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Abstract. Christopher in 2006 proved that under some assumptions the linear parts
of the Lyapunov constants with respect to the parameters give the cyclicity of an
elementary center. This paper is devote to establish a new approach, namely paral-
lelization, to compute the linear parts of the Lyapunov constants. More concretely,
it is showed that parallelization computes these linear parts in a shorter quantity of
time than other traditional mechanisms.

To show the power of this approach, we study the cyclicity of the holomorphic
center ż = iz + z2 + z3 + · · · + zn under general polynomial perturbations of degree
n, for n ≤ 13. We also exhibit that, from the point of view of computation, among
the Hamiltonian, time-reversible, and Darboux centers, the holomorphic center is the
best candidate to obtain high cyclicity examples of any degree. For n = 4, 5, . . . , 13,
we prove that the cyclicity of the holomorphic center is at least n2 +n−2. This result
give the highest lower bound for M(6),M(7), . . . ,M(13) among the existing results,
where M(n) is the maximum number of limit cycles bifurcating from an elementary
monodromic singularity of polynomial systems of degree n. As a direct corollary we
also obtain the highest lower bound for the Hilbert numbers H(6) ≥ 40, H(8) ≥ 70,
and H(10) ≥ 108, because until now the best result was H(6) ≥ 39, H(8) ≥ 67, and
H(10) ≥ 100.

1. Introduction

Poincaré began investigating limit cycles of planar polynomial differential systems in
the 1880s. In 1900 David Hilbert presented a list of 23 problems in the International
Congress of Mathematicians in Paris. The second part of the 16th problem is the
estimation of the maximal number, H(n), and relative positions of limit cycles for planar
polynomial vector fields of degree n. By now, over a century, within the framework of
investigation of this problem, numerous theoretical and numerical results were obtained,
see the survey articles of Ilyashenko and Li, [11, 13]. However, this problem remains
almost completely unsolved even for quadratic vector fields. The best lower bounds of
H(n) for different n among the literature can be found in [9] except that H(4) ≥ 26
and H(6) ≥ 39 which was obtained by [12] and [14] respectively.

There are several particular versions of Hilbert’s 16th problem. Arnold in 1977 pro-
posed a so-called weakened version to study the number of isolated zeroes of the Abelian
integrals [1]. This number gives the number of limit cycles bifurcating from the period
annulus of Hamiltonian systems. The second version is to determine the maximal num-
ber of limit cycles of Liénard systems, see [10] and references therein. Another particular
version of Hilbert’s 16th problem is to estimate the maximum number M(n) of small
amplitude limit cycles bifurcating from an elementary center or an elementary focus,
see [21].
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The answer to the question about which is the value of M(n) for any n is only known
for degree 2. Bautin [2] proved that M(2) = 3. For cubic system without quadratic
terms, Sibirskĭı in [18] proved that at most five limit cycles could be bifurcated from
one critical point. Żo ladek in [21] found an example where 11 limit cycles could be
bifurcated from the center of a cubic system. Christopher in [4] provided a simple proof
of Żo ladek’s result. Bondar and Sadovskii in [3] also provide an example of a family
of cubic systems which have at least 11 limit cycles. Recently, Żo ladek revisited his
example in [23]. Perturbing concrete examples of quartic and quintic systems, Giné in
[8] proved that M(4) ≥ 21 and M(5) ≥ 26. Very recently, Liang and Torregrosa in [14]
proved that M(6) ≥ 39, M(7) ≥ 34, and M(8) ≥ 46.

An efficient method to produce limit cycles from a singularity of the center-focus
type is calculating the Lyapunov quantities when small perturbations are considered,
see [2, 4, 8] and references therein. There are several ways to introduce the Lyapunov
quantities. The reader can find a suitable definition in many standard textbooks of
ordinary differential equations, see for example [5]. In what follows we will briefly
introduce some definition, notation and symbols which are very closely to the main
topic of the present paper.

It is well known that a planar polynomial differential system of degree n which has an
elementary center or weak focus at the origin can be written using complex coordinates,
z = x+ iy, in the form

ż = iz + pn(z, z̄,λ), (1)

where λ = (λ1, λ2, . . . , λm) ∈ Cm and pn(z, z̄,λ) = λ1z +
∑n

k+`=2 ck,`(λ2, . . . , λm)zkz̄`

with ck,`(λ2, . . . , λm) ∈ C.
There is always an analytic positive definite function V (z, z̄) in a neighborhood of

the origin such that X(V ) =
∑∞

k=0 vk(zz̄)k+1, where X is the vector field associated to
equation (1). That is, X(V ) is the rate of change of V along the orbits of (1). The
coefficient vk = vk(λ) is called the k-Lyapunov constant of (1) at the origin. Obviously,
v0 = 2λ1. The origin is a center if and only if vk = 0 for all k ≥ 0. We call the set of
parameters for which all the Lyapunov constants vanish the center variety. If λ1 6= 0,
then equation (1) has a strong focus at the origin. If vk(k ≥ 1) is the first nonzero
constant, then the origin is a weak focus of order k. The focus order k is the upper
bound of the numbers of limit cycles which bifurcate from the focus under analytic
perturbations, see [15]

In case that λ1 = 0, vk(k = 1, 2, . . .) are polynomials in ck,`(λ). Moreover, from [17]
we know that vk is determined modulo v0, . . . , vk−1 in spite of the choice of function V
is not unique. Let L(0) = 2πλ1 and L(k) = vk modulo v0, . . . , vk−1 for k = 1, 2, . . ..
We call L(k) the k−Lyapunov quantities. According to the Hilbert Basis Theorem, the
ideal generated by the Lyapunov quantities has a finite number of generators. Thus,
theoretically to distinguish a center from a focus, or to determine the order of a weak
focus, can be solved in finite number of steps. However, for any given case, with few
exceptions, it is unknown a priori how many steps are required.

In general the calculation of the Lyapunov constants or Lyapunov quantities by hand
is impossible except in the simplest cases. Therefore, the research on the computation of
the Lyapunov constants using computers is attracting more and more attention. Several
computational methods have been developed, see the paper [20] and the textbook [5]
for instance.

However, even when the computation is implemented in a computer, the compu-
tational problems are still very hard due to the big size, besides the number, of the
coefficients of the polynomials in the parameters of the vector field. Christopher in [4]
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developed a simple computational approach to estimate lower bounds for the cyclicity
of centers. The idea consists in taking into account the lowest terms of the Lyapunov
quantities with respect to the parameters. As it was shown by several examples, this
approach has three nice aspects. The first is the removal of the necessity of lengthy cal-
culations. The second is that the complex independence arguments are replaced by the
linear independence ones. The third is that it gives room for a more creative approach
to estimating cyclicity.

The idea behind Christopher’s approach is the following. Suppose that s is a point
on the center variety. If we can choose independent L(0), L(1), . . . , L(k) values in a
neighborhood of s ∈ Cm, then with a properly choice of the parameter values we can
have that 0 < |L(0)| � |L(1)| � |L(2)| � · · · � |L(k)| and L(0), L(1), L(2), . . . , L(k)
having alternate signs. Hence according to [16], we can produce k limit cycles one by
one.

Christopher has proved that in many cases it suffices to calculate the linear part of
L(i) with respect to the parameters. See the following theorem.

Theorem 1.1 ([4]). Suppose that s is a point on the center variety and that the first
k of the L(i) have independent linear parts (with respect to the expansion of L(i) about
s), then s lies on a component of the center variety of codimension at least k + 1 and
there are bifurcations which produce k limit cycles locally from the center corresponding
to the parameter value s.

Applying this Theorem, Christopher in [4] studies the cubic center C31 in Żo ladek’s
classification [21]. A computation shows that the linear parts of L(1), L(2), . . . , L(11)
are independent in the parameters. Since L(0) = 2πλ1 already, 11 limit cycles can
bifurcate from this center. This number of limit cycles coincides with the one obtained in
[21]. Giné in [8] used Christopher’s method (together with the second order bifurcations)
to obtain high cyclicities for several classes of centers.

However, for polynomial systems of high degree with a lot of parameters, in practice
the computation of the linear parts of the Lyapunov constants is still very complicated.
In fact, the systems considered in both [4] and [8] are of very low degree (degrees 3, 4
in [4] and degree 5 in [8]). While Giné study the polynomial systems of degrees 6, 8,
9, he has to assume that the system has only homogeneous nonlinear terms [8]. We
observe that, using a computer to do the calculations for general polynomial systems
of high degree, we need to wait a long time. For example, for the holomorphic center
ż = iz+z2+z3+ · · ·+z9 under the general polynomial perturbation of degree 9 without
linear nor constant terms (104 real parameters) our computer needs more than 4 days
of CPU time1.

Therefore, in order to go further with Christopher’s method, we need to reduce the
computation waiting time. The main aim of the present paper is to develop a par-
allelization procedure for computing the linear parts of the Lyapunov constants. We
define Ml(n) as the number of limit cycles which bifurcate from the polynomial ele-
mentary monodromic singularity of degree n, by using linear parts of the Lyapunov
constants with respect to the parameters. We call Ml(n) the linear cyclicity for polyno-
mial system of degree n. It is clear that Ml(n) ≤M(n). Thus Ml(n) give a lower bound
of M(n). For any given polynomial system of degree n, if we perturb its coefficients,
starting from the quadratic terms, essentially there will be at most n2 + 3n − 4 free

1The computations are done with MAPLE 18 in a Xeon computer (CPU E5-450, 3.0 GHz, RAM
32 Gb) with GNU Linux.
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parameters and hence Ml(n) ≤ n2 + 3n − 4. We would like to mention here that the
author of [7] conjectured this upper bound should be less than or equals to n2 + 3n− 7.

Another work of this paper is to find a highest possible lower bound for Ml(n) (and
hence for M(n)), for several relative large degree n. Employing the parallelized proce-
dure we are able to deal with the cases n = 7, 8, . . . , 13. However, a priori we do not
know which type of centers will give rise to the highest cyclicity. Thus we will search
for the best candidate among the Hamiltonian centers, the time-reversible centers and
some Darboux centers. After calculating about 6 000 examples we have found that the
best candidate to provide the highest cyclicity are the Darboux ones. Nevertheless, in
general the Darboux centers are very hard to find and hence, instead we consider a
class of holomorphic centers with the complex form ż = iz +

∑n
j=2 z

j. This class of

centers is also a family of Darboux centers because the equation ż = f(z) possesses an

integrating factor of the form (f(z)f(z))−1, see [6]. Our result is the following theorem.

Theorem 1.2. The cyclicity of the holomorphic center ż = iz +
∑n

j=2 z
j is at least

n2 + n − 2 for 4 ≤ n ≤ 13 and 9 for n = 3, under general polynomial perturbations of
degree n.

As a direct consequence of Theorem 1.2 we obtain the highest lower bounds of M(n)
for 5 ≤ n ≤ 13 among the literature.

Corollary 1.3. For each n = 5, 6, . . . , 13 we have M(n) ≥ n2 + n− 2.

Since H(n) ≥M(n), we can also improve the Hilbert number when n = 6, 8, 10. The
best previous known results show that H(6) ≥ 39, H(8) ≥ 67, and H(10) ≥ 100. Now
we get from the above result that

Corollary 1.4. Suppose that H(n) is the Hilbert number for the class of polynomial
vector fields of degree n. Then H(6) ≥ 40, H(8) ≥ 70, and H(10) ≥ 108.

In the proof of Theorem 1.2 we will show how the parallelization procedure reduces
the waiting time of computation, see Table 1 in Section 4. From this table we also
found that it is almost impossible to compute the cases of degree 11, 12, and 13 in the
traditional way.

This paper is organized as follows. In Section 2 we establish the linear property
for the linear parts of the Lyapunov quantities with respect to the parameters. This
property is the foundation of the parallelization procedure. An example is also provided
to illustrate how it works. In Section 3 we exhibit that the best center candidate to
produce high cyclicity is a Darboux center. In Section 4 we study the number of limit
cycles bifurcating from some holomorphic centers, using the parallelization procedure
for computing the linear parts of the Lyapunov constants.

2. Linear property of the linear parts of the Lyapunov constants

This section is devoted to the proof of the following theorem which shows the linear
property of the linear parts of the Lyapunov constants. Afterward, we give an example
to illustrate how this property can be applied in the explicit computations.

Theorem 2.1. Let p(z, z̄) be a polynomial starting with terms of degree 2. Let Qj(z, z̄,λ)
be analytic functions such that Qj(0, 0,λ) ≡ 0 and Qj(z, z̄,0) ≡ 0, for j = 1, . . . , s. Let

a1, . . . , as be any s fixed constants. Suppose that v
Qj

k are the k-Lyapunov constants of
equations

ż = iz + p(z, z̄) +Qj(z, z̄,λ), λ ∈ Cm, for j = 1, . . . , s. (2)
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Then the linear part, with respect to the components of λ, of a1v
Q1

k + · · ·+ asv
Qs

k is the
linear part of the k-Lyapunov constant of equation

ż = iz + p(z, z̄) + a1Q1(z, z̄,λ) + · · ·+ asQs(z, z̄,λ), (3)

with respect to the components of λ.

Proof. We recall that the way to find the Lyapunov constants of a given vector field
X = X(z, z̄,λ) at the origin is, as it is given in [4], as follows. We seek a positive
definite analytic function W = W (z, z̄,λ) in a neighborhood of the origin such that

X(W ) =
∞∑

k=0

βkr
2k+2,

with r2 = zz̄. If we want to find the term of degree j of βk with respect to the parameters
λ, it turns out to be equivalent to solve the following equations step by step:

X0(W0) =

{
0, if X0 has a center at the origin,

β̄`r
2`+2 + · · · , if X0 has a weak focus at the origin with order `,

(4)

X0(W1) +X1(W0) =
∞∑

k=0

βk,1r
2k+2, (5)

X0(Wj) +X1(Wj−1) + · · ·+Xj(W0) =
∞∑

k=0

βk,jr
2k+2,

where Xj,Wj, and βk,j are the terms of degree j of X, W, and βk, respectively, with
respect to the parameters λ.

This means that βk,1 is the linear part of the k-Lyapunov constant of vector field
X if and only if there exists a positive definite analytic function W0 = W0(z, z̄) and
W1 = W1(z, z̄,λ) (linear in λ) such that both (4) and (5) are satisfied.

Suppose that WQj(z, z̄,λ) is the positive definite analytic function in a neighborhood
of the origin such that

XQj(WQj) =
∞∑

k=0

v
Qj

k r2k+2, (6)

where XQj are the vector fields associated to equations (2).
Let

XQj = X0 +X
Qj

1 +X
Qj

2 + · · · , WQj = W0 +W
Qj

1 +W
Qj

2 + · · · ,

where X
Qj

k (resp. W
Qj

k ) is the term of degree k of XQj (resp. WQj) with respect to λ.

Denoted by v
Qj

k,1 the linear term of v
Qj

k with respect to the parameters. It follows from
(6) that

X0(W
Qj

1 ) +X
Qj

1 (W0) =
∞∑

k=0

v
Qj

k,1r
2k+2, j = 1, . . . , s. (7)

By the linear property of vector field, we obtain from (7) that

X0

(
s∑

j=1

ajW
Qj

1

)
+

(
s∑

j=1

ajX
Qj

1

)
(W0) =

∞∑

k=0

(
a1v

Q1

k,1 + · · ·+ asv
Qs

k,1

)
r2k+2.
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Therefore, there exists a function W1 := a1W
Q1

1 + · · · + asW
Qs

1 being linear in the
parameters such that

X0(W1) +
(
a1X

Q1

1 + · · ·+ asX
Qs

1

)
(W0) =

∞∑

k=0

(
a1v

Q1

k,1 + · · ·+ asv
Qs

k,1

)
r2k+2.

We remark that a1X
Q1

1 + · · · + asX
Qs

1 is exactly the linear part of the vector field X

associated to equation (3), thus W1 and βk,1 := a1v
Q1

k,1 + · · · + asv
Qs

k,1 are the solutions
of equation (5). Clearly equation (4) is satisfied automatically and hence the proof is
complete. �

The advantage of applying Theorem 2.1 is the following. In computation of the
linear part of the Lyapunov constants with respect to the parameters of polynomial
equation ż = iz + pn(z, z̄) +

∑n
k+`=2 λk,`z

kz̄`, we will one-by-one compute the linear

part of each Lyapunov constant of equation ż = iz + pn(z, z̄) + λk,`z
kz̄`. After all the

computation have been done, we take the summation of all the results and hence we
obtain the linear part of the Lyapunov constant of the original complete equation. The
computation done in this way is called parallelization. Additionally, when we implement
this procedure, the computations in each separate equation given by each perturbating
monomial are shorter in size and time. Clearly, if we use several computers to do the
computations for different λk,`z

kz̄` simultaneously, then the total waiting time will be
reduced drastically. We will compare, at the end of Section 4, both the time differences
between the computations when they are done, when it is possible, in the traditional
way using only one computer and with the parallelization procedure using a cluster of
computers.

Next we give an example to illustrate the parallelization procedure. Consider the
equation

ż = iz + 10z2 + 5zz̄ + (3 + 4i)z̄2 + (λ2iz
2 + λ3zz̄ + λ4z̄

2), (8)

where λj (j = 2, 3, 4) are real small parameters.
The unperturbed system of (8) in its real form is

ẋ = −y + 18x2 + 8xy − 8y2, ẏ = x+ 4x2 + 14xy − 4y2. (9)

It has a first integral

H =
(80x3 − 480x2y + 960xy2 − 640y3 + 120xy − 240y2 − 30y − 1)2

(20x2 − 80xy + 80y2 + 20y + 1)3
.

Therefore, system (9) has a center at the origin.
Now we employ the parallelization to compute the linear part of the Lyapunov con-

stants for equation (8) at the origin. By direct computation using the algorithm of [5]
we obtain the first three linear parts of the Lyapunov constants of equations (8)λ3=λ4=0,
(8)λ2=λ4=0, and (8)λ2=λ3=0, which are respectively

v`,Q1

1 = −10πλ2, v
`,Q1

2 = 16000πλ2, v
`,Q1

3 = −682934375πλ2
18

,

v`,Q2

1 = 0, v`,Q2

2 =
2000πλ3

3
, v`,Q2

3 = −16356250πλ3
9

,

and

v`,Q3

1 = 0, v`,Q3

2 = 0, v`,Q3

3 = 18750πλ4.
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According to Theorem 2.1, the first three linear parts of the Lyapunov constants of
equation (8) are

v`1 = v`,Q1

1 + v`,Q2

1 + v`,Q3

1 = −10πλ2,

v`2 = v`,Q1

2 + v`,Q2

2 + v`,Q3

2 = 16000πλ2 +
2000πλ3

3
,

v`3 = v`,Q1

3 + v`,Q2

3 + v`,Q3

3 = −682934375πλ2
18

− 16356250πλ3
9

+ 18750πλ4.

(10)

With the goal of checking the correctness of (10), we also compute the Lyapunov
constants of equation (8) in a direct way. It turns out that

v1 =− 2πλ2(5 + λ3),

v2 =
2π(5 + λ3)

3
(18λ32 + 27λ2λ

2
3 + 3λ2λ3λ4 + 8λ22 + 759λ2λ3 − 25λ2λ4 + 8λ23 + 4800λ2

+ 200λ3),

v3 =− π(5 + λ3)

18
(1944λ52 + 4572λ32λ

2
3 + 8λ32λ3λ4 + 3384λ2λ

4
3 + 1112λ2λ

3
3λ4 + 3816λ42

+ 150504λ32λ3 − 28592λ32λ4 + 2082λ22λ
2
3 + 209256λ2λ

3
3 + 15408λ2λ

2
3λ4 + 1242λ43

+ 938100λ32 + 31300λ22λ3 − 336λ22λ4 + 4525685λ2λ
2
3 − 35558λ2λ3λ4 + 69240λ33

− 876λ23λ4 − 732150λ22 + 41353200λ2λ3 − 491150λ2λ4 + 1216450λ23

− 24600λ3λ4 + 136586875λ2 + 6542500λ3 − 67500λ4).

By the above expression it is not hard to check that the linear part of the above complete
expressions with respect to λ2, λ3, λ4 are just the same as (10).

Remark 2.2. From (10) we know that v`1, v
`
2, v

`
3 are linearly independent. Thus if we

add the linear perturbation λ1z to equation (8), we obtain three limit cycles which emerge
from the origin. This provides a simple example of a quadratic system with three limit
cycles.

Remark 2.3. Usually the expressions of the Lyapunov constants can be simplified by
modulo the previous ones. In fact, in our example the first three Lyapunov constants
v1, v2, and v3 can be replaced with the three quantities L(1) = −2λ2(5 + λ3), L(2) =
16λ33/3 + 160λ23 + 2000λ3/3, L(3) = 150λ23λ4 + 4500λ3λ4 + 18750λ4. The linear part of
the Lyapunov constants can also be done in the same way. But, certainly, the number
of independent Lyapunov constants is invariant.

3. Searching the highest linear cyclicity of centers by application of
parallelization

In the present section we will apply the parallelization procedure to find the best
centers which give rise to the highest cyclicity explicit vector fields. More precise,
we will study the limit cycles bifurcating from the Hamiltonian, time-reversible and
Darboux centers, by using the linear part of the Lyapunov constants with respect to
the parameters.

3.1. Linear cyclicity of Hamiltonian centers. We have computed more than 4 000
random Hamiltonian centers with different degrees. They are: 1 000 quadratic Hamil-
tonian systems, 1 000 cubic Hamiltonian systems, 1 000 quartic Hamiltonian systems,
1 000 quintic Hamiltonian systems, 300 Hamiltonian systems of degree 6, and 50 Hamil-
tonian systems of degree 7. In almost all cases, the number of independent linear parts
of the Lyapunov constants with respect to the parameters are respectively 2, 5, 9, 14,
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20, and 27. It is clear that these Hamiltonian systems can not provide a lower bound
for Ml(n) bigger than (n2 + n− 2)/2. But in almost all cases we have that number of
limit cycles. Using the parallelization procedure, the total computing time is, with our
computers, about 30 hours.

3.2. Linear cyclicity of time-reversible centers. First we remember that a system
has a time-reversible center if it has a center and it is invariant (for example) by the
change (x, y, t)→ (x,−y,−t). We have computed 2 000 random time-reversible centers
with different degrees. They are: 500 quadratic systems, 500 cubic systems, 250 quartic
systems, 250 quintic systems, 250 systems of degree 6, and 250 systems of degree 7.
We have found that, in almost all cases, the number of independent linear parts of the
Lyapunov constants with respect to the parameters are respectively 2, 6, 11, 17, 24,
and 32. It is clear that these time-reversible systems can not provide a lower bound
for Ml(n) bigger than (n2 + 3n− 6)/2. But in almost all cases we have that number of
limit cycles. Using the parallelization the total computing time is about 16 hours.

3.3. Linear cyclicity of general Darboux centers. In this part we will first consider
some of the known Darboux centers with high linear cyclicity when the degree is fixed
to n = 2, 3, 4, 5. The selected quadratic Darboux center is equation (8). As we have
done in Section 2, it holds that Ml(2) ≥ 3. The cubic Darboux centers are the systems
in [3, 4]. These systems have a Darboux first integral of the form

H =
(−42x+ 7y + 1)3f

(448x2 + 336xy + 63y2 − 44x− 12y + 1)3(1183x2 − 68x+ 1)

with f = −10752x3−29568x2y−17640xy2−3024y3 +1600x2 +2760xy+576y2−74x−
57y + 1 and

H =
(xy2 + x+ 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + 2)2
, (11)

respectively. The first has a center at the origin and the second at (342/53, 140/53).
Bondar and Sadovskĭı in [3] and Christopher in [4] actually proved that Ml(3) ≥ 11. The
quartic and quintic Darboux centers selected are respectively system (6) and system
(17) appearing in [8]. After computation we check that Ml(4) ≥ 16 and Ml(5) ≥ 23 as
Giné proves in [8].

We note that, the construction of a polynomial Darboux center, whose linear cyclic-
ity can be computed easily, is much harder than the Hamiltonian and time-reversible
centers. We finish this section providing a class of a Darboux polynomial center of
degree n for n ≥ 4. The construction of these centers is inspired by the cubic family of
(11), which was originally done in [22],

Proposition 3.1. Let H be the rational function

H(x, y) =
(xy2 + Ax+B)n+2

xn(xu(y) + v(y))2
,

with A2 +B2 6= 0, n ≥ 4,

u(y) =
n−4∑

j=0

ajy
j +

n(n+ 2)A2

8
yn−2 +

(n+ 2)A

2
yn + yn+2, (12)

and

v(y) =
n−3∑

j=0

bjy
j +

n(n+ 2)AB

4
yn−2 +

(n+ 2)B

2
yn. (13)
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Then the system

ẋ = P (x, y) := −Hy/M, ẏ = Q(x, y) := Hy/M, (14)

with M = M(x, y) = (xy2 +Ax+B)n+1/(xn+1(xu(y) + v(y))3), is a polynomial system
of degree n.

Proof. By direct computation we obtain that

P (x, y) = 2x(xy2 + Ax+B)(xu′(y) + v′(y))− 2(n+ 2)x2y(xu(y) + v(y)),

Q(x, y) = (2xy2 + 2Ax−Bn)v(y)− (n+ 2)Bxu(y).

Substituting (12) and (13) into the above expressions, it turns out that

P (x, y) =− 2x

( n−4∑

j=0

(n+ 2− j)ajx2yj+1 +
n−3∑

j=0

(n+ 2− j)bjxyj+1 − (Ax+B)

·
( n−4∑

j=1

jajxy
j−1 +

n−3∑

j=1

jbjy
j−1 +

n(n2 − 4)A2

8
xyn−3 +

n(n2 − 4)AB

4
yn−3

)

− n(n+ 2)B2

2
yn−1

)
,

Q(x, y) =− (n+ 2)B

(
n−4∑

j=0

ajxy
j +

n(n+ 2)A2

8
xyn−2

)
+ (2xy2 + 2Ax− nB)

n−3∑

j=0

bjy
j

+
n(n+ 2)AB

4
(2Ax− nB)yn−2 − n(n+ 2)B2

2
yn.

Obviously, degP = n if A 6= 0 and degQ = n if B 6= 0. �

We can construct a Darboux center of degree n of the form (14). As an example, we
show, in the next proposition, that under a suitable choice of the parameters, system
(14) has a center at the point (−1, 2), for example.

Proposition 3.2. For any integer n ≥ 4, there exist polynomials u, v of the form (12)
and (13) respectively such that system (14) has a center at (−1, 2).

Proof. Let

s1(y) =
n−4∑

j=0

ajy
j, s2(y) =

n−3∑

j=0

bjy
j.

By performing straightforward computations we find that

P (−1, 2) = 0, Q(−1, 2) = 0, Px(−1, 2) +Qy(−1, 2) = 0

hold if

s1(2) =
1

4
B(A2n(n2 − 4)2n−6 − ABn(n2 − 4)2n−5 −Bn(n+ 2)2n−2 + ∆1(2)),

s2(2) =2n−5n(16B − A2(n− 2) + 2ABn) + (8 + 2A+Bn)

·
(

2n−8A2n(n− 2)− 2n−7ABn(n− 2)− 2n−4Bn+
∆1(2))

4(n+ 2)

)
,

(15)
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where ∆1(2) = s′1(2)− s′2(2). Furthermore, if relations (15) are true, then

D :=4(Px(−1, 2)Qy(−1, 2)− Py(−1, 2)Qx(−1, 2))

=− 4
(
2nB(−16B + A2(n− 4)− 2AB(n− 2))n(n2 − 4) + 64Bn∆1(2)

− 64(8 + 2A− 2B)s′2(2)
)2

+B2n(−2n(n+ 2)(128 + n(−2(−8 + A)A

+ 4(A− 4)B + A(A− 2B)n))− 64∆1(2))(2n(16B2 + A3(n− 4)− 3A2B(n− 4)

+ 2AB2(n− 4))n(n2 − 4) + 64(−(4 + A−B + 4n)∆1(2) + 2(4 + A−B)∆2(2))),

where ∆2(2) = s′′1(2)− s′′2(2).
There are many choices of A, B, s1, and s2 such that D > 0 and that at (−1, 2)

neither the denominator nor the numerator of M vanish. Where M is the rational
function defined in Proposition 3.1. Consequently, system (14) has a center at (−1, 2).

For example, we can choose A = −B, s′′1(2) = s′′2(2), s′1(2) = s′2(2) = a and then
we choose s1(2), s2(2) such that relations (15) are satisfied. In this situation we have
D = 9(n − 4)(n2 − 4)2n322n−1B7 + P6(B, n), where P6(B, n) is a polynomial in B of
degree 6. Thus, if n > 4 and B is large enough, then D > 0. If n = 4, we take B = 3
and we obtain D = 65536(46656 + 216a − a2). Thus D is positive when a is a small
number. Clearly, in any case we can choose the values of B and a such that the point
(−1, 2) does not lie in the curves xy2 + Ax + B = 0 and xu(y) + v(y) = 0. This fact
completes the proof. �

Proposition 3.3. There exist Darboux centers of the form (14) of degrees 4, 5, 6, 7
with at least 16, 26, 35, 47 limit cycles respectively bifurcating from the center at (−1, 2)
under polynomial perturbation of the same degree, using the linear parts of the Lyapunov
constants.

Proof. For n = 4, 5, 6, and 7 we take system (14) with A = An, B = Bn, u = un, and
v = vn in Proposition 3.1 where

A4 = −1, u4(y) = y6 − 3y4 + 3y2 + 3151,

B4 = 4, v4(y) = 12y4 − 24y2 − 3648y + 10668,

A5 = −1, u5(y) = y7 − 7

2
y5 +

35

8
y3 + y − 6465749

321132
,

B5 = 1, v5(y) =
7

2
y5 − 35

4
y3 − 875275

91752
y2 + y +

691483

45876
,

A6 = −1, u6(y) = y8 − 4y6 + 6y4 − 40983577

162912
,

B6 = −3

2
, v6(y) = −6y6 + 18y4 − 9704473

61092
y2 +

13333373

122184
,

A7 = −1, u7(y) = y9 − 9

2
y7 +

63

8
y5 +

97542143

258048
y2 − 89413631

64512
y +

75866111

64512
,

B7 = 1, v7(y) =
9

2
y7 − 63

4
y5.

After direct calculation, we obtain the required conclusion. �

We have not check values for n > 7 because it is clear from the above proposition
that when n increases the number of limit cycles using the linear parts of the Lyapunov
constants is less or equal than n2. The examples in next section provides better lower
bounds for M(n).
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As a final conclusion of this section, we remark that among the Hamiltonian, time-
reversible, and Darboux systems, the best ones to produce high cyclicity centers, using
the linear part of the Lyapunov constants, are the Darboux ones. However, from the
point of explicit computation for any fixed degree n, the construction of a Darboux
center is much more difficult than other families.

4. Cyclicity of holomorphic center under polynomial perturbation

There are two aims in this section. The first one is to give examples showing the
power of the parallelization procedure developed in Section 2. The second one is to find
a good lower bound for M(n), for some relative large degrees.

As we have exhibited in the previous section, the best examples to produce high
cyclicity are some Darboux centers. However, from the point of view of explicit com-
putations, the Darboux centers are hard to find. Instead we will study a particular
polynomial holomorphic center of degree n. We recall that an equation ż = iz + f(z)
has a holomorphic center at the origin when f is a holomorphic function such that
f(0) = 0 and Re(f ′(0)) = 0, see [19]. According to Proposition 3.1 of [6], the holomor-
phic center is also a Darboux center. The holomorphic center of degree n studied in
this section is

ż = iz + z2 + z3 + · · ·+ zn.

We are going to deal with a general perturbation of degree n without constant term.
That is

ż = (i+ λ1)z + z2 + z3 + · · ·+ zn +
n∑

k+`=2

(ek,` + fk,`i)z
kz̄`, (16)

where λ1, ek,` and fk,` are small real parameters.
The main result of this section is:

Theorem 4.1. Equation (16) has at least 9 and n2 + n− 2 limit cycles emerging from
the holomorphic center for n = 3 and 4 ≤ n ≤ 13, respectively.

Proof. First assume in (16) that λ1 = 0. For 4 ≤ n ≤ 13, using the parallelization
procedure, we find that the coefficients matrix of the linear part of the corresponding
Lyapunov constants v1, v2, v3, . . . , vn2+n−2, with respect to the parameters ek,`, fk,`, has
rank n2 + n− 2. Hence v`1, v

`
2, . . . , v

`
n2+n−2 are linearly independent. Therefore, adding

the linear perturbation λ1z, equation (16) has n2 + n− 2 limit cycles, which arise from
the holomorphic center. We have not added the explicit expressions of these linear
parts because of the huge size of them. The case n = 3 works in the same way but
the number of linearly independent linear parts of the Lyapunov constants is 9. The
explicit expressions of them, for this cubic family, can be found in the Appendix. �

We note that when the perturbation has only holomorphic monomials,

ż = iz + z2 + z3 + · · ·+ zn + (ek,0 + fk,0i)z
k, (17)

the origin remains as a center. That is, all the Lyapunov constants of equation (17)
are zero and the parameters ek,0 and fk,0 do not make any contribution in producing
limit cycles. Consequently, we have that the total number of essential parameters,
2 + 3 + · · · + n = n2 + n − 2, coincides with the lower bound of the cyclicity given by
the above result.

As an immediate consequence of the above result, we get a lower bound for the number
of small amplitude limit cycles for polynomial vector fields of degrees 4, 5, . . . , 13.

Corollary 4.2. M(n) ≥ n2 + n− 2 for every degree 4 ≤ n ≤ 13.
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Remark 4.3. For 5 ≤ n ≤ 13, Corollary 4.2 provides the highest lower bound of M(n),
among all the known results.

The proof of Theorem 4.1 is based on the computation, with an algebraic manipulator,
of the Lyapunov constants. In practice we found that when we compute them, in the
traditional way, the computation time as well as the size of the constants grow very
fast with the degree n. To reduce the waiting time, we compute only the linear part of
the Lyapunov constants for equation (16) case by case independently. That is, for each
case we only compute them with one-monomial perturbation:

ż = iz + z2 + z3 + · · ·+ zn + ek,`z
kz̄`, or ż = iz + z2 + z3 + · · ·+ zn + ifk,`z

kz̄`,

Finally, we add all the computational results and hence the full expression of the linear
part of the Lyapunov constants are obtained. Theorem 2.1 ensure the validity of this
parallelization procedure.

Table 1 illustrates the advantage of the computation method presented in this paper
for the holomorphic center (16) for n = 3, 4, . . . , 13. The total CPU time is 17 months
but, using the parallel procedure2, the real waiting time is less than 12 days.

n number of cases total time waiting time rank
3 10 8s 8s 9
4 18 2m 6s 18
5 28 12m 30s 28
6 40 1.2h 2m 40
7 54 5.8h 7.4m 54
8 70 1.4d 1.1h 70
9 88 4.9d 3.1h 88
10 108 12.3d 6.3h 108
11 130 33.2d 0.9d 130
12 154 100.1d 2.5d 154
13 180 357.6d 8.0d 180

Table 1. Computation time for the linear parts of the Lyapunov con-
stants of equation (16). The last column shows the rank of the coefficients
matrix of the linear part of the first n2 + n− 2 Lyapunov constants.

The computations to go further in n have two main constraints: the first is the time
needed and the second is the memory requirements. Both restrictions make it almost
impossible to calculate the effective values of the Lyapunov constants for bigger values
of n within a reasonable time.

Remark 4.4. When we handle the quadratic holomorphic center, only one limit cycle
appears from the linear part of the Lyapunov constants. But we can find another one
using the second order terms. Moreover, the third Lyapunov quantity can be expressed
as a polynomial in the first two and the third vanishes when the first two also vanish.
Hence there are no more than two limit cycles emerging from the origin for this quadratic
holomorphic center. For the cubic family, also using approximations of order two,
no more than 9 limit cycles can be found, nor using other cubic holomorphic centers
different from (16).

2The computations are done in a cluster of eight computers with 64 cores in total
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5. Appendix

In this appendix we list, for equation (16) with n = 3, the expressions of the linear
terms of v1, . . . , vn2 with respect to parameters ek,` and fk,`, which are denoted by
v`1, . . . , v

`
n2 .

v`1 =− 2f1,1 + 2e2,1,

v`2 =− 2f1,2 + 12f1,1 − 12e2,1 − 2e1,1 − 4

3
e0,2,

v`3 =f2,1 + 20f1,2 − 105f1,1 − 1

2
f0,3 +

3

2
f0,2 + 104e2,1 + 21e1,1 − 3

4
e0,3 +

41

3
e0,2,

v`4 =− 50

3
f2,1 − 258f1,2 +

12752

9
f1,1 +

41

5
f0,3 − 373

15
f0,2 − 12614

9
e2,1 +

2

3
e1,2 − 824

3
e1,1 +

111

10
e0,3 − 2674

15
e0,2,

v`5 =
7675

24
f2,1 +

57481

12
f1,2 − 2018419

72
f1,1 − 18833

120
f0,3 +

7151

15
f0,2 +

499441

18
e2,1 − 33

2
e1,2 +

40881

8
e1,1

− 24659

120
e0,3 +

1791283

540
e0,2,

v`6 =− 296831

36
f2,1 − 29764657

240
f1,2 +

34692256

45
f1,1 +

5097221

1260
f0,3 − 2581051

210
f0,2 − 45814873

60
e2,1 +

6674

15
e1,2

− 19047371

144
e1,1 +

368121

70
e0,3 − 30919933

360
e0,2,

v`7 =
40837813

144
f2,1 +

1032614491

240
f1,2 − 20324018167

720
f1,1 − 748011683

5376
f0,3 +

6817870105

16128
f0,2 +

5035491263

180
e2,1

− 2774227

180
e1,2 +

1651130047

360
e1,1 − 1942410935

10752
e0,3 +

17158101913

5760
e0,2,

v`8 =− 177051675

14
f2,1 − 26100328784

135
f1,2 +

35195459317213

26460
f1,1 +

2251596398797

362880
f0,3 − 6840775814797

362880
f0,2

− 69794246470681

52920
e2,1 +

1485135871

2160
e1,2 − 778666933763

3780
e1,1 +

5846388826217

725760
e0,3 − 31216718867753

233280
e0,2,

v`9 =
2065517374450619

2903040
f2,1 +

111181806164273311

10160640
f1,2 − 1595247717563460547

20321280
f1,1 − 5067118487024053

14515200
f0,3

+
3848676339819287

3628800
f0,2 +

49448632701419887

635040
e2,1 − 3117488162039

80640
e1,2 +

236838515220943261

20321280
e1,1

− 939874882082747

2073600
e0,3 +

3462158492424717361

457228800
e0,2.
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Comput. 188 (2007), 1870–1877.
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