 + dℓ+2 rd−1 cos2 θ sin1+ℓ θ.

Next we apply the Cherkas’ transformation to arrive to the associated
Abel equation (25). Then we compute the solution ρ(θ, ρ0) of (25)
satisfying that ρ(0, ρ0) = ρ0 up to certain order. Using these expansion
and equation (28) we find that the first period Abel constant is

T1 =

(
−1 + (−1)ℓ

)
dℓ+2 π3/2

2Γ(− ℓ
2
)Γ(5+ℓ

2
) sin(πℓ

2
)

.

Taking into account that ℓ is odd we obtain that dℓ must be zero. �

It thus follows from Proposition 7 that a necessary condition in order
that system (6) has an isochronous center is that c2j+1 = 0 for j =
0, . . . , (ℓ+1)/2 (see also (31)). But this implies that system (6) becomes

ẋ = −y, ẏ = x.

This concludes the proof of Theorem 4.
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[6] A. Cima, A. Gasull, V. Mañosa, F. Mañosas, Algebraic properties of the
Liapunov and period constants, Rocky Mountain J. Math. 27 (1997), 471–501.

[7] P. Gianni, B. Trager, G. Zacharias, Gröbner bases and primary decom-
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