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LIMIT CYCLES FOR CONTINUOUS AND
DISCONTINUOUS PERTURBATIONS OF
UNIFORM ISOCHRONOUS CUBIC CENTERS

JAUME LLIBRE! AND JACKSON ITIKAWA'®

ABSTRACT. Let p be a uniform isochronous cubic polynomial cen-
ter. We study the maximum number of small or medium limit
cycles that bifurcate from p or from the periodic solutions sur-
rounding p respectively, when they are perturbed, either inside the
class of all continuous cubic polynomial differential systems, or in-
side the class of all discontinuous differential systems formed by
two cubic differential systems separated by the straight line y = 0.

In the case of continuous perturbations using the averaging the-
ory of order 6 we show that the maximum number of small limit
cycles that can appear in a Hopf bifurcation at p is 3, and this
number can be reached. For a subfamily of these systems using
the averaging theory of first order we prove that at most 3 medium
limit cycles can bifurcate from the periodic solutions surrounding
p, and this number can be reached.

In the case of discontinuous perturbations using the averaging
theory of order 6 we prove that the maximum number of small
limit cycles that can appear in a Hopf bifurcation at p is 5, and
this number can be reached. For a subfamily of these systems using
the averaging method of first order we show that the maximum
number of medium limit cycles that can bifurcate from the periodic
solutions surrounding p is 7, and this number can be reached.

We also provide all the first integrals and the phase portraits in
the Poincaré disc for the uniform isochronous cubic centers.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

One of the main open problems in the qualitative theory of planar
differential systems is the investigation of the limit cycles that can
bifurcate from such systems when we vary the parameters.

A classical way to investigate limit cycles is perturbing a differential
system which has a center. In this case the perturbed system displays
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limit cycles that bifurcate, either from the center (having the so-called
Hopf bifurcation), or from some of the periodic orbits around the
center, see for instance Pontrjagin [18], the second part of the book [4],
and the hundreds of references quoted there. The problem of studying
the limit cycles bifurcating from a center, or from its periodic solutions
has been exhaustively studied in the last century and is closely related
to the Hilbert’s 16" problem. Nevertheless, in spite of all efforts, there
is no general method to solve this problem.

In the last decades several works about the bifurcation of limit cycles
in planar differential systems having a uniform isochronous center have
been published see for instance [1, 9, 11]. Aside from its importance in
physical applications, isochronicity is closely related to the uniqueness
and existence of solutions for some boundary value, perturbation, or
bifurcation problems. It is also important in stability theory, since a
periodic solution of the central region is Liapunov stable if and only
if the neighboring periodic solutions have the same period. For more
details on these two last paragraphs see [5]. Moreover, the interest in
this problem has also been revived due to the proliferation of powerful
methods of computerized research, and special attention has been
dedicated to polynomial differential systems, see [3, 7] and the
bibliography therein.

Let p € R? be a center of a differential polynomial system in R2
without loss of generality we can assume that p is the origin of
coordinates. We say that p is an isochronous center if it is a center
having a neighborhood such that all the periodic orbits in this
neighborhood have the same period. We say that p is a uniform
isochronous center if the system, in polar coordinates x = rcos#,
y = rsind, takes the form 7 = G(0,r), § = k, k € R\ {0}, for
more details see Conti [7]. The next result is well-known.

Proposition 1. Assume that a planar differential polynomial system
of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables
and a rescaling of time the system can be written as

x:_y+xf(xay>v y:x+yf<$ay)7
where f(x,y) is a polynomial in x and y of degree n—1, and f(0,0) = 0.

The following result due to Collins [6] in 1997, also obtained by
Devlin, Lloyd and Pearson [8] in 1998, and by Gasull, Prohens and
Torregrosa [11] in 2005 characterizes the uniform isochronous centers
of cubic polynomial systems.
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Theorem 2. A planar cubic differential system has a uniform
1sochronous center at the origin if and only if it can be written as

(1) ab:—y—i—xf(x,y), y:x+yf(a?,y),

where f(x,y) = a1z + asy + azr?® + asxy — azy?, and satisfies a2az —
a%ag + ajasaq = 0.

In this article a small limit cycle is one which bifurcates from a center
equilibrium point, and a medium limit cycle is one which bifurcates
from a periodic orbit surrounding a center.

We study the largest number of small and medium limit cycles for
the uniform isochronous cubic centers, when they are perturbed either
inside the class of all continuous cubic polynomial differential systems,
or inside the class of all discontinuous differential systems formed by
two cubic differential systems separated by the straight line y = 0. The
method is based on the averaging theory. For more details about the
averaging theory see the book of Sanders, Verhulst and Murdock [19].

In order to study the bifurcation phenomenon in these systems we
take into account the following result due to Collins [6].

Proposition 3. The planar cubic differential system (1) can be reduced
to either one of the following two forms.

(2) i=—y+2’y, y=z+ay’,
(3) &= —y+a’+Ar’y, y=ux+zy+ Avy’,
where A € R.

For now on we shall call (2) and (3) as Collins first form and Collins
second form, respectively.

We consider the following continuous systems

6

(4) o

g= z+yf(@,y)+ > eaulry),

=1
where f(z,y) is as in Theorem 2, and the system

(5)  di=-y+a2ty+epx(r,y), ¥= z+ay*+eqr(r,y),
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where

pj = a{x + oéy + a§x2 + ai:cy + aéyQ + aéx3 + a]%ny + agny + agy?’,
¢; = Blz + By + Bja® + Blay + Bly® + B3’ + Bty + Blay’ + By,
Pk = Qg + Pr, qx = Po+ q1.

Moreover we consider the discontinuous systems

o (3)-ren-{RE Euz

™ (g):y@,y):{ I

—y+af(z, y)+Zl L E'pil, y) )
x4+ yf(x ?/)4'21—15%(90 y) )’

0=
( —y+af(z, y)+Z e, y) )

4+ yf(z,y) + 3o, cvilz,y)

( —y+ 2y +epr(x,y)
Yl(m,y)—< T+ 2y + eqr(z, y) )’

aloay) = (VTR
= e+ 7y +a® + ey +dy? + g’ + gty + ey’ + @y
—5]z+5 Ty 4 04a” + Slay + 0ly? + 0lad + oLty + Say® + 6y,
uK—'yo+u1, Vg = 0p + V1.
In what follows we state our main results.
Theorem 4. For |e| # 0 sufficiently small the mazimum number of

small limit cycles of the differential system (4) is 3 using the averaging
theory of order 6, and this number can be reached.

Theorem 4 is proved in section 3. For more details on the averaging

theory see section 2.

Theorem 5. For |e| # 0 sufficiently small the mazimum number of
medium limit cycles of the differential system (5) is 3 using the first
order averaging theory and this number can be reached.

Theorem 5 is proved in section 4.
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Theorem 6. For |e| # 0 sufficiently small the mazimum number of
small limit cycles of the discontinuous differential system (6) is 5 using
the averaging method of order 6 and this number can be reached.

Theorem 6 is proved in section 5.

Theorem 7. For |e| # 0 sufficiently small the mazimum number
of medium limit cycles of the discontinuous differential system (7) is
7 using the averaging method of first order and this number can be
reached.

Theorem 7 is proved in section 6.

Theorems 4 and 5 extend previous results presented in [11]. In that
work the authors studied some subfamilies of uniform isochronous cubic
centers, proving the existence of one or two limit cycles. Moreover
Theorem 7 extend the work done in [16] on the number of medium
limit cycles which can bifurcate from a family of uniform isochronous
quadratic centers perturbed by discontinuous differential systems with
the straight line of discontinuity y = 0, to the uniform isochronous
cubic centers given by the Collins first form.

In this work we also provide the phase portraits and the first integrals
for the uniform isochronous cubic centers.

Theorem 8. The first integrals H of system (1) in polar coordinates
x=rcosf, y=rsinf are described in what follows.

Case 1: a2 — a2 #0.
Subcase 1.1: a4 # 0.

Subcase 1.1.1: 4a, # a? — a3.

H _ e—2arctan |:R+2a47‘(7a2Rcs<‘359+a1 slnG)]

S
G4T2

Y

R+ r(ascos® — ay sin @) (asayr cos — ajaysinf — R)

where R = a3 — a3, S = \/4a4/R — 1.

In case of a negative square root, we have a complex first integral
and therefore both its real and imaginary parts are also first integrals,
if not null.

Subcase 1.1.2: 4a, = a3 — a3.

e
7a627a2rc030+a1rsir10

H = S
2 — agrcos + a;rsind
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Subcase 1.2: a4 = 0.

H= r

1 —ayrcos + ayrsinf’
Case 2: a3 — a2 =0.
Subcase 2.1: a; = a;.

Subcase 2.1.1: a; = 0.

T2

H = .
1 — aqr? cos? § + agr? sin(26)

Subcase 2.1.2: a; #0, ag =0.
Subcase 2.1.2.1: az(a? + 4a3) # 0.

H 26_2 arctan |:a1+2a37‘(§io; 6—sin 9)]

azr?(sin(20) — 1)
(cos@ — sin0)2[1 + ayr(sin @ — cos0) + azr2(sin(260) — 1)]|

where R = \/—1 — 4az/a}.

Subcase 2.1.2.2: a3 = 0.

H= !

1 —ayr(cosf —sinf)’

Subcase 2.1.2.3: ag = —a?/4.

2
2T€ 2—ajr(cosf—sin @)
H = , .
2 — ayr(cos — sin 0)

Subcase 2.2: ay — —a;.

Subcase 2.2.1: a; = 0. This case becomes the subcase 2.1.1.
Subcase 2.2.2: a; #0, a4 = 0.

Subcase 2.2.2.1: ag(4az —a3) # 0.

a1 +2agr(sin 64-cos )

iR azr?(sec(20) + tan(26))
1+ ayr(sin@ + cos ) + asr?(1 + sin(20))

where R = \/4az/a? — 1.

Subcase 2.2.2.2: az = 0.

L [72 arctan (

oF )+R arctanh(tan 0)]

H =

)

H= !

1 —ayr(cosf —sinf)
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Subcase 2.2.2.3: ag = a3 /4.
r

= e1+%a1’"(0059+5in9) (1 + %alr(COSH + sin 9)) '

Theorem 8 is proved in section 7.

We say that two polynomial vector fields X and Y on R? are
topologically equivalent if there exists a homeomorphism on the Poincaré
sphere S? preserving the infinity S' carrying orbits of the flow induced
by the Poincaré compactified vector field of X into orbits of the flow
induced by the the Poincaré compactified vector field of Y preserving
or reversing simultaneously the sense of all orbits. For more details on
the Poincaré compactification see Chapter 5 of [10].

Theorem 9. The global phase portrait in the Poincaré disc of the
differential system (1) is topologically equivalent to one of the three
phase portraits presented in Figure 1.

FIGURE 1. Phase portraits of cubic uniform isochronous centers

More precisely, the global phase portrait of (1) is topologically equivalent
to the phase portrait (a) of Figure 1 if one of the following conditions
holds
< aras # 0, and as(a} —a3) > 0, and ag < (aF — a3)/4;
cay=—a;#0, and 0 < a3 < a?/4, and ay = 0;
cay=a, #0, and —a?/4 < a3z <0, and ay = 0;
ca; =0, and ay # 0, and —a3/4 < ay < 0;
cay #0, and as =0, and 0 < ag < a?/4;
the phase portrait (b) if one of the following conditions holds
. a1as # 0, and as(ad —a3) >0, and ag > (a? — a3)/4;
«ay=—a; #0, and a3 > a?/4, and ay = 0;
cay=a; #0, and a3 < —a?/4, and ay = 0;
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«a; =0, and as # 0 and ay < —a3/4;
cay #0, and ay = 0 and ay > a3 /4;

the phase portrait (c) if one of the following conditions holds

. ajay # 0, and as(a? — a3) < 0;
«ag=—a; #0, and az < 0, and ay = 0;
cag=ay#0, and az > 0, and ag = 0;
«.a; =0, and as # 0, and aq > 0;

«a; #0, and az =0, and ay < 0;

« A1 = Q9 = 0.

The cases where a3 = a4 = 0 are omitted in Theorem 9 because
in such cases system (1) is a quadratic polynomial differential system,
which has already been exhaustively studied, see for instance system
Sy at p.38 of [3].

Theorem 9 is proved in section 8.

Collins [6] presented the phase portraits and first integrals for the
uniform isochronous cubic centers, but he applied the forms (2) and
(3) in order to obtain the results and therefore one needs to change the
differential systems to such forms before getting the phase portraits
and first integrals. Our results present the first integrals in terms of
all the parameters of the uniform isochronous centers. Moreover, the
phase portrait for the case A = 1/4, Figure 2-d, pp. 347 of [6] is not
correct, because it presents two saddle-nodes at infinity which do not
exist.

The rest of the paper is organized as follows. In section 2 we present
some results on the averaging theory and technical propositions used
in our study. The next four sections are dedicated to prove our main
results. More precisely in those sections we present the proofs of
Theorems 4, 5, 6 and 7, respectively. Finally, in sections 7 and 8 we
respectively provide the proofs of Theorems 8 and 9. All calculations
were performed with the assistance of the software Mathematica.

2. PRELIMINARY RESULTS

In this section we introduce some preliminary results on the averaging
theory that we shall use in our study of the uniform isochronous cubic
centers.

The following result is due to Llibre, Novaes and Teixeira [15].
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Consider the general differential system

(8) i(t) = Zgim(t,x) + "Rt x,€),

where F; : RxI — R"fori=1,2,...,kand R : RxIx(—ep,&9) = R"
are continuous functions and T-periodic in the first variable, I being
an open subset of R”.

Moreover, let L be a positive integer, x = (x1,z2,...,2,) € I, t €
R and y; = (Yj1,Yj2:---,Yjn) € R*, j =1,...,L. Given F : R x
I — R™ a sufficiently smooth function, for each (t,z) € R x I we
denote by OLF(t,x) a symmetric L-multilinear map which is applied
to a ‘product’ of L vectors of R™, which we denote as @le y; € R
The definition of such L-multilinear map is

L
OLF(t,x)
(9) 0"F(t,x) (Dy; = Z T Pt LR T
j:l 119

01,0 =1
We define 9° as the identity functional. Given a positive integer b and
a vector y € R™ we also denote y® = @2:1 y € R™.

Let ¢(+,2) : [0,t,] — R™ be the solution of the unperturbed system
&(t) = Fo(t,x) such that ¢(0,2) = 2. For i = 1,...,k we define the
averaged function f; : I — R"™ of order 7 as

Yi (Tv Z)
(10) filz) = =——
where y; : R x I — R" i=1,...,k — 1 are defined recurrently by the
following integral equation.

t
w2 =it [ {Fi@,w(s,z»
0
% l
1
X P 2 Qe

where S; is the set of all I-tuples of non-negative mtegers (b1,ba, ..., 0;)
satisfying by + 2by + ...lby = [ and L = by + by + ... + b;. Observe
that if Fy = 0 then ¢(t,2z) = z for each t € R. Therefore y(t,z) =

f(f Fi(s,z)ds and fi(t,2) = fOT Fi(t, z)dt as usual in averaging theory.

9

(11)

Theorem 10. Suppose Fy = 0. In addition, for the functions of (8)
we assume the following conditions.
(i) For each t € R, Fy(t,-) € C*% i =1,...,k, 0" 'F; is locally
Lipschitz in the second variable for i = 1,...,k and R is a
continuous function locally Lipschitz in the second variable;
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(ii) Assume that f; =0, i=1,...,r—1 and f. #0,r€{1,...,k}
(here we are taking fo = 0). Moreover, suppose that for some
a € I with f.(a) = 0 there exists a neighborhood V- C I of a
such that f,(z) # 0,Vz € V\{a} and dp(f,(z),V,0) # 0.
Then, for sufficiently small |e| > 0 there exists a T-periodic solution
x(-,€) of (8) such that x(0,e) — a when ¢ — 0.

The proof of this theorem can be found in section 3 of [15].

The next result provides a method to write a perturbed differential
system under the form (8) for £ = 1 and Fy = 0 which can be used to
apply the averaging theory of first order.

Theorem 11. Consider the unperturbed system © = P(x,y), y =
Q(x,y), where P,Q : R* — R are continuous functions, and assume
that this system has a continuous family of period solutions {I'y} C
{(z,y) : H(x,y) = h,hy < h < ha}, where H is a first integral of the
system. For a given first integral H assume that xQ(x,y) —yP(z,y) #
0 for all (z,y) in the period annulus formed by the ovals {I'y}. Let
p: (Vhi,Vhy) x [0,27) — [0,00) be a continuous function such that

H(p(R,0)cost, p(R,0)sinf) = R?
for all R € (Vhi,vhy) and all 6 € [0,27). Then the differential

equation which describes the dependence between the square root of
the energy R = Vh and the angle 6 for the perturbed system & =
P(x,y) + ep(z,y), ¥ = Q(z,y) + eq(x,y), where p,q : R* — R are
continuous functions is

dR __pa® +y°)(Qp — Pq)
do 2R(Qx — Py)
where p = u(x,y) is the integrating factor corresponding to the first

integral H of the unperturbed system and x = p(R,0) cos8, y = p(R,0)
sinf.

(12) + O(e?)

For more details see [2]. We also need the next results. The first one
can be found in Proposition 1 of [17] and the latter in [12].

Proposition 12. Let fy,..., f, be analytic functions defined on an
open interval I C R. If fo,..., f, are linearly independent then there
exrists S1,...,8, € I and Xo,..., A\, € R such that for every j €

{1,...,n} we have Z)\ifi(sj) =0.
=0

We say that the functions (fo, ..., f,) defined on the interval I form
an Fxtendend Chebyshev system or ET-system on I, if and only if, any



UNIFORM ISOCHRONOUS CUBIC CENTERS 11

nontrivial linear combination of these functions has at most n zeros
counting their multiplicities and this number is reached. The functions
(fo,---, fn) are an Extendend Complete Chebyshev system or an ECT-
system on [ if and only if for any k € {0,1,...,n}, (fo,..., fx) form
an ET-system.

Theorem 13. Let fy, ..., f. be analytic functions defined on an open
interval I C R. Then (fo,..., fn) is an ECT-system on I if and only
if for each k € {0,1,...,n} and all y € I the Wronskian

i
W(for. .. fi)(y) = °;y ﬂy ’“;y
P Py o 1P

1s different from zero.
The next result follows easily from Lemma 2.13 of [13].

Proposition 14. Consider g(t) = f(t — X\)f(A —t), for A € RT and
f:R =R, C™®, defined by

—1/t .
ro={s" 410

Clearly g is C*, nonnegative and g(t) > 0 < t € (—=\,\). Then the
function h defined by

(t) = 20208

f_oo g(s)ds

is C* and h(t) = —1 fort < —X\, h(t) =1 fort > X and —1 < h(t) <1
otherwise.

3. Proor orF THEOREM 4

We use the Collins first and second forms, respectively systems (2)
and (3) in this article to prove Theorem 4. We were able to apply up
to the averaging theory of order 6.

Collins first form
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Consider system (4) with f(x,y) = xy, that is, the unperturbed
system is the Collins first form.
6
i=—y+2y+ Z e'pi(z,y),
(13) =
j= v+ay’+ ) calzy).
i=1
In order to analyze the Hopf bifurcation for system (13), applying
Theorem 10, we introduce a small parameter £ doing the change of
coordinates x = X, y = €Y. After that we perform the polar change
of coordinates X = rcosf,Y = rsinf, and by doing a Taylor expansion
truncated at the 6" order in £ we obtain an expression for dr/df similar
to (8) with Fy = 0,k = 6. The explicit expression is quite large so we
omit it.

System (13) is a polynomial system. The functions F;(0,7), i =
1,...,6 and R(0,r, ) of system (13) are analytic, and since the variable
0 appears through sinus and cosinus, they are 2r—periodic. Hence the
assumptions of Theorem 10 are satisfied. We take I of Theorem 10
as [ = {r : 0 < r < 1} because the Collins first form has the period
annulus of the center in the band —1 < 2 < 1.

Applying Theorem 10 we obtain the averaging function of first order

filr) = mr(oq + By).

Clearly fi(r) has no solution in 7. Thus there is no small limit cycle
which bifurcates from the uniform isochronous center at the origin by
the averaging method of first order. Setting 3 = —aj we obtain
fi(r) = 0. So we can apply the averaging theory of second order using

Theorem 10, obtaining the averaging function of second order.
fa(r) = mr(ai + B3).

Since fy(r) has no solution in I, there is no small limit cycle which

bifurcates from the uniform isochronous center at the origin applying
the averaging method of second order. Doing B2 = —a? we get fo(r) =

0, and then we can apply the averaging method of third order obtaining
f3(r) = r(Asr® + Ay),

where

T

4

Thus f3(r) has one solution in [ if 0 < —A; /A3 < 1. Hence applying
the averaging theory of third order it is proved that at most 1 small

Ay = —(dog + 3ag + a5 + 81 +383), A1 =7(af + 53).
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limit cycle can bifurcate from the uniform isochronous center at the
origin and this number can be reached.

In order to apply the averaging method of fourth order, we need to
have f3(r) = 0 so we set 33 = —a? and 81 = —(4aq + 3ag +af +353).
The resulting averaging function of fourth order is

f4(7’) = T'(Bg?”z + Bl),
where
<Bs::Z(4a%a%%-2a%a%4-2aiﬁé%-35%ﬁ5+-a§aé+—3aéﬁé—-2aéﬁ§
+azay — By By + agag — Bifs + 20565 + Brag + daf + 3ag
+ 87 + a5 + 30,),
By =m(ai + 7).
Then f4(r) has one solution in [ if 0 < —B;/B; < 1. Hence we can
show that at most 1 small limit cycle can bifurcate from the uniform
isochronous center and this number can be reached. Solving B; = 0
for B3 and B3 = 0 for 32, we obtain fy(r) = 0 so we can apply the

averaging theory of order 5, and its corresponding averaging function
is

f5(7") = T<C57"4 —+ 037“2 + Cl),

where
T
Cs 21(20& + 205 + ag + By),
T
Cs == (4a1(n)? + 201507 + 201055 + 207 (a3)? — ajaz

4
+ 6818381 + 2010305 — 201 83 85 + ar(ay)? — i (68;)* — a1 Bz
+ajagfly —200(65) + oy Brag + dagas + 20007 + 20153
+ 38185 + (a3) g + 3(n)?By + 301 anfy + azazay + 2050505
— @y 35 + danas 5 + Branag + dazai + azaf + 3,03
+ 28133 — 20385 + ozl — B3 57 + Blagag + ajai — 163
+ayaf — By 65 + 2810583 + azal — B3 Bf + 20565 + 2007
+agft + agas + 38587 + 20307 + 38505 — 28505 + 26503
+ Bla2 + 408 + 303 + B2 + o + 363),

Cy =m(af + 53).

The averaging function of fifth order f5(r) can have at most 2 solutions
in /. Thus applying the averaging method of order 5 it is proved that
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at most 2 small limit cycles can bifurcate from the uniform isochronous
center at the origin and this number can be reached.

In order to apply the averaging theory of order 6 we solve C; = 0 for
B3, C3 =0 for B2 and Cs for f3, resulting that f5(r) = 0. Calculating
the averaging function of sixth order we have

fG(T) = T(D57”4 —+ D47”3 =+ D37”2 =+ D1)7

where

1
+ 9601 g + 288agary + I6agay — 19207 — 192a¢ — 960
+ 19204 81 + 2880333 + 640t BY — 166164 + 32003 8L + 960} 52

+ 23701 81 — 166,35 + 288 B35 + 28835 + 96035 — 9633 ),

1
Dy = ——aqm(as + Bi)(ay + B3 +283),

8
D3 = —5%7r(108a2(a1) + 36531 (a7)® — 384a3ay(ay)?
+ 7203 (e)® + 2560355 (a)? + 1286;%@1(%) — 256035 (o)
+ 38464/35(041) + 319(%) 1 - 27(51) 2560‘%(043)204%
- 2560‘2(044) 1+ 9“2(51) + 128042<ﬁ4) aj — 12851 (/34)
— 128aj04(a)? + 512a5(Bs ) 2o — Sl2aazasaq — 2560%04304
+ 572050501 — 256asa3a; — 512@%0@@} 256()*arar]

— 2560 aha) — 256az02a; — 256a5a2ar + 256a5a) — 256a3a]

+ 867(a3)?Brag + 256(az)*Blal + 828a3Bial + 128azas fiag
+ 12803 3301 — 128,31 B3 + 128aza5 817 — 25605043, al
+ 128033 a1 — 128a2B a1 — 128a3 31 Bra) — 256034 Bia;

— 1280} 501 + 2560533 a1 — 25603, B f5 0y — 256(a3)* By
— 25605 g1 + 82887 + 6081 Bia + 128 B30

+ 256/3; B30 + 128a38:ia; — 12803 B8a; + 2563, 1o

— 128y 2] + 25633 B2 + 512835 Beay — 256085,

+ 7683 a; — 2568507 + 3003 (8))? + 12805 (53;)?

+ 25607 (63)* — 128(%)2@;@1 384(ay) s + 768(ary) g
+ 256(ag) ag — 482(az)%ad — 256(a3)?ad — 128(ay)*a]

1.1 2 1.1 2 1.1 2 1.1 2
— 2560500 — 256042@7&1 128aza 05 — 2560005005
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+ 1536050505 + 512ahagas — 512aias — 128aa,03

—128a;a§,ai 256a;a;ai 128%@4 256a§aia§

— 2560} + T68agas + 256a8a2 128a4a3 12830}

— 128ajai} — 12803 — 128a2a8 512a7 — 384046 — 128ay

— 256ag0a 1 + T68() g 8] + 256(ag ) agBl + 60asaiB;

+ T68agas 3] + 256ag05] — 128aza3 ] — 128a a2 3]

— 12803 81 — 128331 + 25603(B1)?B; + 128013

+ 2560535 — 2560331 B3 + 128a1a§5; — 128a303 B}

- 128(511)25?{6; — 768(ay)?ag s — 128aalBs — 512aia3 s

— 512050238 — 25603 3; — 51200531 Bs — 256023, s

+ 2560 55 85 + 128(cp) 81 85 + 128038, B5 — 2560507 B

— 25603 B — 128t 7 + T68adag 87 + 2560 as 7 — 1280237

— 2560335 B — 128033 B — 2560335 B + 25601385 — 256033, B3

— 12861 8183 — 12861 B 55 + 128035 B3 + 1286387 — 51200535

— 2560232 — 2560 31 2 + 128031 32 + 1283132 — 25603 32

— 384(ap)”B5 — 38405 — 38403 B — 384015 + T68g )

+ 25604 3 + 25603 35 + 1285, B3 4 12833 53 + 12832 33

— 256032 + 1283, 32 — 384 B3 — 38431 B — 12837 — 384/3y),
D, =r(af + ).

Therefore fg(r) can have 3 solutions in I according to Proposition 12.
4

By Theorem 13 (r,7%,7%,75) is an ECT-system because W;(z) = z,
Wa(z) = 223, Ws(z) = 62°, Wy(z) = 4827, where W;(z),7 = 1,2,3
denotes the Wronskian of the first j functions in (r,r3,r% r?), are
nonzero in I. Moreover Dy, D3, Dy and Dj are linearly independent
functions. In fact only Djs presents the coefficients o and o, only Dj
has the coefficient o2, and D is the only one with the coefficients o
and S§. We claim that D, is also linearly independent of the other
coefficients. Suppose that this is false. Then there exist real numbers
k,l,m not all zero such that Dy = kD, +1D3+mDs. But D, is the only
one with the variables o and 3%, so in order to D, does not present
these variables we must set &k = 0. Since the other two functions Ds
and Ds also have variables which uniquely appears in their respective

expressions, the same argument holds so [ = m = 0. But then Dy = 0,
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which is a contradiction. Therefore Dy, D3, D, and D5 are linearly
independent functions. Hence applying the averaging theory of order
6 we can show that at most 3 small limit cycle can bifurcate from
the uniform isochronous center at the origin and this number can be
reached.

Now we perform similar calculations to the Collins second form.

Collins second form
Consider system (4) with f(x,y) =z + Axy.

6
b=—y+a’+ A’y + ) e'pila.y),
(14) zzl
= x+ay+ Avy® + Zeiqi(x, Y),
i=1
where A € R\{0}, since for A = 0 system (14) is a quadratic system,
which has been exhaustively studied.

Similarly to the previous procedures applied in the Collins first form,
in order to analyze the Hopf bifurcation for system (14), applying
Theorem 10, we introduce a small parameter ¢ doing the change of
coordinates x = X, y = €Y. After that we perform the polar change
of coordinates X = rcosf,Y = rsinf, and by doing a Taylor expansion
truncated at the 6" order in £ we obtain an expression for dr/df similar
to (8) with Fy = 0,k = 6. Using the same arguments as in the proof
of the Collins first form the differential equation dr/df = ... satisfies
the assumptions of Theorem 10. We take I = {r : 0 < r < rg < 1},
where the unperturbed system has periodic solutions passing through
the point (r < ry,0 = 0).

Applying Theorem 10 we obtain the averaging function of first order

filr) = mr(on + By).

Clearly fi(r) has no solution in I. Setting 83 = —aj we obtain fi(r) =
0. So we can apply the averaging theory of order 2 using Theorem 10,
obtaining

fa(r) = mr(oq + B3)
Again fo(r) has no solution in I. Doing 3 = —a? we get fao(r) = 0.
Then we can apply the averaging method of third order

f3<7") = T(A3T2 + Al),
where

Ay =5 (440l + o} + 3ad + af — 38 — B + B + 363),
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Ay =n(a? + B3).
Thus f3(r) can have one solution in [ if 0 < —A; /A3 < 1. In order to
apply the averaging method of forth order, we need to have f3(r) = 0.
We set B3 = —ab and BF = —(4Aa] + af + 3ag +af — 365 — B +353).
The resulting averaging function of fourth order is
fa(r) = r(Bsr* 4+ By),
where
Bs :%(4Ao&a% +4Aa? + 3ajaz + 381 B3 — 3018 + 3ajai + 2atas
+ 207 B + 381 By + apay — azBi + ajag + 3as 8y — 203583
+ azay — B34 + ajas — By B + 205 8% + Biag — 355 + o
— B3 + 305 + 57 + g + 365),
By =n(ay + B;)-
Then f4(r) has one solution in [ if 0 < —B;/Bs < 1. Solving B; =0

for 83, and B3 = 0 for B2, we obtain f,(r) = 0, and we can apply the
averaging theory of order 5. Its corresponding averaging function is
f5(r) = r(Csr* + Car® + Oy),
where
T
Cs =51
+6AB5 — 123 + 6ay — 682 + 18ag + 1204 + 188;),
C3 :Z(4Aa}(a%)2 +4Aaias + 4Aazal + 4Aa8 — 3(a1)?Bs — 3(81)%Bs
+3(a7)%ay — 3(a})?Bs + 3B1al By + 3ajasas — 3ajas By + B2
+ 6ajagas + 2a a0 4+ 2aia5 88 + 2at(a3)? — 3Batas + o
— ayoi + B3 B + 2000505 — 2008365 + ar(an)® — ap(By)*
— By + ajayfs — 204 (B5)° + enfias + age; + 26505 + 363
= 3a1 8] + 3eq03 + 20107 + 20153 + 30155 + (ap)?a — (a3)* B3
+ (ag) o + 3(0) "By + 381028y + ap0) + 2050505 + oy
— a1 5 + dogag By + Bronog + 0pa] — ayf5 + aag + 3agfy
+2B103f5 + Bagal + 3B5 B — 2055 + azal — B3] + Bloyas
+agah + agai — B3 + ajad — B3 + 28155 — 365 + 36163
+3aza] + agad — Baf + 205525 + 20507 + aghi + 3ajas + ol

+ 38087 — 3Bi0t + 20501 — By + 360z — 2505 — 5 + 3ag),

(12A%] + 18Aaj — 17ABs + TAa) — 19ABE + 1240 + 6Aay
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Cl :W((X? + 625)

The averaging function f5(r) has at most 2 solutions in /. In order
to apply the averaging method of order 6 we solve C; = 0 for 33,
Cs =0 for 32, and C5 = 0 for 3, resulting f5(r) = 0. We remark that
these expressions only hold for A # —3. The results for A = —3 are
presented later on. Calculating the averaging function of sixth order
we obtain
fﬁ(?") = T(D5T’4 + D37’2 + Dl)

where the expressions of D; for ¢+ = 1,3,5 are very long and we do not
give them here.

Therefore fs(r) has at most 2 solutions in I. Using the same
arguments than in the proof of the Collins first form for fs(r) we can
show that at most 2 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

Now we analyze the bifurcation of small limit cycles for the center of
(14) in the case A = —3. We remark that until the averaging method
of order 5 the respective averaging functions for this special case can
be obtained by plugging A = —3 in the equations of the general case,
so we do not explicit them. Hence we solve C; = 0 for 85, C3 = 0 for
B2, and Cs = 0 for o}, and we get f5(r) = 0 when A = —3. Calculating
the averaging function of sixth order we obtain

f6(7") = T(D5T4 + D47”3 -+ D3T2 -+ D1)7

where again we do not provide the explicit expressions of D; for j =
1,3,4,5 because they are too much long.

Therefore fg(r) has at most 3 solutions in /. Using similar arguments
as those applied in the proof of the Collins first form for fg(r) it is
proved that at most 3 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

This completes the proof of Theorem 4.

4. PROOF OF THEOREM b5

A first integral H and its corresponding integrating factor u for
system (2) are H(z,y) = (2* + ¢y*)/(1 — 2?) and p = —2/(2? — 1)%
When h € (0,1) then H(z,y) = h are periodic solutions around the
center (0,0) contained in the open disc of radius 1 centered at the
origin. For proving Theorem 5 we shall use Theorem 11. Therefore
applying the notation of Theorem 11 we have hy = 0, ho = 1 and
p(R,0) = R/(R*cos?0 + 1) for all 0 < R < 1 and 6 € [0,27). Then
all the hypotheses of Theorem 11 are satisfied for system (2). Using
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Theorem 11 we transform the perturbed differential system (5) into the
form

AR _ 3o Mi(0, 0. )R

(15) do 1+ R?cos?6

+ O(&%)

where

My(0, v, ) = — V1 + R2 cos? O cos 0 + By sinf),

My(0,a, B) = — aycos? 0 — (ay + B1) cosfsinf — By sin® 6,

My(8, v, B) =(—1/4v2)\/2 + R? + R2 cos(20)((Ta + 3as + o
+ B4)cos O + (o + a3 — as — By) cos(30) + 2(ay
+ Bo + B3+ B5 + (au + o + B3 — B5) cos(20)) sin ),

Ms(0,a, B) = — (201 + ag) cos™ 0 — (2aa + ay + B1 + Bs) cos® Osin @
— (a1 + ag + By + Br) cos® Osin® 0 — (ay + ag + Bs)
cos fsin® ) — Bgsin 6,

My(0,a, B) =(—1/2v/2) cos 01/2 + R2 + R? cos(20) (ap + a3 + 5
+ (o + a3 — a5) cos(20) 4 ay sin(26)),

M;(0, «, B) =(—1/4) cos 0((3(a1 + ag) + ag) cos 0 + (a1 + ag — ag)
cos 30 + 2(an + a7 + g + (e + a7 — g cos 20) sin 0),

where a = (v, ..., ) and 5= (B, ..., 9).
We must study the zeros of the averaged function f : (0,1) — R
defined by

250 My(0, o, B) R
F(R) = 0 > 10—|— R(2 cos? 9) d0-
By computing the previous integral, we obtain
f(R) = m(as — a1 — 3ag — B — Br + 3P0)go — m(ou + ag + ag)g
(16)  +2m(as — Bo)g2 + 2m(a — as — Br + Bo)gs,
where

gOZR7 91:R37 gQZRV1+R27 g3:(1_V1+R2>/R

In order to find the maximum number of simple zeros of the function f
we need to prove that the four functions g; : (0,1) - R, i € {0,...,3}
given in (16) are an ECT-system and according to Theorem 13 this is
the case if each Wronskian W;(go,...,9;) # 0, j € {0,...,3}. More
precisely

Wo =R, Wiy=2R}®  W,=—2R%/(1+ R?)>?
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W3 =12R2(8 + 12R* + 4R* — 8(1 + R?)*? — RW/1+ R?)/(1 + RY)"/2.

For R € (0,1) we have that all the Wronskians above are nonzero.
Moreover the rank of the Jacobian matrix of the coefficients of g;, i =
0,...,3in f(R) in the variables oy, g, as, B2, B7, Bo is 4. Thus applying
the averaging theory of first order and Theorem 13 it is proved that at
most 3 medium limit cycles can bifurcate from the periodic solutions
surrounding the cubic uniform isochronous center of the Collins first
form and this number can be reached. This completes the proof of
Theorem 5.

5. PROOF OF THEOREM 6

We use the Collins first and second forms to prove Theorem 6. We
shall apply to them the averaging theory of order 6.

Collins first form

In order to analyze the Hopf bifurcation for system (6) with f(z,y) =
xy we introduce a small parameter € doing the change of coordinates
r=¢eX, y=c¢cY. After that we perform the polar change of coordinates
X =rcosf,Y = rsinf and by doing a Taylor expansion truncated at
the 5 order in € we obtain an expression for dr/df similar to (8) with
Iy =0,k =6 . The explicit expression is quite large so we omit it.

In addition, to fulfill the conditions of Theorem 10 we apply the
regularization theory. For this purpose we take the function A(7) and
A > 0 of Proposition 14 and transform system (6) with f(z,y) = zy in
the C*°—system

ot he oot
2 2
where X; and X, are given in (6) with f(z,y) = xy. For 7 < —A\
this system is equal to X5, for 7 > X it is X; and it is a smooth
differential system otherwise. When A — 0 it tends to system (6) with
f(x,y) = xy. We shall have I of Theorem 10 as I = {r : 0 <r < 1}.
Now we have all the assumptions of Theorem 10 satisfied and applying
it we obtain the averaging function of first order

fi(r) = ﬂr(ozi + 6% + ’yll + 5%)

Clearly f1(r) has no solution in I. Thus there is no small limit cycles
bifurcating from the uniform isochronous center at the origin by the
averaging theory of first order. Now setting 7 = —(aj + B3 + 05)
we obtain fi(r) = 0. So we can apply the averaging theory of second
order, obtaining

fa(r) = r(Asr + Ay),
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Ay =2 (g — 73 + B3 + 265 — 05 — 205),
Ay :Z(O‘%a% + 20‘% + 27T<O‘D - 041’72 + 2’71 - alﬁl + 04252 + 47T041ﬁ2
— 2By — BiBs 4 21(B)? + 265 + 161 + Br0) + 263).

Thus fo(r) has one solution in I if 0 < —A; /Ay < 1. Therefore applying
the averaging theory of order 2 it is proved that at most 1 small limit
cycle can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging method of
third order we need that fo(r) = 0. Thus we solve A; = 0 for 7; and

Ay = 0 for 72 from these coefficients. Calculating the next averaging
function we have

fg(’l”) = ’I”(BgT’2 + BQ’I” + Bl),

where

1
Bs :gﬁ(_wz} + 3ag + Br + ag + 385 — 405 + 61 + 305 + 375 + V8),

2

—ald) + alys 4 2alys 4 6733 fa + 3o 2a4 — 48331 + 6a3:
+ 12103385 — B304 — BPya + 6mBycy — ayyy + 26505 + 303
+ 307 + 632 + 30163 + 3656, — 3B37s — 68275 + 36375 + P33
+ 60,75 + 20375 — 305 — 373 — 652),

By —r(105(ad)? — 8761 (al)? + 307(a)26) — 4(a})?B}

16
+ 87T(Oéi) 2+ 3(B1)° By + 4m(0)?0) — 4(eq)*6; — Am(ag)*y
+3(81)% a1 — 16mBLaq By — 2810101 + 3at(ag)? + 30y (By)?

- 4O‘l (»32) - 87/31 (52)2 - 25110&@% + 167T0‘10‘2 2t 20‘10‘251
+ 87TO‘%62151 - 25%&%& - 80‘1525% %a%’y% 404161

+ 16majad + dajas + 16mai 85 — 4815 — a1(61)?

- 4041 (5 ) - (72) + 251 %’721 87TO‘15272 20‘161%

+ 4a152 1722 + 107 (52) + 3(042) 62 + 47(62)251

- 4(62) 5% - Blla%r@l + 8770‘%(@) + 2“25251 + 40420‘1

— 43307 + dan B3 + 1670585 — By(01)° — 465(5;)°

- 20‘252’72 + 45%52 51 O‘l + 167752041 + 40‘151
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— 4oy, + 46505 + 46361 + 8ai + 865 — By (13)? + 281 By,
— 47m(By) s — 283017 — 48373 — 48375 + 873 + 843).

Since f3(r) can have at most 2 solutions in I, we conclude that at most
2 small limit cycles can bifurcate from the uniform isochronous center
at the origin and this number can be reached. In order to apply the
averaging theory of order 4 we need that f3(r) = 0, so we vanish its
coefficients By, By and Bj by conveniently isolating 43, 2 and 3 from
these coefficients. The resulting averaging function of fourth order is

f4(T’> = T'(C41“3 + 037"2 + CQ?“ -+ C1>,

where the expressions of C; for j = 1,...,4 are too long and we do not
provide them here.

Of course f4(r) can have at most 3 solutions in 7, so at most 3 small
limit cycles can bifurcate from the uniform isochronous center at the
origin and this number can be reached. In order to apply the averaging
method of order 5 we must have that fy(r) = 0. Thus we solve C; = 0,
Cy = 0, C3 = 0 and Cy=0 isolating B3, B2, B2 and Bi respectively.
Now we can apply the averaging theory of order 5, and its averaging
function is

f5(r) = r(Dsr* + Dyr® + Dsr® + Dyr + Dy),

where again we do not provide the explicit expressions of D; for j =
1,...,5. Hence f5(r) has at most 4 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 it is proved that at most 4
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 5, and this number can
be reached.

To apply the averaging theory of order 6 we solve D; = 0 for 63,
Dy = 0 for 63, D3 = 0 for 63, D, for 63, and D5 = 0 for 4, so we get
f5(r) = 0. Calculating the averaging function of order 6 we obtain

f6(7’> = T'(EGT’E) + E57"4 + E4T'3 + E37"2 + Eor + E1>

We do not provide the expressions of F; for i = 1,...,6 because they
are too long. Thus fg(r) has at most 5 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 we can show that at most 5
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 6, and this number can
be reached.

Collins second form
Similarly to the previous arguments used in the Collins first form
case, to study the Hopf bifurcation for system (6) with f(z,y) =
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r 4+ Axy we introduce a small parameter ¢ by doing the change of
coordinates z = X, y = €Y and then the standard polar change
of coordinates X = rcosf, Y = rsinf. Doing a Taylor expansion
truncated at the 5 order in £ we obtain an expression for dr/df similar
to (8) with Fy = 0. The explicit expression is very large so we omit
it. We shall have I of Theorem 10 as I = {r : 0 < r < ry < 1},
where the unperturbed system has periodic solutions passing through
the point (r < 79,0 = 0). Moreover we also apply the regularization
theory to fulfill the other conditions of Theorem 10 as previously done
for the Collins first form. Hence, applying Theorem 10 we obtain the
averaging function of first order

1
fi(r) = 57rr<o& + By + 03 + 1)

Therefore fi(r) has no solution in I. Setting y{ = —(af + 83 + 03)
we have fi(r) = 0. So we can apply the averaging theory of order 2
obtaining

fo(r) = r(Asr + Ay),

where
2
A, :§(_3621 + B3 +ay + 268 + 35 — 03 — 208 — 1),
m
Ay =7 (2m(a})? + al (8] + a} + 4m B} + 5] —73) — 518} + 2n(5})”

+ a%ﬁ% + 5215% + 20‘% + 262 5272 + 27? + 25;)-

Thus fo(r) can have one solution in 1 if 0 < —A; /Ay < rg, i.e. applying
the averaging theory of order 2 we can show that at most 1 small limit
cycle can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging theory of
order 3 we solve A; = 0 and Ay = 0 isolating v and ~? respectively.
Calculating the next averaging function we have

fg(’l”) = ’I”(BgT’z + BQT’ + Bl),

where
Bs :%(-4,45; — 4A65 — 3535 — 2033 + 20 + B 4+ 3ag + Bt +ag + 368

+ 365 — 485 — 305 + 61 + 30g + 376 + 78),
2
By =+ _(951155 — 187ma1 By + e — 35153 + 610183 — a1,
+ 6majay + 2 0) + 12wl B3 — a0y + agy; + 2007 — 187(63)?

+ 675585 — 45254 + 3ayay + 12”5255 + 60385 — a0y — 5fyay
+ 67520‘4 472 + Qﬁz 045 953 + 353% + 30@21 + 653 - 951 6%
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+ 39, 51 + 3(5151 + 95272 35372 65572 + 353’)’2 90‘;521
+ Byrys + 60573 + 26375 + 985 — 373 — 37 — 603),

B, = 16(107T (n)* = 8mB; (a1)? + 30m*(a7)? By — 4(ey)* B

+8m(ag)?ay + 3(81)?By + 4m(a1)?0) — 4(a1)*d; — dm(a1)*y,

— 1671018y — 2810401 + 3oy (ar)® + 30m%ay(8,)* — 4o (5;)

— 8B (B3)? — 2Biatad + 16maiay By + 2atadd) + 8mal Bydy

- 25%5%5% - 80‘1525% iaé’é 40‘151 + 167”)410‘1 + 40‘1042

+ 167““%522 - 45%53 - CY1(51) - 40‘1(5%) - 041(72)

+ 20117, — 8men By — 2016173 + dai B} — dagys + 107°(5;)°

+3(ap)? By + 47 (55)%01 — 4(52)%05 — 2810335 + 8may ()

+ 20‘2/8251 + 40‘20‘1 45251 + 40‘252 + 16”5252 621(5%)2

- 462 (51) 20‘26272 + 45252 451 O‘1 + 167 52041

+4a36] — 4aiy, + 452% + 45251 +8at + 865 + 3(81)

— By(1)* + 25152’72 A7 (B3)* v — 2836173 — 46373

- 462’72 + 8’71 + 853)-
Then f3(r) has at most 2 solutions in /, i.e. applying the averaging
theory of order 3 it is proved that at most 2 small limit cycles can
bifurcate from the uniform isochronous center at the origin and this
number can be reached. To apply the averaging method of order 4 we
solve By = 0, B, = 0 and B3 = 0 isolating 43, 2, dg respectively. The
next averaging function is

fa(r) = r(Cyr® + Csr® 4 Cor + C).

We do not provide the expressions of C; for j = 1,...,4 because they
are too long.

Of course f4(r) has at most 3 solutions in 7, that is, applying the
averaging theory of order 4 we can show that at most 3 small limit
cycles can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging method of
order 5 we solve C; = 0, Cy = 0, C3 = 0 and Cy = 0 isolating 33, /32,
B3 and B3 respectively. The next averaging function is

f5(r) = r(Dsr* + Dyr® + Dyr* + Dor + D),

where again we do not give the expressions of D; for j = 1,...,5.
Hence f5(r) has at most 4 solutions in I. Using analogous arguments
than in the proof of Theorem 4 we can show that at most 4 small limit
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cycles can bifurcate from the uniform isochronous center at the origin
and this number can be reached.

In order to apply the averaging theory of order 6 we solve D; = 0
for 65, Dy = 0 for 62, D3 = 0 for &3, D, for 63, and D5 = 0 for ¢, so we
get fs(r) = 0. Calculating the averaging function of order 6 we obtain

fo(r) = r(Eer® + Esr* + Egr® + Esr? + Eyr + E)).

We do not provide the expressions of E; for ¢ = 1,...,6 because they
are too long. Thus fs(r) has at most 5 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 it follows that at most 5
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 6, and this number can
be reached.

This ends the proof of Theorem 6.

6. PROOF OF THEOREM 7

We proceed as in the proof of Theorem 5 in section 4 since the
unperturbed system (2) is the same. Hence a first integral H, its
corresponding integrating factor u, and a function p satisfying the
hypotheses of Theorem 11 are H(z,y) = (z* + v?)/(1 — 2?), p =
—2/(z* — 1)?, and p(R,0) = R/(R*cos’6 + 1) for all 0 < R < 1
and 6 € [0,2m).

Applying Theorem 11 we transform the perturbed differential system
(7) into the form

Z o Mi(0,a, B)R o
= f

a7 % _ Z 1+NR(2 COS}?PJ +0(e%) if y>0,
1=0 2 f

1+ R2%cos?0 +0() if y <0,

where the functions M;(0, a, §) coincide with the ones given in system
(15), and N;(0,,0) = M;(0,~,0) fori =0,...,5, withy = (y0,...,7),
6: ((5(),...,59).

The discontinuous differential system (17) is under the assumptions
of Theorem 11 Hence we must study the zeros of the averaged function

f:00,1) =

/ Zz OM 9 CY’ﬁ d9 /Qﬂ- Zz ON 5>Rld0
1+ R2cos26 1—|—R2cos29

We compute these integrals obtaining
f(R) =n(ag — ag — Br + By + Y6 — 8 — 67 + d9)go + 7/2(s
—ay —3ag — B2 — Br + 3By — 1+ 76 — 378 — 02 — 07
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(18) +309)g1 — m/2(c1 + a6 + ag + 71 + 6 + 78)g2 + (Bs
—ay — fo— B3+ 71+ 6o + 03 — 05)g3 + T(as — B + s
—09)ga + (74 — )gs + (s — Bo + B3 — B5 — 71 + o
— 03+ 05)g6 + (. — 285 — 74 + 205) g7,

where

go=(1-V1+R})/R, g=R,  g=R,
g3 =V1+ R2, g1 = RV1+ R?, g5 = R*V1+ R?,
gs =(arcsinh R)/R, g7 = Rarcsinh R.

In order to find the maximum number of simple zeros of function f we
need to prove that the eight functions g; : (0,1) - R, 7 € {0,...,7}
given in (18) form an ECT-system and according to Theorem 13 this
is the case if each Wronskian W;(go,...,g;) #0, j € {0,...,7}. More
precisely

Wo=(1—K)/R, W= (2K —2— R*/(RK),

Wy =2K (1 — 6K* +8K* — 3K*),

W3 =6R°K (8 — 8K +4R°K + R'(16 — 7K) + 4R*(6 — 5K)),

Wy =—36R K '"Y(4R°K + R*(76 — 56 K) + R*(40 — 17K)
—40(K — 1)),

W5 =1080R °K " (24(K — 1) + R*(R*K (3R* — 5) + 4(4K —7))),

Ws =25920R™ 'K~ 2(64(1 — K) + R*(R*K(6R*> — 17) + 32(7 — 6K))
+ 105R? arcsinh R),

W, =1244160R" 3K 2°(4R® — 515R* — 12R° — 256(K — 1) + R*(896 K
—243) + 105RK (2R* — 5) arcsinh R),

where K = /1 + R2. For 0 < R < 1 we have that all the Wronskians
above are nonzero. Moreover the rank of the Jacobian matrix of the
coefficients of g; for i € {0,...,7} in (18) in the variables oy, ay, ag, as,
Bo, B2, B3, Bs, Br, Ba, V1,74, V65 V8, 00, 02, 03, 05, 07, dg is 8. Hence applying
the averaging theory of first order and Theorem 13 it is proved that at
most 7 medium limit cycles can bifurcate from the periodic solutions
of the cubic uniform isochronous center of the Collins first form and
this number can be reached. This completes the proof of Theorem 7.
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7. PROOF OF THEOREM &

We analyze each distinct case in order to compute the first integrals,
considering the condition

(19) alasz — ajaz + ayazay = 0.
presented in Theorem 2.

Case 1: a2 — a2 # 0. The condition (19) can be expressed as

1204
2 R

and in polar coordinates the system can be written as

d
d—g =r*(a; cos 0 + ay sin 0)
(21) asr3(—ay cos O + ap sin0)(a; cos 0 + ay sin 6)
a? — a? ’
17— a3

Subcase 1.1: a4 # 0.

Subcase 1.1.1: a4 # a3 — a3. It is easy to verify that the H presented
in this subcase is a first integral of system (21).

Subcase 1.1.2: a4 =a% —a3. In polar coordinates system (1) is

written as
dr

ar _ 4.3 2
70 Ar® 4+ Br=.
where A = 1/4(ayaysin®6 + (a? — a3)sinfcosd — ajagcos’d, B =
a1 cos 6 + agsinf. This is an Abel differential equation satisfying
dA(6) dB(0) 3
7 B(0) — A(0) 7 = aB(0)°,

with @ = 1/4. Therefore the H given in this subcase is a first integral
for this system, for more details see [14].

Subcase 1.2: a4 = 0. System (21) is reduced to
dr
do

and the H given in this subcase is a first integral for this system.

r%(ay cos  + aysin 6),

Case 2: a? —a2 =0,

Subcase 2.1: a; = a;. The expression (19) is reduced to a?as = 0.
Therefore we have the following possibilities.
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Subcase 2.1.1: a; = 0. Applying the condition a; = as = 0 in system
(1), we obtain in polar coordinates

d

d—g = r*(az cos? 0 + aygsinf cos @ — assin®f).

The expression of H in this subcase is a first integral of this system.
Subcase 2.1.2: a; # 0, a4 = 0. Under this condition, system (1) is
expressed in polar coordinates as follows

d
d_; = 1%a;(cos § + sin 0) + r*[az(cos® § — sin? ).

Subcase 2.1.2.1: ag(af +4a3) # 0. It is easy to check that the H
given in this subcase is a first integral of the system.

Subcase 2.1.2.2: ag = 0. In this case system (1) becomes in polar
coordinates

d
d—g = r%a;(cos § + sin 6),
and the H given in this subcase is a first integral for this system.
Subcase 2.1.2.3: az = —a?/4. In polar coordinates system (1) is
written as
dr

i —%aﬁﬁ[al cos(26)r — 4(cosf + sin9)].
Applying the same arguments as in subcase 1.1.2 we have that this
is an Abel differential equation with A(0) = (—1/4)a? cos(20), B(0) =
ai(cos@ +sinf) and a = 1/4. Therefore the H given in this subcase is
a first integral for this system, , see [14].

Subcase 2.2: a; = —a;.

Subcase 2.2.2: a; # 0, a4, =0. In polar coordinates system (1)
becomes

d
d_g = r?ay(cos @ — sin ) + r[az(cos® § — sin’ 0)].

Subcase 2.2.2.1: ag(4az — a?) # 0. The expression of H presented

in this subcase is a first integral of the system.

Subcase 2.2.2.2: ag = 0. System (1) becomes in in polar coordinates
dr
do

and the expression of H in this subcase is a first integral of this system.

= r?a;(cosf — sinf).
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Subcase 2.2.2.3: az = a?/4. In polar coordinates system (1) can be
written as

dr ) 1
0 a;7?(cos 0 — sin 0) + 4[a1r cos(20)].

Applying the same arguments as in subcase 1.1.2 we have that this
is an Abel differential equation with A(0) = 1/4(a? cos(20)), B(0) =
ai(cos@ —sinf) and a = 1/4. Using the results presented in [14], we
conclude that the H given in this subcase is a first integral for the
system, see [14].

8. PrRooOF OoF THEOREM 9

We provide all the possible phase portraits for the planar cubic
differential systems with a uniform isochronous center at the origin,
in the Poincaré disc, by studying the finite and infinite singular points
of such systems.

Finite singular points

In polar coordinates a planar cubic differential system with a uniform
isochronous center at the origin can always be written as 7 = r f(r cos 6,
rsinf), 6 = 1. Hence, since 6 = 1 there are no finite singular points
except at the origin.

Infinite singular points

For studying the infinite singular points in the Poincaré disc, we use
the definitions and notations given in Chapter 5 of [10].

We perform the analysis of the vector field at infinity. In the chart
U, the differential system (1) becomes

(22) = (1+u*)v? = (—as— asu+ asu® — a1v — aguv + uv?)v,

and therefore (u,0), for all w € R is an infinite singular point of the
differential system (1) in U;, which means that the equator of S* is
formed by singularities. In order to obtain the phase portraits, we
perform a change of coordinates of the form dt = vds, and system (22)
becomes

23) o' =1 +u*)v, v =—az— amu+ asu® — av — asuv + uv?,

where the prime denotes derivative with respect to s.

In the chart U, system (1) becomes

= —(1+u®)v? 0= (a3 — agu — azu® — ayv — ayuv — wv?)v.
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We only need to study the point (0,0) of U,. By performing a change
of coordinates of the form dt = vds we obtain the system

(24) o' =—-(1+u*)v, v =a3— amu— azu® — av — ayuv — uv®.

In order to study the singular points at infinity of systems (23) and
(24), we have to consider several cases. We apply Theorems 2.15, 2.19
and 3.15 of [10] for the characterization of the local phase portraits at
each singular point.

Case I: a? — aj # 0. The condition (19) is written as (20). If ay =
0, then a3 = 0, and hence system (1) degenerates to a quadratic
differential system, which has already been exhaustively studied, as
previously mentioned in this article. Therefore, we are going to omit
the cases in which a4 = 0.

Subcase I.1: aja; # 0. The expression (23) for our system in U;
becomes

I 2
u' = (14 u)v,
(25) ’ 10204 a1G204 o 9
V=55 — 04U — U — a1V — QU + uv”.
ay — az aj — as

The singular points at the infinity are p; = (—aj/ag,0) and py =
(ag/aq,0). The linear parts of system (25) at p; and ps are, respectively

a 2 a 2
@) (@)
a9 a;

(a? + ad)ay 0 ’ _(af+ad)as  ai+a]

2 2 2 2
(11 - a2 (11 - a2 CL1

These singularities are studied later on. For U, the expression (24)
becomes

u' = —(1+u)v,

p . (10204 10204 o 2
vV=—— 5 — QU + —5——=U" — AV — AUV — Uv”.
ay — a; ay — az

Since we are assuming ajas # 0, the origin of Us is not a singular point.
Subcase I.1.1: a4(a? — a3) > 0.

2 A2
Subcase 1.1.1.1: a, < al—.

Subcase I1.1.1.1.1: a; > 0. p; is a saddle and p, is a stable node.

Subcase 1.1.1.1.2: a; < 0. p; is a saddle and p, is an unstable node.
2 A2

Subcase 1.1.1.2: a4, > alT. p1 is a saddle and p, is a focus.
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Subcase 1.1.2: a4(a? — A2) < 0. p; is a focus/center and p, is saddle.

Subcase 1.2: a; = 0. In chart U;, we have

(26) u' = (1+u?)v, v =—au— auv+uv?

and therefore the only infinite singular point is the origin, which we
will designate by Op,. Similarly, in chart U, we have the origin Oy,
as the unique infinite singular point, since the expression of the vector
field becomes

(27) u = —(1+u*)v, v =—au—av —uw’.

The linear parts of systems (26) and (27) at the origin are respectively

0 1 0 -1
—AQay 0 ’ —a4 —Q9 ’

Hence we have the following cases.

Subcase 1.2.1: a4 > 0. Oy, is a focus/center and Oy, is a saddle.

2
Subcase 1.2.2: —% <ay <0.

Subcase 1.2.2.1: a; > 0. Oy, is a saddle and Oy, is a stable node.

Subcase 1.2.2.2: a; < 0. Oy, is a saddle and Oy, is an unstable node.

2
Subcase 1.2.3: a4 < —%. Oy, is a saddle and Oy, is a focus.

Subcase 1.3: a; = 0. In chart U;, we have

(28) u' = (1+u?), v =—amu—av+ur?

and therefore the only infinite singular point is the origin, which we
will designate by Oy,. Similarly, in chart U, we have the origin Oy,
as the unique infinite singular point, since the expression of the vector
field becomes

(29) = —(1+u*), v =—au—ayuw — uv?

The linear parts of systems (28) and (29) at the origin are respectively

0 1 0 -1
—aqy —ap )’ —ays 0 '

Hence we have the following cases.

Subcase 1.3.1: a4 < 0. Oy, is a saddle and Oy, is a focus/center.

2
Subcase 1.3.2: 0 < a4 < %.

Subcase 1.3.2.1: a; > 0. Oy, is a stable node and Oy, is a saddle.
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Subcase 1.3.2.2: a; < 0. Oy, is an unstable node and Oy, is a saddle.

2
Subcase 1.3.3: a4 > %. Oy, is a focus and Oy, is a saddle.

Case II: a? — a2 = 0. The condition (19) is simplified to ajazay = 0
and therefore the following cases might occur.

Subcase II.1: a; = a; = 0 and a4 # 0.
Subcase I1.1.1: az # 0. p; is a focus/center and ps is a saddle. In
fact the expression (23) for our system in U; becomes

(30) = (14+u*v, v =—az— agu+ azu® + uv’.

The singular points at the infinity are p; 2 = ((as F\/4ad3 + a3)/2as,0).
The linear parts of system (30) at p; and ps are, respectively

0 94 as(ay — /443 + a3)
2(1:23 )

—y/4a3 + a3 0
0 o4 as(ag + +/4a3 + a3)

2
2a3

V4a3 + a? 0

It is easy to see that p; is a focus/center and ps is a saddle.

For U, the expression (24) becomes
u = —(1+u?)v, v =as— au— asu® — uwv’.

The singular points at the infinity are ps4 = ((—as F \/4a3 + a3)/2as,
0). Since —ay F \/4a3 + a3 # 0 for all az, ay € R\{0}, the origin of Uy

is not a singular point and hence, the only infinite singular points are
p1 and ps.

Subcase II.1.2: ag =0. The expression (23) for our system in U
becomes

(31) u' = (1+u*)v, v =—aqu++urv?

and therefore the origin Oy, is the unique infinite singular point in U;.
Similarly, in the chart U, the origin Oy, is an infinite singular point
because system (24) becomes

(32) u'=—(1+v*), v =—au—u’

The linear parts of systems (31) and (32) at the origin are respectively

(20 ()
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Hence we have the following cases.
Subcase 11.1.2.1: a4 < 0. Oy, is a saddle and Oy, is a focus/center.
Subcase I1.1.2.2: a4 > 0. Oy, is a focus/center and Oy, is a saddle.

Subcase 11.2: a; = —a; # 0 and a4 = 0. We are only interested in
the cases that az # 0, because as previously mentioned, when az =
as = 0 system (1) becomes a quadratic differential system, which has
already been exhaustively studied.

The expression (23) for our system in U; becomes
33) W' =({1+v)v, v =—a3—aw+azu® + ajuv + uv’.

The singular points at the infinity are p;» = (F1,0). The linear
parts of system (33) at p; and ps are, respectively

0 2 0 2
—2(13 —26L1 ’ 2(13 0 '

For U, the expression (24) becomes
u = —(1+u*)v, v =az+aw— azu® — ayuv — uv?.
The singular points at infinity are ps4 = (F1,0). The origin of Us is
not a singular point and hence, the only infinite singular points are p;
and po. These singularities are studied in what follows.
Subcase I1.2.1: az < 0. p; is a saddle and p, is a focus/center.
Subcase 11.2.2: 0 < ag < aj/4.

Subcase I1.2.2.1: a; > 0. p; is a stable node and p, is a saddle.
Subcase I1.2.2.2: a; < 0. p; is an unstable node and p, is a saddle.

Subcase I1.2.3: az > a3/4. p; is a focus and ps is a saddle.

Subcase I1.3: a; = a; # 0 and ay = 0. Again we are only interested
in the cases that a3z # 0.

The expression (23) for our system in U; becomes
(34) u' = (1+u?), v =—a3—av+ azu® — ayuv + uv’.

The singular points at infinity are p; o = (F1,0). The linear parts of
system (34) at p; and py are, respectively

0 2 0 2
—2a3 0 ’ 2a3 —2ay .

These singularities are studied later on.
For U, the expression (24) becomes

(35) u = —(14+u*)v, v =a3+av—azu® — ayuv — uv’.
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The singular points at infinity for (35) are p34 = (F1,0). The origin
of Us is not a singular point.

Subcase I1.3.1: ag > 0. p; is a focus/center and p, is a saddle.
Subcase I1.3.2: —a?/4 < a3 < 0.

Subcase I1.3.2.1: a; > 0. p; is a saddle and p, is a stable node.
Subcase I1.3.2.2: a; < 0. p; is a saddle and py is an unstable node.

Subcase I1.3.3: azg < —a?/4. p; is a saddle and p, is a focus.

Subcase I1.4: a; = a; = a4 = 0. Again we are only interested in the
cases that az # 0. In this case system (1) has the particular form

&= —y+asz’ — azzy’, Y=+ azz’ — azzy’.
The expression (23) for our system in U; becomes
(36) ' = (1+u*v, o =—az+ azu® + uv’.

The singular points at the infinity are p; o = (F1,0). The linear parts
of system (34) at p; and po are, respectively

0 2 0 2
—2a3 0 ’ 2@3 0 )

These singularities are studied in the next subcases.
For U, the expression (24) becomes

U =—(14+u*)v, v =a3— azu®— —uw?.

The singular points at infinity are ps4 = (F1,0). The origin of U, is
not a singular point.

Subcase 11.4.1: az > 0. p; is a focus/center and py is a saddle.
Subcase 11.4.2: az < 0. p; is a saddle and p, is a focus/center.

Finally, the global phase portraits for the uniform isochronous cubic
polynomial systems are obtained using the study of the finite and
infinite singular points in the local phase portraits and the first integrals
calculated in Theorem 8. Hence Theorem 9 is proved.
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