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Abstract

The main purpose of the paper is the study of the motion of a massless body

attracted, under the Newton’s law of gravitation, by two equal masses moving

in parabolic orbits all over in the same plane, the planar parabolic restricted

three-body problem. We consider the system relative to a rotating and pul-

sating frame where the equal masses (primaries) remain at rest. The system

is gradient-like and has exactly ten hyperbolic equilibrium points lying on the

boundary invariant manifolds corresponding to escape of the primaries in past

and future time. The global flow of the system is described in terms of the

final evolution (forwards and backwards in time) of the solutions. The invariant

manifolds of the equilibrium points play a key role in the dynamics. We study

the connections, restricted to the invariant boundaries, between the invariant

manifolds associated to the equilibrium points. Finally we study numerically

the connections in the whole phase space, paying special attention to capture

and escape orbits.
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1. Introduction

Astronomy textbooks typically present galaxies as calm, solitary and ma-

jestic island worlds of glittering stars. However, the Hubble images support

the well-known idea that galaxies are dynamic and energetic. In particular, the

bridges and tails seen in some multiple galaxies are just relics of close encoun-5

ters. The consequences of the brief but violent tidal forces have been studied

by Toomre and Toomre in [16] and by Namboodiri et al. in [10] considering a

simple-minded fashion: each encounter is considered to involve only two galaxies

describing a roughly parabolic path.

This approach of the dynamics of the close encounters for two galaxies has10

been used, for example, by Condon et al. in [2], in the case of the galaxies

UGC 12914 and 12915, or by Günthardt et al. in [7], for the system AM1003-

435. The parabolic model has been also used in the study of the formation of

planetary systems. Fragner and Nelson, in [6], examine the effect of parabolic

stellar encounters on the evolution of a Jovian-mass giant planet forming within15

a protoplanetary disc. Pfarzner et al., in [12], study the close encounter of two

stars, one of them surrounded by a disc. More recently, in [14], Steinhausen et

al. present a numerical investigation to study the effect of gravitational star-

disc interactions on the disc-mass distribution, considering coplanar, prograde

encounters on parabolic orbits.20

A close approach of two galaxies (or stars surrounded by a disc) cause sig-

nificant modification of the mass distribution or disc structure. Focussing just

on one particle that initially stays in one galaxy (or around one star), after the

close encounter, it can jump to the other galaxy or escape. One aim is to study

the regions in the phase space where the particle remains or not around each25

galaxy. To perform this study, we consider a very simple model, the so called

planar parabolic restricted three-body problem, which describes the motion of a

massless particle submitted to the gravitational attraction of two masses -called

primaries- that move in parabolic orbits around their common center of mass,

when the primaries and the particle move in the same plane.30
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As far as the authors know, very little literature has been devoted to re-

stricted three-body problems where the gravitational attraction of the primaries

is non-periodic. That is, when the energy of the primaries is non-negative, so

that they move in parabolic or hyperbolic orbits. Meyer and Wang, in [9],

studied restricted isosceles problems (the three bodies are at the vertices of an35

isosceles triangle) when the energy of the primaries is non-negative and the

infinitesimal mass moves in a line perpendicular to the orbital plane passing

through the center of mass of the primaries. After that, Cors and Llibre, in

[3] (see also the references therein), obtained a classification of the orbits in

the parabolic case in terms of the asymptotic velocity of the infinitesimal mass40

when t → ±∞ and the number of times that the infinitesimal mass intersects

the plane which contains the motion of the primaries. More recently, Alvarez et

al., in [1], describe some features of the planar parabolic restricted three-body

problem and show the existence of special types of motion. Finally, Faintich, in

[5], considers the planar hyperbolic restricted three-body problem and applies45

the model to a hypothetical star-Sun-comet system to determine the effect of a

stellar encounter on the orbit of the comet.

Being the previous works our original motivation, the main purpose of the

paper is to continue and complete the results obtained in [1] and to describe

the flow of the planar parabolic restricted problem (or simply parabolic problem50

along the paper). We consider in this work the simplest case, when the two

primaries have equal masses. In particular, we will focus on the role of the in-

variant manifolds to explain how a particle can be captured around one primary

or escape.

The paper is organized as follows: in Section 2, the equations of the motion55

of the parabolic problem are given both in an inertial system of coordinates

and in a rotating and pulsating (synodic) frame. After that, in order to extend

the flow of the system when the primaries are at infinity, the phase space is

compactified in the time direction with the introduction of a suitable variable

θ ∈ [−π/2, π/2], and the so called global system is obtained. The flow when60

θ = ±π/2 is invariant, obtaining the upper (θ = π/2) and the lower (θ = −π/2)
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boundary problems. In particular the equilibrium points and the homothetic

solutions associated to them are considered and the gradient-like property of

the equations is remarked. Finally the possible regions of motion (the so called

Hill’s regions) are described as well. Section 3 is divided in two parts. First,65

we analyze the final evolutions for the motion of the particle. We focus on

escape and capture orbits in the inertial system of coordinates and we introduce

a criterium (the so called C-criterium) that allows us to classify an orbit in

the synodic system of coordinates. Second, we analyze the dynamics on the

boundary problems. We will see that it is crucial to know what we call map70

of heteroclinic connections between invariant objects of the boundary system,

that is, trajectories that start and end at a primary and/or an equilibrium point

and/or the infinity. We recall some connections already known in [1] and we

show the existence of new heteroclinic connections. Section 4 is devoted to

numerical explorations. We present two strategies to find initial conditions of75

collision orbits, both forwards and backwards in time, called connecting orbits.

Applying one or another strategy we obtain non symmetrical and symmetrical

connecting orbits respectively. We will show that the equilibrium points and the

invariant manifolds associated with them play a key role on the specific path

of such connecting orbits and we will find orbits with close paths to triangular80

and/or collinear configuration during their trajectory.

2. Description of the problem and main features

In order to have a self contained paper, we present the equations of the

motion of the problem and other main features. The details can be found in [1].

2.1. Equations of motion85

Let us consider three bodies in an inertial (sidereal) reference system. Two of

the bodies, called primaries, with masses m1 and m2, move in parabolic orbits of

the two body problem around their common center of mass. The third body is a

particle of infinitesimal mass m0 that moves under the gravitational attraction
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of the primaries without affecting them in the same plane of the motion of the90

primaries. The problem of the description of the motion of the particle is the

planar parabolic restricted three body problem (simply parabolic problem along

the paper). We will consider in this paper the case of two equal masses for the

primaries, that in a suitable units means that we can take m1 = m2 = 1/2.

It is well known (see for example [4]) that, when the primaries move in a

parabolic motion, the relative position vector from m1 to m2 is R = (σ2 −1, 2σ)

where σ = tan(f/2), f is the true anomaly, their mutual distance is r = σ2 + 1,

and 1√
2
(t − T ) = σ + σ3

3 , being T the time of passage at the pericenter (see

Figure 1). Then, the equation of the motion of the particle in the inertial

system of coordinates Z = (X, Y ) is

Z̈ = −1

2

Z − Z1

|Z − Z1|3
− 1

2

Z − Z2

|Z − Z2|3
, (1)

where ˙ = d
dt is the derivative with respect to the time t, Z1 and Z2 are the95

position vectors of the primaries, and we have assumed that the constant of

gravitation G = 1.

Figure 1: Parabolic problem in an inertial (sidereal) system of reference.

After placing the common center of mass of the primaries at the origin,

we perform two changes of variables. First, a standard rotating and pulsating

(synodic) coordinate system z = (x, y) is introduced, so that the primaries

remain fixed along the x-axis at z1 = (−1
2 , 0) and z2 = ( 1

2 , 0) respectively. This

change is done via the complex product

Z = R · z. (2)
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Second, we introduce the reparametrization of time dt
ds =

√
2 r3/2. After some

straightforward computations, the variable σ, that gives the relative position of

the primaries, can be expressed in terms of the new independent variable s as

σ = sinh(s), and the equations of motion for the particle in the new coordinate

system are 



z′ = w,

w′ = A(s)w + ∇Ω(z)
(3)

where ′ = d
ds denote the derivative with respect to s,

A(s) =


− tanh(s) −4 sech(s)

4 sech(s) − tanh(s)


 ,

and Ω, the potential function, is given by

Ω(z) = x2 + y2 +
1√

(x − 1
2 )2 + y2

+
1√

(x + 1
2 )2 + y2

.

Clearly, when the primaries tend to infinity along their parabolic orbits,

t → ±∞ and the new time s also tends to ±∞. In order to extend the flow

of the system when the primaries are at infinity, a new variable θ is introduced

through the change sin(θ) = tanh(s). With the new variables (θ, z,w) the system

(3) becomes the following autonomous system




θ′ = cos θ,

z′ = w,

w′ = −A(θ)w + ∇Ω(z)

(4)

where

A(θ) =


 sin θ 4 cos θ

−4 cos θ sin θ


 .

Notice that the the original system (3) is defined for s ∈ (−∞,∞), which

corresponds to θ ∈ (−π/2, π/2), whereas the extended system (4) is defined also

for θ = ±π/2, and it is invariant at the boundaries θ = ±π/2. Therefore the100

extended phase space is D = [−π/2, π/2] × (R2 − {(−1/2, 0), (1/2, 0)}) × R2.

From now on, we will call system (4) the global system, and we denote as

configuration space the projection of D on to the (x, y) plane. The two invariant

6



systems will be denoted as the upper (θ = π/2) and lower (θ = −π/2) boundary

problem respectively and the corresponding equations are




z′ = w,

w′ = ∓w + ∇Ω(z).
(5)

Finally, notice that the two changes

(s, ±π

2
, x, y, x′, y′) → (−s, ∓π

2
, x, y, −x′, −y′) (6)

transform the equations of the upper/lower boundary problem to the equations

of the lower/upper one. Thus, it is enough to study the flow and the dynamics

of one of the boundary problems. We will describe properties and the dynamics

of the upper boundary problem unless otherwise noted.105

2.2. Symmetries

The global system (4) has the following two symmetries

(s, θ, x, y, x′, y′) → (−s, −θ, x, −y, −x′, y′), (7)

(s, θ, x, y, x′, y′) → (s, θ, −x,−y, −x′,−y′). (8)

The symmetry (7) implies that given a solution of the global system there ex-

ists another one which is symmetric with respect to y = 0 in the (x, y) plane

(reversing time and θ). The symmetry (8) implies that given a solution of the110

global system there exists another one which is symmetric with respect to the

origin in the (x, y) plane.

The symmetries on the upper and lower boundary problems (5) are

(s, x, y, x′, y′) → (s, x, −y, x′, −y′), (9)

(s, x, y, x′, y′) → (s, −x,−y, −x′,−y′). (10)

For each solution of a given boundary problem there exists another one of the

same problem that is symmetric with respect to y = 0 in the (x, y) plane (using115

(9)) and another one symmetric with respect to the origin (using (10)).

We emphasize that the symmetries (8) and (10) are specific for the parabolic

problem with equal masses, whereas (7) and (9) apply for the parabolic problem

for any value of the mass parameter.
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2.3. Equilibrium points120

The equilibrium points of the global system (4) are given by

θ = ±π/2, w = 0, ∇Ω(z) = 0.

Therefore, all the equilibrium points of the global system are at the upper and

lower boundary problems (5). Moreover, the potential function Ω satisfies

Ω(z) = 2Ω̄(z), (11)

where Ω̄(z) is the potential function of the circular restricted three-body problem

in rotating coordinates (see [15]). Thus, the equilibrium points of the parabolic

problem in each boundary coincide with the classical equilibrium points of the

restricted circular three-body problem: three collinear and two triangular. We

denote by L+
i and L−

i , i = 1, ..., 5, the equilibrium points for θ = π/2, and125

θ = −π/2 respectively. Note that due to the symmetries (9) and (10) L±
1 and

L±
5 are opposite to L±

3 and L±
4 respectively. See Table 1.

Linearizing the upper boundary problem, the eigenvalues associated to the

collinear equilibrium points L+
i , i = 1, 2, 3, are

λ1
k > 0, λ2

k < 0, λ3,4
k = −1

2
± ibk, k = 1, 2, 3.

Thus, the collinear equilibrium points have an unstable manifold Wu(L+
i ) of

dimension 1 and a stable manifold W s(L+
i ) of dimension 3. Due to symmetry

(6), in the lower boundary problem the dimensions are the contrary (the unsta-

ble is of dimension 3, the stable of dimension 1). In the case of the triangular

equilibrium points L+
i , i = 4, 5, the linearization gives the eigenvalues

λ1,2
k > 0, λ3,4

k < 0, k = 4, 5.

Thus, both invariant manifolds associated to the triangular equilibrium points,

the unstable and the stable one, are of dimension 2.

Considering the equilibrium points in the global system (4), the dimension130

of Wu(L−
i ) and W s(L+

i ), i = 1, . . . , 5 increases in one. See Table 1.
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L+
1,3 L+

2 L+
4,5

(xi, yi) (∓1.198406145, 0) (0, 0) (0, ±
√

3/2)

C(L+
i ) = Ci 6.91359245 8 5.5

dim(Wu) 1 2

dim(W s) 4 3

Table 1: Equilibrium points of the upper boundary problem: position, value of the Jacobi

function (see Section 2.5), and dimension of the invariant manifolds in the global system.

2.4. Homothetic solutions

Besides the equilibrium points, the simplest solutions of the global system

(4) are the five homothetic solutions connecting the equilibrium points L−
i with

L+
i , and belonging to Wu(L−

i ) ∩ W s(L+
i ):

θ(s) = arcsin(tanh(s)), z(s) = (xi, yi), w(s) = 0, i = 1, ..., 5

where the coordinates (xi, yi) are given in Table 1.

Clearly these five homothetic solutions in the rotating-pulsating coordinate

system are homographic solutions of the original coordinate system (1). They135

are solutions in which the three bodies keep the same configuration all the time:

either the three bodies lie in a line (collinear configuration) or they lie at the

vertices of an equilateral triangle (triangular configuration).

2.5. Jacobi function and Hill’s regions of motion

We consider the analogous function to the Jacobi constant of the circular

restricted three-body problem (see [15]), that we call, by similarity, the Jacobi

function:

C = 2Ω(z) − |w|2. (12)

In the parabolic problem, however, C is not constant along the solutions of the

global system (4), because (see Proposition 1 in [1])

dC

ds
= 2 sin θ|w|2. (13)
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Notice that C does not depend on θ explicitly, while its derivative does. Further-140

more, the Jacobi function has a piecewise monotone behavior along the solutions

of the global system (except at the homothetic ones, where the Jacobi function

is constant). This behavior is known as gradient-like property. More precisely,

along any solution of the global system, when θ ∈ [−π/2, 0] (s ≤ 0) the function

C decreases, whereas for θ ∈ [0, π/2] (s ≥ 0) the function C increases. In the145

boundary problems, the function C is monotone (for θ = −π/2, C decreases

and for θ = π/2, C increases). A particular and important consequence of this

gradient-like property is that there cannot exist periodic orbits.

From (12) we obtain the so called Hill’s regions, that is, the allowed regions

of motion in the configuration space. For a fixed value of C, we consider the

zero velocity set, V0(C), in the configuration space defined by

V0(C) = {z | 2Ω(z) = C}.

It can be shown that V0(C) is a set of closed curves (called zero velocity curves or

zvc). Due to (11), the topology of the zvc is the same as in the circular restricted150

three body problem (see [15]). In order to describe them, let Ci = C(L±
i ),

i = 1, . . . , 5 be the value of the Jacobi function at the equilibrium points. We

observe that C1 = C3, C4 = C5, and in Table 1 the (approximate) values of C2,

C3 and C4 are given. We plot in Figure 2 the zvc and the forbidden regions of

motion (shaded regions) for different fixed values of C.155

As the Jacobi function varies with time, the Hill’s regions evolve also with

time. We describe the evolution of the geometry of the zvc as the value of the

Jacobi function increases. For C < C4 = C5, the set V0(C) is empty and the

motion is possible everywhere. For C4 ≤ C < C1,3, the zvc are two closed

curves surrounding the triangular equilibrium points (Figure 2, a) and b)),160

which increase in size as C increases. For C1,3 < C < C2, the zvc still have two

components, one around the primaries and L±
2 and an exterior one enclosing all

the equilibrium points (Figure 2, c)), so there are two regions where the motion

is admissible. Finally, for C > C2, the interior component of the zvc becomes

two unconnected curves, each one surrounding one primary (see Figure 2, d)).165
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x
K1,5 K1,0 K0,5 0 0,5 1,0 1,5

y

K2

K1

1

2

Figure 2: Zero velocity curves and the forbidden (shaded) regions of motion in configuration

space for fixed values of the Jacobi function. From left to right: C = 6, C = 6.9 < C1 = C3,

C1 < C = 7 and C2 < C = 8.1.

Taking into account the gradient-like property (13), the piecewise monotone

behavior of the Jacobi function for s ≤ 0 and s ≥ 0, and the geometry of the

zvc, we have that following a solution forwards in time, the regions of admissible

motion grow when θ ∈ [−π/2, 0] and shrink when θ ∈ [0, π/2].

3. Dynamics of the parabolic problem170

In order to describe the dynamics of the parabolic problem, we will focus on

two aspects: the final evolutions when time tends to infinity, and the existence

of heteroclinic connections between equilibrium points.

We will see that the behavior of the trajectories as time tends to infinity is

rather simple, as it cannot be otherwise in a problem where periodic orbits do175

not exist. There are only three possible final evolutions for a trajectory: or it

escapes far away from the primaries, or it tends to one of them, or it tends to

one of the equilibrium points. And by the symmetry of the problem, the origins

of the trajectories are the same. Despite this simplicity in the final evolution

of the orbits, the problem exhibits a richness in the intermediate stages due to180

the existence of invariant manifolds associated to the homographic solutions.

The invariant manifolds of codimension 1 are the natural frontiers in the phase

space, Int(D), that separate the different types of orbits. Furthermore, the

heteroclinic connections between the equilibrium points allow the existence of

orbits with passages close to collinear and/or equilateral configurations. Thus,185

11



in order to fully understand the global system flow, all possible heteroclinic

connections concerning the equilibrium points must be determined.

First, in order to have a tool to classify the orbits depending on their final

evolution, we give a criterium that allows to decide when an orbit is captured

by one of the primaries or when it tends to infinity. Next, we show the exis-190

tence of some heteroclinic connections and complete the diagram of heteroclinic

connections given in [1].

3.1. Final evolutions

We focus on the ultimate behavior of the motion of a particle when the

time tends forwards to infinity, i.e. the ω-limit (see, for example, [11]) of the195

solutions of the parabolic problem. Due to the symmetries of the problem,

the global dynamics of the problem backwards in time (and the α-limit of the

solutions) can be obtained from the analysis of the dynamics forwards in time.

We focus on escape and capture orbits. Essentially, an escape orbit will be a

path along which the particle moves away from both primaries and their center200

of mass, whereas a capture orbit will be a trajectory along which the particle

approaches one of the primaries, in the sense that while the primary tends to in-

finity along its parabolic orbit, the particle follows the primary (spinning around

it) at a bounded distance. From Painleve’s theorem (see for example Chapter

4 in [13]), if the right maximal interval of existence [0, β) is finite, a collision205

in finite time occurs. That case can be considered as capture. For this reason,

from now on we will only consider orbits such that its right maximal interval of

existence is [0,∞). All the definitions and results are given considering that we

can take the limit when time (t and s) tends to infinity, so that θ tends to π/2.

The definitions of capture and escape that we use in the present paper are210

the following ones.

Definition 1. Let Z(t) be a solution of the parabolic problem given by equations

(1). We say that

• it is a capture orbit around the primary of mass mi, for i = 1 or 2, if

lim supt→∞ |Z(t) − Zi(t)| ≤ K, for some constant K;215
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• it is an escape orbit if lim supt→∞ |Z(t)| = ∞ and lim supt→∞ |Z(t) −
Zi(t)| = ∞ for i = 1 and 2.

It is important to point out that the definition of capture and escape is done

in the inertial reference system. From the change of variables (2) we have that

|Z − Zi| = r|z − zi|,

where the distance between the primaries r ↗ ∞ as time tends to infinity.

Clearly, to be a capture orbit it is necessary that lims→∞ |z(s) − zi| = 0, but

that condition is not sufficient. On the contrary, to be an escape orbit it is220

enough that the lim infs→∞ |z(s)| ≥ K, for K big enough to ensure that the

particle does not approach the primaries when s ↗ ∞. The aim is to have a

criterium that allows to check whether a solution satisfies these conditions in

the synodic reference system.

We introduce the concept of a collision orbit in the synodic reference system.225

Definition 2. Let γ(s) = (θ(s), z(s),w(s)), s ∈ [0, ∞), be a solution of the

global system (4). We say that it is a collision orbit if lim infs→∞ |z(s)−zi| = 0,

for some i = 1, 2.

Next, our aim is to prove that in the synodic system, the solutions of the

global system can be classified in three classes: collision orbits, trajectories that230

go to infinity or trajectories tending to an equilibrium point. The first ones are

candidates to be capture orbits, while the second ones are escape orbits.

Lemma 1. Let γ(s) = (θ(s), z(s),w(s)), s ∈ [0, ∞), be a solution of the global

system (4). Suppose that there exist positive constants M and δ such that

lim inf
s→∞

|z(s)| ≤ M, and lim sup
s→∞

|z(s) − zi| ≥ δ > 0,

∀ i = 1, 2. Then, the ω-limit of the solution is an equilibrium point.

Proof. From the three limits of the hypothesis, there exists a sequence {sk}k∈N,

sk ↗ ∞, such that

|z(sk)| ≤ M, and |z(sk) − zi| ≥ δ, ∀ i = 1, 2 and k ∈ N.
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On one hand, θ(sk) → π/2, so {C(γ(sk))}k∈N is an increasing sequence. On

the other hand, {Ω(z(sk)}k∈N is bounded. Thus, {|w(sk)|}k∈N must be also

bounded, and there exists the limit

lim
k→∞

C(γ(sk)) = C∞ < ∞.

In fact, as C(γ(s)) increases for s > 0, the whole lims→∞ C(γ(s)) = C∞.

Furthermore, {γ(sk)}k∈N is contained in a compact set, so there must exist

a convergent subsequence. To simplify notation, we suppose that the sequence

is convergent, so

lim
k→∞

γ(sk) = q,

where q = (π/2, zq,wq), belongs to the ω-limit of γ(s), and |zq| ≤ M and235

|zq − zi| ≥ δ, ∀ i = 1, 2. Denote by Γ the solution of the global system through

q.

Let B a ball of center q and radius δ/2, so that the vector field of equations

(4) does not have any singularity in B. Then, the set Γ ∩ B is also contained

in the ω-limit of γ(s). By continuity, the Jacobi function along Γ ∩ B must240

be constant equal to C∞. And the only solutions of the global system with a

constant value of the Jacobi constant are the equilibrium points.

Finally, the ω-limit must be a connected set, so it can only contain one

equilibrium point.

Corollary 1. Let γ(s) be a collision orbit. Then lims→∞ |z(s) − zi| = 0, for245

some i = 1, 2.

As a consequence, we obtain the following results.

Proposition 1. (Final evolutions) Let γ(s) = (θ(s), z(s),w(s)), s ∈ [0, ∞),

be a solution of the global system (4). Then, either it is a collision orbit, or

lims→∞ |z(s)| = ∞ or its ω-limit is an equilibrium point.250

Using the above statements, we can give the following criterium, named the

C-criterium because the gradient-like property of the Jacobi function C is the

main key.
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Proposition 2. (C-criterium) Let q ∈ Int(D) with θ ≥ 0, and γ(s) =

(θ(s), z(s),w(s)), s ∈ [0,∞), the solution of the global system (4) through q.255

Then,

(i) if for some time s0 the value of the Jacobi function C(γ(s0)) > C2 and

z(s) is located in one of the bounded components of the Hill’s region, then

it is a collision orbit;

(ii) if for some time s0 the value of the Jacobi function C(γ(s0)) > C3 and260

z(s) is located in the unbounded component of the Hill’s region, then it is

an escape orbit.

Proof. Suppose γ(s) satisfies the hypothesis of the first item. If it was not a

collision orbit, by Lemma 1 its ω limit should be an equilibrium point, which is

not possible because in the bounded component of the Hill’s region limited by265

V0(C), for C > C2 there are no equilibrium points.

In the second assumption, suppose that lim infs→∞ |z(s)| ≤ K for some

constant K. Again, applying the Lemma 1 we will get a contradiction. Thus,

the limit

lim
s→∞

|z(s)| = ∞

and then it is an escape orbit.

In Theorem 4 of [1], the authors give a similar criterium (with the same

name) but with some important differences. The first one is that the conclusion

of the theorem is that the orbit is a collision orbit or its ω-limit is an equilibrium

point, but they forgot to include the hypothesis that the particle must be in

the bounded component of the Hill’s region. So, they do not consider the

escape orbits. Another important issue is that the authors use in the proof the

fact that the Jacobi function C(γ(s)) ↗ ∞ for orbits that do not tend to an

equilibrium point, although, as far as we know, this fact is not proved. Finally,

the authors use the result to prove the existence of capture orbits. But we want

to remark that whereas escape orbits can be detected studying their behavior

in the synodic reference system, it is not sufficient to know that an orbit is a
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collision orbit to ensure that it is a capture orbit. In fact, in order to have a

capture orbit it would be necessary to see if

lim sup
t→∞

|Z(t) − Zi(t)| = lim sup
s→∞

cosh2(s)|z(s) − zi| ≤ K

for some constant K, which means that we would be able to check if |z(s)−zi| =

O(e−2s).

3.2. Dynamics of the upper boundary problem270

Once we have classified the possible final evolutions of the solutions of the

parabolic problem, we focus now on the dynamics of the upper (similarly lower)

boundary problem. More precisely, we will study all possible connections in-

volving the equilibrium points. These connections will provide different specific

ways of tending to a final evolution. Taking also into account the homographic275

solutions, a rich variety of solutions of the global system with close passages to

collinear and triangular configurations will be obtained.

In [1] some heteroclinic connections are studied. Our aim is to add some

other connections to the diagram given by the authors. In Figure 3 we show

the connections proved in ([1]) with dotted (black) lines, as well as the new280

ones by dashed (green) and continuous (red) lines. The equilibrium points on

the diagram are located such that from bottom to top the value of the Jacobi

function increases, and the Hill’s regions shrink.

First we analyze which connections of the diagram are admissible. On one

hand, recall that the Jacobi function increases when s increases, so it is not285

possible to connect L+
i with L+

j if C(L+
i ) ≤ C(L+

j ). On the other hand, the

connections given in [1] were proved using the invariance of the planes y = y′ = 0

and x = x′ = 0, and the study of the flow restricted to each plane. From that,

it is clear that Wu(L+
i ), i = 1, 2, 3, which are of dimension 1, are contained in

the y = 0 axis. Then, neither L+
1 , nor L+

3 , connects with L+
2 . For the same290

reason, there is no connection from L+
1 to the second primary or from L+

3 to

the first primary. And similarly, there is no connection from L+
2 to infinity.
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Figure 3: Map of connections in the upper boundary problem. The dotted (black) lines are

connections already known in [1]. The dashed (green) and continuous (red) lines are new

connections.

Therefore, all possible connections starting at one of the collinear equilib-

rium points are already known and drawn in Figure 3. Looking at the possible

connections emanating from L+
4 and L+

5 , we want to show that the following295

heteroclinics exist:

(i) from L+
4,5 to ∞ (dashed green lines),

(ii) from L+
4,5 to L+

1,3 (continuous red lines),

(iii) from L+
4,5 to the primaries (continuous red lines).

As we will see, we use essentially the behavior of the zero velocity sets300

V0(C) and the invariant manifolds of the equilibrium points to show the above

heteroclinic connections emanating from the triangular equilibrium points. A

similar methodology can not be applied in the case of connections arriving at

the triangular points. When exploring the behavior of the orbits of the W s(L+
4,5)

backwards in time, the Jacobi function decreases to values lower than 4, and all305

the configuration space is available. So, the zvc do not play any role. For that

reason, we have not explored the connections from one primary, or infinity, to

the triangular equilibrium points.

We start justifying connection (i): from L+
4,5 to infinity (dashed green lines
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in Figure 3). They can be proved immediately from the fact that the plane310

(y, y′) is invariant, and the equilibrium points L+
4,5 are saddle. That implies, in

particular, that there exist orbits of the invariant manifolds Wu(L+
4,5) that lie

on the x = 0 axis, one branch of them tending to L+
2 , the other one escaping to

infinity.

Next, we want to show numerically the existence of connection (ii): from L+
4315

to L+
3 . By symmetry, all the other connections from L+

4,5 to L+
1,3 are obtained

(red continuous lines in Figure 3). We examine the behavior of the invariant

manifold Wu(L+
4 ) forwards in time. In order to do so, we consider an approx-

imated parametrization of the invariant manifold, which is of dimension two,

and we propagate the initial conditions given by the parametrization forwards320

in time until a certain section close to L+
3 . To obtain such intersections with

a good accuracy, the linear approximation of the parametrization is not good

enough. We have considered the fourth order approximation (see [8] for details

on the computation of the invariant manifold of an equilibrium point up to a

desired order).325

Given a value of the Jacobi function C = C∗, we define the section

ΣC∗ = {(z,w) | C(z,w) = C∗},

and the intersection of the invariant manifold with that section is the set

Wu
C∗(L+

i ) = Wu(L+
i ) ∩ ΣC∗ .

The invariant manifold Wu(L+
4 ) is of dimension 2, so for values of C∗ greater

but close to C4 (on the upper boundary problem, the Jacobi function increases),

the set Wu
C∗(L+

4 ) is a simple closed curve (see Figure 4).

We want to study the evolution of the sets Wu
C∗(L+

4 ) as C∗ approaches

C3 ≃ 6.91359245. On one hand, the zero velocity set V0(C
∗) has two components330

(one in y > 0, the other one in y < 0) that approach to each other at the point

L+
3 as C∗ ↗ C3 (see Figure 2 a) and b)). On the other hand, the projection

in configuration space of Wu
C∗(L+

4 ) is a closed curve that surrounds one of the

components of V0(C
∗) (the one in the halfplane y > 0), and, when C∗ ↗ C3, this
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Figure 4: Upper boundary problem: projection of W u
C∗ (L+

4 ) in configuration space for some

values of C∗ ∈ (C4, C3).

curve is trapped between the two components of V0(C
∗). So at C∗ = C3, the335

two components of the zero velocity curve and the set Wu
C3

(L+
4 ) must coincide

at L+
3 , and at least one orbit on the invariant manifold must end up at the

equilibrium point L+
3 (see Figure 5 and 6).
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Figure 5: Upper boundary problem: projection of W u
C∗ (L+

4 ) (red) in configuration space and

Z0(C∗) (black) for the values C∗ = 6.9 (left) and C∗ = 6.913 (right)

Finally, we observe that when we consider the points of the subset of Wu
C3

(L+
4 )

belonging to the bounded component of the Hill’s region, the associated trajec-340

tories will end up at a collision with one primary except the ones that tend to

L+
2 . So the heteroclinic connections (iii) from L+

4,5 to the primaries follow.
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Figure 6: Upper boundary problem: projection of W u
C∗ (L+

4 ) (blue) in configuration space and

Z0(C∗) (black) for the values C∗ = 6.913 and C∗ = 6.9136.

4. Numerical results

As stated before, the simplest solutions in the parabolic problem are the

homographic solutions, which remain fixed in the (x, y) plane. Among all other345

possible orbits or trajectories in the parabolic problem, we are interested, due to

astronomical reasons, in ones that go from primary to primary (either the same

one or not) that is, capture orbits forwards and backwards in time. As explained

in Section 3, we have a criterium to determine when a solution of the parabolic

problem in the synodic system satisfies the necessary condition to be a capture350

orbit in the sidereal system. That is, when an orbit in the synodic system is of

collision forwards in time. We want to use that criterium to find sets of initial

conditions corresponding to collision orbits both forwards and backwards. We

call them connecting orbits. Our purpose is to present strategies that allow us

to find initial conditions of such type of motion. We will also discuss strategies355

to find connecting orbits with a priori desired path with close approaches to

triangular or/and collinear configurations.

We will see that the two strategies presented are based on the knowledge

of the flow on the boundary manifolds, θ = ±π/2, and on the invariant mani-

folds associated to their equilibrium points, and whereas the first strategy gives360

rise to (typically) non symmetrical connecting orbits, with the second one only

symmetrical connecting orbits are obtained.
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4.1. Connecting orbits with passages close to collinear or triangular configura-

tions

We consider from now on the global system given by (4) and we focus our365

attention on connecting orbits with a passage close to a collinear or a triangular

configuration. We say that a connecting orbit for the global system is of type

mi − Lk − mj , for i, j ∈ {1, 2} and k ∈ {1, ..., 5}, if it is a collision orbit with

mi backwards in time, collision orbit with mj forwards in time, and along its

trajectory it has a close approach to the homothetic solution generated by L±
k370

–in short, we will say that the orbit has a close passage to Lk, although strictly

speaking there are no equilibrium points in Int(D)–. This implies that at some

time the position of the particle and the primaries is close to a collinear or

triangular configuration. We observe that, due to the connection diagram of

each boundary problem (θ = ±π/2) discussed in the previous section, it is375

natural to find connecting orbits that have several passages close to different

Lm, m ∈ {1, ..., 5}.

The procedure to find initial conditions that lead to (typically non-symmetric)

connecting orbits of type mi − Lk − mj is described as follows. Consider an in-

variant manifold of an equilibrium point of the lower boundary, W s,u(L−
k ) for380

some k ∈ {1, .., 5}. We take initial conditions (z0,w0) on W s,u(L−
k ) but with

a value of θ0 at a certain distance of −π/2, θ0 = −π/2 + δ with δ > 0. We

integrate this initial condition for the global system forwards and backwards in

time for θ ∈ [−π/2 + ϵ1, π/2 − ϵ2], with 0 < ϵ1, ϵ2, and ϵ1 < δ. The key point is

to find suitable initial conditions (θ0, z0,w0) such that we can guarantee that385

for the global flow, the associated orbit is a connecting orbit having a close

path to Lk (or even to more equilibrium points). In general, we take initial

conditions on W s(L−
k ) and a small value of δ (usually of order 10−3) . Starting

close to the lower boundary problem and integrating backwards, we can use the

knowledge of the behavior of the invariant manifolds in that boundary problem390

to obtain collision orbits with a desired primary. To select the appropriate ini-

tial conditions corresponding to collision orbits forwards in time, we apply the

C-criterium. It is also possible to start with Wu(L−
i ) (that is the case of the
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examples shown in Figure 8). In that case, we have considered bigger values

of δ (of order 0.05), so that the initial conditions are not so close to the lower395

boundary problem. In this case is not possible to use the knowledge of the

behavior of that invariant manifold on the lower boundary problem, and the

C-criterium is also used backwards in time to select the initial conditions that

correspond to collision orbits.

Finally, the same strategy can be applied starting at initial conditions close400

to the upper boundary manifold.

We show some particular examples of different connecting orbits visiting one

or more equilibrium points. The plots in configuration space z show the location

of the equilibrium points with crosses (in fact the projection in configuration

space of the homothetic solutions). In the plots using the inertial coordinates405

Z, we show the positions of the primaries (along their parabolic orbits) and the

particle at three different times t1 < t2 < t3. The time t2 has been chosen such

that the trajectory of the particle is close to a collinear or triangular configura-

tion. The marks used to show the location of the bodies at the three times are

showed in the following table.410

t1 t2 t3

△ • ∗

In Figure 7, we show a solution of type m2 −L2 −m2. The orbit is obtained

starting with initial conditions on W s(L−
2 ). On the left, we can see the projec-

tion in the synodic configuration space, on the right, the projection in the Z

coordinates. Initially, for a range of time including t1, the particle surrounds the415

fixed position of m2 in synodic coordinates (the particle spins arround m2 on

and on along its parabolic orbit in sidereal coordinates). At time t2 the particle

is close to the collinear point L2 in synodic coordinates, which corresponds to a

quasi collinear configuration where the three bodies are almost aligned. As the

time increases, the particle gets captured around m2.420

In Figure 8, we show two orbits: one of type m1 − L2 − m2 (orbit “a”) and

one of type m1−L2−m1 (orbit “b”). In both cases, we have started on Wu(L−
2 )
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Figure 7: Solution of type m2 − L2 − m2 of the global system. Left: projection in the

synodic configuration space. Right: projection in the inertial system Z. The marks with

labels m0, m1, m2 denote the position of the primaries and the particle at three different

times t1 < t2 < t3. The position at t2 corresponds to the passage close to L2.

(with θ close to −π/2). We want to stress that whereas along the span of time

from capture around m1 to the close passage to L2 both orbits are quite close

to each other, after the passage close to the collinear configuration, they evolve425

in a complete different way. One orbit is captured by m2 whereas the other one

is captured by m1. So we remark that, some times, a small change in the initial

conditions may give rise to rather different behaviors. Of course this is due to

the presence of the invariant manifold of L2.

In Figure 9 two solutions with close passages to two equilibrium points are430

shown: one of type m2 −L3 −L2 −m2 and the other of type m2 −L3 −L2 −m1.

In this case, the orbits are almost coincident for t ≤ t2, leaving a neighborhood

of m2 and having a passage close to a collinear configuration. Then, they

have different evolutions forwards in time. The invariant manifold of L+
2 is the

responsible for the separation of both trajectories: while one particle goes to435

collision with m1, the other one goes to collision with m2. Clearly, in between

there must exists a trajectory belonging to W s(L+
2 ) connecting m2 with L+

2 .

Other examples are shown in Figure 10. The left plot shows two orbits

visiting three equilibrium points: orbit “a” is a connecting orbit of type m2 −
L2 −L4 −L3 −m2 whereas orbit “b” is an escape one. It is also clear that there440

23



-4

-2

 0

 2

 4

-5 -3 -1  1  3  5

y

x

-0.2

-0.1

 0

 0.1

 0.2

-0.6 -0.3  0  0.3  0.6

a

b

-20

-10

 0

 10

 20

-100 -50  0  50  100

m1

m2

m0

m1,m0

m2,m0

a

b

-3

-1.5

 0

 1.5

 3

-4 -2  0  2  4

a
b

-150

-100

-50

 0

 50

 100

 150

-7500 -5000 -2500  0  2500  5000  7500

Y

X

m1

m0

m2

Figure 8: Solutions of type m1 − L2 − m1 and m1 − L2 − m2. Top: projection in the synodic

configuration space. Bottom: projection in the inertial system Z. The marks with labels

m0, m1, m2 denote the position of the primaries and the two particles at three different times

t1 < t2 < t3. The position at t2 corresponds to the passage close to L2.

is an intermediate heteroclinic orbit from m2 to L+
3 with a close passage L4.

Simililarly the right plot shows two orbits: a solution orbit of type m2 − L3 −
L5 −m1, an escape one m2 −L3 −L5 −∞ and there must exist an intermediate

one connecting m2 and L+
5 .

Finally starting with initial conditions on W s(L−
4 ) or Wu(L−

4 ) and θ close445

to −π/2, we show in Figure 11 two orbits with a close passage to a triangular
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the two particles at three different times t1 < t2 < t3. The position at t2 correspond to the

passage close to L3.

configuration: one of type m2 − L4 − m1 (left) and another one of type m2 −
L2 − L4 − m2.

4.2. Symmetric connecting orbits

The procedure to find initial conditions that lead to symmetric connecting450

orbits is based on symmetries (7) and (8). On one hand, using the symmetry

25



-8

-6

-4

-2

 0

 2

 4

-2  0  2  4  6  8

y

x

-0.5

 0

 0.5

 1

 0  0.5  1  1.5

a
b

-2

-1.5

-1

-0.5

 0

 0.5

-0.5  0  0.5  1

y

x

Figure 10: Projection in the synodic configuration space of solutions of the global system.
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Figure 11: Projection in the synodic configuration space of solutions of the global system.

Left: of type m2 − L4 − m1. Right: of type m2 − L2 − L4 − m2.

(7) if an orbit leaves a neighborhood of one primary, and crosses the section

θ = 0 such that y = x′ = 0, the trajectory will end at the same primary. This is

a connection mi − mi symmetric with respect to the x axis on the (x, y) plane.

On the other hand, using both (7) and (8), if an orbit leaves a neighborhood of455

one primary, and crosses the section θ = 0 such that x = y′ = 0, the trajectory

will end at the other primary. This is a connection mi − mj , i ̸= j symmetric

with respect to the y axis on the (x, y) plane.

We have explored these two kind of connections in the following way. Take
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initial conditions at θ = 0 in the plane (x, y′) (connecting orbits for the same460

primary) and in the plane (y, x′) (connecting orbits between different primaries).

Integrate such initial conditions forwards and classify them, using the C-criterium,

depending whether the orbit is a collision orbit with one of the primaries or the

orbit escapes to infinity.

Notice that in some cases the integration cannot be done until C = 8, when465

the C-criterium is applied, due to the fact that the orbit has a close encounter

to one primary. At these points a binary collision regularization should be

performed in order to continue the integration. Instead, we classify the orbit as

“possible collision with the primary”.

To avoid unnecessary computations, we discard initial conditions of the470

planes (x, y′) and (y, x′) at θ = 0 such that the value of the Jacobi function

C is greater than C3 or C2, so that the C-criterium applies directly without

integration. More precisely, the curves C = C3 and C = C2 determine a subset

of the escape and capture regions. Notice that on the plane (y, x′) the curve

C = C2 does not play any role. Moreover, using the symmetries of the problem,475

it is enough to do the computation in the positive x and y planes respectively.

The detailed regions of escape and capture on the (x, y′) and (y, x′) planes are

shown in Figure 12, left and right, respectively.

As we saw in the previous section, the codimension 1 invariant manifolds

associated to the collinear equilibrium points separate the different types of or-480

bits and these are precisely the boundaries of the escape and capture regions

plotted. In order to show this assertion, we consider a region where three dif-

ferent regions (escape, capture around m1 and capture around m2) meet, for

example in the (y, x′) plane, see Figure 13 left. More precisely, we focus on

[0.52952, 0.52968] × [−3.33108,−3.33093], around a point where three different485

regions meet, see Figure 13 right. We take a circle centered at the common point

to the three different regions and a small radius, for instance 0.00005. We take

initial conditions on this circle parameterized by an angle φ varying from 0 to

2π counterclockwise, and consider the corresponding orbits. We show the final

evolution of these orbits varying φ in Figure 14. We start at a given point, la-490
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Figure 12: Regions of escape (white regions) and capture around m1 (blue) and m2 (red) in

the (x, y′) (left) and (y, x′) (right) planes. The regions in green and light blue correspond to

orbits that reach a neighborhood of m1 or m2, respectively, but the integration has stopped

without classifying the point. The curves C = C3 and C = C2 correspond to the points at

which the Jacobi function values C3 and C2 respectively.

beled by “a”. This point belongs to the region of capture orbit around m2. As φ

increases, the orbits are of the same type until the boundary between this region

and the escape region is crossed, see orbits labeled “b” and “c”. We can see in

Figure 14 that there is a precise value of φ, such that the orbit tends asymptot-

ically to L3. That orbit belongs to W s(L+
3 ), which separates the capture orbits495

around m2 and escape orbits. Increasing again φ, we obtain escape orbits until

the boundary between escape and capture around m1 is crossed, orbits “d” and

“e”. We can see that the point in that boundary corresponds to an orbit that

belongs to W s(L+
1 ). Finally, increasing φ we have points in the capture region

around m1 until the boundary with the capture region around m2 is reached500

again, orbits “f” and “a”. In this case, the boundary corresponds to an orbit

on W s(L+
2 ). Therefore, the manifolds of L+

i , i = 1, 2, 3 are the boundaries that

separate the different behaviors of capture and escape. The initial conditions of

the orbits labeled as “a,”. . .,“f” are shown in Table 2. We also want to stress

that the common point to the three regions is precisely associated to an orbit505

tending to L+
5 . Notice that all the orbits have a close passage to L5.
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Figure 14: Orbits showing the transitions between capture around m1, m2 and escape. The

separatrix orbits of these transitions are asymptotic orbits tending to Li, i = 1, 2, 3.

5. Conclusions

All possible trajectories connecting A and B (A and B being an equilibrium

point, or a collision with a primary, or escape) have been established, except the

ones that require a regularization of the singularities of the equations of motion.510

This was done using the map of heteroclinic connections and the C-criterium.

A zoo of symmetric and nonsymmetric connecting orbits is presented using

different strategies. The first one is based on the knowledge of the invariant
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y x′

a 0.5296428592578155 -3.3309921580556328

b 0.5295965978644199 -3.3309718860907380

c 0.5295965977084045 -3.3309718861089928

d 0.5296063350369673 -3.3310713928937119

e 0.5296063351935617 -3.3310713928813760

f 0.5296499612337321 -3.3310060964681765

Table 2: Initial conditions corresponding to the orbits a,. . .,f shown in Figure 14.

manifolds associated to the equilibrium points while in the second one, the

most important role is played by the symmetries of the problem.515

In the case of interacting disk galaxies (each galaxy treated as a point mass

embedded by a disk of test or massless particles) the present model shows that,

after a galaxy close encounter, the regions of the phase space where the test par-

ticles remain or not around each galaxy are confined by the invariant manifolds

of the equilibrium points.520
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