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ISOCHRONICITY AND LINEARIZABILITY OF PLANAR
POLYNOMIAL HAMILTONIAN SYSTEMS

JAUME LLIBRE1 AND VALERY G. ROMANOVSKI2,3

Abstract. In this paper we study isochronicity and linearizability of planar polynomial
Hamiltonian systems. First we prove a theorem which supports a negative answer to
the following open question: Do there exist planar polynomial Hamiltonian systems of
even degree having an isochronous center? stated by Jarque and Villadelprat in the J.
Differential Equations 180 (2002), 334–373. Additionally we obtain some conditions for
linearizability of complex cubic Hamiltonian systems.

1. Introduction and statement of the main results

Consider real planar polynomial Hamiltonian system, i.e. differential systems of the
form

(1)
ẋ = −Hy(x, y),
ẏ = Hx(x, y),

where H is a real polynomial in the variables x and y. The maximum degree of the
polynomials Hx(x, y) and Hy(x, y) is the degree of the Hamiltonian system (1). Assume
the origin is a center for the system. The period function of a center provides the period
of each periodic orbit inside the period annulus of the center. When this period function
is constant the center is called isochronous.

Several authors have studied the isochronicity of centers. But such isochronicity
has been characterized for very few families of polynomial differential systems. The first
important result is due to Loud [16], who classified the quadratic isochronous centers.
After Pleshkan [20] classified the cubic polynomial differential systems with homogeneous
nonlinearities and recently isochronous centers of polynomial systems with homogeneous
nonlinearities of degree five have been classified in [21]. Several authors (see [4, 10, 25])
have shown that Hamiltonian systems have no isochronous centers if they have homoge-
neous nonlinearities. For the Hamiltonian polynomial systems with Hamiltonian of the
form H(x, y) = F (x) + G(y) the unique isochronous center is the linear one, see [5].
The cubic polynomial Hamiltonian isochronous centers were classified in [6]. Some other
results on isochronicity can be found in [2, 18, 19, 23] and references inside.

From the work of Loud it follows easily that planar polynomial Hamiltonian differ-
ential systems of degree two have no isochronous centers. Jarque and Villadelprat [15] in
2002 proved that every center of a planar polynomial Hamiltonian differential system of
degree four is nonisochronous, and they stated the following:

Open problem. Do there exist planar polynomial Hamiltonian systems of even degree
having an isochronous center?
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The authors of the question said that an argument in support of a negative answer is
the following result of Mañosas and Villadelprat [17], see also Ito [14]. The Hamiltonian
differential system (1) has an isochronous center of period 2π at the origin if and only if

(2) H(x, y) =
1

2

(
X(x, y)2 + Y (x, y)2

)
,

the map (x, y) → (X(x, y), Y (x, y)) defined in a neighborhood of the origin is analytic,
X(0, 0) = Y (0, 0) = 0, and its Jacobian is constant and equal to one.

Later on in 2008 Chen, Romanovski and Zhang in [3] provided more support to the
negative answer proving that there is no planar polynomial Hamiltonian systems with
only even degree nonlinearities having an isochronous center at the origin.

The following statement provides further support to the negative answer to the open
question stated above.

Theorem 1. Planar polynomial Hamiltonian systems (1) of even degree such that their
corresponding analytic maps X(x, y) and Y (x, y) given in (2) are defined in the whole
plane, have no isochronous centers.

Theorem 1 is proved in Section 2.
Of course, if in the statement of Theorem 1 the functions X(x, y) and Y (x, y) are

polynomials, they are defined in the whole plane. Also in this case the analytic map
(x, y)→ (X(x, y), Y (x, y)) converges in the whole plane.

We want to mention that to know when a center of a Hamiltonian system is isochronous
is important due to its connection with the Jacobian conjecture, see for more details the
articles of Gavrilov [11] and Sabatini [24]. Indeed if we take a polynomial map (x, y) →
(X(x, y), Y (x, y)) with nonzero constant Jacobian such that X(0, 0) = Y (0, 0) = 0, then
the polynomial Hamiltonian system with Hamiltonian given by (2) has an isochronous
center at the origin. If we prove that the period annulus of any center constructed in this
way is the whole plane then the Jacobian conjecture follows.

When X(x, y) and Y (x, y) in (2) are polynomials, then the isochronous center is
called trivial [6]. It was shown in [6] that all isochronous centers of cubic Hamiltonian
systems are trivial. More precisely, the result obtained in [6] is as follows.

Theorem 2. A cubic Hamiltonian system has an isochronous center at the origin if and
only if after a linear change of coordinates its Hamiltonian can be written as

(3) H(x, y) = (k1x)2 + (k2y + P (x))2,

where k1 and k2 are different from zero and P (x) = k3x+ k4x
2.

Note that the linearizing transformation for system (1) with the Hamiltonian function
(3) is

X = k1x, Y = k2y + P (x).

However not all isochronous centers of polynomial Hamiltonian systems are trivial.
An example of Hamiltonian system with nonlinearities of degree seven is given in [6].

Up to now we discussed isochronous centers of real systems. However it is known that
isochronicity of a real center is equivalent to its linearizability. The problem of lineariz-
ability can be studied also for complex systems and, since after a complexification any
real plane system can be embedded into a complex two-dimensional system (see e.g. [23,
§3.2]) the problem of linearizability can be considered as a generalization of the problem
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of isochronicity. Thus it appears natural to study also the problem of linearizability of
plane complex Hamiltonian systems

(4) ẋ = −Hy(x, y), ẏ = Hx(x, y),

where H(x, y) is a complex function of the form

(5) H = −xy + h.o.t.

and compare the results with those obtained for real systems. One of advantages of
working with complex systems (4-5) is that computation of the linearizability quantities
is much simpler for such systems than for real systems. The singular point at the origin
of (4-5) is often called a complex center.

An analog of the open problem stated above for system (4) is as follows: are there
linearizable systems (4-5) of even degree?

It is easy to see that the answer to this question is positive. More precesely for the
quadratic system

(6)
ẋ =x− a10x2 − a01xy − a−12y

2,

ẏ =− y + b2,−1x
2 + b10xy + b01y

2

we have the following theorem.

Theorem 3. Hamiltonian system (6), that is, system (6) with

(7) a01 = 2b01, b10 = 2a10

is linearizable if and only if b2,−1 = a10 = 0 or b01 = a−12 = 0.

Theorem 3 is proven in section 3.
In this paper we also study the linearizability of the cubic Hamiltonian system

(8)
ẋ =x− a10x2 − a20x3 − a01xy − a11x2y − a−12y

2 − a02xy2 − a−13y
3 = P (x, y),

ẏ =− y + b2,−1x
2 + b3,−1x

3 + b10xy + b20x
2y + b01y

2 + b11xy
2 + b02y

3 = Q(x, y),

where

(9) b10 = 2a10, a01 = 2b01, a02 = 3b02, b20 = 3a20, b11 = a11.

Clearly, system (8) with condition (9) represents the whole family of cubic Hamiltonian
systems of the form (4-5). For this system we have obtained the following result.

Theorem 4. The Hamiltonian system (8) (that is, system (8) with conditions (9)) is
linearizable at the origin if one of the following conditions holds:
1) b3,−1 = b2,−1 = b02 = a20 = a11 = a10 = 0,
2) b02 = b01 = a20 = a−13 = a−12 = a11 = 0,
3) b3,−1 = b2,−1 = 2b201+9b02 = a20 = 2a−12b02−a−13b01 = 4a−12b01+9a−13 = a11 = a10 = 0,
4) a−12 = a−13 = b02 = b01 = a11 = 2a210 + 9a20 = 2b2,−1a20 − b3,−1a10 = 4b2,−1a10 +
9b3,−1 = 0,
5) 27b301+a

2
−12b2,−1 = 9a10b01−a−12b2,−1 = a10a−12+3b201 = 3a210+b01b2,−1 = −4/3a10b2,−1+

b3,−1 = −4b201 + b02 = 4/3b01b2,−1 + a20 = −4/3a−12b01 + a−13 = 4/3a−12b2,−1 + a11 = 0.
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Note that the computational approach we employ to prove this theorem allows to
find linearizable systems in any given parametric family of polynomial systems.

The paper is organized as follows. In the next section we prove Theorem 1. In Section
3 proofs of Theorems 3 and 4 are given, interrelation of isochronocity of real Hamiltonian
systems and linearizability of complex Hamiltonian systems is discussed and an open
problem is stated.

2. Proof of Theorem 1

From the mentioned result of Mañosas and Villadelprat we can suppose that the
Hamiltonian of our Hamiltonian system (1) having an isochronous center at the origin is of
the form (2) with X(x, y) and Y (x, y) analytic functions such that X(0, 0) = Y (0, 0) = 0,
and its Jacobian Xx(x, y)Yy(x, y)−Xy(x, y)Yx(x, y) = 1.

Proof of Theorem 1. Since H(x, y) = (X(x, y)2 + Y (x, y)2)/2 it follows that the function
H(x, y) is positive semidefinite, i.e. H(x, y) ≥ 0 for all (x, y) ∈ R2. Let Hk(x, y) be the
homogeneous part of H of degree k. Assume that the polynomial H(x, y) has degree m.
Then, Theorem 1 will be proved if we show that m is even.

Indeed, assume that m is odd. We claim that near infinity the polynomial H(x, y)
changes sign. Indeed, write g(t) = H(tx, ty) for a point (x, y) such that Hm(x, y) is not
zero. Note that g(t) is a polynomial of odd degree, because g(t) = H0(x, y) +H1(x, y)t+
. . . + Hm(x, y)tm. Then the sign of g(t) when t → +∞ is opposite to the sign of g(t)
when t→ −∞. Therefore the claim is proved. But this is in contradiction with the fact
that the polynomial H(x, y) is positive semidefinite. Hence m is even. This completes
the proof of Theorem 1. �

Second proof of Theorem 1 when X(x, y) and Y (x, y) are polynomials. Indeed, let m be
the maximum of the degrees of these two polynomials, and let Xk(x, y) and Yk(x, y) be the
homogeneous part of the polynomials X(x, y) and Y (x, y) of degree k for k = 0, 1, . . . ,m.
From the definition of m we have that

(10) Xm(x, y)2 + Ym(x, y)2 6= 0.

The Hamiltonian system with Hamiltonian (2) is

(11)
ẋ = −X(x, y)Xy(x, y)− Y (x, y)Yy(x, y),
ẏ = X(x, y)Xx(x, y) + Y (x, y)Yx(x, y).

Since we assume that this Hamiltonian system has even degree we have that

(12)
Xm(x, y)Xmy(x, y) + Ym(x, y)Ymy(x, y) = 0,
Xm(x, y)Xmx(x, y) + Ym(x, y)Ymx(x, y) = 0,

otherwise the Hamiltonian system (11) would have odd degree. Multiplying the first
equation of (12) by y and the second by x and summing the two equations obtained we
get

Xm(x, y)
(
xXmx(x, y) + yXmy(x, y)

)
+ Ym(x, y)

(
xYmx(x, y) + yYmy(x, y)

)
= 0.

By the Euler theorem on homogeneous functions this equation becomes

m
(
Xm(x, y)2 + Ym(x, y)2

)
= 0,
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in contradiction with (10). This completes the proof for the case when X(x, y) and Y (x, y)
are polynomials. �

3. Complex Hamiltonian systems

In this section we prove Theorems 3 and 4 and discuss the relation of the results
on linearizability of complex Hamiltonian systems and the results on isochronicity of real
Hamiltonian systems obtained in [6].

Proof of Theorem 3. It is known that the linearizability variety of quadratic system (6) is
defined by the first three pairs of the linearizability quantities (see e.g. Section 4 of [23]
for the proof of this fact, the definition of linearizability quantities and a computational
algorithm for computing the quantities).

When condition (7) is fulfilled the quantities are as follows

I11 = −J11 =6a10b01 + 2/3a−12b2,−1,

I22 = −J22 =20a310a−12 + 20b301b2,−1 − 20/9a2−12b
2
2,−1,

I33 = −J33 =280/27a3−12b
3
2,−1,

where I22, J22 are reduced modulo 〈I11〉 and I33, J33 are reduced modulo 〈I11, I22〉. Obvi-
ously, the variety of the ideal

L = 〈I11, J11, I22, J22, I33, J33〉
consists of two components (i) b2,−1 = a10 = 0 and (ii) b01 = a−12 = 0. Thus the
conditions of Theorem 3 are necessary conditions for the linearization of system (6-7).
They are also the sufficient ones. Indeed, in case (i) the system has the form

(13) ẋ = x− 2b01xy − a−12y
2, ẏ = −y + b01y

2,

and it is linearizable by the substitution

X =

(
x− b01xy −

a−12y
2

3

)
(1− b01y) , Y =

y

(1− b01y)
.

Case (ii) is dual to (i) under the involution

(14) aij ↔ bji.

The theorem is proved. �

One possibility to find all linearizable Hamiltonian systems in family (8) is using the
similar way as in the proof of Theorem 3, that is, by computing a sufficient number of
the linearizability quantities for the system1, then finding the irreducible decomposition
of the linearizability variety and then proving the linearizability of systems corresponding
to each of components of the variety. For system (8-9) we computed the first 7 pair of
linearizability quantities I11, J11, . . . , I77, J77 and have tried to find the decomposition of
the variety of the ideal

(15) L = 〈I11, J11, . . . , I77, J77〉,
1however unlike for the case of quadratic system (6) it is unknown how many first pairs of linearizability

quantities define the linearizability variety of system (8)
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but we failed to find the decomposition of the variety V (L) of L using our computational
facility. So we employ another approach to obtain the result stated in Theorem 4.

Proof of Theorem 4. We look for a linearization of the first equation of system (8) in the
form

(16)
X =x+ h1x

2 + h2xy + h3y
2 + h4x

3 + h5x
2y+

h6xy
2 + h7y

3 + h8x
4 + h9x

3y + h10x
2y2 + h11xy

3 + h12y
4.

Letting X = P ∂
∂x

+ Q ∂
∂y

the vector field associated to (8), we see that substitution (16)

linearizes the first equation of (8) if

(17) XX −X = 0.

By our assumption system (8) is Hamiltonian with the Hamiltonian function

H = −xy+a10x
2y+

1

2
a11x

2y2+
a−12y

3

3
+
a−13y

4

4
+a20x

3y+b01xy
2+b02xy

3+
b2,−1x

3

3
+
b3,−1x

4

4
.

If a polynomial (16) satisfies (17) then X = 0 is an invariant algebraic curve of (8) (see
e.g. [23, Proposition 3.6.2]). Then by the analytic Nullstellenzatz [13] g = (−H)/X is
an analytic function of the form g(x, y) = y + h.o.t. and the second equation of (8) is
linearizable by the substitution Y = g(x, y). Thus, it is sufficient to look only for the
linearization of one equation of the system.

Equating coefficients of the polynomial on the left hand side of (17) to zero we obtain
the following system:

(18)

−a10 + h1 = −2a−13h10 + 4a11h12 = −a−13h11 + 4b02h12 = −2b01 − h2 =
−a−12 − 3h3 = −a11 − 4b01h1 + a10h2 + 2b2,−1h3 =

−a20 − 2a10h1 + b2,−1h2 + 2h4 =
−3b02 − 2a−12h1 − b01h2 + 4a10h3 − 2h6 = −a−13 − a−12h2 + 2b01h3 − 4h7 =

−2a−13h1 − 3h11 − 2b02h2 + 2a11h3 − 2a−12h5 + 6a10h7 =
−2a−12h10 + b01h11 + 8a10h12 − 2a−13h5 − b02h6 + 3a11h7 =

−5h12 − a−13h2 + 2b02h3 − a−12h6 + 3b01h7 =
−a−12h11 + 4b01h12 − a−13h6 + 3b02h7 =

−6b02h1 − h10 + 6a20h3 − 3a−12h4 − 3b01h5 + 3a10h6 + 3b2,−1h7 =
−2a20h1 + b3,−1h2 − 3a10h4 + b2,−1h5 + 3h8 = 2b3,−1h10 − 4a11h8 =

−2a11h1 + 2a20h2 + 2b3,−1h3 − 6b01h4 + 2b2,−1h6 + h9 =
2b2,−1h10 − 3a11h4 + a20h5 + 2b3,−1h6 − 8b01h8 − a10h9 =

4a20h10 + 3b3,−1h11 − 12b02h8 − 2a11h9 =
5a10h11 − 2b01h10 + 4b2,−1h12 − 3a−13h4 − 5b02h5 + a11h6 + 9a20h7 − 3a−12h9 =

−4b02h10 + 2a11h11 + 12a20h12 − 3a−13h9 =
2a10h10 + 3b2,−1h11 − 9b02h4 − a11h5 + 5a20h6 + 3b3,−1h7 − 4a−12h8 − 5b01h9 =

8a20h11 + 4b3,−1h12 − 4a−13h8 − 8b02h9 =
−3a20h4 + b3,−1h5 − 4a10h8 + b2,−1h9 =

−4a20h8 + b3,−1h9 = 0.

Let I be the ideal generated by the polynomials written above. Then the variety
V (I) of I is the set of solutions of the above system. To find conditions for linearizability
we have to eliminate from the ideal I variables h1, . . . , h12 and then compute minimal
associate primes of the obtained ideal. However since both procedures are very time and
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memory consuming we were not able to complete calculations with our computational
facilities. So we applied modular computations (see [1, 22]). Working in the ring of
polynomials over the field of characteristic 32003 using the routine eliminate of the
computer algebra system Singular [8] we eliminate from (18) variables h1, . . . , h12, that
is, we compute the twelfth elimination ideal I12 of I in the ring

Z32003[h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12a10, a11, a−12, a−13, a20, b01, b02, b2,−1, b3,−1]

(see e.g. [7, 23] for more details). Then with minAssGTZ2 of primdec library [9] of Singular
we compute the irreducible decomposition of V (I12) and after the rational reconstruction
with the algorithm of [26] obtain component 1), 2), 3), 5) given in the statement of the
theorem. Looking similarly as above for a linearization of the second equation of system
(8) in the form
(19)
Y = y+g1x

2+g2xy+g3y
2+g4x

3+g5x
2y+g6xy

2+g7y
3+g8x

4+g9x
3y+g10x

2y2+g11xy
3+g12y

4,

we obtain additionally condition 4) of the theorem, which is dual to condition 3) under
involution (14).

To finish the proof of the theorem we show that each system whose coefficients satisfy
one of conditions 1)–5) is linearizable. We can write out the linearizing transformation
for each case explicitly.

When condition 1) of the theorem is fulfilled the system is written in the form

ẋ = −2b01xy − a−12y
2 − a−13y

3, ẏ = −y(1− b01y),

and it is linearizable by the substitution

X = (x− b01xy −
a−12y

2

3
− a−13y

3

4
)(1− b01y), Y = y/(1− b01y).

Note that if 3a−13 + 4a−12b01 6= 0 then there is also a polynomial linearization of
the second equation given by Y = y + b01y

2 + 12b401xy
2/(3a−13 + 4a−12b01) + b201y

3 +
3a−13b

3
01y

4/(3a−13 + 4a−12b01. The set of systems which are linearizable by this trans-
formation is a proper subset of component 1). Its Zariski closure is exactly component
1).

In case 3) the system has the form

(20) ẋ = x− 2b01xy − a−12y
2 +

2

3
b201xy

2 +
4

9
a−12b01y

3, ẏ = −y + b01y
2 − 2b201y

3

9
.

It is linearizable by the substitution

X =
1

27
(3− 2b01y)2(−3x+ 2b01xy + a−12y

2), Y =
3y(3− b01y)

(3− 2b01y)2
.

Cases 2) and 4) are dual to 1) and 3), respectively, under involution (14). Thus, there
remains to consider case 5). If b2,−1 = 0 then the system is linearizable by

X = x− a−12y
2

3
, Y = y,

2the routine is based on the algorithm of [12]
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and if b2,−1 6= 0 then the substitution

X =x+ a10x
2 +

6a210xy

b2,−1

+
9a310y

2

b22,−1

,

Y =y − b2,−1x
2

3
− 2a10xy −

3a210y
2

b2,−1

.

linearizes the system. �

We now compare our results with the results about real isochronous centers obtained
in [6]. By the analogy with the real case we say that a linearization of system (4) is trivial
if it is given by a polynomial transformation. By Theorem 2 all linearizations of real cubic
Hamiltonian systems with a center at the origin are trivial. However it is not longer true
for the case of complex Hamiltonian system (8) since, for instance, the linearizations of
systems (13) and (20) are not trivial.

To further compare the condition of Theorem 2 with conditions of Theorem 4 we first
note that the system (1) with Hamiltonian function (3) is written as

(21)
ẋ =− 2k2k3x− 2k2k4x

2 − 2k22y,

ẏ =2k21x+ 2k23x+ 6k3k4x
2 + 4k24x

3 + 2k2k3y + 4k2k4xy.

After a linear substitution which transforms the matrix of the linear approximation of
(21) to the diagonal matrix and a rescaling of time we obtain from (21) the system

(22)

ż1 =((k1 − ik3)3X(2k21(k1 + ik3)
2 + k1k2(k1 + ik3)k4X − 2k22k

2
4X

2)+

2k2(k1 − ik3)2(k1 + ik3)k4X(k21 + ik1k3 + 3k2k4X)Y−
3k2(k1 − ik3)(k1 + ik3)

2k4(k
2
1 + ik1k3 + 2k2k4X)Y 2+

2k22(k1 + ik3)
3k24Y

3)/((2k21(k1 − ik3)3(k1 + ik3)
2)),

ż2 =− (k2(k1 − ik3)3k4X2(−3k1(k1 + ik3) + 2k2k4X)+

2(k1 − ik3)2(k1 + ik3)(k
2
1(k1 + ik3)

2 + k1k2(k1 + ik3)k4X − 3k22k
2
4X

2)Y+

k2(k1 − ik3)(k1 + ik3)
2k4(k

2
1 + ik1k3 + 6k2k4X)Y 2−

2k22(k1 + ik3)
3k24Y

3)/(2k21(k1 − ik3)2(k1 + ik3)
3).

It is not difficult to see that system (22) is a Hamiltonian system with the Hamiltonian
of the form (5). Denote the coefficient of zq+1

1 zs2 in the first equation of (5) by aqs and the

coefficient of zs1z
q+1
2 in the second equation of the system by bsq. It is easily seen that

(a10, a01, a12, a20, a11, a02, a−13) =

(
− k2k4

2k21 + 2ik1k3
,− k2k4

k21 − ik1k3
,

3k2k4(k1 + ik3)

2k1(k1 − ik3)2
,

k22k
2
4

k21(k1 + ik3)2
,− 3k22k

2
4

k41 + k21k
2
3

,
3k22k

2
4

k21(k1 − ik3)2
,−k

2
2k

2
4(k1 + ik3)

k21(k1 − ik3)3
)
,

(b01, b10, b2,−1, b20, b11, b02, b3,−1) =

(
− k2k4

2k1(k1 − ik3)
,− k2k4

k1(k1 + ik3)
,

3k2k4(k1 − ik3)
2k1(k1 + ik3)2

,
3k22k

2
4

k21(k1 + ik3)2
,− 3k22k

2
4

k21 (k21 + k23)
,

k22k
2
4

k21(k1 − ik3)2
,−k

2
2k

2
4(k1 − ik3)

k21(k1 + ik3)3

)
.
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We see from the above expressions that aqs and bsq are complex conjugate and satisfy
condition (9). To eliminate k1, k2, k3, k4 from this system we subtract the right hand sides
from the left hand sides, factor the expressions, take their numerators and then add to
the obtaining set of polynomials the polynomials 1 − w1k1, 1 − w2k2, 1 − w3(k

2
1 + k23).

Eliminating with eliminate of Singular the variables k1, k2, k3, k4, w1, w2, w3 we obtain
condition 5) of Theorem 4. This means, that in the space of parameters of system (8)
the set corresponding to real isochronous Hamiltonian cubic systems is a subset of the set
defined by equations 5) of Theorem 4.

Remark. Using the same approach we have also looked for linearizing transformations
of system (8) in the form (16)-(19). In this case the computations yield only components
1), 2) and 5) of Theorem (4). It appears this is due to the fact that, as it is mentioned
above, in case 1) almost for all points all points (when 3a−13+4a−12b01 6= 0) there is also a
polynomial linearization of both equations (and similarly in case 2)), but in case 3) there
is no polynomial linearization of one of equations.

To conclude the paper we can propose the following problem related to our study:

Open problem: Is the set of systems given by conditions 1)–5) of Theorem 4 the set of
all linearizable Hamiltonian cubic systems of the form (8)?

We computed the set of Hamiltonian systems, where one of equations is linearizable by
a polynomial of degree 5 and obtained the same conditions as given in Theorem 4 (because
of computational complexity we did computations in the field Z32003). It indicates that
most probably the set of systems given by conditions 1)–5) of Theorem 4 is the set of all
linearizable cubic systems of the form (8) with at least one substitution being a polynomial
one.

On the other side using with the approach of [22] we have tried to check if the variety
of the union of the component 1)–5) of Theorem 4 is the same as the variety V (L) of the
ideal (15). Because of the computational complexity we were not able to check if these
two varieties are equal in C9 (that is, computing in the field of characteristic zero) however
some computations which we performed in the field of characteristic 32003 indicate that
probably these varieties are not equal. Thus we expect that the answer to the question
risen above is negative and there are some not trivial linearizable cubic Hamiltonian
systems where the linearizing substitutions of both equations are not polynomial.
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