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Abstract. We study the local Hopf bifurcations of codimension
one and two which occur in the Shimizu-Morioka system. This
system is a simplified model proposed for studying the dynamics
of the well known Lorenz system for large Rayleigh numbers. We
present an analytic study and their bifurcation diagrams of these
kinds of Hopf bifurcation, showing the qualitative changes in the
dynamics of its solutions for different values of the parameters.

1. Introduction

In this paper we study the local Hopf bifurcations of codimension one and two
and the kind of stability of the Hopf periodic orbits in the dynamics of the Shimizu-
Morioka system given by

(1) ẋ = y, ẏ = x− λy − xz, ż = −αz + x2,

where (x, y, z) ∈ R3 are the state variables, and α and λ are real parameters.
System (1) is a simplified model proposed in [18] for studying the dynamics of the
well known Lorenz system [9]. Later the system gained self-interest and several
articles have appeared in the literature, dealing mainly with the chaotic behavior
of the solutions and the emergence of strange attractor , see for instance [6, 17, 18,
20, 21, 22]. It was shown in [17] among other properties that system (1) presents
Lorenz-like strange attractors, for example taking α = 0.45 and λ = 0.75 (see
Figure 1 of [13]).

In this note we perform an analytic bifurcation analysis of dynamical aspects
of the solutions of system (1), when the parameters vary, aiming to give a con-
tribution to the understanding of its complex behavior. Our approach permits a
geometric synthesis of the bifurcation analysis, based on the algebraic expression

2010 Mathematics Subject Classification. Primary 34C35, 58F09; Secondary
34D30.

Key words and phrases. Hopf bifurcation, limit cycles, bifurcation diagram.
1

This is a preprint of: “The Hopf bifurcation in the Shimizu-Morioka system”, Jaume Llibre, Claudio
Pessoa, Nonlinear Dynam., vol. 79, 2197–2205, 2015.
DOI: [10.1007/s11071-014-1805-3]

10.1007/s11071-014-1805-3


2 JAUME LLIBRE AND CLAUDIO PESSOA

and geometric location of the codimension 2 Hopf point leading to the bifurcation
of periodic orbits.

The study presented here is close to those realized in some papers, which was
performed in [12] (see also [3]). But our approach is different, mainly in the com-
putations of the Lyapunov coefficients which are necessary to study the Hopf bi-
furcations. In [12] the authors study the system

ẋ = y − x, ẏ = βx− xz, ż = −χz + ηx2.

This system and system (1) are equivalent if β = λ = 1 and η > 0, taking α = χ
and doing the change of variables (x, y, z) 7→ (

√
η x,−√

η x +
√
η y, z) in system

(1), but when β 6= λ or η ≤ 0 these systems are not equivalent.
Our main result is the following one.

Theorem 1. The following statements hold for system (1):

(a) For α = 2−λ2

λ and λ ∈ (0,
√
2) system (1) has two non-hyperbolic singular

points Q− and Q+ and, if h(λ) = 3λ4 − 5λ2 − 1 6= 0, a one codimension
Hopf bifurcation take place at these points, permitting the existence of limit
cycles near them. These cycles on the central manifolds of Q− and Q+ are
unstable if h(λ) < 0 and stable if h(λ) > 0.

(b) For α = 2−λ2

λ with λ ∈ (0,
√
2) and h(λ) = 0 a two codimension Hopf

bifurcation take place at the points Q− and Q+, with the creation of two
limit cycles, one unstable and the other stable on the central manifolds of
Q− and Q+ .

The paper is organized as follows. In section 2 through a linear analysis of system
(1) we present a study of the bifurcations which occurs with its singular points. In
section 3 we describe a method to compute the focus quantities, related to the
stability of the limit cycles which appear in the Hopf bifurcations. In section 4 we
present a brief review of the theory used to study codimension one and two Hopf
bifurcations. These methods are used in Section 5 to prove statements (a) and (b)
of Theorem 1. For some extensions of the Hopf bifurcation see [1].

2. Analysis of the singular points

The statement (a) and (b) of the next proposition are not new, in fact they are
well know in the literature see for instance [13, 5].

Proposition 2. The following statements hold for system (1).

(a) For α < 0 the origin of system (1) is the unique hyperbolic singular point.
It is a saddle with a one-dimensional stable manifold and two-dimensional
unstable manifold;

(b) For α = 0 the z-axis of system (1) is filled of singular points. The origin
becomes a non-hyperbolic singular point and a degenerate pitchfork bifur-
cation occurs on it. More precisely, for α > 0 sufficiently small, this
line of singular points disappear, the origin becomes a hyperbolic saddle
with a two-dimensional stable manifold and an one-dimensional unstable
manifold and two new singular points Q− and Q+ are created, they are
symmetric with respect to the z-axis. These new equilibria are hyperbolic

and asymptotically stable if α > 2−λ2

λ and λ > 0. For either α = 2−λ2

λ and

λ ∈ (−∞,−
√
2) or α < 2−λ2

λ and λ ∈ (−∞,−
√
2) ∪ (0,

√
2), Q− and Q+

are unstable singular points.



THE HOPF BIFURCATION IN THE SHIMIZU-MORIOKA SYSTEM 3

Proof. For α < 0 the origin (0, 0, 0) is the unique singular point of system (1) and
the eigenvalues of its linear part are

(2) σ0 = −α, σ± =
−λ±

√
λ2 + 4

2
,

with eigenvectors given by v0 = (0, 0, 1), v± = (1, σ±, 0), respectively. As the
eigenvalues are all reals and α < 0, σ+σ− < 0, by the Invariant Manifold Theorem
and the Hartman Theorem (see for instance [7]), the origin is a hyperbolic saddle
with an one-dimensional stable manifold tangent to the line generated by v− and
a two-dimensional unstable manifold tangent to the plane generated by v0 and v+
for all λ. Note that for α < 0 the solutions in the invariant z-axis go away from the
origin.

If α = 0 the invariant z-axis is filled by singular points of system (1). Then the
origin is a non-isolated degenerate singular point. Moreover, the eigenvalues of the
linear part of system (1) at this point are 0 and σ±.

When the parameter α crosses the zero value the vector fields associated to
system (1) cross this degenerate situation transversally. On the other words, for
α > 0 the z-axis filled of singular points which exists for α = 0 disappears, and
system (1) has only the singular points

Q0 = (0, 0, 0), Q± = (±√
α, 0, 1).

The eigenvalues of the linear part of system (1) at Q0 are given in (2) and we have
σ0 < 0 and σ− < 0 and σ+ > 0. Therefore Q0 is a hyperbolic saddle with a two-
dimensional stable manifold and an one-dimensional unstable manifold for all λ.
Thus under the creation and subsequent elimination of the line of singular points
when α crosses the zero value, the origin Q0 of system (1) gains one dimension
in the stable manifold and loses one dimension in the unstable one, as stated in
statement (b) of the proposition.

Under the change of coordinates (x, y, z) 7→ (−x,−y, z), system (1) is invariant.
Hence the kind of stability of the singular point Q+ follows from the kind of stability
of Q−. The characteristic polynomial of the linear part of system (1) at Q− is

p(σ) = −σ3 − (α+ λ)σ2 − αλσ − 2α.

The rest of proof follows from the next proposition. �
Proposition 3. Consider α > 0. The singular point Q− is asymptotically stable

to system (1) if α > 2−λ2

λ and λ > 0, and unstable if either α = 2−λ2

λ and λ ∈
(−∞,−

√
2) or α < 2−λ2

λ and λ ∈ (−∞,−
√
2) ∪ (0,

√
2).

Proof. The proof follows easily from the Routh-Hurwitz stability criterion (see [14]
page 58). �

The next proposition is a straightforward consequence of the relations between
roots and coefficients of a polynomial in one variable.

Proposition 4. Consider α > 0. If α = 2−λ2

λ and λ ∈ (0,
√
2), then the linear

part of system (1) at the singular point Q− has one negative eigenvalue and two
conugated pure imaginary eigenvalues.

Following [12], the symmetric bifurcation which occurs when the parameter α
crosses the zero value is called degenerate pitchfork bifurcation, due to the line of
equilibria which exists for α = 0, and it has already been observed in other systems
which also present chaotic behavior (see for instance [16], page 4 and [12]).
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3. Center Theorem and focus quantities

In this section we summarize the method described in [4] (see also [10, 11])
for studing the center problem on a center manifold for vector fields in R3. Let
X : U → R3 be a real analytic vector field, such that DX(0) has two pure imagi-
nary eigenvalues and one non-zero. By a linear change of variables and a possible
rescaling of the time the system of differential equations u̇ = X(u) can be written
as

(3)

u̇ = −v + P (u, v, w) = P̃ (u, v, w),

v̇ = u+Q(u, v, w) = Q̃(u, v, w),

ẇ = βw +R(u, v, w) = R̃(u, v, w),

where β is a real non-zero number. We denote again by X this new vector field.
A non-constant C1 function H from a neighborhood of the origin of R3 into R

is a local first integral of system (3) if it is constant on the orbits of (3), i.e. H
satisfies

(4) XH = P̃
∂H

∂u
+ Q̃

∂H

∂v
+ R̃

∂H

∂w
≡ 0,

in a neighborhood of the origin. A non-constant formal power series H in u, v and
w is a formal first integral for system (3) if when P̃ , Q̃, and R̃ are expanded in
power series at the origin, every coefficient in the formal power series in (4) is zero.
If w and ẇ do not appear in system (3) the system is in R2, the singular point at the
origin is either a focus (every trajectory near the origin spirals towards the origin,
or every trajectory does so in reverse time) or a center (a punctured neighborhood
is composed entirely of periodic orbits). The problem of distinguishing between
these two cases is the center problem. It was solved by Poincaré and Lyapunov in
terms of the non-existence or existence of a local first integral. A proof is given in
[15].

From Theorem 5.1 page 152 of [7] we know that system (3) admits a local center
manifold W c

loc at the origin. The following theorem provides one the main tools for
detecting a center on a center manifold . See [4] for a proof.

Theorem 5. The following statements are equivalent.

(a) The origin is a center for X |W c
loc

.
(b) There is a local analytic first integral at the origin for system (3) of the

form H(u, v, w) = u2 + v2 + · · · (here the dots mean higher order terms).
(c) There is a formal first integral at the origin for system (3) of the form

H(u, v, w) = u2 + v2 + · · · .
The Lyapunov Center Theorem correspond to the equivalence of statements (a)

and (b); for a proof see also [2]. From this theorem we can restrict our attention
to investigate the conditions for the existence or non-existence of a first integral of
the form H(u, v, w) = u2 + v2 + · · · , which is equivalent to determine necessary
and sufficient conditions for the existence of a center or a focus on the local center
manifold, respectively.

In what follows we consider that P, Q and R in (3) are polynomials. We start
by introducing the complex variable x = u + iv. Therefore the first two equations
in (3) are equivalent to the unique equation ẋ = ix+ · · · . Adding to this equation
its complex conjugate, changing x̄ (where as usual x̄ denote the conjugate of x) by
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y, thinking in y as an independent complex variable, and substituting w by z, we
obtain the following complexification of system (3)

(5)

ẋ = ix+

n∑

p+q+r=2

apqrx
pyqzr,

ẏ = −iy +

n∑

p+q+r=2

bpqrx
pyqzr,

ż = βz +

n∑

p+q+r=2

cpqrx
pyqzr,

where bqpr = āpqr and the cpqr are such that
∑n

p+q+r=2 cpqrx
px̄qwr is real for all

x ∈ C and w ∈ R. Again we denote by X the new vector field associated to system
(5) on C3. Now the existence of a first integral H(u, v, w) = u2 + v2 + · · · for a
system (3) is equivalent to the existence of a first integral of the form

(6) H(x, y, z) = xy +
∑

j+k+l=3

vjklx
jykzl

for system (5).
By computing the coefficients of XH and equating them to zero we investigate

the existence of a first integral H for a system (5) . When H has the form (6) we
can calculated explicitly the coefficient gk1k2k3 of xk1yk2zk3 in XH (see [4]). But
when (k1, k2, k3) = (k, k, 0) for a positive integer k, we can solved in a unique way
for vk1k2k3 the equation gk1k2k3 = 0 in terms of the known quantities vαβγ such
that α+β+λ < k1 + k2+ k3. Hence if gkk0 = 0 for all k ∈ N a formal first integral
H exists. When the coefficient gkk0 is non-zero an obstruction to the existence of
the formal series H occurs. Such a coefficient is called the kth focus quantity.

The focus quantities g110 = 0 and g220 are determined in a unique way, but the
others depend on the choices made for vkk0, k ∈ N, k ≥ 2. Once such computations
are made, H is determined and satisfies

XH(x, y, z) = g220(xy)
2 + g330(xy)

3 + · · · .
It follows that if for one choice of the vkk0 at least one focus quantity is non-zero, the
same is true for every other choice of the vkk0. A sufficient and necessary condition
for the existence of a center on the center manifold is to vanish all focus quantities,
otherwise we have a focus (see [4]).

In rest of this work we denote the kth focus quantity gkk0 by νk.

4. Hopf bifurcation method

Let (θ, ρ) be polar coordinates on the local center manifold W c
loc, such that ρ = 0

corresponds to the origin in cartesian coordinates. Consider system (3) restricted
to its local center manifold and let Π(ρ) the respective Poincaré first return map
on a sufficiently short segment of the axis θ = 0 starting at ρ = 0. By the kth
Lyapunov coefficient we mean the coefficient lk in the expansion of displacement
map Π(ρ)− ρ, i.e.

Π(ρ)− ρ = l1ρ+ l2ρ
2 + · · · .

It follows by the proof of Theorem 6.2.3 of the page 261 of [15] that

(7) l1 = c1ν1 and lk |l1=···=lk−1=0 = ckνk |ν1=···=νk−1=0,
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where c1, . . . , ck are positive constants.
A method to compute the Lyapunov coefficients can be found in the pages 177–

181 of [7] or in [8, 12].
A singular point (x0, µ0) of a µ-parameter family of vector fields X(x, µ) in

R3 is called a Hopf point if the Jacobian matrix DX(x0, µ0) has a real eigenvalue
λ1 6= 0 and a pair of purely imaginary eigenvalues λ2,3 = ±iω0. There is a two-
dimensional center manifold at a Hopf point and it is invariant by the flow of the
system ẋ = X(x, µ), see page 152 of [7]. If varying the parameters the complex
eigenvalues cross the imaginary axis with non-zero derivative, the Hopf point is

called transversal, i.e. if µ is one-dimensional parameter then
dξ

dµ
(µ0) 6= 0 (where

ξ(µ)± iω(µ) are the conjugated complex eigenvalues of the linear part of X(x, µ) at
singular point xµ when |µ−µ0| is enough small). At a neighborhood of transversal
Hopf point with l1(µ0) 6= 0 the system ẋ = X(x, µ) restricted to a center manifold,
is orbitally topologically equivalent to the following complex normal form

ẇ = (ξ + iω)w + σw|w|2 ,
where w ∈ C, σ = sign l1(µ0) = ±1, l1(µ0) the first Lyapunov coefficient at the
Hopf point, and ξ, ω are real functions having derivatives of arbitrary higher order,
which are continuations of 0 and ω0, see page 98 of [7]. There is one family of stable
(unstable) periodic orbits if l1 < 0 (l1 > 0) on the space of phases variables and
parameters shrinking to a singular Hopf point.

A Hopf point of codimension 2 is a Hopf point where l1(µ0) = 0 and l2(µ0) 6= 0.
It is called transversal if the manifolds ξ(µ) = 0 (ξ(µ) is the real part of the
conjugated complex eigenvalues) and l1(µ) have transversal intersections, i.e. the
map µ 7→ (ξ(µ), l1(µ)) is regular at µ0. The system ẋ = X(x, µ) restricted to a
center manifold at a neighborhood of a transversal Hopf point of codimension 2 is
orbitally topologically equivalent to

(8) ẇ = (ξ + iω0)w + τw|w|2 + σw|w|4 ,
where ξ and τ are the unfolding parameters and σ = sign l2(µ0) = ±1, see page
311 of [7]. The bifurcation diagram of system (8) on the space of parameters (ξ, τ)
for σ = 1 is showed in Figure 1. Where the lines H±

1 = {±τ > 0} correspond to
the Hopf bifurcation of codimension one with negative and with positive Lyapunov
coefficient, respectively. Along these lines the singular point has eigenvalues λ1,2 =
±ω0i. Moreover the singular point is stable for ξ < 0 and unstable for ξ > 0. The
first Lyapunov coefficient is l1(ξ, τ) = τ . Therefore the point of the Hopf bifurcation
of codimension two H2 occurs when ξ = τ = 0 and separates the two branches, H−

1

and H+
1 of τ -axis. An unstable limit cycle bifurcates from the singular point if we

cross H+
1 from right to left, while a stable limit cycle appears if we cross H−

1 in the
opposite direction. These limit cycles collide and disappear on the curve

T = {(ξ, τ) : 4ξ − τ2 = 0},
corresponding to a nondegenerate fold bifurcation of the cycles. Along this curve
the system has a semistable limit cycle of multiplicity one, see page 311 of [7].

The bifurcation diagrams for σ = −1 can be found in [7], page 313, and in [19] .
From (7) the Hopf method described above can be applied changing the Lya-

punov coefficients by the focus quantities. Thus in rest of this paper we shall use
the focus quantities in place of the Lyapunov coefficients to study Hopf bifurcations
of codimension one and two.
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H2 ξ

τ

H+
1

H−
1

T

Figure 1. Diagram at the point H2 of a two codimen-
sion Hopf bifurcation.

5. Hopf bifuraction in the Shimizu-Morioka system

In this section we study the stability of the singular point Q− of system (1)

under the conditions α = 2−λ2

λ and λ ∈ (0,
√
2) given in Preposition 4, i.e. on the

Hopf axis correspondent to the τ -axis of Figure 1. We prove the following theorem.

Theorem 6. Consider the two-parameter family of differential equations (1). The

first focus quantity at the point Q− for parameter values satisfying α =
2− λ2

λ
and

λ ∈ (0,
√
2) is given by

ν1(λ) =
λ
√
2− λ2

(
3λ4 − 5λ2 − 1

)

4 (λ4 − 2λ2 − 4) (λ4 − 2λ2 − 1)
.

For λ ∈ (0,
√
2) such that h(λ) = 3λ4 − 5λ2 − 1 is different from zero, system (1)

has a transversal Hopf point at Q− for α =
2− λ2

λ
.

Now for the parameter values λc =

√
5 +

√
37

6
and α =

7−
√
37√

6(5 + 37)
system

(1) has a transversal Hopf point of codimension 2 at Q− which is unstable because
ν2 > 0.

Proof. For simplify the computations, we introduce the new parameters (β, ε) by

λ =
−ε
(
β2 + ε2 + 2

)
+
√
(−β2 − ε2 + 2) (β4 + (β2 + 2) ε2)

β2 + ε2
,

α = −ε−
√
(−β2 − ε2 + 2) (β4 + (β2 + 2) ε2)

β2 + ε2 − 2
.
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The Jacobian determinant of this change of parameters in the point (0, β) is

−2β5
(
β4 − 2β2 − 4

)

(−β4 (β2 − 2))
3/2

.

Thus the change of parameters is well defined for (ε, β) ∈ (−δ, δ) × (0,
√
2), with

δ enough small. In this new parameters the linear part of system (1) at the sin-
gular point Q− has a real eigenvalue and two conjugated complex given by ε± iβ.

Furthermore the conditions α = 2−λ2

λ and λ ∈ (0,
√
2) correspond to ε = 0 and

β ∈ (0,
√
2). Hence, in this case, we have

(9) α =
β2

√
2− β2

and λ =
√
2− β2

in system (1). Now, doing the change of coordinates (x, y, z) 7→ (x̃−√
α, ỹ, z̃ + 1),

the singular point Q− is translated to the origin (0, 0, 0). Now we shall write the
linear part of system in the coordinates (x̃, ỹ, z̃) at the origin in its real Jordan
normal form. For this we introduce the variables (u, v, w) by




x̃
ỹ
z̃


 =




− β

2 4
√
2− β2

1

2
4
√
2− β2 2

(
2− β2

)5/4

1
2β

4
√
2− β2 β2

2 4
√

2−β2
−4
(
2− β2

)3/4

1 0 4β
√
2− β2







u
v
w


 ,

and so system (1) becomes

u̇ = −v − β
√

2− β2
(
6 + β2

)
u2

−16− 8 β2 + 4 β4
−
(
−8 + 2 β2 + β4

)
vu

−8− 4 β2 + 2 β4

+
2
(
−2 + β2

) (
−8 + 4 β2 + β4

)
wu

−4− 2 β2 + β4
+

√
2− β2

(
−4 + β4

)
v2

β(−16− 8 β2 + 4 β4
)

−2
√
2− β2

(
8− 8 β2 + β6

)
wv

β(−4− 2 β2 + β4)
+

4
(
2− β2

)5/2 (−4 + 4 β2 + β4
)
w2

β(−4− 2 β2 + β4)
,

v̇ = u+

(
8 + β4

)
u2

16 + 8 β2 − 4 β4
+

√
2− β2

(
4 + β4

)
vu

β(−8− 4 β2 + 2 β4)

−2
√
2− β2

(
−8 + 8 β2 − 2 β4 + β6

)
wu

β(−4− 2 β2 + β4)
+

β2
(
−2 + β2

)
v2

4(−4− 2 β2 + β4)

−2
(
−8 + 8 β2 − 4 β4 + β6

)
vw

−4− 2 β2 + β4
+

4
(
−2 + β2

)2 (
8− 2 β2 + β4

)
w2

−4− 2 β2 + β4
,

ẇ = − 2w

β
√
2− β2

+

(
−4 + 3 β2

)
u2

64− 32 β4 + 8 β6
+

(
−1 + β2

)
vu

2β
√
2− β2 (−4− 2 β2 + β4)

+

(
−4 + 8 β2 − 3 β4

)
wu

β
√
2− β2 (−4− 2 β2 + β4)

− 6
(
−2 + β2

)2
w2

−4− 2 β2 + β4

+
v2

32 + 16 β2 − 8 β4
+

2
(
−2 + β2

)
vw

−4− 2 β2 + β4
.
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Note that the above system is in the form (3). Now we apply the method described
in section 3.

Firstly we introduce the change of variables (u, v, w) 7→ (x, y, z) = (u + iv, u −
iv, w) with inverse given by (x, y, z) 7→ (u, v, w) =

(
1

2
(x+ y),− i

2
(x− y), z

)
.

Hence we obtain system (1) in the complex form (5). Aigain denote by X the
vector field associated to this last system in complex form and let H be given by
(6). We have that

XH(x, y, z) =
∑

m≥2

Hm(x, y, z),

where, Hm are homogeneous polynomials of degree m in the variables (x, y, z). It is
easy to see that H2 ≡ 0. Denoting the coefficients of Hm by gjkl with j+k+ l = m,
we can solve easily the equations gjkl = 0 with j + k + l = 3 in terms of the
coefficients ναβγ of H such that α+ β + γ ≤ 3. For instance the equation g003 = 0
is given by

− 6ν003

β
√
2− β2

= 0,

which solution in terms of the coefficients of H is ν003 = 0. Analogously, we can
solve the equations gjkl = 0 with j + k + l = 4 in terms of the coefficients ναβγ of
H with α + β + γ ≤ 4, except the equation g220 = 0, because this equation does
not depend on the coefficients of H , only on the coefficients of X . Hence we have
that the first focus quantity is g220 = ν1 given by

(10) ν1 =

√
2− β2

(
3β4 − 7β2 + 1

)
β

4 (β4 − 2β2 − 4) (β4 − 2β2 − 1)
.

Following the above ideas we obtain the second focus quantity g330 = ν2, i.e.

ν2 = (
√
2− β2

(
−162β22 + 2268β20 − 14289β18 + 47071β16 − 80155β14

+63495β12 − 20967β10 + 16999β8 − 23136β6 + 9300β4 + 9760β2

−80))/(96β
(
β4 − 2β2 − 4

)3 (
β4 − 2β2 − 1

)2 (
9β2

(
β2 − 2

)
− 4
)
).

Note that the polynomial β4 − 2β2 − 4 has only two real roots, ±
√
1 +

√
5,

and so it has negative sign in (−
√
1 +

√
5,
√
1 +

√
5). Now the polynomial β4 −

2β2 − 1, also has only two real roots, ±
√
1 +

√
2, and so it has negative sign in

(−
√
1 +

√
2,
√
1 +

√
2). Therefore the sign of the first focus quantity is determined

by the sign of h(β) = 3β4 − 7β2 + 1, since we are considering β ∈ (0,
√
2) and so

the denominator of (10) is positive. Observe that, for β ∈ (0,
√
2), the first focus

quantity vanishes on βc =

√
1

6

(
7−

√
37
)
and the second is deferent from zero, i.e.

ν1(βc) = 0 and ν2(βc) =

√
274249

√
37− 591726

15568
. Moreover ν1 > 0 for β ∈ (0, βc)

and ν1 < 0 for β ∈ (βc,
√
2).

Clearly, in the plane of parameters (ε, β), we have a transversal Hopf point in

Q− for ε = 0 and β ∈ (0,
√
2) \ {βc}. Now as the map (ε, β) 7→ (ε, ν1(β)) is regular

in (0, βc), since

dν1
dβ

(βc) = −

√
37
(
14066

√
37− 84205

)

1946
,
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it follows that we have a transversal Hopf point of codimension 2 in Q− for ε = 0
and β = βc.

In the parameter λ, by (9), the function h becomes h(λ) = 3λ4 − 5λ2 − 1 6= 0,

ν1(λ) =
λ
√
2− λ2

(
3λ4 − 5λ2 − 1

)

4 (λ4 − 2λ2 − 4) (λ4 − 2λ2 − 1)

and ν1(λ) is zero in the (0,
√
2) only for the value λc =

√
5 +

√
37

6
. Moreover in

this point, by (9), α =
7−

√
37√

6(5 + 37)
. �

The same results stated in Theorem 1 are valid also for the point Q+, due to the
symmetry of the system under the change (x, y, z) 7→ (−x,−y, z). The statements
(a) and (b) of Theorem 1 follow from the above results.

The bifurcation diagram on the space of parameters (λ, α) of system (1) on the

neighborhood of the two codimension Hopf point H2 =

(√
5 +

√
37

6
,

7−
√
37√

6(5 + 37)

)

is described in Figure 2, where by section 4 the curves H±
1 and T correspond

respectively with the curves of Figure 1. Note that

H−
1 ∪H2 ∪H+

1 =

{
(λ, α) : α =

2− λ2

λ
, λ ∈ (0,

√
2)

}
.

O
√
2

H2

√
5+

√
37

6

H+
1

H−
1

T

α

λ

Figure 2. Diagram at the point H2 of the two codimen-
sion Hopf bifurcation of system (1).
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