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ON THE DYNAMICS OF A SYSTEM THAT BRIDGES
THE GAP BETWEEN LORENZ AND CHEN SYSTEMS

JAUME LLIBRE! AND ANA RODRIGUES?

ABSTRACT. A one-parameter family of differential systems that
bridges the gap between the Lorenz and the Chen systems was
proposed by Lu, Chen, Cheng and Celikovsy. The goal of this
paper is to analyze what we can say using analytic tools about the
dynamics of this one-parameter family of differential systems. We
shall describe its global dynamics at infinity, and for two special
values of the parameter a we also can describe the global dynamics
in the whole R3 using the invariant algebraic surfaces of the family.
Additionally we characterize the Hopf bifurcations of this family.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In 1963 Lorenz (see [11]) introduced the following non-linear system
in R3 of differential equations

=0y —x),
y=pr—y—2xz,
z=—pz+ 2y,

for which it was observed sensitive dependence of initial conditions.
For an open neighborhood of certain parameter values (o, p and (),
numerical simulations suggested the existence of a strange attractor,
known now as the Lorenz attractor. The proof of the existence of a
robust strange attractor for these equations was later given by Tucker

[14].
The following differential system in R3
T = CL(y - SL’),
y=(c—a)r—xz+ cy,
z=uxy — bz,

where a, b, c € R are parameters is known as the Chen system [4]. For
suitable choices of the parameters it exhibits chaotic phenomena which

2010 Mathematics Subject Classification. Primary 34C25.
Key words and phrases. Hopf bifurcation, Lorenz—Chen system, invariant alge-
braic surface, Poincaré compactification.
1


10.1142/S0218127415501229

2 J. LLIBRE AND A. RODRIGUES

resembles some familiar features from the Lorenz system. Through
these recent years the dynamics of the Chen system has been analyzed
from different points of view.

Recently in [1, 3] it is clarified that the Chen system becomes the
Lorenz system doing a rescaling of the three spatial variables and of
the time, namely (z,y, z,t) — (—cx, —cy, —cz, —ct), which reverses the
time variable if ¢ > 0. Then the strange attractor of the Chen system
becomes a strange atractor in the Lorenz system but in backwards time,
different to the classical Lorenz attractor. Moreover, both attractors
take place for different values of the parameters.

In 2002 Lu, Chen, Cheng and Celikovsy [12], introduced a one-
parameter unified chaotic system that contains the Lorenz and the
Chen systems as two dual systems at the two extremes of its parame-
ter spectrum. The system introduced is

&= P(x,y,z) = (25a + 10)(y — x),

(1) y=Q(x,y,2) = (28 — 35a)x — 22 + (29a — 1)y,
z = R(:U,y, Z) =Ty — %((1 + S)Z

This system provides a continued transition from the Lorenz system
(when a = 0) to the Chen system (when a = 1) and it is chaotic along
all the values of the transition. The differential system (1) will be
denoted in what follows the Lorenz—Chen system and we shall study it
for all values of a € R.

In general to describe the global dynamics of a nonlinear differential
system in R? is a hard problem, usually unsolved. The goal of this
paper is to analyze what we can say using analytic tools about the
dynamics of the Lorenz—Chen system. We shall describe its global
dynamics at infinity, and for two special values of the parameter a
we also can describe the global dynamics in the whole R? using the
invariant algebraic surfaces of the Lorenz—Chen system. Additionally
we characterize its Hopf bifurcations.

The following result shows that the dynamics in a neighborhood of
the infinity for the Lorenz—Chen system is the same than in the Lorenz
and in the Chen system, see for more details [9] and [10], respectively.
The study of the infinity for a polynomial differential system is made
using the Poincaré compactification, see section 2 for a brief introduc-
tion to such compactification.
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FIGURE 1. Phase portrait at infinity of the Lorenz—Chen
system in the Poincaré ball.

Proposition 1. For all values of the parameters a, b, ¢ the phase por-
trait of the Lorenz—Chen system on the sphere at infinity has two centers
at the endpoints of the x—axis, the period annulus of these centers end
at the circle defined by the infinity of the plane {x = 0}, which is filled
of equilibria, see Figure 1.

Proposition 1 is proved in section 2.

Let R[z,y, z] be the ring of the real polynomials in the variables x, y
and z. We say that F' = F(x,y, z) is a Darbouzx polynomial of system
(1) if it satisfies

(VF)-(P,Q,R) = kF.

where k = k(z,y, z) is a real polynomial of degree at most 1, called
the cofactor of F(x,y,z) and VF is the gradient of F'. If the cofactor
is zero, then F(z,y,z) is a polynomial first integral of system (1). If
F(z,y,z) is a Darboux polynomial with non-zero cofactor, then the
surface F'(x,y, z) = 0 is an invariant algebraic surface, i.e. if an orbit of
system (1) has a point on this surface, then the whole orbit is contained
in it.

In the following proposition we study the invariant algebraic surfaces
for system (1).

Proposition 2. The following statements hold for the Lorenz—Chen
systems.

(a) If a = —2/5 then x is a first integral, and the restriction of
Lorenz—Chen system to each invariant plane x = constant is a
linear differential system.

(b) Ifa = —52/149, then the Lorenz—Chen system has the invariant
algebraic surface F(x,y,z) = 1492? — 3802 = 0.
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(¢) The cofactor of any invariant algebraic surface of a Lorenz—
Chen system is a constant.

(d) The only invariant algebraic surfaces of degree < 6 of the Lorenz—
Chen systems are the ones of statements (a) and (b).

Proposition 2 is proved in section 3.

The next result describes the global dynamics of the Lorenz-Chen
system in the Poincaré ball when the parameter a takes the values —2/5
and —52/149, i.e. when the system has invariant algebraic surfaces.

Theorem 3. The following statements hold for the Lorenz—Chen sys-

tems.

(a) For a = —2/5 all the planes v = h € R are invariant. The
unique finite equilibrium point of the Lorenz—Chen system in
the plane x = h is

847h 462h*
"4h? 4 539" 4h% 4+ 539 )’
a global stable focus or node if |h| > 215/6 or |h| < 215/6,

respectively. Of course all the planes x = h reach the infinity in
the circle filled of equilibria.

(b) For a = —52/149 on the invariant algebraic surface 149z* —
380z = 0 there are the three finite equilibria of the Lorenz—Chen
system

1 1 4
) 0.0.0) and (i 7W5—7,i 70v/57 335>‘

149 149 7 149

On this surface the origin is a saddle and the other two equilibria
are stable foci, the two unstable separatrices of the saddle go
one to one focus and the other to the other focus. While the two
stable separatrices of the saddle come spiraling from the infinity,
see Figure 2. The invariant surface reaches the infinity in half of
the circle filled of equilibria, more precisely at the infinity of the
half-plane x > 0. There is numerical evidence that the flow in
the interior of the Poincaré ball outside the invariant algebraic
surface tends in forward time to the invariant surface.

Theorem 3 is proved in section 3.

The Hopf bifurcation of the Lorenz system has been studied, see
for instance [13, 2]. Also the Hopf bifurcation of the Chen system
has been analyzed, see for example [8]. Now our aim is to study the
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FIGURE 2. Qualitative phase portrait of the Lorenz—Chen
system on the invariant algebraic surface 14922 — 380z = 0.

Hopf bifurcation of the Lorenz—Chen system (1) that bridges the gap
between the Lorenz system and the Chen system.

The equilibria of the Lorenz—Chen system are
bo = (07 Oa O)a
pe = (i\/(9 ~2a)(8 + a), £1/(9 — 2a)(8 + a),3(9 — 2a)> .

Note that the Lorenz—Chen system has three equilibria if a € (—8,9/2),
two equilibria if a = —8 or a = 9/2, and one equilibrium if a €
R\[-8,9/2].

It is easy to check that the linearization of the Lorenz—Chen system
at po never has a pair of conjugate purely imaginary eigenvalues, so the
equilibrium point pg cannot exhibit a Hopf bifurcation.

The Lorenz—Chen system is symmetric with respect to the involution
(x,y,2) — (—x, —y, 2), i.e. it has symmetry with respect to the z—axis.
So, if there is a Hopf bifurcation at the point p_ there is also a Hopf
bifurcation at the point p,. Consequently our analysis will be only at
the point p_.

As we shall see later on the linearization of the Lorenz—Chen system
at p_ has a pair of conjugate purely imaginary eigenvalues and one real
eigenvalue for the unique value

a* = —0.0136810441173477...

of the parameter a for which the equilibrium p_ exists. In fact a is
the unique real zero of a function e(a) defined later on. Therefore
when a = a* we have the setting for a Hopf bifurcation. That is, we
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can expect to see a small-amplitude limit cycle bifurcating from the
equilibrium point p_. But in order that this bifurcation takes place it
remains to compute the first Lyapunov coefficient ¢4 (p_) of system (1)
at the equilibrium p_. When ¢;(p_) < 0 the point p_ is a weak focus
of the Lorenz—Chen system restricted to the central manifold of p_ and
the limit cycle that emerges from p_ is stable. In this case the Hopf
bifurcation is called supercritical. When ¢1(p_) > 0 the point p_ is
also a weak focus of the Lorenz—Chen system restricted to the central
manifold of p_ but the limit cycle that borns from p_ is unstable. In
this second case the Hopf bifurcation is called subcritical. For more
details on the Hopf bifurcation see for instance the book of Kuznetsov
[7].

The next result characterize the Hopf bifurcation in the Lorenz—Chen
system.

Theorem 4. The Lorenz—Chen system has a subcritical Hopf bifurca-
tion at the equilibrium p_ when a = a*, and there exists a small € > 0
such that for a € (a* — e,a*) the system has an unstable limit cycle.

Theorem 4 is proved in section 4.

2. THE POINCARE COMPACTIFICATION

In what follows first we do a summary of the Poincaré compactifica-
tion of a polynomial vector field in R3, for more details see [5].

We consider the polynomial differential system
i‘:Pl(x7y7z)’ y:P2<x7y72)7 Z:P3(m7y7z)7

in R3, or equivalently its associated polynomial vector field X = (P?,
P2, P3). The degree n of X is defined as n = max{deg(P?) : i = 1,2, 3}.

Let S = {y = (y1,¥2,¥3,¥4) € R* : ||yl = 1} be the unit sphere in
RY and S; ={yeS*:9y, >0} and S_={yeS®:y <0} be the
northern and southern hemispheres, respectively. We denote by 7,S?
the tangent space to S? at the point y. We identify R3 with the tangent
hyperplane Tg001)S* = {(21, T2, 23, 1) € R*: (21, 22, 23) € R3}.

Doing central projections of the hyperplane T(g01)S® on the sphere
S? we get two copies of our vector field X on S3, one in the open
northern hemisphere S, and the other in the open southern hemisphere
S_. Now the equator S* = S* N {y; = 0} plays the role of the infinity
of R3. There is a unique extension of the two copies of the polynomial
vector field X on S; US_ to an analytic vector field p(X) on S*. This
vector field p(X) on S? is called the Poincaré compactification of X.
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Note that the projection of S, US? on the hyperplane 3, = 0 through
(Y1, Y2, Y3, Ya) — (Y1, Y2, y3) is the unit closed ball centered at the origin
of R® = {(y1,¥s2,93)}. The interior of this ball is diffeomorphic to R?
and its boundary S? corresponds to the infinity of R3. This ball it is
called the Poincaré ball.

We consider the following eight local charts on S*:

Ui = {(ylay27y3ay4) ‘Y > O}a and V; = {(y17y27y37y4) “Yi < 0}7
for 1 = 1,2,3,4. Then the analytical field p(X) in the local chart U
becomes
(4) — 5 (= P' 4 P2 —5P' 4 P¥ —2P")

(Az)
where P' = P’ (1/z3, 21/23, 22/ 23).

In a similar way the expression of p(X) in U, is

(5) — 55 (= P24 P! —5,P? 4 P¥ —2,P?) |
(Az)

where P’ = P'(z1/23,1/23,22/23); and in Uj is
% (—21P3 +P1, —22P3 +P2, —23P3) y
(Az)

where P' = P (z1/z23, 22/ 23,1/ 23).

The expression for p(X) in Uy is 25+ (P, P2, P?) where the compo-
nent P’ = P?(zy, 29, 23). The expression for p(X) in the local chart V;
is the same as in U; multiplied by (—1)""1.

When we shall work with the expression of the compactified vec-
tor field p(X) in the local charts we shall omit the common factor
1/(Az)"!. We can do that through a rescaling of the time.

We remark that all the points on the sphere at infinity in the coor-
dinates of any local chart have z3 = 0.

In this section we study the behavior of the differential system (1)
near the infinity using the Poincaré compactification.

Proof of Proposition 1. From (4) the Poincaré compactification of sys-
tem (1) in the local chart U; is

2= —29 — 7(5a — 4)23 + 9(6a + 1)z123 — 5(ba + 2) 2323,
2
22 =2z + 5(37CL + ].1)2223 - 5(5& + 2)222321,

Z3 = 5(ba + 2)(23 — 2123).
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We look for the equilibria (z1, 29, z3) with z3 = 0, which are the ones
which are at infinity, and we only find the origin, i.e. the endpoint of
the positive xr—axis, which has eigenvalues 0 and +i. The system in the
local chart U; restricted to infinity z3 = 0 writes 2y = —z9, 25 = 2.
So this equilibrium point at infinity is a center whose period annulus
filled of periodic orbits all U;. The same occurs at the local chart V;.

In short it follows that system (1) has the canonical linear center at
the infinity of the local chart U; of the Poincare ball with the center
at the endpoint of the positive x-axis.

From (5) the Poincaré compactification of system (1) in the local
chart Us is

2 =5(5a+ 2)zz — 9(6a + 1)z123 + 2325 + 7(5a — 4)23 23,
1

2o =21 — 5(88a +5)2023 + 2125 + 7(5a — 4) 212923,

Z3 = —(29a — 1)22 + 212923 + T(Ha — 4) 21 23.

The equilibria of this system with z3 = 0 are (0, z2,0) for all 25 € R.
This straight lines filled with equilibria, corresponds to the circle of S?
which is at the end of the plane x = 0. The same result is obtained
working with the local chart Us. Note that the local chart U, has no
points at infinity. This completes the proof of the proposition. O

3. INVARIANT ALGEBRAIC CURVES

In this section we prove Proposition 2 and Theorem 3.

Proof of Proposition 2. If a = —2/5, system (1) becomes

63
=0, §=427— 22— —y, i=ay— —=.
=0, gy Towz— Y, E=ay - o2
Thus H(z,y,z) = x is a first integral, and the flow on each level H~1(h)
is determined by the linear differential system

63
)= 42h — hz — —y, i=hy— —=.
< 5.% < Yy 152

This proves statement (a).

For a = —52/149, we have VF - (P,Q, R) = kF, where F(z,y,z) =

380
14922 — 380z is a Darboux polynomial with cofactor k = a0 So

statement (b) follows.

Let F(z,y,z) = 0 be an invariant algebraic surface of system (1),
and let m be the degree of the polynomial F'. Then the homogeneous
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part of degree m of F' denoted by F;, satisfies

oF,, oF,,
— o xz + Ep xy = (kix + kay + k3z) Foy,

where the cofactor of F' = 0 is kg + kix + koy + k3z. The solution of
this linear partial differential equations is either

F, = e e tan*l(g)h@z +22),

or
_ k3y+@

Fm — e o = —k1tan*1(%)h<y2 + 22)’
where h(y? + 2?) is an arbitrary function in the variable y? + z2. Since

F,, must be a homogeneous polynomial, we get that ky = ky = k3 = 0.
This proves statement (c).

We take F' an arbitrary polynomial of degree at most 6, i.e.

6
F= Z a; Ty,
i+j=0
and assume that F' = 0 is and invariant algebraic surface with cofactor
k = ko € R, here we have used statement (c). Then the polynomial
VF - (P,Q,R) — kF is the zero polynomial, i.e. all the coefficients of
this polynomial must be zero. Thus we have a system whose unknowns
are the a;; and the k;. After tedious but easy computations with the
help of an algebraic manipulator as mathematica or mapple we obtain

that the unique solutions of this system are F' = z with a = —2/5 and
F = 1492? — 380z with a = —52/149. This completes the proof of
statement (d). O

Proof of Theorem 3. First we consider the Lorenz—Chen system for a =
—2/5. Then by statement (a) of Proposition 2 we know that all the
planes x = h with h € R are invariant by the flow of the Lorenz—Chen
system. This system restricted to the plane x = h becomes

_ 231h 147
y=—F———FYy—hz
2 2
(6)
g1
z = — —Z.
G

The unique equilibrium point of this system is (2). Since its eigenvalues

are 1
= (—226 + /46225 — 36h2) ,

it follows easily that such equilibrium point is a stable focus or node if
|h| > 215/6 or |h| < 215/6, respectively. Since the differential system
(6) on the plane z = h it follows that such focus or node are global, i.e.
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the filled the whole plane x = h. This completes the proof of statement
().

Now we consider the Lorenz—Chen system for a = —52/149, and
restricting the system on the invariant algebraic surface z = 1492%/380
(see statement (b) of Proposition 2) it becomes

o0
t=—I (y—x
0 149~
5992 1657 149

Y= 00" 1297 330"

It is easy to check that the three equilibria (3) of Lorenz—Chen system
for a = —52/149 are on the invariant algebraic surface. The origin on
the surface has the eigenvalues

ﬁ (—1847 + m) ,

so it is a saddle, and the eigenvalue outside the surface is —380/149.
The other two equilibria on the surface have eigenvalues

1
" <—1847 n 31777912') ,

so they are stable foci, and the eigenvalue outside the surface is again
—380/149. So both foci are local attractors in R3.

The global phase portrait on the invariant algebraic surface of sys-
tem (7) is topologically equivalent to the one of Figure 2, it has been
obtained with the program P4 (see Chapters 9 and 10 of [6]). More-
over, there is numerical evidence that the flow in the interior of the
Poincaré ball outside the invariant algebraic surface tends in forward
time to the invariant surface. So this proves statement (b). O

4. HOPF BIFURCATION

In order to prove that system (1) exhibits a Hopf bifurcation for the
unique value a* of its parameter a, we will use the following theorem
(see [7], page 178) which shows how to compute the first Lyapunov
constant £1(py) at the equilibrium p;.

Lemma 5. Assume that x = F(x) the differential system has py as an
equilibrium point. The third order Taylor approximation of the function
F around the equilibrium pg is

1 1
(8) F(x) = Ax + §B<X’ x) + gC(x, x,x) + O(|x[").
Suppose that A has a pair £Xi of purely imaginary eigenvalues, and
that q is the eigenvector of A with eigenvalue A\i, satisfying qq@ = 1,
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where § s the conjugate vector of q. Let p be the eigenvector of AT
with eigenvalue —\i satisfying pg = 1. Let I be the identity matriz.
The first Liapunov constant ly(po) of the differential system x = F(x)
at the equilibrium point py s

%Re(p C(g,4,9)—2p-B(g, A" B(q,q))+p-B(q, (2xil —A) "' B(q,9))).

Proof of Theorem 4. The point p_ is an equilibrium of the Lorenz—
Chen system. We translate this equilibrium point to the origin, with
the following coordinate change:

= x—+/(9—-2a)(8+a),
7= y—(-2a)8+a)
Z= z+3(9—2a).

In the new coordinates, again denoted by (x,y, z) instead of (Z,7, 2),
system (1) becomes

= (10 + 25a)(y — x) = Fi(z,y, 2),
9) =29 —1)(y —x) ++/(9—2a)(8 + a)z — xz = Fy(z,y,2),
z-—\/ —2a)8+a)(z+y)+axy— (8+a)z/3 = F3(x,y, 2).

The linear part of system (9) at the equilibrium point (0,0, 0) is
—5(5a + 2) 5(5a + 2) 0
A= 1 —29a 29a — 1 V(9 —2a)(8 +a)
—/(9—2a)8+a) —+/(9—2a)(8 +a) —(a+8)/3

The characteristic polynomial p(x) of the matrix A is

1 2
—u3+§(11a—41)u2+§ (5a* + 21a — 152) p+10 (10a” 4 39a* — 346a — 144) .

Writing the polynomial
p() = (p = pla))(p —e(a) — iX(a))(p — £(a) + iX(a)),
we get
“211a® + (116‘/@ + 524) a— 82/% — 415/ + 1055
pla) = 073 :

1 a(211a — 524) — 1055
e(a) = 18(22a+\/_ Vg —82)
‘ (524 — 211a)a + S*/° + 1055‘
6v/3 VS ’

AMa) = —
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where

S = —2a(a(19633a + 63987) — 637044) + 9v/3R + 425537,
R= ((a +8) (a (a(a (630627502 — 8303940a — 274063261) + 710717860)

1/2
+546970601) + 93753076)) .

Then p, € and A are real if and only if R > 0. Then it is easy to check
that R > 0 if and only if a belongs to the set

(—o00, —8] U [—6.9452229210.., 4.4844936295..] U [4.5065954528.., 00),
where the finite endpoints of the previous intervals are zeros of the
polynomial R2

In order that a Hopf bifurcation can take place at the origin of the
differential system (9) ¢ must be zero, but an easy study shows that
this only occurs when

a=a" = —0.0136810441173477...
Then the eigenvalues of the matrix A are
pla*) = —13.7168304950.., +£\(a*)i = £10.0759239798. .

Now the Hopf bifurcation will take place at the origin O of the dif-
ferential system (9) when a = a* if the Lyapunov constant ¢,(O) is not
zero. We compute ¢1(0O) using the Lemma 5. We need to write the
function

F(X> = F(xa%z) = (Fl(xvya Z>7F2(x7y7 Z),Fg(l’,y, Z))

of the differential system (9) as it appears in (8). We already now
the matrix A, then an easy computation shows that the bilinear form
B(x,y) of (8) for our system (9) is

B((:E7 Y, 2)7 (’LL, v, w)) = (07 —WT — Uz, VT + uy)
Since the polynomial differential system (9) is quadratic it follows that
the trilinear form C(x,y,z) of (8) is zero.
Computing the normalized eigenvector g of A, associated to the

eigenvalue A\i = 10.0759239798..7, we obtain

—0.2649114919.. — 0.2906456499..7
q= 0.0383118865.. — 0.5670212213..%
0.7227490169..
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The normalized adjoint eigenvector of the transpose matrix A with the
eigenvalue —\z is

—0.2100011995.. — 0.26682108409..7
p= 0.1076431231.. — 0.69924528074..1
0.5732025206.. — 0.0607327918..2

From Lemma 5 in order to compute /;(O) we must compute —2p -
B(q,A™'B(q,q)) and p - B(q, (2xil — A)~'B(q,q))). We have

—2p - B(q, A"'B(q, 7)) = 0.0078908121.. — 0.0706414304..i
and
p-B(q, 2\l — A)"'B(q,q))) = —0.00335845379.. + 0.0253657537..i
Then
h(0) = 5Re(=2p- Blq, A" B(q, ) + - B(q, (2MI — A)"'B(q,q)))
= 0.0002249103..
which is different from zero. This finishes the proof of Theorem 4. [
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