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Abstract

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa-
Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-to-peak
amplitude”). Our main result establishes monotonicity properties of the map a 7−→ λ(a), i.e., the wave
length as a function of the wave height. We obtain the explicit bifurcation values, in terms of the parameters
associated to the equation, which distinguish between the two possible qualitative behaviours of λ(a), namely
monotonicity and unimodality. The key point is to relate λ(a) to the period function of a planar differential
system with a quadratic-like first integral, and to apply a criterion which bounds the number of critical
periods for this type of systems.
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1. Introduction and main result

The Camassa-Holm (CH) equation

ut + 2κux − utxx + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1)

arises as a shallow water approximation of the Euler equations for inviscid, incompressible and homogenous
fluids propagating over a flat bottom, where u(x, t) describes the horizontal velocity component and κ ∈ R
is a parameter related to the critical shallow water speed. This equation was first derived by Fokas and
Fuchssteiner [18] as an abstract bi-Hamiltonian equation with infinitely many conservation laws, and later re-
derived by Camassa and Holm [4] from physical principles. For a discussion on the relevance and applicability
of the CH equation in the context of water waves we refer the reader to Johnson [26, 27, 28] and more recently
Constantin and Lannes [12]. We point out that for a large class of initial conditions the CH equation is an
integrable infinite-dimensional Hamiltonian system [1, 7, 11, 13, 14, 27], and it is known that the solitary
waves of CH are solitons which are orbitally stable [14, 17]. Some classical solutions of the CH equation
develop singularities in finite time in the form of wave breaking: the solution remains bounded but its slope
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Figure 1: Smooth periodic TWS ϕ of CH with wave length λ and wave height a.

becomes unbounded [5, 8, 9, 10, 16, 30, 32]. After blow-up the solutions can be recovered in the sense of
global weak solutions, see [2, 3] and also [24, 23].

In the present paper, we consider traveling wave solutions of the form

u(x, t) = ϕ(x− c t), (2)

for c ∈ R and some function ϕ : R→ R. We denote s = x−ct the independent variable in the moving frame.
Inserting the Ansatz (2) into equation (1) and integrating once we obtain the corresponding equation for
traveling waves,

ϕ′′(ϕ− c) +
(ϕ′)2

2
+ r + (c− 2κ)ϕ− 3

2
ϕ2 = 0, (3)

where r ∈ R is a constant of integration and the prime denotes derivation with respect to s. A solution ϕ
of (3) is called a traveling wave solution (TWS) of the Camassa-Holm equation (1). Lenells [29] provides a
complete classification of all (weak) traveling wave solutions of the Camassa-Holm equation. In the present
paper, we focus on smooth periodic TWS of the Camassa-Holm equation, which can be shown to have a
unique maximum and minimum per period, see [29]. In the context of fluid dynamics the period of such
a solution is called wave length, which we will denote by λ. The difference between the maximum (wave
crest) and the minimum (wave trough) is called wave height, see Figure 1, which we will denote by a (in
some contexts this quantity is also called “peak-to-peak amplitude”).

The aim of this paper is to study the dependence of the wave length λ of smooth periodic TWS of
the Camassa-Holm equation (1) on their wave height a. Our main result shows that λ(a) is a well-defined
function and that it is either monotonous or unimodal. More precisely:

Theorem A. Given c, κ with c 6= −κ, there exist real numbers r1 < rb1 < rb2 < r2 such that the differential
equation (1) has smooth periodic TWS of the form (2) if, and only if, the integration constant r in (3)
belongs to the interval (r1, r2). For such r ∈ (r1, r2), the set of smooth periodic TWS form a continous
family {ϕa}a∈(0,aM ) parametrized by the wave height a. Furthermore, the wave length λ = λ(a) of ϕa
satisfies the following:

(a) If r ∈ (r1, rb1 ], then λ(a) is monotonous increasing.

(b) If r ∈ (rb1 , rb2), then λ(a) has a unique critical point which is a maximum.

(c) If r ∈ [rb2 , r2), then λ(a) is monotonous decreasing.

Finally, these are the only possible scenarios for smooth periodic TWS of the CH equation.
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We point out, see Proposition 2.1, that if c = −κ then there are no smooth periodic TWS of the form (2).
The exact values of the bifurcation parameters r1, rb1 , rb2 and r2 in terms of c and κ can be found in the
proof of Theorem A at the end of Section 2. In this regard, we remark that the expressions r1, rb1 and r2

also appear in [29, p. 402], but they serve as bifurcation values for a different type of property: they define
the boundaries of parameter regions where the various types of weak TWS (smooth, peaked or cusped
waves, . . . ) can occur. It should also be observed that a description on how the wave length of TWS of CH
depends on parameters may be found in the last section of [29], where level sets of TWS with the same wave
length are described. Furthermore, it is shown that there exist peakons and cuspons with arbitrarily small
wave length. In contrast, we will show that for smooth periodic TWS the wave length cannot be arbitrarily
small, see Remark 3.10.

The paper is organized as follows. In Section 2 we establish a correspondence between smooth periodic
TWS of (1) and periodic orbits around the center of a planar differential system with a quadratic-like first
integral, see Proposition 2.1. We observe that the wave length of a smooth periodic solution of (3) is equal
to the period of the corresponding periodic orbit. Moreover, there exists an analytic diffeomorphism which
relates the wave height of a solution of (3) to the energy level of the first integral at the corresponding
periodic orbit of the planar system, see Lemma 2.3. In Theorem 2.5, we state the monotonicity properties
of the period function of the center of this planar system, which imply Theorem A. The proof of Theorem 2.5
is carried out in Section 3. It relies on a result proved in [20], which provides a criterion to bound the number
of critical periods for this kind of systems.

2. Smooth periodic TWS of the Camassa-Holm equation

TWS of the form (2) of the Camassa-Holm equation (1) correspond to solutions of the equation (3). The
next result establishes a correspondence between the smooth periodic solutions of (3) and periodic orbits
around the center of an associated planar system. Moreover, it provides a necessary and sufficient condition
for the existence of such a center. To this end, recall that the largest punctured neighbourhood of a center
which consists entirely of periodic orbits is called period annulus, see [6].

Proposition 2.1. The following holds:

(a) ϕ is a smooth periodic solution of equation (3) if, and only if, (w, v) = (ϕ− c, ϕ′) is a periodic orbit of
the planar differential system 




w′ = v,

v′ = −F
′(w) + 1

2 v
2

w
,

(4)

where
F (w) := αw + βw2 − 1

2w
3, with α := r − 2κc− 1

2c
2 and β := −(c+ κ). (5)

(b) The function Ĥ(w, v) := 1
2wv

2 + F (w) is a first integral of the differential system (4).

(c) Every periodic orbit of system (4) belongs to the period annulus P of a center, which exists if, and only
if, −2β2 < 3α < 0 is verified.

Proof. The assertion in (b) is straightforward. In order to prove (a) we first note that (3) can be written
as ϕ′′(ϕ − c) + 1

2 (ϕ′)2 + F ′(ϕ − c) = 0, where F is defined in (5). Accordingly, ϕ is a solution of (3) with
ϕ(s) 6= c for all s if, and only if, s 7−→ (w, v) =

(
ϕ − c, ϕ′

)
(s) is a solution of the differential system (4).

We claim that ϕ(s) 6= c for all s ∈ R in case that ϕ is smooth and periodic, i.e. ϕ(s + T ) = ϕ(s) for some
T > 0. Clearly, (a) will follow once we show the claim. With this aim in view note that if ϕ is a smooth

3



(a) (b)

F
F

w w

Figure 2: Sketch of the graph of F : (a) when α > 0, (b) when α < 0 and β > 0.

periodic solution of (3) then the set C :=
{

(w, v) =
(
ϕ − c, ϕ′

)
(s); s ∈ R

}
describes a smooth loop. We

will show that C cannot intersect {w = 0}. We can rule out that ϕ ≡ c because a constant function is not
periodic. Hence suppose that there exist s0 and s1 such that ϕ(s) 6= c for all s ∈ (s0, s1) and ϕ(s1) = c.
Then, for s ∈ (s0, s1), (w, v) =

(
ϕ − c, ϕ′

)
(s) is a solution of the differential system (4) that tends to the

point p1 :=
(
0, ϕ′(s1)

)
as s −→ s1. Since Ĥ(p1) = 0 and by the continuity of Ĥ, it turns out that C is

inside the zero level set of Ĥ. An easy computation shows that Ĥ(w, v) = 0 if, and only if, w = 0 or
(w − β)2 − v2 = β2 + 2α. The second equality describes a hyperbola which intersects {w = 0} if, and only
if, α 6 0. In any case it is not possible that {Ĥ = 0} contains a smooth loop. So the claim is true and (a)
follows.

In order to show (c) recall that the differential system (4) has a first integral, and consequently there
are no limit cycles and the periodic orbits form period annuli. A periodic orbit must surround at least one
critical point of the differential system, which are of the form (w, v) = (ŵ, 0) with ŵ 6= 0 and F ′(ŵ) = 0.

The determinant of the Jacobian of the vector field at such a point is det J(ŵ,0) = F ′′(ŵ)
ŵ . A straightforward

computation shows that F ′(w) = 0 if, and only if, w =
2β±
√

4β2+6α

3 . If α > 0, then F has a minimum on
w < 0 and a maximum on w > 0 (see Figure 2), which both correspond to saddle points of system (4).
Thus, by applying the Poincaré-Bendixon Theorem (see for instance [33]), no periodic orbit is possible in
case that α > 0. Similarly, if α = 0 and β 6= 0, then there is only one critical point, which is a saddle,
whereas if α = 0 and β = 0, then there are no critical points. Hence there are no periodic orbits in case
that α = 0. Finally let us discuss the case α < 0. If α < 0 and 2β2 + 3α < 0, then there are no critical
points, which prevents the differential system from having periodic orbits. If α < 0 and 2β2 + 3α = 0, then
there exits a unique critical point which is a cusp, and can not be surrounded by a periodic orbit. If α < 0
and 2β2 + 3α > 0 then, see Figure 2, F has its two local extrema, which are located on w < 0 in case that
β < 0, and on w > 0 in case that β > 0. In both cases one extremum yields a saddle and the other a center
of system (4). By applying the Poincaré-Bendixon Theorem one can easily conclude that the set of periodic
orbits forms a punctured neighbourhood of the center, and that no other period annulus is possible. This
proves (c).

It is now necessary to introduce some notation.

Definition 2.2. Let ϕ be a smooth periodic solution of the differential equation (3). We denote by aϕ its
wave height. By Proposition 2.1, (w, v) = (ϕ − c, ϕ′) is a periodic orbit inside the period annulus P of
the differential system (4), which we denote by γϕ. Since Ĥ is a first integral of system (4), the orbit γϕ
is inside some level curve of Ĥ, and we denote its energy level by hϕ. In addition, let the center of (4) be
inside the level curve {Ĥ = h0} and suppose that Ĥ(P) = (h0, h1). Then hϕ ∈ (h0, h1). �
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The following result establishes a relation between the wave height of a smooth periodic solution of (3)
and the energy level of the corresponding periodic orbit of (4).

Lemma 2.3. Suppose that the set {ϕ} of smooth periodic solutions of (3) is nonempty. With the notation
introduced in Definition 2.2, the following holds:

(a) The period of the periodic orbit γϕ is equal to the wave length of ϕ.

(b) There exists an analytic diffeomorphism ` : (h0, h1) −→ (0, aM ) verifying that `(hϕ) = aϕ for all ϕ. In
addition, ` can be analytically extended to h = h0 by setting `(h0) = 0.

Proof. The assertion in (a) is clear. The key point to prove (b) is that the length of the projection of the
periodic orbit γϕ on the w-axis is aϕ. In order to compute it let us fix that the center of the differential
system (4) is at the point (wc, 0). Let (w`, wr) be the projection of its period annulus P on the w-axis. Thus
w` < wc < wr and F ′(w) 6= 0 for all w ∈ (w`, wr) \ {wc}, whereas F ′(wc) = 0 and F ′′(wc) 6= 0. Then there
exits an analytic diffeomorphism G on (w`, wr) such that F (w) = h0 + G(w)2, where h0 = F (wc). Recall
that, by definition, the periodic orbit γϕ is inside the energy level {Ĥ = hϕ}. Since Ĥ(w, 0) = h if and
only if h0 +G(w)2 = h, we have that γϕ intersects the w-axis at the points p±(ϕ) =

(
G−1(±

√
hϕ − h0 ), 0

)
.

Hence the length of its projection on the w-axis is aϕ = `(hϕ) := G−1(
√
hϕ − h0 ) − G−1(−

√
hϕ − h0 ).

A straightforward argument shows that ` is an analytic diffeomorphism on (h0, h1) and that it can be
analytically extended to h = h0 setting `(h0) = 0. This shows (b) and completes the proof.

Remark 2.4. It is clear that the energy levels of Ĥ parameterize the set of periodic orbits inside P.
Thus, the set of periodic orbits of (4) forms a continuous family {γh}h∈(h0,h1). Consequently, and thanks
to Proposition 2.1 and Lemma 2.3, we can assert that the set of smooth periodic solutions of (3) forms
a continuous family {ϕa}a∈(0,aM ) parameterized by their wave height. We can thus consider the function
λ : (0, aM ) −→ R+ which assigns to each a ∈ (0, aM ) the wave length of the unique smooth periodic solution
of (3) with wave height a. Theorem A is concerned precisely with the qualitative properties of this function.
We stress that a priori it is defined on the set of smooth periodic solutions of (3) rather than on the interval
(0, aM ). On account of Lemma 2.3, the wave length λ(a) is equal to the period of the periodic orbit of (4)
inside the level curve {Ĥ = `−1(a)}. This is the key point in proving Theorem A, as it allows us to deduce
qualitative properties of the function λ from those of the period function of the center of (4). �

The following technical result, which will be proved in Section 3, provides a detailed account on the
monotonicity properties of the period function of the center at the origin of the differential system (4).

Theorem 2.5. Consider system (4) with −2β2 < 3α < 0 and define ϑ := 1
6

(
2|β|√

4β2+6α
− 1

)
. Then ϑ > 0

and the period function of the center of system (4) verifies the following:

(a) It is monotonous decreasing in case that ϑ ∈
(
0,− 1

10 + 1
15

√
6
]
.

(b) It has a unique critical period, which is a maximum, in case that ϑ ∈
(
− 1

10 + 1
15

√
6, 1

6

)
.

(c) It is monotonous increasing in case that ϑ > 1
6 .

We are now in position to prove the main result of the paper.

Proof of Theorem A. Consider the differential equation (3) and define α = r−2κc− 1
2c

2 and β = −(c+κ).
It follows from Proposition 2.1 that the Camassa-Holm equation (1) has smooth periodic TWS if, and only

5



if, −2β2 < 3α < 0. It is easy to see that in terms of the “intrinsic” parameters κ and c, these conditions are
equivalent to requiring that the integration constant r belongs to the interval (r1, r2), where r1 := − 2

3 (κ− 1
2c)

2

and r2 := 2κc+ 1
2c

2. Remark 2.4 elucidates the fact that for such r, the set of smooth periodic TWS forms a
continuous family {ϕa}a∈(0,aM ) parameterized by the wave height as a consequence of Lemma 2.3. Moreover,
the wave length λ(a) of the smooth periodic TWS ϕa is equal to the period of the periodic orbit of (4)
inside the energy level {Ĥ = `−1(a)}. Hence, by applying Theorem 2.5, the result will follow once we write
the conditions ϑ ∈

(
0,− 1

10 + 1
15

√
6
]
, ϑ ∈

(
− 1

10 + 1
15

√
6, 1

6

)
and ϑ > 1

6 in terms of κ, c and r. Taking the

relation ϑ = 1
6

(
2|β|√

4β2+6α
− 1

)
into account and setting

rb1 := κc− 1

2
κ2 and rb2 :=

√
6− 3

6

(
(
√

6 + 1)κ2 − 2(
√

6− 5)κc− 2c2
)
,

some computations show that these conditions are given, respectively, by r ∈ [rb2 , r2), r ∈ (rb1 , rb2) and
r ∈ (r1, rb1). This proves the result.

3. Study of the period function

This Section is devoted to the proof of Theorem 2.5, which strongly relies on the tools developed in [20].
In order to explain how they can be applied to our problem, some definitions need to be introduced. In the
aforementioned paper the authors consider analytic planar differential systems

{
ẋ = p(x, y),

ẏ = q(x, y),
(6)

satisfying the following hypothesis:

(H)
The differential system (6) has a center at the origin and an analytic first integral
of the form H(x, y) = A(x) + B(x)y + C(x)y2 with A(0) = 0. Moreover its
integrating factor, say K, depends only on x.

Let (x`, xr) be the projection onto the x-axis of the period annulus P around the center at the origin of
the differential system (6). Note that x` < 0 < xr. Then, by Lemma 3.1 in [20], the hypothesis (H) implies
that M := 4AC−B2

4|C| is a well defined analytic function on (x`, xr) with M(0) = 0 and xM ′(x) > 0 for all
x ∈ (x`, xr) \ {0}. Accordingly, there exists a unique analytic function σ on (x`, xr) with σ(x) = −x+ o(x)
such that M ◦ σ = M. Note that σ is an involution with σ(0) = 0. (Recall that a mapping σ is said to be
an involution if σ ◦ σ = Id.) Given an analytic function f on (x`, xr) \ {0} we define its σ-balance to be

Bσ

(
f
)
(x) :=

f(x)− f
(
σ(x)

)

2
.

Taking these definitions into account, the statement (b) of Theorem A in [20] asserts the following:

Proposition 3.1. Suppose that the analytic differential system (6) satisfies the hypothesis (H). Setting
µ0 = −1, define recursively

µi :=

(
1

2
+

1

2i− 3

)
µi−1 +

√
|C|M

(2i− 3)K

(
Kµi−1√
|C|M ′

)′
and `i :=

Kµi√
|C|M ′

for i > 1.

If the number of zeros of Bσ(`i) on (0, xr), counted with multiplicities, is n > 0 and it holds that i > n,
then the number of critical periods of the center at the origin, counted with multiplicities, is at most n.
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In particular, we point out that the period function is monotonous if n = 0. A key ingredient for
determining the number of zeros of Bσ

(
li
)
is the following result, see [20, Theorem B]. In its statement,

and in what follows, Res stands for the multipolynomial resultant (see for instance [15, 19]).

Proposition 3.2. Let σ be an analytic involution on (x`, xr) with σ(0) = 0 and let ` be an analytic function
on (x`, xr)\{0}. Assume that ` and σ are algebraic, i.e., that there exist L, S ∈ C[x, y] such that L

(
x, `(x)

)
≡

0 and S
(
x, σ(x)

)
≡ 0. Let us define T (x, y) := Resz

(
L(x, z), L(y, z)

)
and R(x) := Resy

(
S(x, y), T (x, y)

)
.

Finally let s(x) and t(x) be, respectively, the leading coefficients of S(x, y) and T (x, y) with respect to y.
Then the following hold:

(a) If Bσ

(
`
)
(x0) = 0 for some x0 ∈ (x`, xr) \ {0}, then R(x0) = 0.

(b) If s(x) and t(x) do not vanish simultaneously at x0, then the multiplicity of Bσ

(
`
)
at x0 is not greater

than the multiplicity of R at x0.

In order to apply these results we move the center of differential system (4) to the origin. In passing we
notice that the problem is essentially one-parametric. Since its proof is a straightforward computation, we
do not include it here for the sake of brevity.

Lemma 3.3. Consider system (4) with α and β verifying −2β2 < 3α < 0 and let us say that the center is
at a point (wc, 0). Then the coordinate transformation given by

{
x = w−wc

2β
√

∆
, y = v

2β
√

∆

}
, where ∆:= 4+ 6α

β2 ,
brings system (4) to 




x′ = y,

y′ = −x− 3x2 + y2

2(x+ ϑ)
,

(7)

where ϑ := 1
6

(
2√
∆
− 1
)
is positive.

The planar differential system (7) is analytic away from the singular line x = −ϑ. One can easily verify
that it satisfies the hypothesis (H) with A(x) = 1

2x
2 − x3, B(x) = 0, C(x) = x + ϑ and K(x) = 2(x + ϑ).

The function A has a minimum at x = 0 and a maximum at x = 1
3 , which yield a center at (0, 0) and a

saddle at ( 1
3 , 0), respectively. When ϑ > 1

6 , in which case A(−ϑ) > A( 1
3 ), the singular line is “far away”

from P, and the period annulus is bounded by the homoclinic connection based in the saddle point. When
ϑ < 1

6 the situation is quite different because the outer boundary of P consists of a trajectory with α and
ω limit in the straight line {x = −ϑ} and the segment between these two limit points, see Figure 3. For this
reason, we will study the period function of the center of system (7) separately for ϑ < 1/6 and ϑ > 1/6.

Observe that if B = 0, then the hypothesis (H) implies that the involution σ is defined by A = A ◦ σ.
This is the case in the differential system under consideration, and one can easily verify that

A(x)−A(z) = 2(z − x)S(x, z), where S(x, z) := 2x2 + 2xz + 2z2 − x− z. (8)

Thus, we get σ(x) = 1
4 (1 − 2x −

√
(6x+ 1)(1− 2x). As a matter of fact, thanks to Proposition 3.2, the

explicit expression of the involution is not required and we shall only use that S
(
x, σ(x)

)
= 0.

The following auxiliary result will be needed at various points throughout this Section. The proof is a
straightforward computation of the first three coefficients in the Taylor expansion of the period function
using standard techniques (see for example [21]).
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Figure 3: The period annulus P of the center at the origin of system (7) for the two
different cases that may occur: (a) when ϑ < 1/6; (b) when ϑ > 1/6.

Lemma 3.4. The first, second and third period constants of the center at the origin of system (7) are given,
up to a positive factor, by

∆1 = 60ϑ2 + 12ϑ− 1, ∆2 = −∆1 and ∆3 = 18240ϑ4 + 3312ϑ3 − 276ϑ2 + 40ϑ− 5,

respectively.

Proposition 3.5. If ϑ > 1
6 , then the period function of the center of system (7) is monotonous increasing.

Proof. If ϑ > 1
6 then, see Figure 3, the projection of the period annulus on the x-axis is

(
− 1

6 ,
1
3

)
. Following

Proposition 3.1, we shall study the number of zeros of Bσ(`1) and to this end we will apply Proposition 3.2.
With this aim in view note that

`1(x) =
1

2

(6ϑ+ 1)x− 4ϑ− 1√
x+ ϑ(3x− 1)3

.

Accordingly, L
(
x, `1(x)

)
≡ 0 with L(x, y) := 4(x + ϑ)(3x− 1)6y2 −

(
(6ϑ+ 1)x− 4ϑ− 1

)2
. Recall also that

S
(
x, σ(x)

)
≡ 0, where S ∈ R[x, y] is defined in (8). A computation shows that Resz

(
L(x, z), L(y, z)

)
=

16(x− y)2T̂ (x, y)2, with T̂ a bivariate polynomial of degree 8 in x and y which also depends polynomially
on ϑ. Finally R(x) := Resy

(
S(x, y), T (x, y)

)
= (3x− 1)8R(x), where R is a univariate polynomial of degree

8 in x depending polynomially on ϑ.
Let us define Z(ϑ) to be the number of roots of R on (0, 1

3 ) counted with multiplicities. We claim that
Z(ϑ) = 0 for all ϑ > 1

6 . For ϑ = 1
6 this can be easily verified by applying Sturm’s Theorem. To prove it for
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ϑ > 1
6 we first note that

R(0) = (4ϑ+ 1)(2ϑ+ 1)(48ϑ2 + 24ϑ− 1)(60ϑ2 + 12ϑ− 1) (9)

and

R(1/3) = (6ϑ− 1)(2160ϑ3 + 2484ϑ2 + 720ϑ+ 17)(2/3 + 2ϑ)2,

which do not vanish for ϑ > 1
6 . The discriminant of R with respect to x, Discx(R), is a polynomial D(ϑ)

of degree 82. After factorizing it, one can easily prove that D vanishes on ( 1
6 ,+∞) exactly once, at ϑ = ϑ̄

with ϑ̄ ≈ 0.954. Altogether this implies that Z(ϑ) is constant on ( 1
6 , ϑ̄) and (ϑ̄,+∞). Choosing one value

of ϑ in each interval and applying Sturm’s Theorem we find that Z(ϑ) = 0 for ϑ ∈ ( 1
6 ,+∞) \ {ϑ̄}. To prove

that this is true for ϑ = ϑ̄ as well we show that x 7−→ `1(x) is monotonous on (− 1
6 ,

1
3 ) for all ϑ ∈ ( 9

10 , 1).
Indeed, one can verify that

`′1(x) =
N(x)

4(x+ ϑ)3/2(3x− 1)4
,

with
N(x) = (90ϑ+ 15)x2 + (72ϑ2 − 66ϑ− 20)x− 60ϑ2 − 12ϑ+ 1.

We have that N(x) 6= 0 for x ∈ (− 1
6 ,

1
3 ) and ϑ ∈ ( 9

10 , 1) because it is true for ϑ = 95
100 and, on the other

hand, the number of roots counted with multiplicity does not change due to the fact that

N(−1/6)N(1/3)Discx(N) 6= 0 for all ϑ ∈ (9/10, 1).

Therefore `′1(x) 6= 0 for all x ∈ (− 1
6 ,

1
3 ) and ϑ ∈ ( 9

10 , 1), and we can assert that R does not vanish on (0, 1
3 )

for any ϑ > 1
6 . In view of (a) in Proposition 3.2 this implies that Bσ

(
`1
)
6= 0 on (0, 1

3 ). This proves the
validity of the claim and hence, by applying Proposition 3.1 with n = 0, it follows that the period function
is monotonous for ϑ > 1

6 . Finally, the result follows by noting that, thanks to Lemma 3.4, the first period
constant ∆1 is positive for ϑ > 1

6 .

In order to study the period function of the center of system (7) for ϑ < 1
6 , we first recall the well-known

Gelfand-Leray derivative, see for instance [25].

Lemma 3.6. Let ω and η be two rational 1-forms such that dω = dH ∧ η and let γh ∈ H1(Lh,Z) be a
continuous family of cycles on non-critical level curves Lh = {H = h} not passing through poles of neither
ω nor η. Then

d

dh

∮
ω =

∮
η. (10)

We shall also use the following result, see [22, Lemma 4.1].

Lemma 3.7. Let γh be an oval inside the level curve {A(x) +C(x)y2 = h} and consider a function F such
that F/A′ is analytic at x = 0. Then, for any k ∈ N,

∫

γh

F (x)yk−2dx =

∫

γh

G(x)ykdx,

where G = 2
k

(
CF
A′
)′ −

(
C′F
A′
)
.

This allows us to prove the following result about the derivative of the period function associated to the
center of the analytic differential system (6) satisfying hypothesis (H).

9



Lemma 3.8. Suppose that the analytic differential system (6) satisfies the hypothesis (H) with B = 0. Let
T (h) be the period of the periodic orbit γh inside the energy level {H = h}. Then

T ′(h) =
1

h

∫

γh

R(x)
dx

y
,

where R= 1
2C

(
KA
A′
)′ − K(AC)′

4A′C2 .

Proof. Note first that if (6) satisfies (H) with B = 0, then dx
dt =

Hy(x,y)
K(x) = 2C(x)y

K(x) , so that

T (h) =

∫

γh

(
K

2C

)
(x)

dx

y
. (11)

Accordingly, since A(x) + C(x)y2 = h on γh we get

2hT (h) =

∫

γh

(
KA

C

)
(x)

dx

y
+

∫

γh

K(x)ydx =

∫

γh

(
G+K

)
(x) ydx,

with G := 2
(
KA
A′
)′ − KAC′

A′C , where the second equality follows by applying Lemma 3.7 with F = KA
C . Next

we apply Lemma 3.6 taking H(x, y) = A(x) + C(x)y2, ω =
(
G+K

)
(x) ydx and η =

(
G+K

2C

)
(x)dxy in order

to get that

2
(
hT (h)

)′
= 2hT ′(h) + 2T (h) =

∫

γh

(
G+K

2C

)
(x)

dx

y
.

This equality, on account of (11), implies that 2hT ′(h) =
∫
γh

(
G−K

2C

)
(x)dxy . This proves the result because

a straightforward computation shows that R = G−K
4C .

We are now in position to prove the following:

Lemma 3.9. If ϑ ∈ (0, 1
6 ), then the period function T (h) of the center at the origin of (7) verifies that

limh→hm
T ′(h) = −∞, where hm = A(−ϑ) is the energy level of the outer boundary of P, see Figure 4.

Proof. By applying Lemma 3.8 taking A(x) = 1
2x

2− x3, C(x) = x+ϑ and K(x) = 2(x+ϑ) it follows that
T ′(h) = 1

h

∫
γh
R(x)dxy with

R(x) :=
x
(
4ϑ+ 1− (6ϑ+ 1)x

)

4(x+ ϑ)(3x− 1)2
.

The relative position of the straight line x = −ϑ with respect to the graph of A is as displayed in Figure 4
because A(−ϑ)−A( 1

3 ) = 1
54 (6ϑ−1)(3ϑ+1)2 and, by assumption, ϑ ∈ (0, 1

6 ). Accordingly if h ∈ (0, 1
54 ) then

h − A(x) = (x − x−h )(x − x+
h )(x − x̂h), where x−h < 0 < x+

h < 1
3 < x̂h. In particular, for h ∈ (0, hm), the

projection of the periodic orbit γh on the x-axis is the interval [x−h , x
+
h ]. Hence T ′(h) = 2

h

(
I1(h) + I2(h)

)
,

where

I1(h) =

∫ 0

x−h

f(x, h) dx and I2(h) =

∫ x+
h

0

f(x, h) dx

with

f(x, h) =
R(x)

√
C(x)√

h−A(x)
=

x
(
4ϑ+ 1− (6ϑ+ 1)x

)

4(3x− 1)2
√
x+ ϑ

√
(x− x−h )(x− x+

h )(x− x̂h)
.
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x

A

−ϑ x−h x+
h

xr 1
3 x̂h

h

hm

1
54

Figure 4: Root distribution of h − A(x) = (x − x−h )(x − x+
h )(x − x̂h) in the proof of

Lemma 3.9

Let us write f(x, h) = g1(x,h)√
(x+ϑ)(x−x−h )

, where

g1(x, h) :=
x
(
4ϑ+ 1− (6ϑ+ 1)x

)

4(3x− 1)2

√
(x− x+

h )(x− x̂h)
.

Note that g1 is a continuous function on (−∞, 0]× (0, 1
54 ). Consequently there exists M1 ∈ R such that

M1 := sup
{
g1(x, h); (x, h) ∈ [− 1

6 , 0]×[ 1
2hm, hm]

}
. In addition, observe that M1 is strictly negative because

one can verify that 4ϑ+ 1− (6ϑ+ 1)x > 0 for all x < 0 and ϑ > 0. Thus for h ∈ ( 1
2hm, hm) we have that

I1(h) =

∫ 0

x−h

g1(x, h)dx√
(x+ ϑ)(x− x−h )

6M1

∫ 0

x−h

dx√
(x+ ϑ)(x− x−h )

= M1 log


ϑ− x

−
h +

√
−ϑx−h

ϑ+ x−h


 −→ −∞ as h −→ hm.

In the inequality above we take − 1
6 < −ϑ < x−h into account, whereas the limit follows by using M1 < 0

and the fact that x−h tends to −ϑ as h −→ hm. Accordingly,

lim
h→hm

I1(h) = −∞. (12)

In order to study I2 let us write f(x, h) = g2(x,h)√
x+
h−x

, where

g2(x, h) :=
x
(
4ϑ+ 1− (6ϑ+ 1)x

)

4(3x− 1)2

√
(x+ ϑ)(x− x−h )(x̂h − x)

.

Since g2 is continuous on [0, 1
3 )×(0, 1

54 ), M2 := sup
{
g2(x, h); (x, h) ∈ [0, xr]× [ 1

2hm, hm]
}
is a well defined
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real number. Consequently if h ∈ ( 1
2hm, hm), then

I2(h) =

∫ x+
h

0

g2(x, h)dx√
x+
h − x

6M2

∫ x+
h

0

dx√
x+
h − x

= 2M2

√
x+
h <

2M2√
3
.

Due to T ′(h) = 2
h

(
I1(h) + I2(h)

)
, the above inequality together with (12) imply the result.

Proof of Theorem 2.5. Thanks to Proposition 3.5 it suffices to consider ϑ ∈ (0, 1
6 ). For these parameter

values, see Figure 4, the projection of the period annulus on the x-axis is (−ϑ, xr), where A(xr) = A(−ϑ).
We proceed in exactly the same way as we did with Proposition 3.5, i.e., by applying Proposition 3.1 together
with Proposition 3.2, but in this case we must use `3, since neither `1 nor `2 provide decisive information.
Since Bσ(f) ◦ σ = −Bσ(f) and σ maps (0, xr) to (x`, 0), for convenience we shall study the latter interval,
which in this case is (−ϑ, 0). One can verify that

`3(x) =
p(x)

(3x− 1)7(x+ ϑ)5/2
,

where p is a polynomial of degree 7 in x (depending also polynomially on ϑ), which we do not write for the
sake of brevity. Therefore L

(
x, `3(x)

)
≡ 0 with L(x, y) := (x + ϑ)5(3x − 1)14y2 − p(x)2. Recall also that

S
(
x, σ(x)

)
≡ 0, where S is the polynomial given in (8). A computation shows that Resz

(
L(x, z), L(y, z)

)
=

2−20(x − y)2T̂ (x, y)2, with T̂ ∈ R[x, y] of degree 32, depending also polynomially on ϑ. Finally R(x) :=
Resy

(
S(x, y), T (x, y)

)
= (3x− 1)20R(x), where R ∈ R[x, ϑ] with deg(R;x) = 44. For each ϑ ∈ (0, 1

6 ) let us
define Z(ϑ) to be the number of zeros, counted with multiplicities, of R on (−ϑ, 0). To study this number
we consider the value of R at the endpoints of (−ϑ, 0),

R(0) = 21153 ϑ12 (1 + 4ϑ)
(
60ϑ2 + 12ϑ− 1

) (
48ϑ2 + 24ϑ− 1

)
(2ϑ+ 1)

5
,

and

R(−ϑ) = 16ϑ12 (1 + 3ϑ)
10

(2ϑ+ 1)
12

(6ϑ− 1)
14
,

together with the discriminant of R with respect to x, Discx(R), which is a polynomial D(ϑ) of degree 1586
that we do not write here for brevity. One can easily check that R(−ϑ) does not vanish and that R(0) has
exactly two roots on (0, 1

6 ), namely

ϑ1 := −1

4
+

1

6

√
3 ≈ 0.03867 and ϑ2 := − 1

10
+

1

15

√
6 ≈ 0.06330

By applying Sturm’s Theorem to each factor, we conclude that on (0, 1
6 ) the discriminant D(ϑ) vanishes

only at ϑ = ϑ2. Hence Z(ϑ) is constant on I1 := (0, ϑ1), I2 := (ϑ1, ϑ2) and I3 := (ϑ2,
1
6 ). Taking one

parameter value on each interval and applying Sturm’s Theorem once again we can assert that Z(ϑ) = 0 for
all ϑ ∈ I1, Z(ϑ) = 1 for all ϑ ∈ I2 and Z(ϑ) = 2 for all ϑ ∈ I3. Therefore, by Proposition 3.2, it follows that
the number of zeros, counted with multiplicities, of Bσ

(
`3
)
(x) on (−ϑ, 0) is at most 0, 1 and 2, for ϑ ∈ I1,

ϑ ∈ I2 and ϑ ∈ I3, respectively. Hence, thanks to Proposition 3.1, we can assert that the period function is
monotonous for ϑ ∈ I1, whereas it has at most 1 (respectively, 2) critical periods for ϑ ∈ I2 (respectively,
ϑ ∈ I3), counted with multiplicities.

Recall at this point that, in view of Lemma 3.4, the first period constant of the center is given by
∆1 = 60ϑ2 + 12ϑ − 1. On the other hand, by Lemma 3.8, we know that limT ′(h) = −∞ as h tends to
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Figure 5: Sketch of the graph of the period function T (h) corresponding to Theorem 2.5:
(a) for ϑ ∈ (0,− 1

10 + 1
15

√
6 ]; (b) for ϑ ∈ (− 1

10 + 1
15

√
6, 1/6); and (c) for ϑ ∈ [1/6,∞).

hm for all ϑ ∈ (0, 1
6 ). Since ∆1 = 0 for ϑ = − 1

10 ± 1
15

√
6, we conclude that T (h) is monotonous decreasing

near the endpoints of (0, hm) for all ϑ ∈ (0, ϑ2). For the same reason, if ϑ ∈ I3 then T (h) is increasing near
h = 0 and decreasing near h = hm. On account of the upper bounds on the number of critical periods that
we have previously obtained, we conclude that the period function is monotonous decreasing for ϑ ∈ I1 ∪ I2
and it has a unique critical period, which is a maximum, for ϑ ∈ I3.

The fact that the period function is monotonous decreasing for ϑ = ϑ1 can be proved by showing that
Bσ

(
`1
)
does not vanish on (−ϑ1, 0) and using that ∆1 < 0 at ϑ = ϑ1. Since this is easy we do not include

it here for the sake of brevity. The proof for ϑ = ϑ2 is slightly different but straightforward as well. We
show first that Bσ

(
`3
)
has at most one zero on (−ϑ2, 0) counted with multiplicities. By Proposition 3.1

this implies that the period function has at most one critical period. To prove that it has none we take the
behaviour of the period function at the endpoints of (0, hm) into account. Since ∆1 = ∆2 = 0 and ∆3 < 0
at ϑ = ϑ2 by Lemma 3.4, we have that it is decreasing near h = 0. We know that it is also decreasing near
h = hm thanks to Lemma 3.8. Thus it can not have any critical period. This completes the proof.

Remark 3.10. By means of standard techniques one can obtain the limit value of the integral defining the
period function at the endpoints of its interval of definition. Combining this information with the results
in Theorem 2.5 and Section 3 we get the graphs of the period function T (h) displayed in Figure 5. For the
sake of brevity we omit the computations of the explicit values

T0 = 2π
√

2ϑ and T1 = 2 ln

(
(2ϑ+ 1)(1− 6ϑ)

1 + 6ϑ− 4
√
ϑ(1 + 3ϑ)

)
.

Note that T0 and T1 are strictly positive whenever they are defined. Taking into account the relation
between period and wave length, cf. Remark 2.4, this shows that there do not exist smooth periodic TWS
of CH with arbitrarily small wave length. Finally, we point out that ϑ = − 1

10 + 1
15

√
6 and ϑ = 1/6 are,

respectively, bifurcation values of the period function at the inner and outer boundary of the period annulus,
see [31]. �
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