
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

ON THE DYNAMICS OF A SYSTEM THAT BRIDGES
THE GAP BETWEEN LORENZ AND CHEN SYSTEMS

JAUME LLIBRE1 AND ANA RODRIGUES2

Abstract. A one–parameter family of differential systems that
bridges the gap between the Lorenz and the Chen systems was
proposed by Lu, Chen, Cheng and Celikovsy. The goal of this
paper is to analyze what we can say using analytic tools about the
dynamics of this one–parameter family of differential systems. We
shall describe its global dynamics at infinity, and for two special
values of the parameter a we also can describe the global dynamics
in the whole R3 using the invariant algebraic surfaces of the family.
Additionally we characterize the Hopf bifurcations of this family.

1. Introduction and statement of the main results

In 1963 Lorenz (see [11]) introduced the following non–linear system
in R3 of differential equations

ẋ = σ(y − x),
ẏ = ρx − y − xz,
ż = −βz + xy,

for which it was observed sensitive dependence of initial conditions.
For an open neighborhood of certain parameter values (σ, ρ and β),
numerical simulations suggested the existence of a strange attractor,
known now as the Lorenz attractor. The proof of the existence of a
robust strange attractor for these equations was later given by Tucker
[14].

The following differential system in R3

ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,
ż = xy − bz,

where a, b, c ∈ R are parameters is known as the Chen system [4]. For
suitable choices of the parameters it exhibits chaotic phenomena which
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resembles some familiar features from the Lorenz system. Through
these recent years the dynamics of the Chen system has been analyzed
from different points of view.

Recently in [1, 3] it is clarified that the Chen system becomes the
Lorenz system doing a rescaling of the three spatial variables and of
the time, namely (x, y, z, t) → (−cx, −cy, −cz, −ct), which reverses the
time variable if c > 0. Then the strange attractor of the Chen system
becomes a strange atractor in the Lorenz system but in backwards time,
different to the classical Lorenz attractor. Moreover, both attractors
take place for different values of the parameters.

In 2002 Lu, Chen, Cheng and Celikovsy [12], introduced a one-
parameter unified chaotic system that contains the Lorenz and the
Chen systems as two dual systems at the two extremes of its parame-
ter spectrum. The system introduced is

(1)

ẋ = P (x, y, z) = (25a + 10)(y − x),

ẏ = Q(x, y, z) = (28 − 35a)x − xz + (29a − 1)y,

ż = R(x, y, z) = xy − 1

3
(a + 8)z.

This system provides a continued transition from the Lorenz system
(when a = 0) to the Chen system (when a = 1) and it is chaotic along
all the values of the transition. The differential system (1) will be
denoted in what follows the Lorenz–Chen system and we shall study it
for all values of a ∈ R.

In general to describe the global dynamics of a nonlinear differential
system in R3 is a hard problem, usually unsolved. The goal of this
paper is to analyze what we can say using analytic tools about the
dynamics of the Lorenz–Chen system. We shall describe its global
dynamics at infinity, and for two special values of the parameter a
we also can describe the global dynamics in the whole R3 using the
invariant algebraic surfaces of the Lorenz–Chen system. Additionally
we characterize its Hopf bifurcations.

The following result shows that the dynamics in a neighborhood of
the infinity for the Lorenz–Chen system is the same than in the Lorenz
and in the Chen system, see for more details [9] and [10], respectively.
The study of the infinity for a polynomial differential system is made
using the Poincaré compactification, see section 2 for a brief introduc-
tion to such compactification.
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Figure 1. Phase portrait at infinity of the Lorenz–Chen
system in the Poincaré ball.

Proposition 1. For all values of the parameters a, b, c the phase por-
trait of the Lorenz–Chen system on the sphere at infinity has two centers
at the endpoints of the x–axis, the period annulus of these centers end
at the circle defined by the infinity of the plane {x = 0}, which is filled
of equilibria, see Figure 1.

Proposition 1 is proved in section 2.

Let R[x, y, z] be the ring of the real polynomials in the variables x, y
and z. We say that F = F (x, y, z) is a Darboux polynomial of system
(1) if it satisfies

(∇F ) · (P,Q, R) = kF,

where k = k(x, y, z) is a real polynomial of degree at most 1, called
the cofactor of F (x, y, z) and ∇F is the gradient of F . If the cofactor
is zero, then F (x, y, z) is a polynomial first integral of system (1). If
F (x, y, z) is a Darboux polynomial with non–zero cofactor, then the
surface F (x, y, z) = 0 is an invariant algebraic surface, i.e. if an orbit of
system (1) has a point on this surface, then the whole orbit is contained
in it.

In the following proposition we study the invariant algebraic surfaces
for system (1).

Proposition 2. The following statements hold for the Lorenz–Chen
systems.

(a) If a = −2/5 then x is a first integral, and the restriction of
Lorenz–Chen system to each invariant plane x = constant is a
linear differential system.

(b) If a = −52/149, then the Lorenz–Chen system has the invariant
algebraic surface F (x, y, z) = 149x2 − 380z = 0.
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(c) The cofactor of any invariant algebraic surface of a Lorenz–
Chen system is a constant.

(d) The only invariant algebraic surfaces of degree ≤ 6 of the Lorenz–
Chen systems are the ones of statements (a) and (b).

Proposition 2 is proved in section 3.

The next result describes the global dynamics of the Lorenz–Chen
system in the Poincaré ball when the parameter a takes the values −2/5
and −52/149, i.e. when the system has invariant algebraic surfaces.

Theorem 3. The following statements hold for the Lorenz–Chen sys-
tems.

(a) For a = −2/5 all the planes x = h ∈ R are invariant. The
unique finite equilibrium point of the Lorenz–Chen system in
the plane x = h is

(2)

(
h,

847h

4h2 + 539
,

462h2

4h2 + 539

)
,

a global stable focus or node if |h| > 215/6 or |h| ≤ 215/6,
respectively. Of course all the planes x = h reach the infinity in
the circle filled of equilibria.

(b) For a = −52/149 on the invariant algebraic surface 149x2 −
380z = 0 there are the three finite equilibria of the Lorenz–Chen
system

(3) (0, 0, 0) and

(
±170

√
57

149
,±170

√
57

149
,
4335

149

)
.

On this surface the origin is a saddle and the other two equilibria
are stable foci, the two unstable separatrices of the saddle go
one to one focus and the other to the other focus. While the two
stable separatrices of the saddle come spiraling from the infinity,
see Figure 2. The invariant surface reaches the infinity in half of
the circle filled of equilibria, more precisely at the infinity of the
half–plane x ≥ 0. There is numerical evidence that the flow in
the interior of the Poincaré ball outside the invariant algebraic
surface tends in forward time to the invariant surface.

Theorem 3 is proved in section 3.

The Hopf bifurcation of the Lorenz system has been studied, see
for instance [13, 2]. Also the Hopf bifurcation of the Chen system
has been analyzed, see for example [8]. Now our aim is to study the
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Figure 2. Qualitative phase portrait of the Lorenz–Chen
system on the invariant algebraic surface 149x2 − 380z = 0.

Hopf bifurcation of the Lorenz–Chen system (1) that bridges the gap
between the Lorenz system and the Chen system.

The equilibria of the Lorenz–Chen system are

p0 = (0, 0, 0),

p± =
(
±
√

(9 − 2a)(8 + a),±
√

(9 − 2a)(8 + a), 3(9 − 2a)
)

.

Note that the Lorenz–Chen system has three equilibria if a ∈ (−8, 9/2),
two equilibria if a = −8 or a = 9/2, and one equilibrium if a ∈
R\[−8, 9/2].

It is easy to check that the linearization of the Lorenz–Chen system
at p0 never has a pair of conjugate purely imaginary eigenvalues, so the
equilibrium point p0 cannot exhibit a Hopf bifurcation.

The Lorenz–Chen system is symmetric with respect to the involution
(x, y, z) 7→ (−x, −y, z), i.e. it has symmetry with respect to the z–axis.
So, if there is a Hopf bifurcation at the point p− there is also a Hopf
bifurcation at the point p+. Consequently our analysis will be only at
the point p−.

As we shall see later on the linearization of the Lorenz–Chen system
at p− has a pair of conjugate purely imaginary eigenvalues and one real
eigenvalue for the unique value

a∗ = −0.0136810441173477...

of the parameter a for which the equilibrium p− exists. In fact a is
the unique real zero of a function ε(a) defined later on. Therefore
when a = a∗ we have the setting for a Hopf bifurcation. That is, we
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can expect to see a small-amplitude limit cycle bifurcating from the
equilibrium point p−. But in order that this bifurcation takes place it
remains to compute the first Lyapunov coefficient ℓ1(p−) of system (1)
at the equilibrium p−. When ℓ1(p−) < 0 the point p− is a weak focus
of the Lorenz–Chen system restricted to the central manifold of p− and
the limit cycle that emerges from p− is stable. In this case the Hopf
bifurcation is called supercritical. When ℓ1(p−) > 0 the point p− is
also a weak focus of the Lorenz–Chen system restricted to the central
manifold of p− but the limit cycle that borns from p− is unstable. In
this second case the Hopf bifurcation is called subcritical. For more
details on the Hopf bifurcation see for instance the book of Kuznetsov
[7].

The next result characterize the Hopf bifurcation in the Lorenz–Chen
system.

Theorem 4. The Lorenz–Chen system has a subcritical Hopf bifurca-
tion at the equilibrium p− when a = a∗, and there exists a small ε > 0
such that for a ∈ (a∗ − ε, a∗) the system has an unstable limit cycle.

Theorem 4 is proved in section 4.

2. The Poincaré compactification

In what follows first we do a summary of the Poincaré compactifica-
tion of a polynomial vector field in R3, for more details see [5].

We consider the polynomial differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

in R3, or equivalently its associated polynomial vector field X = (P 1,
P 2, P 3). The degree n of X is defined as n = max{deg(P i) : i = 1, 2, 3}.

Let S3 = {y = (y1, y2, y3, y4) ∈ R4 : ∥y∥ = 1} be the unit sphere in
R4, and S+ = {y ∈ S3 : y4 > 0} and S− = {y ∈ S3 : y4 < 0} be the
northern and southern hemispheres, respectively. We denote by TyS3

the tangent space to S3 at the point y. We identify R3 with the tangent
hyperplane T(0,0,0,1)S3 = {(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3}.

Doing central projections of the hyperplane T(0,0,0,1)S3 on the sphere
S3 we get two copies of our vector field X on S3, one in the open
northern hemisphere S+ and the other in the open southern hemisphere
S−. Now the equator S2 = S3 ∩ {y4 = 0} plays the role of the infinity
of R3. There is a unique extension of the two copies of the polynomial
vector field X on S+ ∪ S− to an analytic vector field p(X) on S3. This
vector field p(X) on S3 is called the Poincaré compactification of X.
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Note that the projection of S+∪S2 on the hyperplane y4 = 0 through
(y1, y2, y3, y4) → (y1, y2, y3) is the unit closed ball centered at the origin
of R3 = {(y1, y2, y3)}. The interior of this ball is diffeomorphic to R3

and its boundary S2 corresponds to the infinity of R3. This ball it is
called the Poincaré ball.

We consider the following eight local charts on S3:

Ui = {(y1, y2, y3, y4) : yi > 0}, and Vi = {(y1, y2, y3, y4) : yi < 0},

for i = 1, 2, 3, 4. Then the analytical field p(X) in the local chart U1

becomes

(4)
zn
3

(∆z)n−1

(
−z1P

1 + P 2, −z2P
1 + P 3,−z3P

1
)
,

where P i = P i (1/z3, z1/z3, z2/z3).

In a similar way the expression of p(X) in U2 is

(5)
zn
3

(∆z)n−1

(
−z1P

2 + P 1,−z2P
2 + P 3, −z3P

2
)

,

where P i = P i (z1/z3, 1/z3, z2/z3); and in U3 is

zn
3

(∆z)n−1

(
−z1P

3 + P 1,−z2P
3 + P 2, −z3P

3
)

,

where P i = P i (z1/z3, z2/z3, 1/z3).

The expression for p(X) in U4 is zn+1
3 (P 1, P 2, P 3) where the compo-

nent P i = P i (z1, z2, z3). The expression for p(X) in the local chart Vi

is the same as in Ui multiplied by (−1)n−1.

When we shall work with the expression of the compactified vec-
tor field p(X) in the local charts we shall omit the common factor
1/(∆z)n−1. We can do that through a rescaling of the time.

We remark that all the points on the sphere at infinity in the coor-
dinates of any local chart have z3 = 0.

In this section we study the behavior of the differential system (1)
near the infinity using the Poincaré compactification.

Proof of Proposition 1. From (4) the Poincaré compactification of sys-
tem (1) in the local chart U1 is

ż1 = −z2 − 7(5a − 4)z3 + 9(6a + 1)z1z3 − 5(5a + 2)z2
1z3,

ż2 = z1 +
2

3
(37a + 11)z2z3 − 5(5a + 2)z2z3z1,

ż3 = 5(5a + 2)(z2
3 − z1z

2
3).
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We look for the equilibria (z1, z2, z3) with z3 = 0, which are the ones
which are at infinity, and we only find the origin, i.e. the endpoint of
the positive x–axis, which has eigenvalues 0 and ±i. The system in the
local chart U1 restricted to infinity z3 = 0 writes ż1 = −z2, ż2 = z1.
So this equilibrium point at infinity is a center whose period annulus
filled of periodic orbits all U1. The same occurs at the local chart V1.

In short it follows that system (1) has the canonical linear center at
the infinity of the local chart U1 of the Poincarè ball with the center
at the endpoint of the positive x-axis.

From (5) the Poincaré compactification of system (1) in the local
chart U2 is

ż1 = 5(5a + 2)z3 − 9(6a + 1)z1z3 + z2
1z2 + 7(5a − 4)z2

1z3,

ż2 = z1 − 1

3
(88a + 5)z2z3 + z1z

2
2 + 7(5a − 4)z1z2z3,

ż3 = −(29a − 1)z2
3 + z1z2z3 + 7(5a − 4)z1z

2
3 .

The equilibria of this system with z3 = 0 are (0, z2, 0) for all z2 ∈ R.
This straight lines filled with equilibria, corresponds to the circle of S2

which is at the end of the plane x = 0. The same result is obtained
working with the local chart U3. Note that the local chart U4 has no
points at infinity. This completes the proof of the proposition. �

3. Invariant algebraic curves

In this section we prove Proposition 2 and Theorem 3.

Proof of Proposition 2. If a = −2/5, system (1) becomes

ẋ = 0, ẏ = 42x − xz − 63

5
y, ż = xy − 38

15
z.

Thus H(x, y, z) = x is a first integral, and the flow on each level H−1(h)
is determined by the linear differential system

ẏ = 42h − hz − 63

5
y, ż = hy − 38

15
z.

This proves statement (a).

For a = −52/149, we have ∇F · (P, Q,R) = kF, where F (x, y, z) =

149x2 − 380z is a Darboux polynomial with cofactor k = −380

149
. So

statement (b) follows.

Let F (x, y, z) = 0 be an invariant algebraic surface of system (1),
and let m be the degree of the polynomial F . Then the homogeneous
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part of degree m of F denoted by Fm satisfies

−∂Fm

∂y
xz +

∂Fm

∂z
xy = (k1x + k2y + k3z)Fm,

where the cofactor of F = 0 is k0 + k1x + k2y + k3z. The solution of
this linear partial differential equations is either

Fm = e− k3y
x

− k2z
x

+k1 tan−1( y
z )h(y2 + z2),

or

Fm = e− k3y
x

+
k2z
x

−k1 tan−1( y
z )h(y2 + z2),

where h(y2 + z2) is an arbitrary function in the variable y2 + z2. Since
Fm must be a homogeneous polynomial, we get that k1 = k2 = k3 = 0.
This proves statement (c).

We take F an arbitrary polynomial of degree at most 6, i.e.

F =
6∑

i+j=0

aijx
iyj,

and assume that F = 0 is and invariant algebraic surface with cofactor
k = k0 ∈ R, here we have used statement (c). Then the polynomial
∇F · (P,Q, R) − kF is the zero polynomial, i.e. all the coefficients of
this polynomial must be zero. Thus we have a system whose unknowns
are the aij and the ki. After tedious but easy computations with the
help of an algebraic manipulator as mathematica or mapple we obtain
that the unique solutions of this system are F = x with a = −2/5 and
F = 149x2 − 380z with a = −52/149. This completes the proof of
statement (d). �
Proof of Theorem 3. First we consider the Lorenz–Chen system for a =
−2/5. Then by statement (a) of Proposition 2 we know that all the
planes x = h with h ∈ R are invariant by the flow of the Lorenz–Chen
system. This system restricted to the plane x = h becomes

(6)
ẏ =

231h

2
− 147

2
y − hz,

ż = hy − 11

6
z.

The unique equilibrium point of this system is (2). Since its eigenvalues
are

1

6

(
−226 ±

√
46225 − 36h2

)
,

it follows easily that such equilibrium point is a stable focus or node if
|h| > 215/6 or |h| ≤ 215/6, respectively. Since the differential system
(6) on the plane x = h it follows that such focus or node are global, i.e.



10 J. LLIBRE AND A. RODRIGUES

the filled the whole plane x = h. This completes the proof of statement
(a).

Now we consider the Lorenz–Chen system for a = −52/149, and
restricting the system on the invariant algebraic surface z = 149x2/380
(see statement (b) of Proposition 2) it becomes

(7)
ẋ =

190

149
(y − x),

ẏ =
5992

149
x − 1657

149
y − 149

380
x3.

It is easy to check that the three equilibria (3) of Lorenz–Chen system
for a = −52/149 are on the invariant algebraic surface. The origin on
the surface has the eigenvalues

1

298

(
−1847 ±

√
6706009

)
,

so it is a saddle, and the eigenvalue outside the surface is −380/149.
The other two equilibria on the surface have eigenvalues

1

298

(
−1847 ±

√
3177791 i

)
,

so they are stable foci, and the eigenvalue outside the surface is again
−380/149. So both foci are local attractors in R3.

The global phase portrait on the invariant algebraic surface of sys-
tem (7) is topologically equivalent to the one of Figure 2, it has been
obtained with the program P4 (see Chapters 9 and 10 of [6]). More-
over, there is numerical evidence that the flow in the interior of the
Poincaré ball outside the invariant algebraic surface tends in forward
time to the invariant surface. So this proves statement (b). �

4. Hopf bifurcation

In order to prove that system (1) exhibits a Hopf bifurcation for the
unique value a∗ of its parameter a, we will use the following theorem
(see [7], page 178) which shows how to compute the first Lyapunov
constant ℓ1(p1) at the equilibrium p1.

Lemma 5. Assume that ẋ = F (x) the differential system has p0 as an
equilibrium point. The third order Taylor approximation of the function
F around the equilibrium p0 is

(8) F (x) = Ax +
1

2!
B(x,x) +

1

3!
C(x,x,x) + O(|x|4).

Suppose that A has a pair ±λi of purely imaginary eigenvalues, and
that q is the eigenvector of A with eigenvalue λi, satisfying qq̄ = 1,
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where q̄ is the conjugate vector of q. Let p be the eigenvector of AT

with eigenvalue −λi satisfying p̄q = 1. Let I be the identity matrix.
The first Liapunov constant l1(p0) of the differential system ẋ = F (x)
at the equilibrium point p0 is

1

2λ
Re(p̄·C(q, q, q̄)−2p̄·B(q, A−1B(q, q̄))+p̄·B(q̄, (2λiI−A)−1B(q, q))).

Proof of Theorem 4. The point p− is an equilibrium of the Lorenz–
Chen system. We translate this equilibrium point to the origin, with
the following coordinate change:

x̃ = x −
√

(9 − 2a)(8 + a),

ỹ = y −
√

(9 − 2a)(8 + a),
z̃ = z + 3(9 − 2a).

In the new coordinates, again denoted by (x, y, z) instead of (x̃, ỹ, z̃),
system (1) becomes

(9)

ẋ = (10 + 25a)(y − x) = F1(x, y, z),

ẏ = (29a − 1)(y − x) +
√

(9 − 2a)(8 + a)z − xz = F2(x, y, z),

ż = −
√

(9 − 2a)(8 + a)(x + y) + xy − (8 + a)z/3 = F3(x, y, z).

The linear part of system (9) at the equilibrium point (0, 0, 0) is

A =




−5(5a + 2) 5(5a + 2) 0

1 − 29a 29a − 1
√

(9 − 2a)(8 + a)

−
√

(9 − 2a)(8 + a) −
√

(9 − 2a)(8 + a) −(a + 8)/3


 .

The characteristic polynomial p(µ) of the matrix A is

−µ3+
1

3
(11a−41)µ2+

2

3

(
5a2 + 21a − 152

)
µ+10

(
10a3 + 39a2 − 346a − 144

)
.

Writing the polynomial

p(µ) = (µ − ρ(a))(µ − ε(a) − iλ(a))(µ − ε(a) + iλ(a)),

we get

ρ(a) =
−211a2 +

(
11 3

√
S + 524

)
a − S2/3 − 41 3

√
S + 1055

9 3
√

S
,

ε(a) =
1

18

(
22a + 3

√
S +

a(211a − 524) − 1055
3
√

S
− 82

)
,

λ(a) = − 1

6
√

3

∣∣∣∣
(524 − 211a)a + S2/3 + 1055

3
√

S

∣∣∣∣ ,
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where

S = −2a(a(19633a + 63987) − 637044) + 9
√

3R + 425537,

R =
(
(a + 8) (a (a (a (6306275a2 − 8803940a − 274063261) + 710717860)

+546970601) + 93753076)
)1/2

.

Then ρ, ε and λ are real if and only if R ≥ 0. Then it is easy to check
that R ≥ 0 if and only if a belongs to the set

(−∞,−8] ∪ [−6.9452229210.., 4.4844936295..] ∪ [4.5065954528.., ∞),

where the finite endpoints of the previous intervals are zeros of the
polynomial R2.

In order that a Hopf bifurcation can take place at the origin of the
differential system (9) ε must be zero, but an easy study shows that
this only occurs when

a = a∗ = −0.0136810441173477...

Then the eigenvalues of the matrix A are

ρ(a∗) = −13.7168304950.., ±λ(a∗)i = ±10.0759239798..i.

Now the Hopf bifurcation will take place at the origin O of the dif-
ferential system (9) when a = a∗ if the Lyapunov constant ℓ1(O) is not
zero. We compute ℓ1(O) using the Lemma 5. We need to write the
function

F (x) = F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

of the differential system (9) as it appears in (8). We already now
the matrix A, then an easy computation shows that the bilinear form
B(x,y) of (8) for our system (9) is

B((x, y, z), (u, v, w)) = (0, −wx − uz, vx + uy).

Since the polynomial differential system (9) is quadratic it follows that
the trilinear form C(x,y, z) of (8) is zero.

Computing the normalized eigenvector q of A, associated to the
eigenvalue λi = 10.0759239798..i, we obtain

q =




−0.2649114919.. − 0.2906456499..i
0.0383118865.. − 0.5670212213..i

0.7227490169..


 .
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The normalized adjoint eigenvector of the transpose matrix A with the
eigenvalue −λi is

p =




−0.2100011995.. − 0.26682108409..i
0.1076431231.. − 0.69924528074..i
0.5732025206.. − 0.0607327918..i


 .

From Lemma 5 in order to compute l1(O) we must compute −2p̄ ·
B(q, A−1B(q, q̄)) and p̄ · B(q̄, (2λiI − A)−1B(q, q))). We have

−2p̄ · B(q, A−1B(q, q̄)) = 0.0078908121.. − 0.0706414304..i

and

p̄ · B(q̄, (2λiI − A)−1B(q, q))) = −0.00335845379.. + 0.0253657537..i

Then

l1(O) = 1
2λ

Re(−2p̄ · B(q, A−1B(q, q̄)) + p̄ · B(q̄, (2λiI − A)−1B(q, q)))

= 0.0002249103..

which is different from zero. This finishes the proof of Theorem 4. �
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of the Chen system having invariant algebraic surfaces, Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 22 (2012), 1250154–17 pp.

[11] E.N. Lorenz, Deterministic non–periodic flow, J. Atmos. Sci. 20 (1963), 130–
141.

[12] J. Lu, G. Chen, D. Cheng and S. Celikovsy, Bridge the gap between the
Lorenz system and the Chen system, Internat. J. Bifur. Chaos Appl. Sci. Engrg.
12 (2002), 2917–2926.

[13] N. Roschin, Dangerous stability boundaries in the Lorenz model, Prikl. Mat.
Mekh. 42 (1978), 950–952 (in Russian).

[14] W. Tucker, A Rigorous ODE Solver and Smale’s 14th Problem, Foundations
of Computational Mathematics 2 (2002),53–117 .
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