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Abstract. In this article we obtain the geometric classification of singularities, finite and
infinite, for the two subclasses of quadratic differential systems with total finite multi-
plicity my = 4 possessing exactly three finite singularities, namely: systems with one
double real and two complex simple singularities (31 configurations) and (ii) systems
with one double real and two simple real singularities (265 configurations). We also give
here the global bifurcation diagrams of configurations of singularities, both finite and
infinite, with respect to the geometric equivalence relation, for these classes of quadratic
systems. The bifurcation diagram is done in the 12-dimensional space of parameters
and it is expressed in terms of polynomial invariants. This gives an algorithm for de-
termining the geometric configuration of singularities for any system in anyone of the
two subclasses considered.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx dy
o =poy), o =alxy), (1.1)

where p, g € R[x,y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1.1)
the integer m = max{degp, degq}. In particular we call quadratic a differential system (1.1)
with m = 2. We denote here by QS the whole class of real quadratic differential systems.
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The study of the class QS has proved to be quite a challenge since hard problems formu-
lated more than a century ago, are still open for this class. It is expected that we have a finite
number of phase portraits in QS. We have phase portraits for several subclasses of QS but
to obtain the complete topological classification of these systems, which occur rather often in
applications, is a daunting task. This is partly due to the elusive nature of limit cycles and
partly to the rather large number of parameters involved. This family of systems depends on
twelve parameters but due to the group action of real affine transformations and time homo-
theties, the class ultimately depends on five parameters which is still a rather large number
of parameters. For the moment only subclasses depending on at most three parameters were
studied globally, including global bifurcation diagrams (for example [1]). On the other hand
we can restrict the study of the whole quadratic class by focusing on specific global features
of the systems in this family. We may thus focus on the global study of singularities and their
bifurcation diagram. The singularities are of two kinds: finite and infinite. The infinite singu-
larities are obtained by compactifying the differential systems on the sphere, on the Poincaré
disk, or on the projective plane as defined in Subsection 2 (see [15], [18]).

The global study of quadratic vector fields began with the study of these systems in the
neighborhood of infinity ( [14], [19], [24], [25], [27]). In [8] the authors classified topologically
(adding also the distinction between nodes and foci) the whole quadratic class, according to
configurations of their finite singularities.

To reduce the number of phase portraits in half in topological classification problems of
quadratic systems, the topological equivalence relation was taken to mean the existence of a
homeomorphism of the phase plane carrying orbits to orbits and preserving or reversing the
orientation.

We use the concepts and notations introduced in [2] and [3] which we describe in Section
2. To distinguish among the foci (or saddles) we use the notion of order of the focus (or
of the saddle) defined using the algebraic concept of Poincaré-Lyapunov constants. We call
strong focus (or strong saddle) a focus (or a saddle) whose linearization matrix has non-zero
trace. Such a focus (or saddle) will be denoted by f (respectively s). A focus (or saddle) with
zero trace is called a weak focus (weak saddle). We denote by f () (s the weak foci (weak
saddles) of order i and by ¢ and $ the centers and integrable saddles. For more notations see
Subsection 2.5.

In the topological classification no distinction was made among the various types of foci or
saddles, strong or weak of various orders. However these distinctions of an algebraic nature
are very important in the study of perturbations of systems possessing such singularities.
Indeed, the maximum number of limit cycles which can be produced close to the weak foci of
a system in QS in perturbations inside the class of all QS depends on the orders of the foci.

There are also three kinds of simple nodes: nodes with two characteristic directions (the
generic nodes), nodes with one characteristic direction and nodes with an infinite number
of characteristic directions (the star nodes). The three kinds of nodes are distinguished alge-
braically. Indeed, the linearization matrices of the two direction nodes have distinct eigenval-
ues, they have identical eigenvalues and they are not diagonal for the one direction nodes,
and they have identical eigenvalues and they are diagonal for the star nodes (see [2], [3], [5]).
We recall that the star nodes and the one direction nodes could produce foci in perturbations.

Furthermore a generic node at infinity may or may not have the two exceptional curves
lying on the line at infinity. This leads to two different situations for the phase portraits. For
this reason we split the generic nodes at infinity in two types as indicated in Subsection 2.5.

The geometric equivalence relation (see further below) for finite or infinite singularities, in-
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troduced in [2] and used in [3], [4], [5] and [6], takes into account such distinctions. This
equivalence relation is also deeper than the qualitative equivalence relation introduced by Jiang
and Llibre in [17] because it distinguishes among the foci (or saddles) of different orders and
among the various types of nodes. This equivalence relation induces also a deeper distinction
among the more complicated degenerate singularities.

In quadratic systems weak singularities could be of orders 1, 2 or 3 [12]. For details
on Poincaré-Lyapunov constants and weak foci of various orders we refer to [23], [18]. As
indicated before, algebraic information plays a fundamental role in the study of perturbations
of systems possessing such singularities. In [28] necessary and sufficient conditions for a
quadratic system to have weak foci (saddles) of orders i, i=1,2,3 are given in invariant form.

For the purpose of classifying QS according to their singularities, finite or infinite, we use
the geometric equivalence relation which involves only algebraic methods. It is conjectured that
there are around 1800 distinct geometric configurations of singularities. The first step in this
direction was done in [2] where the global classification of singularities at infinity of the whole
class QS, was done according to the geometric equivalence relation of configurations of infinite
singularities. This work was then partially extended to also incorporate finite singularities.
We initiated this work in [3] where this classification was done for the case of singularities
with a total finite multiplicity m <1, the work was continued in [4] where the classification
was done for m; = 2 and in [5] and [6] where the classification was done for m; = 3. The case
my = 4 has also been split in several papers the first being [7] which contains exactly three
subclasses possessing two distinct finite singularities.

In the present article our goal is to go one step further in the geometric classification of global
configurations of singularities by studying here the case of finite singularities with total finite
multiplicity four and exactly three finite singularities.

We recall below the notion of geometric configuration of singularities defined in [4] for both
finite and infinite singularities. We distinguish two cases:

1) Consider a system with a finite number of singularities, finite and infinite. In this case
we call geometric configuration of singularities, finite and infinite, the set of all these singularities
(real and complex) together with additional structure consisting of i) their multiplicities, ii)
their local phase portraits around real singularities, each endowed with additional geometric
structure involving the concepts of tangent, order and blow—up equivalence defined in Section
4 of [2] (or [3]) and Section 3 of [4].

2) If the line at infinity is filled up with singularities, in each one of the charts at infinity,
the corresponding system in the Poincaré compactification (see Section 2) is degenerate and
we need to do a rescaling of an appropriate degree of the system, so that the degeneracy
be removed. The resulting systems have only a finite number of singularities on the line at
infinity. In this case we call geometric configuration of singularities, finite and infinite, the set
of all points at infinity (they are all singularities) in which we single out the singularities at
infinity of the “reduced” system, taken together with their local phase portraits and we also
take the local phase portraits of finite singularities each endowed with additional geometric
structure to be described in Section 2.

Remark 1.1. We note that the geometric equivalence relation for configurations is much
deeper than the topological equivalence. Indeed, for example the topological equivalence
does not distinguish between the following three configurations which are geometrically non-

equivalent: 1) 1, f; (})SN, ©, ©, 2) n, fV; (})SN, ©, ©, and 3) n?, f1; (1)SN, ©, © where
n and n? mean singularities which are nodes, respectively two directions and one direction
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nodes, capital letters indicate points at infinity, (C) in case of a complex point and SN a saddle-

node at infinity and (%)encodes the multiplicities of the saddle-node SN. For more details see
the notation in Subsection 2.5.

The invariants and comitants of differential equations used for proving our main result
are obtained following the theory of algebraic invariants of polynomial differential systems,
developed by Sibirsky and his disciples (see for instance [26, 29, 21, 11, 13]).

Our results are stated in the following theorem.

Main Theorem. (A) We consider here all configurations of singularities, finite and infinite, of
quadratic vector fields with finite singularities of total multiplicity my = 4 possessing exactly three
distinct finite singularities. These configurations are classified in DIAGRAMS 1.1, 1.2 according to the
geometric equivalence relation. We have 296 geometrically distinct configurations of singularities, finite
and infinite. More precisely 31 geometrically distinct configurations with one double and two complex
simple finite singularities and 265 with one double and two simple real finite singularities.

(B) Necessary and sufficient conditions for each one of the 296 different geometric equivalence
classes can be assembled from these diagrams in terms of 26 invariant polynomials with respect to the
action of the affine group and time rescaling appearing in the DIAGRAMS 1.1, 1.2 (see Remark 1.2 for a
source of these invariants).

(C) The D1aGrawMs 1.1, 1.2 actually contain the global bifurcation diagrams in the 12-dimensional
space of parameters, of the global geometric configurations of singularities, finite and infinite, of these
subclasses of quadratic differential systems and provide an algorithm for finding for any given system
in any of the two families considered, its respective geometric configuration of singularities.

Remark 1.2. The diagrams are constructed using the invariant polynomials p, y1, ... which
are defined in Section 5 of [6] and may be downloaded from the web page:

http:/ /mat.uab.es/~artes/articles/ qvfinvariants/qvfinvariants.html

together with other useful tools.

In Diagrams 1.1, 1.2 the conditions on these invariant polynomials are listed on the left
side of the diagrams, while the specific geometric configurations appear on the right side of
the diagram. These configurations are expressed using the notation described in Subsection
2.5.

2 Concepts and results in the literature useful for this paper

2.1 Compactification on the sphere and on the Poincaré disk

Planar polynomial differential systems (1.1) can be compactified on the 2-dimensional sphere
as follows. We first include the affine plane (x,y) in R?, with its origin at (0,0,1), and we
consider it as the plane z = 1. We then use a central projection to send the vector field to the
upper and to the lower hemisphere. The vector fields thus obtained on the two hemispheres
are analytic and diffeomorphic to our vector field on the (x,y) plane. By a theorem stated by
Poincaré and proved in [16] there exists an analytic vector field on the whole sphere which
simultaneously extends the vector fields on the two hemispheres, modulo a change of the
independent variables, to the whole sphere. We call Poincaré compactification on the sphere of
the planar polynomial system, the restriction of the vector field thus obtained on the sphere,
to the upper hemisphere completed with the equator. For more details we refer to [15]. The



Global configurations of singularities

5M(2),©,@; N, ©,©

0>0 __ :
M(),®,@; N, ©,©

n<0

0270, 570y, @@ N, ©,©
02:0 %(2)7©7©1 N*7 ©*©
61 <0 9T(Q)?(@7@) SaNoo7 N

01>0, 8M(2), ©, ©; S, NI, N

M’ 5771(2)7©7©7 SaNOO7 Nf

n>0 040
7V gy, @,©@; S,N©, N?
0, <0 @ ©©
By 20] 92=0, 575, @, @; S, N>, N*
0270 &5 .S, N/, N
0=0]6,>0 (2),@7@7 ) )
4'02:0 %(2)3©7©7 S?Nf7 N*
370, 57y, @ ©; 8, N, N
0,=0
M 57”(2)~©7©, Sde7 N~
<0 3N (), ©, ©; @)51\77 N
— 0>0 __ o :
M#£0 5M(2),©, ©; (3) SN, N/
) OM m(2)7©a©7@)SN~ Nd
n=0 =
/1/05&07 0=0 __ 70 *
D=0,T>0 72—, sn(g),©,©; (Q)SN, N
M=0 __ 70)
S7L(2)7©7©; (g)N
0<0
Cp(2)7©7©; Noo: @7@
n<0[0>0
! Cp(2)7©7©; va @7@
ﬂ' @(2)7©a©; Nda @7@
0<0 — p(2)7 s &y s )
0]>0 @(2)7©,©7 S7Nf7 Nf
77>0 0>0 C?)(2)7©7©7 S~NOO7 ]Vf
=0 0120, o), @ @; 5, N>, N
=0 61>0 ép(2)7©7©; S,N/7 N{I

61:0 @(2)7©’©7 Sdea Nd

]\:[750 0>0 @(2)’©7©; @)SN, N/

n— 0=0 70)
" 0 - Cp(2)a©7©; (3)SN, Nd

Table 1.1: Global configurations: the case p9 #0,D =0,T > 0.



J.C. Artés, |. Llibre, D. Schlomiuk and N. Vulpe

T4 #0

— S, S, §TL(

E17é0 ]:17&

A0 [

7i=0

K<0

73=0

Fi1=0

) Nf N,f NS

0

s, s s ST (2); NI NI NI

5,53, 303); NI, NI NY

5(1)75(1)7m(2); NI Nf N
40» S, 8, 8T (2); NI/ NI NF

TFO0 5 W), Gy NI, NI, NT

T1=0, 55, Gpo); N/, N/, NS
n<0 n, f,502y; S,©,©
i 20P2 n, £, 57005 5, 8, N
=0 M#O n, f,37(2); (g)SN S
M=o (s
10, n, 10, 52); 5,©,©
P00 ) gy 5,8, N>
=0, n, £ 570 () SN, S
7:=0 7n<0 2y —
Ryt " F®,50(2; 5,©,©
F1=0 120, 5, f® 50 S, 8, N
£2=0, pn, f® sm(y); 5,9, N
D=0, f. £, 572); 5.©,©
Tt 020 1 f sy 8.8, N
=0 JL{—#O» F.f5m0); (5) SN, S
M=0 1, pamey (S
o0, W0 e L 10,5 5,0, ©
D=0, Wils<0 FiroP 22 .0 5e); 8,5, N
Ts#0 n=0[_ M;éO 1430 () SN 5
M=0 7, f (S)S
Ti=0 2120 1, 5@ 5, S,©,©
<0, ———sn, f1 500); 5,©,©
Ts=011>0, ) 0 sm; 5,8, N
——— A (next page)
120, Ay(neat page)
As(neat page)
[10>0 A, (next page)

Table 1.2: Global configurations: the case p9p #0,D =0,T < 0.



Global configurations of singularities

n_<0' nan7ﬁ(2); S7©7©

A, 77—>0> n,n,sn); S, 8, N

W;>0, M#£0
Wo>0, |lp=0[_ = ™™ 5@)s (5)SN.5
WiWs>0 M=0 n, 1,87 (2); (3)9

<0 _
152 nd, £ 5702); S, ©, @
77>0 d == o
7:17&0 n ,f., SN (2); S,S,N

MZO, nd, f 57005 ()SN, S

n=0

M=0 ndmfm(Z)- @)S

10, nd 1) 57m04); 8, ©, @
Fi#0
12010>0_ 4 ) Fi(); 8,8, N>

Ti=0 =0, pd O, 3N(2); ()SN S

Fa2#0 _
2—¢’ nd f(2)75n(2); Sa©7©

Fi1=0

]:2—.11 ¢, 5T (2); ()SN,S
7]<0 n,n 7%(2); Sv©7©

0
= ﬂd , ST (2); S, S, N>

Us#0

ﬁ»ﬂﬂ ﬁ(z);@) N, S

M=0

L 7N, nd sn(g) (g)

n=0|_

Urﬁ__»n n*, 8N (2); ()SN,S

<0 nd nd ,8N(2); S, ©, ©

Us#£0 >0 nd, nd ,8M(2); S, S, N>

1o<Of

[ £>0]

M?é ¢ , 87 (2); @)SN,S

—»M:O n?,n.8ms); (3) S

n=0|_

1o #0, —>U3_ n?, n* , 5T (2); ()SN,S
D=0,
>0 S nafv@(2)557©7©
7>0 ~
To£0 == 0, f, @ ay; S, 8, N>
M#0 ~ 7O
n, f,¢ SN, S
Wy <0 n=0[ febe 9
A R n7f7c/i)<2)7 (g)s
[E1:30] [ T2=0, A (next page)
W2 20 Ag(neat page)
A, A, (next page)
[,U0>0]

DraGram 1.2 (continued). Global configurations: the case pp # 0,D =0, T < 0.
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D1aGrawMm 1.2 (continued). Global configurations: the case pp 72 0,D =0, T < 0.
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Global configurations of singularities 11

6<0 S,Tl,m(z);Noo7©,©

0
77<0 -0 San7m(2);Nfa @*@
02:/;0 Svn7m(2); Nd7 @7@

H 57717%(2); N*7 ©7©

01<0 5,M,871(2y; S, N°°, N

Ms,n,%(g); S, N/, NI

0>0, s,m, 5N (2); S, N>, N/
77>0 05 #0

0,<0
T2#0 62=0 5,m,8M(z); S, N, N*

5,M, 8N (2); S, N°°, Nd

020
27 s,n,%@);S,Nf, Nd

0=0 91>0

=0 5,m, 8N (2); S, NI, N*

0370 5,m,5N(); S, N, N4

Man,ﬁ(g); S,N¢ N*
0<0 s,n,ﬁ(g);g)SN7 N
M=0 6>0 S,H,W(Q);@)SN, Nt

6270 8,1, ST(2); @)SN, Nd

n=0 0=0

92:0, S, M, S1(2); (g)SN, N*
A =0, s n,5ma; ()N
Wi-0)
0<0, s n,574); N, ©,©
n<010>0 s n,sme); N, ©,©
ﬂsm,n,ﬁ(z); Nt ©,©

M. 5(1)7%%(2); S, N>©, N

0<0

0:1>0_ (V) p 57,01 I NS
E1#0 1>V, s\ n smpgy; S,N/, N
1 Fi£0 (2)

n>010>0 s n 570 S,N®, NS

D=0, 50 0 g S, N, N

T1=0 §=00>0 8(1),n,m(2);S,Nf,Nd
0,=0, 3(1),117%(2); S, N, N¢
77_:0../415(%3:15 page)

[/1=0, As(next page)

Ao
[Wi=0]

A (neat page)

1, A, (next page)
E—0)

D1aGram 1.2 (continued). Global configurations: the case p9p 72 0,D =0, T < 0.
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vertical projection of this vector field defined on the upper hemisphere and completed with the
equator, yields a diffeomorphic vector field on the unit disk, called the Poincaré compactification
on the disk of the polynomial differential system. By a singular point at infinity of a planar
polynomial vector field we mean a singular point of the vector field on the sphere, which is
located on the equator of the sphere, also located on the boundary circle of the Poincaré disk.

2.2 Compactification on the projective plane

For a polynomial differential system (1.1) of degree m with real coefficients we associate the
differential equation w; = q(x,y)dx — p(x,y)dy = 0. This equation defines two foliations with
singularities, one on the real and one on the complex affine planes. We can compactify these
foliations with singularities on the real respectively complex projective plane with homoge-
neous coordinates X,Y,Z. This is done as follows: Consider the pull-back of the form w;
via the map 7 : K3\{Z = 0} — K? defined by r(X,Y,Z) = (X/Z,Y/Z). We obtain a form
r*(w1) = @ which has poles on Z = 0. Eliminating the denominators in the equation @ = 0 we
obtain an equation w = 0 of the form w = A(X,Y,Z)dX+ B(X,Y,2)dY +C(X,Y,Z2)dZ =0
with A, B,C homogeneous polynomials of the same degree. The equation w = 0 defines
a foliation with singularities on P,(K) which, via the map (x,y) — [x : y : 1], extends
the foliation with singularities, given by w; = 0 on K? to a foliation with singularities
on P, (K) which we call the compactification on the projective plane of the foliation with
singularities defined by w; = 0 on the affine plane K? (K equal to R or C). This is be-
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cause A, B, C are homogeneous polynomials over K, defined by A(X,Y,Z) = ZQ(X,Y, Z2),
Q(X,Y,Z2)=2"q(X/Z,Y/Z), B(X,Y,Z) = ZP(X,Y,Z), P(X,Y,Z) = Z"p(X/Z,Y/Z) and
C(X,Y,Z) = YP(X,Y,Z) — XQ(X,Y,Z). The points at infinity of the foliation defined by
w1 = 0 on the affine plane are the singular points of the type [X : Y : 0] € P>(K) and the line
Z = 01is called the line at infinity of this foliation. The singular points of the foliation on P, (K)
are the solutions of the three equations A = 0, B = 0, C = 0. In view of the definitions of
A, B, C it is clear that the singular points at infinity are the points of intersection of Z = 0 with
C = 0. For more details see [18], or [2] or [3].

2.3 Assembling multiplicities of singularities in divisors of the line at infinity and
in zero-cycles of the plane

An isolated singular point p at infinity of a polynomial vector field of degree n has two types
of multiplicities: the maximum number m of finite singularities which can split from p, in
small perturbations of the system within polynomial systems of degree 1, and the maximum
number m’ of infinite singularities which can split from p, in small such perturbations of
the system. We encode the two in the column (m,m’)!. We then encode the global informa-
tion about all isolated singularities at infinity using formal sums called cycles and divisors as
defined in [20] or in [18] and used in [18], [25], [3], [2].

We have two formal sums (divisors on the line at infinity Z = 0 of the complex affine plane)
Ds(P,Q;Z) = Yo, Iw(P,Q)w and Ds(C,Z) = ¥, I,(C, Z)w where w € {Z = 0} and where
by I,(F,G) we mean the intersection multiplicity at w of the curves F(X,Y,Z) = 0 and
G(X,Y,Z) = 0 on the complex projective plane. For more details see [18]. Following [25] we
encode the above two divisors on the line at infinity into just one but with values in the ring

72
_ L (P, Q))
Dg = ( w.
’ we{Z=0} [.(C, Z)

For a system (1.1) with isolated finite singularities we consider the formal sum (zero-cycle
on the plane) Ds(p,q) = Loer? lw(p, q9)w encoding the multiplicities of all finite singularities.
For more details see [18], [1].

2.4 Some geometrical concepts
Firstly we recall some terminology.
We call elemental a singular point with its both eigenvalues not zero.
We call semi—elemental a singular point with exactly one of its eigenvalues equal to zero.

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian
matrix at this point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here
the term intricate to indicate the rather complicated behavior of phase curves around such a
singularity.

In this section we use the same concepts we considered in [2], [3], [6], [4], such as orbit
7y tangent to a semi-line L at p, well defined angle at p, characteristic orbit at a singular point p,
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characteristic angle at a singular point, characteristic direction at p. If a singular point has an
infinite number of characteristic directions, we will call it a starlike point.

It is known that the neighborhood of any isolated singular point of a polynomial vector
field, which is not a focus or a center, is formed by a finite number of sectors which could
only be of three types: parabolic, hyperbolic and elliptic (see [15]). It is also known that any
degenerate singular point can be desingularized by means of a finite number of changes of
variables, called blowups, into elemental and semi-elemental singular points (for more details
see the section on blowup in [2] or [15]).

Topologically equivalent local phase portraits can be distinguished according to the alge-
braic properties of their phase curves. For example they can be distinguished algebraically in
the case when the singularities possess distinct numbers of characteristic directions.

The usual definition of a sector is of topological nature and it is local, defined with respect
to a neighborhood around the singular point. We work with a new notion, namely of geometric
local sector, introduced in [2], based on the notion of borsec, term meaning “border of a sector”
(a new kind of sector, i.e. geometric sector) which takes into account orbits tangent to the
half-lines of the characteristic directions at a singular point. For example a generic or semi-
elemental node p has two characteristic directions generating four half lines at p. For each one
of these half lines at p there exists at least one orbit tangent to that half line at p and we pick
such an orbit (one for each half line). Removing these four orbits together with the singular
point, we are left with four sectors which we call geometric local sectors and we call borsecs these
four orbits. The notion of geometric local sector and of borsec was extended for nilpotent and
intricate singular points using the process of desingularization as indicated in [4]. We end up
with the following definition: We call geometric local sector of a singular point p with respect to
a sufficiently small neighborhood V, a region in V' delimited by two consecutive borsecs. As
already mentioned these are defined using the desingularization process.

A nilpotent or intricate singular point can be desingularized by passing to polar coordi-
nates or by using rational changes of coordinates. The first method has the inconvenience of
using trigonometrical functions, and this becomes a serious problem when a chain of blowups
are needed in order to complete the desingularization of the degenerate point. The second
uses rational changes of coordinates, convenient for our polynomial systems. In such a case
two blowups in different directions are needed and information from both must be glued
together to obtain the desired portrait.

Here for desingularization we use the second possibility, namely with rational changes
of coordinates at each stage of the process. Two rational changes are needed, one for each
direction of the blow—up. If at a stage the coordinates are (x,y) and we do a blow-up of a
singular point in y-direction, this means that we introduce a new variable z and consider the
diffeomorphism of the (x,y) plane for x # 0 defined by ¢(x,y) = (x,y,z) where y = xz.
This diffeomorphism transfers our vector field on the subset x # 0 of the plane (x,y) on the
subset x # 0 of the algebraic surface y = zx. It can easily be checked that the projection
(x,xz,z) — (x,z) of this surface on the (x,z) plane is a diffeomorphism. So our vector field
on the plane (x,y) for x # 0 is diffeomeorphic via the map (x,y) — (x,y/x) = (x,z) forx # 0
to the vector field thus obtained on the (x,z) plane for x # 0. The point p = (0,0) is then
replaced by the straight line x = 0 = y in the 3-dimensional space of coordinates x,y,z. This
line is also the z-axis of the plane (x,z) and it is called blow-up line.

The two directional blowups can be reduced to only one 1-direction blowup but making
sure that the direction in which we do a blowup is not a characteristic direction, not to lose
information by blowing up in the chosen direction. This can be easily solved by a simple
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linear change of coordinates of the type (x,y) — (x + ky,y) where k is a constant (usually 1).
It seems natural to call this linear change a k—twist as the y—axis gets turned with some angle
depending on k. It is obvious that the phase portrait of the degenerate point which is studied
cannot depend on the values of k’s used in the desingularization process.

We recall that after a complete desingularization all singular points are elemental or semi-
elemental. For more details and a complete example of the desingularization of an intricate
singular point see [4].

Generically a geometric local sector is defined by two consecutive borsecs arriving at the
singular point with two different well defined angles. If this sector is parabolic, then the
solutions can arrive at the singular point with one of the two characteristic angles, and this is
a geometric information that can be revealed with the blowup.

There is also the possibility that two borsecs defining a geometric local sector at a point
p are tangent to the same half-line at p. Such a sector will be called a cusp-like sector which
can either be hyperbolic, elliptic or parabolic denoted by H,, E, and B, respectively. In the
case of parabolic sectors we want to include the information about how the orbits arrive at the
singular points namely tangent to one or to the other borsec. We distinguish the two cases by

writing pif they arrive tangent to the borsec limiting the previous sector in clockwise sense,

or D if they arrive tangent to the borsec limiting the next sector. In the case of a cusp-like
parabolic sector, all orbits must arrive with only one well determined angle, but the distinction

between P and P is still valid because it occurs at some stage of the desingularization and this
can be algebraically determined. Example of descriptions of complicated intricate singular

points are PE P HHH and EP, HHP, E.

A star-like point can either be a node or something much more complicated with elliptic
and hyperbolic sectors included. In case there are hyperbolic sectors, they must be cusp-like.
Elliptic sectors can either be cusp-like, or star-like.

2.5 Notations for singularities of polynomial differential systems

In this work we limit ourselves to the class of quadratic systems with finite singularities of total
multiplicity four and exactly three singularities. In [2] we introduced convenient notations
which we also used in [3]-[6] some of which we also need here. Because these notations are
essential for understanding the bifurcation diagram, we indicate below the notations necessary
for this article.

The finite singularities will be denoted by small letters and the infinite ones by capital
letters. In a sequence of singular points we always place the finite ones first and then infinite
ones, separating them by a semicolon’;’.

Elemental points: We use the letters ‘s’,’S” for “saddles”; s for “integrable saddles"; ‘n’,
‘N’ for “nodes”; ‘f" for “foci”; ‘c’ for “centers” and © (respectively (©) for complex finite
(respectively infinite) singularities. We distinguish the finite nodes as follows:

e ‘n’ for a node with two distinct eigenvalues (generic node);

e ‘n? (a one—direction node) for a node with two identical eigenvalues whose Jacobian
matrix is not diagonal;

e ‘n*’ (an star node) for a node with two identical eigenvalues whose Jacobian matrix is
diagonal.
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The case n (and also 1*) corresponds to a real finite singular point with zero discriminant.

In the case of an elemental infinite generic node, we want to distinguish whether the
eigenvalue associated to the eigenvector directed towards the affine plane is, in absolute value,
greater or lower than the eigenvalue associated to the eigenvector tangent to the line at infinity.
This is relevant because this determines if on the Poincaré disk all the orbits except one arrive
at infinity tangent to the line at infinity or transversal to this line. We will denote them as
‘N>’ and ‘N/" respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong
or weak saddles. The strong foci or saddles are those with non-zero trace of the Jacobian
matrix evaluated at them. In this case we denote them by ‘s” and “f’. When the trace is
zero, except for centers, and saddles of infinite order (i.e. with all their Poincaré-Lyapounov
constants equal to zero), it is known that the foci and saddles, in the quadratic case, may have
up to 3 orders. We denote them by ‘f()" and “s()” where i = 1,2,3 is the order. In addition
we have the centers which we denote by ‘c” and saddles of infinite order (integrable saddles)
which we denote by ‘s".

Foci and centers cannot appear as singular points at infinity and hence there is no need to
introduce their order in this case. In case of saddles, we can have weak saddles at infinity but
the maximum order of weak singularities in cubic systems is not yet known. For this reason, a
complete study of weak saddles at infinity cannot be done at this stage. Due to this, in [2]-[7]
and here we chose not even to distinguish between a saddle and a weak saddle at infinity.

All non—elemental singular points are multiple points, in the sense that there are pertur-
bations which have at least two elemental singular points as close as we wish to the multiple
point. For finite singular points we denote with a subindex their multiplicity as in ‘55)" or in
‘es(3)” (the notation " indicates that the saddle is semi-elemental and “ indicates that the
singular point is nilpotent, in this case a triple elliptic saddle, i.e. it has two sectors, one elliptic
and one hyperbolic). In order to describe the two kinds of multiplicity for infinite singular
points we use the concepts and notations introduced in [25]. Thus we denote by ‘(;)..." the
maximum number a (respectively b) of finite (respectively infinite) singularities which can be

obtained by perturbation of the multiple point. For example ’(%)SN " means a saddle-node at

infinity produced by the collision of one finite singularity with an infinite one; ’(g)S’ means a
saddle produced by the collision of 3 infinite singularities.

Semi-elemental points: They can either be nodes, saddles or saddle-nodes, finite or infi-
nite (see [15]). We denote the semi—elemental ones always with an overline, for example ‘577,
‘s” and ‘n” with the corresponding multiplicity. In the case of infinite points we put “ on top
of the parenthesis with multiplicities.

Semi-elemental nodes could never be ‘n?’ or ‘n*’ since their eigenvalues are always differ-
ent. In case of an infinite semi—elemental node, the type of collision determines whether the

point is denoted by ‘N/” or by ‘N*". The point (})N’ is an ‘N/” and (J)N" is an ‘N*".

There do not exist finite or infinite nilpotent points and neither do there exist intricate
points when m; = 4 and there are three finite distinct singularities. Neither is it possible to
have the line at infinity filled up with singularities. For this reason we skip the notations of
these points in this paper. We refer the interested reader to [2]-[7].
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2.6 Affine invariant polynomials and preliminary results

Consider real quadratic systems of the form

dx
a5 = Pt piloy) + pxy) = P(xy),

d

(2.1)

with homogeneous polynomials p; and g; (i = 0,1,2) in x, y which are defined as follows:

po=ac, pi(x,y) =aox +any, pa(x,y) = axx* + 2a1xy + apy’,

go = boo, q1(x,y) = biox +bory, qa2(x,y) = baox® +2b11xy + boy’.
Letd = (Ll(](), a10, 401, 120, 411, 202, boo, b10, bo1, b20, bll/bOZ) be the 12—tuple of the coefficients of
systems (2.1) and denote R[, x,y] = R[ag, - - ., boz, X, y].

It is known that on the set QS of all quadratic differential systems (2.1) acts the group
Aff(2,R) of affine transformations on the plane (cf. [25]). For every subgroup G C Aff (2, R)
we have an induced action of G on QS. We can identify the set QS of systems (2.1) with
a subset of R'? via the map QS— RR'? which associates to each system (2.1) the 12-tuple
a = (ago, ..., boz) of its coefficients. We associate to this group action polynomials in x,y and
parameters which behave well with respect to this action, the GL-comitants, the T—comitants
and the CT—comitants. For their constructions we refer the reader to the paper [25] (see also
[26]). In the statement of our main theorem intervene invariant polynomials constructed in
these articles and which could also be found on the following associated web page:

http:/ /mat.uab.es/~artes/articles /qvfinvariants/qvfinvariants.html
We shall need the next result.

Lemma 2.1 ([22]). Consider the equation
azt +4bz® + 6c2° +4dz+e =0
and the associated polynomials:
P =ae—4bd+3c%, Q= (V*—ac)e+ad*+ (® —2bd)c, D =27Q* - P3,
R=1>— ac, S=12R? - azﬁ, T= BaQ = Zﬁﬁ, U = 2d4? — 3ce.

These polynomials completely determine the number of distinct roots, real and complex, and their
multiplicities. More precisely, in the case a # 0 we have:

e 4 real simple roots < D < O,ﬁ > 0,§ > 0;
e 2 real and 2 complex simple roots < D > 0;

4 complex simple roots < D < 0 and either R < 0or § < 0;

3 real roots, 1 double and 2 simple < D= 0, T < 0;

1 real double and 2 complex simple roots < D =0, T > 0;

2 real roots, 1 triple and 1 simple < D =P =0, R # 0;

2 real roots both double < D =T = 0, PR > 0;

2 complex roots, both double < D=T= 0, PR < 0;

1 real root of multiplicity4 < D =P =R =0.
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3 The proof of the Main Theorem

Our proof is based on previous work done in [8] where the study of finite singularities of
quadratic differential systems was done, on [2] where we studied the infinite singularities of
these systems and on [28] where the characterization of weak finite singularities was done,
characterization missing in [8], and where also all the canonical forms for studying singulari-
ties of quadratic systems are described.

The idea of the proof is to follow the steps taken in these papers for the specific case we
consider here, unifying the part for the finite singularities in [8] with the part for the infinite
singularities in [2], while adding also the information about weak finite singularities in [28].

This combinatorial work leads to a large number of combinations of potential geometric
configurations of singularities. It remains to show which of these are actually realizable and
which ones are to be discarded.

These combinations are characterized in terms of equalities and inequalities among poly-
nomials over R in the coefficients of the systems. Proceeding by trial and error we produce
examples when the conditions can be realized. When several such trials are unsuccessful,
suspecting the conditions expressed in terms of invariant polynomials cannot be realized, we
then look for a proof that the conditions are contradictory and in this case that combination is
discarded from the list.

Such contradictions can occur with repetitions and for this reason we thought it best to
single out a number of Lemmas which were instrumental for discarding un-realizable com-
binations. These Lemmas are of the type "if A then B" where A and B are conjunctions of
equalities and inequalities expressed in terms of above mentioned polynomials.

Consider real quadratic systems (2.1). According to [28] for a quadratic system (2.1) to
have finite singularities of total multiplicity four (i.e. my = 4) the condition o # 0 must be
satisfied. We consider here the two subclasses of quadratic differential systems with m; = 4
possessing exactly three finite singularities, namely:

e systems with one double real and two simple complex singularities (19 # 0, D = 0,
T > 0);

e systems with one double and two simple real finite singularities (119 # 0, D =0, T < 0).

Clearly the systems from each one in the above mentioned subclasses have finite singular-
ities of total multiplicity 4 and therefore by [2] the following lemma is valid.

Lemma 3.1. The geometric configurations of singularities at infinity of the family of quadratic systems
possessing finite singularities of total multiplicity 4 (i.e. uog # 0) are classified in DiaGram 3.1
according to the geometric equivalence relation. Necessary and sufficient conditions for each one of
the 24 different equivalence classes can be assembled from these diagrams in terms of 9 invariant
polynomials with respect to the action of the affine group and time rescaling.

3.1 Systems with one double real and two simple complex singularities

Assume that systems (2.1) have one real double and two simple complex finite singularities.
In this case according to [28] we shall consider the family of systems

X =cmx+2cny+gx* —2cnxy + (g+cm)y?,

3.1
y=emx+2eny+1x*—2enxy+ (I+em)y? .
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<0
=7, 50,0
K <0 -
to<0l1>0 S, S, N
K>0 N]:Nf,Nf
M#0
n=0 (2)SN, S
—0
M=0, (s
0<0
—— N>,©,©
6>0 f
<0 N’ ©,©
0=0 e N%.©,©
Ho70 2=0, N+ ©,0
91<0 00 00
0<0 S,N5N
0>0, s NF NI
620, g NF N>
0540
n=0 91<0—»27é S N> Nd
02=0, g N> N
—o 91>0—»27A S, N¥ Nd
2=0, 5 NI N*
b:70 S, N Nd
61=0 040
03=0 iSde,N*
94:0 S,N*,N*
M(Q)SN,NOO
M0 =0 (5) SN, N
0270, (3)SN, N
77:0 0:0 (2) 9

62=0. (})SN.N*

Table 3.1: Configurations of infinite singularities: the case py # 0.

with (cl — eg)(m? + 4n?) # 0, possessing the following three distinct singularities: M ,(0,0)
(double), M34(1, £i).

We observe that for this family of systems we have

0= (cl —eQ)?(m?® +4n?), Eq =2(cl—eg)*(cm+ 2en)(m? + 4n?)? (3.2)
H g 8
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and hence pg > 0. On the other hand according to [8] the double point is a saddle-node if
E; #0anditisacuspif E; = 0.

Lemma 3.2. If for a system (3.1) the conditions § = E; = 010, = 0 hold, then 6; = 6, =0, > 0
and 03 # 0.

Proof: We claim that the hypotheses of the lemma imply n # 0. Indeed, assuming n = 0 we
calculate for systems (3.1)

o = m*(cl —eg)?, Ej =2cm’(cl —eg)*.
Therefore the condition E; = 0 implies ¢ = 0 and then we have

po = €°g*m> #0, 6= —64eg’lm = 0.
So we get | = 0 and we calculate 6; = —64g4 and 0, = —egzmz. Clearly 616, # 0 (due to
to # 0) and this proves our claim.
Thus n # 0 and we may assume n = 1 due to a time rescaling and considering (3.2) we
deduce that the condition E; = 0 implies e = —cm /2. Then calculations yield
0 = 8c(21 + gm)(4c? — 4% + 8cl + 412 + 4glm + 2m> + 2clm?),
o = 2(21 + gm)* (4 + m?) /4

and due to pg # 0 the condition E; = 0 implies ¢ = —I & (Im — 2g) /4 + m?. We calculate

01 = —32(21 +gm)>(Im —2g) (m + /4 + m?2)/ (4 +m?),
0, = — (21 + gm)(Im — 2g) [2g + 1(—m £ V4 +m?)] (4 +m?> Fm\/4+m2)/ (4 +m?),
po = (21 + gm)*[2g +1(—m £ 4+ mz)}2/4.
We observe that (m + /4 +m?) (4 + m?> F mv/4 + m2) # 0 (we have only complex roots) and
therefore due to 9 # 0 we get that 6; = 0 is equivalent to 6, = 0 and this implies g = Im /2.

Then we calculate
n=ctd+m?)°/16 = po, 03 = c®(4+m?)*/32

and since yg # 0 we get 03 # 0 and 17 > 0. This completes the proof of the lemma. n
Lemma 3.3. Systems (3.1) could not possess two star nodes at infinity.

Proof: Suppose the contrary that we have two star nodes at infinity. According to [2] a
quadratic system possesses two infinite star nodes if and only if § = 6; = 63 = 64 = 0.
It is clear that in this case there must be three real singularities at infinity and by [2, Lemma 1]
via a linear transformation and a time rescaling systems (2.1) could be brought to the canoni-
cal systems (S;), where we can assume that the star nodes are the origins of the infinite local
charts. Then following [2] we determine that the corresponding linear matrices in these local

charts are
1 —e 1 —d
R1:<O g)' R2:><0 h)'

Therefore we obtain that the above conditions imply, for the canonical form mentioned, the
relations: g —1 =h —1=e¢ =d = 0 and we get the systems

¥X=a+tcx+x*, y=b+ fyt+yt
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For these systems we calculate

po=1, D= —48(4a — *)*(4b — f?)?,
T = 6(4a — c?)(4b — f2)x*y?(4bx* — 2% + day* — *y?)

and therefore the condition D = 0 implies T = 0. However according to [8] a quadratic
system possesses one double real and two complex singularities if and only if y9 # 0, D =0
and T > 0. This contradiction completes the proof of the lemma. n

3.1.1 The case E; #0

Then the double finite singular point is a semi-elemental saddle-node.

The subcase 7 < 0 Then systems (3.1) possess one real and two complex infinite singular
points and according to Lemma 3.1 there can be only 4 geometrically distinct configurations
at infinity. It remains to construct the corresponding examples:

®571(3),©,©; N*, ©,©: Example = (B1):c=1le=-2,¢=51=0m=1,n=1) (if
0 < 0);

57, ©,©@; N, ©,©: Example = (3.1): c=—1,e=2,¢=51=0,m=1n=1) (if
0 > 0);

*57(2),©,@; N, ©,©: Example = (3.1): c=1,e=0,¢g=-5/2,1=1,m=3/2,n=
1) (if6 =0,0, #0);

®571(3),©,©; N*, ©,©: Example = (B1):c=1e=0g¢g=-11=1,m=1,n=0) (if
8 =0,0, =0).

The subcase 7 > 0 In this case systems (3.1) possess three real infinite singular points. Since
for these systems the condition po > 0 holds, taking into consideration Lemmas 3.3 and 3.1
we can have at infinity only 9 distinct configurations. The corresponding examples are:

®571(3), ©, ©; S,N®, N®: Example = ((3.1): c=1,e=1,¢g=-21/20,1= -3, m=0,n =
2) (if6 <0,6, <0

57(),©,@; S,N/, N/: Example = (31): c=1,e=2,¢=—1,1=0,m=1,n=1) (if
0 <0,6; >0);

*57(),©,©@; S,N®, N/: Example = (3.1): c=1,e=1,g=-1,1=0,m=1,n=1) (if
0 > 0);

*57(),©,@; S,N®, N%: Example = (3.1): c =1l,e =1, = —1,1 = =3,m = 0,n = 2) (if
0=0,0,<0,0, 75 O);

®57(3),©,©; S,N*, N*: Example = (B1):c=3e=19=-31=-2m=1,n=0) (if
0=0,0,<0,06,= 0),‘

*57(2),©,@; S,N/, N%: Example = (3.1): c =2,e=1,¢g=6,1=0,m = =3,n=2) (if
0=0,060>0,0, 75 O);

® 572, ©,@; S,N/, N*: Example = (31): c = l,e=1,g=21=1,m = =2,n=0) (if
0=0,0,>006,= 0),‘

57(),©,@; S,N?, N%: Example = (3.1): c=1,e=1,¢ = -2l =—-1,m=1n=1) (if
0= 0,91 = 0,93 75 O);

*57(),©,@; S,N?, N*: Example = (3.1): c=1,e=1,g=-1,1=0,m=1,n=0) (if
=06 =0;=0).
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The subcase 7 = 0 In this case systems (3.1) possess at infinity either one double and one
simple real singular points (if M # 0), or one triple real singularity (if M = 0). So by
Lemma 3.1 we could have at infinity exactly 5 distinct configurations. We have the folloing 4
configurations:

0 571(y), ©, ©; (g)SN, N®: Example = (3.1): c=1l,e=19=-1,1=-3, m=1,n=1)
(if 6 < 0);

* 512, ©, ©; (3)SN, N/t Example = (31): c=1,e=1,g=11=-1,m=—-1,n=1)
(if 6 > 0);

®5(2),©,©; (3)SN, N*: Example = (3.1): c=1,e=1,8=0,1=-2,m=0,n=1) (if
6 =0,0, #0);

®57i(2),©,©; (3)SN, N*: Example = (3.1): c=1,e=0,g=-21=1,m=2,n=0) (if
6 =06,=0),
if M # 0 and one configuration

* 57 (5, ©, ©; (3)N: Example = ((3.1): c=0,e=1,¢g=1/4,1=3V3/4, m=0,n=1)
if M=0.

3.1.2 Thecase E; =0

Then the double finite singular point, according to [8] is a cusp. As gy # 0 considering (3.2)
we get the relation cm + 2en = 0.

The subcase 7 < 0 Then systems (3.1) possess one real and two complex infinite singular
points and considering Lemmas 3.2 and 3.1 there could be only 3 distinct configurations at
infinity. It remains to construct the corresponding examples:

° cAp(z),©,©; N®, ©,©: Example = (3.1): c=2,e=1,¢=51=0m=1,n=—-1)
(if 6 < 0);

° cAp(z),@),@; N/, ©,©: Example = (31): c=2,e=1,¢=3,1=0m=-1,n=1)
(if 6 > 0);

° cAp(z),©,©; N, ©,©: Example = (31): c=-2,e=1,¢=3++5)/2,1=3,m=
Ln=1) (if6=0).

The subcase 7 > 0 In this case systems (3.1) possess three real infinite singular points. Since
for these systems the condition pp > 0 holds, taking into consideration Lemmas 3.2 and 3.1
we could have at infinity only 6 distinct configurations. The corresponding examples are:

° cAp(z),©, ©; S,N*®, N®: Example = (31): ¢ =2,e=1,¢=12,1=0,m =5,n = —5)
(if0 <0,6, <0);

* (P2, © ©; S,N/, NI: Example = (3.1): ¢ = —2,e=1,¢=2,1=0,m=1,n=1) (if
0 <0,60 >0);

* (P2, © ©@; S,N®, N Example = (3.1): c = ~l,e=1,¢=21=1m=2n=1) (if
6 > 0);

° CA(Z)/©,©} S,N*®, N%: Example = ((3.1) : ¢ = —2,e = 1, = #5»7\/5,1 _ —17})7/]% _
1,1 =1) (if 0=0,0, <0);

ocA(z),©,©; S,N/, N*: Example = (3.1): c= —/3,e=1,§=2,1=0,m=2/y/3,n=1)
(f0 = 0,6, > 0);

* (P, ©,©; S,N%, N: Example = (3.1): c=1,e =0,§ =0,l = —1,m = 0,n = 1) (if
0 =6, =0).
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The subcase 7 = 0 In this case systems (3.1) possess at infinity either one double and one
simple real singular points (if M # 0), or one triple real singularity (if M = 0). So by Lemmas
3.2 and 3.1 we could have at infinity exactly 4 distinct configurations. We have the following
3 configurations:

° cAp(z),©, ©; (g)SN, N®: Example = (3.1): c=1,e=-2,¢=4,1=0m=4,n=1) (if
0 < 0);

* (P, © ©; (3)SN, Nf: Example = (3.1): c=2,e=—1,8=2,1=0,m=1,n=1) (if
0 > 0);

° cAp(z),©,©; (g)SN, N7 Example = ((3.1): c=1,e = —1//3, g=11=0m=1n=
V3/2) (if 6 = 0)
if M # 0 and one configuration

. cAp(z),©, ©; (g)N: Example = ((3.1): c=1,e=0,g=0,l=-2,m=0,n=1)

if M =0.

3.2 Systems with one double and two simple real finite singularities

Assume that systems (2.1) possess one double and two simple real finite singularities. In this
case according to [28] we shall consider the family of systems
X = cx 4 cuy — cx® + 2hxy — cuy?, y = ex + euy — ex* + 2mxy — euy?, (3.3)

with u(cm — eh) # 0, possessing the following three distinct singularities: M;2(0,0), M3(1,0), M4(0,1).
For these singularities we have the following values for the traces p;, for the determinants A;,
for the discriminants 7; and for the linearization matrices M3 and My:

M3:<_C 2h—|—cu)l M4:<c+2h —cu)/

—e 2m-+eu e+2m —eu
pr=p2=cHeu, My =0M=0;, p3s=—c+2m+eu, A;=2(eh—cm); 4
ps=c+2h—eu, Ay=—2(eh—cm)u; 7, =p>—4A;, i=1,34.
Then for systems above we calculate
1o = 4(eh — cm)*u = —A3Ay, K =2A3(x* —uy?), Ey = —A3A201/2,
n=—4(N? —N1N3) /3, M= —8(Nix* — 2Naxy + Nsy?),
Ta = —D3Aaptosps, Tz = —D3Dap1[p1(p3 + p4) +20304], 35)

To = —AsDs[p] +201(p3 + pa) + p3p4], T1 = —D3D4(201 + p3 + pa),
Wy = M3AGeT T, Wi = A3A%0T 03 (T3 + ) +213w),
Wy, = A%Ai [pil + 2p%(T3 +1)+ T3T4], Wy = A%Ai [2‘0% + 13+ T4],

where
Ny = % — 6eh + dcm + 4m? — 3¢*u, Na = ch + 2hm — 4ceu + emu,

N3 = 4h? — 3c%u + 4ehu — 6cmu + e>u?.

Remark 3.4. In order to construct the examples or to prove nonexistence of some configura-
tions, besides the family (3.3) we shall use here another normal form of quadratic systems,
associated with singularities at infinity So we will use the family of systems:

(S3) x:cx+dy+gx2+hxy, y':ex+fy+(g—1)xy+hy2,

which have one double and one simple real distinct infinite singularities (i.e. 7 = 0, M # 0).
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Lemma 3.5. If for a system (3.3):

(i) the condition M = 0 holds, then the conditions g < 0 and p3p4 = 0 imply 314 > 0;

(ii) the conditions p3ps = F1 = 0, po < 0 and Wy # 0 are satisfied, then 1 # 0. Moreover if
Fo =0thenn > 0and F3F4 # 0.

(iii) the condition 8 = 0 holds then:

(iiiy) the conditions 61 # 0 and 6, = 0 imply 1314 > 0 and we have 13174 = 0 if and only if
p3p4 = 0. In the case 17314 = 0 the condition 1 = 0 is equivalent to F1 = 0;

(iiip) the condition 61 = 0 implies yo = 1 and 6, = 0 and and furthermore a) if E; = 0 then the
condition 6, = 0 is equivalent to 61 = 0. In addition 6, = 6, = 0 implies 63 # 0; b) if 63 = 0 then
7314 > 0, 04 # 0 and we have 1374 = 0 if and only if p3p4 = 0.

(iv) the conditions p3ps = T31a = F1 = 0 and po < 0 hold, then either F» # 0 and n < 0, or
Fo = .7:3 =N = 0.

(v) the conditions p3ps = 6 = 01 = 0 hold, then F; # 0. Moreover the condition 1314 = 0 is
equivalent to 03 = 0.

Proof: (i) Assume that for a system (3.3) the conditions M = 0, ygp < 0 and p3ps = 0 are
fulfilled. We claim that in this case the condition ce # 0 holds. Indeed, considering (3.5)
we detect, that in the case ce = 0 the conditions N7 = M, = N3 = 0 yield either ¢ = m =
2h+eu=0o0rc+2m=e=h=0. In the first case we obtain yo = e*u?, p3p4 = —2¢?u? and
in the second one we get g = 16m*u, p3p4 = —8m?. Therefore in both cases the condition
o # 0 implies p3p4 # 0. The contradiction obtained proves our claim.

_ 2
Thus ce # 0 and the relations N7 = M, = N3 = 0 are equivalent to 1 = (4c —m)(c+2m)

27ce !
2 3
= % and we calculate
~ (c+2m)3 —27ce(c — 2m) ~ (7c —4m)(c +2m)? + 27c%
3= 27ce o = 27ce '

Since the condition p3ps = 0 holds, without loss of generality we may assume p; = 0, i.e.
(4m —7c)(c +2m)?

e = 7.2 # 0 and then we calculate
210¢(5¢ — 8m)(c — m)® 64c(c —m)®
73Ty = 1 , HO = 7 .
27(7c — 4m) 27(7c — 4m)?(c + 2m)

So the condition py < 0 implies c(c +2m) < 0 and then cm < 0. Therefore c¢(5¢c — 8m) > 0
which implies 7374 > 0 and this completes the proof of the statement (i) of the lemma.

(i) Assume that for a system (3.3) the conditions p3p4 = 0 and F; = 0 hold. Without loss
of generality we may assume p3 = 0 (i.e. m = (c —eu)/2) and then we calculate

F1 = u(ceu — c* + 2eh) (2c* + 3ce + 2eh + 2ceu + e*u), po = u(ceu — c* + 2eh)?. (3.6)

So due to pg # 0 the condition F; = 0 yields 2c? + e(3¢ + 2h + 2cu + eu) = 0 and we observe
that e # 0, otherwise we get ¢ = 0 and this implies yp = 0. Therefore we obtain & =
—(2¢% + 3ce + 2ceu + e*u) / (2¢) and we calculate

71 =4dc(c+e)¥i(ceu)/e’, uo=u(c+e)(3c+eu), Wy=c(c+eu)*¥y(c,e,u)/e,
Fr = —c(c+e)u?(c+eu)*(3c + eu)?(6¢c +eu) /é?,
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where ¥;(c, e, u) is a polynomial and
Yi(c,e,u) = 12¢* 4+ 4c%e(9 4 7u) + 3c2e*(9 + 6u + 7u®) + 3ce®u?(3 + 2u) + u*e®. (3.7)

Suppose that the conditions pp < 0 and Wy # 0 are satisfied. Then the condition 17 = 0 is
equivalent to ¥1(c,e,u) = 0. According to Lemma 2.1 for this quartic equation with respect
to c we calculate:

D = 19683¢"2u° (u — 2)(4u — 9) (1 + 2u + 2u?) /16,
R =6*(27490u + 7u?), § = —48¢*u(8u° — 477u? —1998u — 972)

We observe that yg < 0 and ¥ (c,e,u)=0 imply u < 0 and e # 0. Then D < 0 and checking
the roots of the polynomials ﬁ]6:1 and S| |e=1 it is easy to determine that the possibility R>0
and § >0 (simultaneously) cannot be realized.

Thus by Lemma 2.1 the polynomial ¥1(c,e, u) does not have real roots, i.e. 17 # 0.

Next, if we impose the condition F, = 0 (i.e. c = —eu/6) to be fulfilled, then we obtain:

7 =e*(u—6)u(81 — 126u +50u?) /972, uo = e*(u — 6)*u’/144,
f3f4 — 57620(u o 6)81/[19/(217319),

and clearly the condition ¢ < 0 implies # > 0 and F3F4 # 0. This completes the proof of the
statement (ii).
(iii) Assume now that for systems (3.3) the condition 8 = 0 is satisfied. For these systems

we have
0 = 64(eh — cm) [(h+eu)* — (c +m)*u], po = 4u(eh —cm)?
and as g # 0 the condition 6 = 0 implies (k + eu)? — (c +m)?u = 0.
(iii1) Assume first 6; # 0. We observe that in this case the condition ¢ + m # 0 must hold,
otherwise we get ¢ +m = h + eu = 0 and this implies 8; = 0. So ¢ +m # 0 and setting a new

parameter v = h + eu (then h = v — eu) the condition § = 0 gives u = v?/(c + m)?. Then we
calculate

00 g — 2560°(cm + m?* — ev)3 _ 40*(c? 4 om — ev)?(cm 4+ m? — ev)?
=0, 6= crmp MW= (et m)e " es
v(c+m+0v)(c?+cm — ev)(cm +m? — ev) '
0 = —
(c+m)3

and due to yp # 0 the condition 6, = 0 yields ¢+ m +v = 0 (i.e. v = —c — m) and this gives
73Ty = p303 >0, po = 4(c+e)?*(e+m)?

and obviously the condition 17374 = 0 is equivalent to p3ps = 0. Moreover if we suppose that
0304 = 0, then we may assume p3 = 0 (i.e. ¢ = e + 2m) and we calculate

Fi=—16(e+m)d(e+2m), 1 =232(e+m)’(e+2m)

and evidently the condition F; = 0 is equivalent to 7 = 0.

(iiiy) Suppose now 61 = 0. Then c + m = 0 otherwise we obtain (3.8) and therefore the
condition g # 0 implies 6; # 0. So assuming m = —c and h = —eu we obtain

0=0,=0,=0, E = —8u?(c +eu)(c* —e’u)?,

3.9
o = 4u(c® — *u)®> =n, 03 =2u(l—u)(®—eu)’. (39)
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a) Assume E; = 0. Due to pp # 0 this condition is equivalent to ¢ +eu = 0, i.e. ¢ = —eu
and then we get 03 = 2¢®(u — 1)*u* # 0 due to o = 4e*(u — 1)%u3 # 0.
b) Assume now 603 = 0. Since yp # 0 we get u = 1 and this gives

751y = 0305, 01=—4(c—e)(c+e), po=4(c—e)?(c+e)*

Clearly 04 # 0 due to o # 0 and the condition 1374 = 0 is equivalent to p3ps = 0. This
completes the proof of the statement (iii) of the lemma.

(iv) Assume that for a system (3.3) the conditions p3p4 = 0 and F; = 0 hold. As it was
shown in the proof of the statement (ii) supposing p3 = F; = 0 we arrive at the following
relations:

m=(c—eu)/2, h=—(2c*+3ce+ 2ceu + e*u)/(2e)

where e # 0 due to pp # 0. Since we choose p3 = 0 then the condition 1374 = 0 gives 74 = 0
(since the singular point M3(1,0) is elemental). We calculate

4c(c+e)

Ty = T[(c+eu)2+e(c—gu)] = M

2 ¢(c,e,u), po= (c 4 e)*u(3c + eu)?

and as g # 0, the condition 74 = 0 yields ¢ = 0.

If ¢ = 0 then calculations yield 7, = F3 = 1 = 0, i.e. in this case the statement (iv) is
valid.

Assume now ¢ # 0. Then &(c,e,u) = 0 and as Discrim [&, ¢] = €(1 + 8u), to factorize this
polynomial we set a new variable v as follows: 1+ 8u = v* >, ie. u = (v —1)/8. The we
obtain

& = (8c + 3e — 4ev + ev?) (8c + 3¢ + dev + ev?) /64 = 0

and we may assume (8¢ + 3e — 4ev + ev?) = 0 as the second possibility can be obtained from
the first one by substituting v with —o.
Thus we obtain ¢ = ¢(3 — v)(v — 1) /8 and we calculate

fo =2 Bet(v—5)4(? —1)3, F =220 —-5)%3 —v)(v—1)1°(1+2)°(50 - 19),
7 =2"8e*v—5)2(3 - v)(v—1)%(v* —1)(205 + 670 — 650> + 90°).

We observe that the equation 205 + 670 — 650> + 90° = 0 possesses a single real root vy < 1.25.
Therefore obviously the condition pp < 0 (i.e. |v| < 1) implies < 0 and F, # 0. This
completes the proof of the statement (iv) of Lemma 3.5.

(v) Assume that for a system (3.3) the condition 6 = 6; = 0 holds. As it was shown in the
proof of the statement (ii7) in this case the conditions m = —c and h = —eu are fulfilled and
we obtain p3p4 = (eu — 3c)(c — 3eu) = 0. As it was mentioned earlier we may assume p3 = 0
(i.e. ¢ = eu/3) and we calculate

Fi = 16e*u*(u—9)/81, 63 =2¢%(u—9)%(u—1)u*/729,
o = 4e*uP(u—9)2/81, w1y = —64e*(u—9)(u—1)u®/81.

Clearly the condition pg # 0 implies /7 # 0 and the condition 1374 = 0 is equivalent to 63 = 0.
This completes the proof of the statement (v) and also the proof of Lemma 3.5. B

Lemma 3.6. A system (3.3) possesses a finite star node if and only if the condition Uz = 0 holds and in
this case the star node is unique. Moreover, for a system (3.3) the condition Uz = 0 implies§ = 6, = 0
and E1M # 0.
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Proof: Assume that a system (3.3) possess a finite star node. Then without loss of generality we
may consider that such a point is M>(1,0) and considering (3.4) we obtain ¢ = 0, m = —c/2
and h = —cu/2. Herein we get U3 = 0.
Conversely, assume that U3z = 0. Evaluating the invariant polynomial U3 for systems (3.3)
we have
Coefficient[Us, x°] = el’, Coefficient[Us,y°] = cull”,

where U’ and U” are some polynomials in the parameters of these systems. As u # 0 (due to
1o # 0) we shall consider three cases: (i) e = 0; (ii) ¢ = 0 and (iii) ce # 0.
(1) The case e = 0. Then we calculate

1o = 4c’>m?u # 0, Coefficient[Us, x*y] = —12c*m?(c +2m) = 0
and this implies m = —c/2. Herein we obtain
Uz = 3¢%(2h + cu)y?(c*x® + ux®y + 2c®uxy? + 6chuxy® + 2chuy® + 4h*uy® — c*uy?)

and po = c*u # 0. Then obviously we obtain that the condition U3 = 0 is equivalent to
2h+cu =0, i.e. h = —cu/2 and this implies that the singular point M>(1,0) is a star node.
(ii) The case ¢ = 0. In this case calculations yield

1o = 4e’h?u # 0, Coefficient[Us, xy*] = 12e*h*u?(2h + eu)
and hence the condition Uz = 0 implies 1 = —eu /2. Herein we get
Uz = —3e?(e + 2m)ux? [(47112 — e®u + 2emu) x> + 2eu(3m + eu) x>y + e*ulxy? + 62u3y3]

and po = e*u® # 0. Clearly the condition U = 0 is equivalent to e +2m = 0, i.e. m = —e/2
and this implies that the singular point M4(0, 1) is a star node.

(iii) The case ce # 0. Considering the matrices (3.4) we conclude that in this case we could
not have a star node. So in what follows we shall prove that in the case ce # 0 the invariant
polynomial U3 could not vanish. We calculate

Coefficient[Us, y°] = 12cu [ezhzuz — 2cehu(c + 2h + cu + mu)+
+o(Pu(l +u) +2c%u(h + m + mu) + c(4hmu — h* — hPu + m*u* — 2h3))} = 12cu®;(c,e,h, m, u)
We observe that the polynomial ®; is a quadratic polynomial in e and therefore the condition
Discrim [, e] = 4ch?(c + h)*u(c 4+ 2h +cu) >0

must hold. Since cu # 0 we conclude that the following conditions have to be fulfilled: either
h=0o0rh=—corh(h+c)# 0and c(c+2h+ cu) = v> > 0.

1) The subcase h = 0. Then we have
@1 = ul(c+m)*u+c(c+2m)] =0

and we observe that due to cu # 0 the condition ¢ +m # 0 holds. Therefore we get u =
—c(c+2m)/(c+m)? and then we calculate

Coefficient[Us, xy*] = 24c>m(c + 2m)?(c? 4 4cm + 2em + 3m?) / (¢ +m)?,
po = —4c>m?(c +2m) / (c + m)*.
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So due to py # 0 the condition Uz = 0 gives e = —(c + m)(c+ 3m)/(2m) and calculations
yield:

6ct(c + 2m)2(3c? + 6¢cm — 5m?)

Coefficient[Us, x*y°] = GEnE =0,
3 2 7c4 3 43c2m2 31 omt
Coefficient[Us, ¥*y?] = 3c’(c +2m)(c +3m)(7c* +35c°m + 43c*m” + cm” + 2m*) 0.
m(c+m)3

Since yp # 0 the equations above (which are forms in two variables) have not common solu-
tions, i.e. U3 could not vanish.

2) The subcase h = —c # 0. Then we obtain
&) = A(—c+cu+eu+mu)> =0
and due to cu # 0 we get e = (¢ — cu — mu) /u. Herein we calculate
Coefficient[Us, x*y°] = 48¢>(u — 1)?[¢*(1 — u) + u*(c + m)*] /u =
= W@z(c,m,u) =0, wuo=4c*(u—1)>2/u

and due to pp # 0 we get ®, = 0. We observe that the polynomial ®, is a quadratic polyno-
mial in ¢ and therefore the condition Discrim [®,,c] = 4m?(u — 1)u?> > 0 must hold. Since
mu(u —1) # 0 (if m = 0 then &, = c*(1 —u + u?) # 0) we conclude that the condition
u—1= w? > 0 must hold. Hence u = w? + 1 and we obtain ®, = (c+ m — cw + cw? +

2
mw?)(c +m + cw + cw? + mw?) = 0. This leads to the relation m = _cdfwtwl) and we
1+ w?
calculate
Us — 24¢5 (1 £ w)wbx3 (Fwx + 2y + 2wy)? _ Adtwt
5T (1 + w?)* S P

Thus considering the change above we obtain e = (¢ — cu — mu)/u = c(1+w)/(1+w?) # 0
and we again get Uz # 0.

3) The subcase c(c +2h +cu) = v> > 0 and h(c+h) # 0. Since ¢ # 0 we obtain h =
—(c® + c*u — v?)/(2¢) # 0 and then we calculate

P, = [eu(c2 + u —v*) + 2c(cmu + v*) +v(c* — Pu + vz)} X
[eu(c2 + 2u — v*) + 2c(cmu + v*) — v(c* — Pu + 02)} /(4c*) = 0.
Therefore due to h # 0 (i.e. ¢ + c®u — v> # 0) we obtain
e = —2c*mu — c*v + Puv — 2cv* — %) / (u(c* + Fu — v?)).

Herein we calculate

3v(c?u — c® — v?)(c*u — c* — 2cv — v?)

3(c? + c2u — v?)

u—c?—2cv —v?)? 2 —cu+?
LAY ) §

2c 7

where @3 = c*u?(c +v) — (c +0)3(c? + 2cv — v?) — 2c2uv(2c% + 4cm + cv + v?). As pg # 0 and

(c+h) # 0 we conclude that the condition Us = 0 implies ®3 = 0. Then we obtain

P3(c,m,u,v),

Coefficient[Us, xy*] = —

v2(c?
Ho = ( 2 , ct+h=

P (c+0) — (e +0)3(c? + 200 — v?) — 2c2uv(2¢* + cv + v?)
N 8c3uv




32 J.C. Artés, |. Llibre, D. Schlomiuk and N. Vulpe

and calculations yield

3(c +v)(c® — c*u+v?)(c* — Pu + 2cv + v?)
8cdu
v?(c? — c?u + 2cv + v?)? (c+0)(c* — c®u + 4cv + v?)

= ’ — 0,
Ho c2u ¢ 4cuv 7

Coefficient[Us3, x2y3] = — Dy(c,u,v),

where
@, = 3ctu?(c —v) — 2c*u(3c® 4 3c*v — 5¢v* — 30°) + (¢ +v) (3c* + 6¢%v — 16¢*v* — 10c0® — 3v*).

As pg # 0 and e(c + h) # 0 we conclude that the condition U = 0 implies ®4 = 0.
On the other hand we have

3(c+v)(c*u — c® — 2cv — v?)

Coefficient[Us, x*y*] = — %y D5(c,u,v),
3 2, 2 20p — o2
Coefficient[Us, x*y] = — (c+ v)(czg&g;vz «c-° >¢6(c, u,0),

where
&5 = 7c%u — 1)* 4267 (—27 +u) (u — 1)%0 — B (u — 1)*(—119 + u(2 + 5u) )v?
+4c” (4 —1)*(—6 + 5u)v® + 2¢%(u — 1) (93 + u(—23 + 10u) )v* + 4> (5 + (13 — 18u)u)v’
+10c*(19 4 (8 — 3u)u)v® + 4c3 (18 + 19u)v” + ¢*(—29 + 20u)v® — 26cv° — 5019,
D = 1183 (u —1)° + 2 (u — 1)*(—=139 + 17u)v + M (u — 1)3(678 + (—167 + u)u)v?
—c(u —1)%(1478 + 5u(—147 + u(4 + u)))0® + 7 (u — 1)*(=917 + u(—140 + 33u))v*
+ B (u —1)(—1899 + u (1451 + u(—89 + 25u)))v° — 2¢” (u — 1) (1950 + u(—229 + 71u))v°
+2¢(1166 + u(—617 + (116 — 25u)u))v” + > (u —1)(261 + 218u)v®
+ c*(—869 + u(—167 + 50u))v° — (278 + 147u)v'® + c*(42 — 25u)ov'! + 37c0v'? + 5013,
We calculate
Resultant[®y, @5, u] = 3-2Yc**0'%(c + v)A, Resultant[®y, O, u] = —22°-9c3 %013 (c 4 v)2B,

where

A = 15¢° + 18c¢*v — 15¢%0% — 10¢%0® + 4cv* + 20°,

B = 38¢° + 148¢%v + 125¢*v* — 108¢30® — 8c¢%v* + 8¢v® + v°.
So to have Uz = 0 (i.e. ®4 = P5 = Py = 0) the polynomials A and B must have a common
solution (factor). However

Resultant[A4, B, c] = 738058646776320°° # 0

and this proves that Us could not vanish. As all the cases are examined we conclude that the
condition Uz = 0 is necessary and sufficient for the existence of a star node of systems (3.3).
It remains to observe that in the case Uz = 0 the uniqueness of the star node follows directly
from (3.4), because for the matrices M3 and My corresponding to the elemental singularities
we could not have simultaneously e = cu = 0 due to py # 0.

Suppose now that the condition Uz = 0 is fulfilled for a system (3.3). We may assume
M3(1,0) to be a star node, i.e. the conditions e =0, h = —cu/2 and m = —c/2 hold. Then we
calculate

Mo = ctu, n=60,=0 E = —u?/2, M = —8c2u2y2

and clearly the condition py # 0 gives EM # 0. This completes the proof of the lemma. g
In what follows we determine the geometric configurations of systems (3.3).
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3.2.1 The case pg <0

Then u < 0 and hence sign (K) = sign (A3) = sign (Ay).

The subcase K < 0 Then the elemental singular points are both saddles and by [8] the type
of the double singular point is governed by the invariant polynomial E;. On the other hand
at infinity we must have three nodes as the sum of the indices of the finite singularities equals
2.

The possibility E; # 0 In this case p; # 0 and besides the two saddles we have a semi-
elemental saddle-node.

1) The case T4 # 0. Then p3ps # 0 and both saddles are strong. So we arrive at the
configuration

e 5,5,57); N/,N/,N/: Example= (33): c=1,e=0,h=0,m=1,u=—1)

2) The case Ty = 0. By (3.5) we get p3ps = 0 and we consider two subcases: 73 # 0 and
T3 =0.

a) The subcase T3 # 0. Then by [28] only one saddle is weak.

a1) The possibility F; # 0. In this case according to [28] the weak saddle is of order one
and we get the configuration

o 5,50, 5m,); Nf,N/,Nf: Example = (33): c=1,e=3,h=0,m=2,u=—1).

ay) The possibility F; = 0. Then by [28] the weak saddle has the order > 2. We claim that in
this case the condition F, # 0 must be satisfied. Indeed, as the conditions 7, = 0 and E; # 0
imply p3ps = 0 we may assume that the singular point M, is weak (i.e. p3 = 0) and this gives
to the relation: m = (c — eu)/2. This leads to the values of F; and yg given in (3.6).

We observe that the conditions 7 = 0 and y # 0 imply e # 0, otherwise we get 1 =
—2c*u = 0 which contradicts yp = c*u # 0. So e # 0 and the condition F; = 0 is equivalent
to h = —(2c2 + 3ce + 2ceu + e*u) / (2¢). Herein we calculate

Fr = —c(c+e)*u?(c +eu)*(3c + eu)?(6c +eu)/e?, E; = —(c+e)*u?(c +eu)(3c+eu)t/2

and clearly due to E; # 0 the condition 7, = 0 implies ¢(6¢ + eu) = 0. However we get
o = e*u?, K = 2e?u(x* — uy?) if ¢ =0 and

no = e*(u —6)%u®/144, K= u(u—6)(x> —uy?)/6 if c = —eu/6

and in both cases the condition g < 0 implies K > 0. This contradiction proves our claim.

Thus 7, # 0 and by [28] the weak saddle has order 2. This leads to the configuration

o 5,52),57); Nf,Nf,N/: Example = (33): c=1,e=1/3,h = —10/3, m =2/3, u =
-1).

b) The subcase T3 = 0. Considering (3.5) and the condition E; # 0 (i.e. p1 # 0) we obtain
p3 = ps = 0 and 7, # 0. Then by [28] we have two weak saddles. We claim that in this case
the condition F; # 0 must hold. Indeed, the conditions p3 = ps = 0 yield m = (¢ —eu)/2 and
h = (eu — c)/2 and then we calculate:

Fir=2(c+e)uleu —c)(c+eu), E=—(c+e)*u?(c—eu)*(c+eu)/2.

It is evident that the condition E; # 0 implies F; # 0 and our claim is proved.
Thus by [28] both weak saddles are of the first order and we obtain the configuration
o s, sW) 570); Nf,NS,N/: Example = (33): c=—-3,e=1,h=1m=—1,u=—1).
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The possibility E; = 0. In this case p; = 0 and besides the two saddles we have a cusp.
Then ¢ = —eu and by (3.5) we obtain

Ta=T3=0, T2 =—A304p301, T1 = —A304(p3 + pas).

1) The case T, # 0. Then p3ps # 0 and both saddles are strong. So we arrive at the
configuration

® 5,5,(pp; N/, N/, N/: Example = (33): c=1,e=1,h=1m=2u=—1)

2) The case T, = 0. This implies p3p4 = 0 and we consider two subcases: 71 # 0and 7; =0

a) The subcase T; # 0. Then only one saddle is weak. We claim that in this case we could
have a weak saddle only of order one, i.e. that the condition F; # 0 holds.

Indeed, as the condition 7, = 0 implies p3p4 = 0, we may assume that the singular point
M, is weak and then the relations p; = p3 = 0 give c = —eu = m. Then we calculate

Fi = 4e*u(h —eu)(h—eu?®), Ti = 8c%u(h—eu)(h— eu®)?

and obviously the condition 77 # 0 implies F; # 0 and this proves our claim.
So the weak saddle is of order one and we get the configuration
o 5,51, epo); NS, NS, NS Example = (33):c=1,e=1,h=-2,m=1u=-1).
b) The subcase Ty = 0. We observe that in this case all the traces vanish (this implies ¢ = 0)

and we arrive at the Hamiltonian systems. So we obtain the configuration
® 5,5,CPo; NS, N/ N/: Example = (33): c=~l,e= -1, h=1,m=~1,u=—1).

The subcase K > 0 Then according to [8] the elemental singular points are both anti-saddles
and the type of the double singular point is governed by the invariant polynomial E;.

The possibility E; # 0 In this case p; # 0 and besides the two anti-saddles we have a
semi-elemental saddle-node.

1) The case Wy < 0. According to [8] we have a node and a focus. Moreover the node is
generic, whereas the type of the focus depends on the invariant polynomial 7.

a) The subcase Ty # 0. Then the focus is strong. Since the total index of the finite singulari-
ties equals +2 we deduce that at infinity we must have singular points of a total index -1. So
considering Lemma 3.1 we arrive at the following 4 configurations

e n,f,51);S,0©,©: Example= (3.3): c=1,e=47/20,h=1,m=1/10, u = -1) (if
7 <0)

e n,f,5M;;S,S,N°: Example = (33): c=1,e=5h=1m=1u=-1) (ify>0)

o n,f,5M3);(3)SN,S: Example = (33): c = —2,e=-1Lh=1m=1u=-1) (f
=0, M #0);

o n,f5M(;(3)S: Example = ((33): c=1,e=1,h=5/27,m=—1,u = —1/27) (if
n=0,M=0).

b) The subcase T3 = 0. Considering (3.5) and the condition E; # 0 we get p3p4 = 0, i.e. the
focus is weak. Then without loss of generality we may assume that the singularity M3(1,0) is
a weak focus, i.e. m = (¢ — eu) /2. In this case we obtain

T2 =0, Fi = u(ceu — c*+ 2eh)(2c* 4 3ce + 2eh + 2ceu + e*u), po = u(—c* + 2eh + ceu)?.
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By Lemma 3.5 in this case the condition M # 0 holds and we consider two possibilities:
F1 #0and F; = 0.

by) The possibility F1 # 0. By [28] the weak focus has order one and considering Lemma
3.1 we arrive at the following 3 configurations

o n,f1),57,);S,©,©@: Example = (33): c=1e=2h=2m=23/2,u=-1) (if
7 < 0)

o n, fl) ;S,5,N®: Example = (33): c=1,e=2h=1m=3/2,u=—-1) (if
7> 0);

o n, f1 ()SNS Example = ((33): ¢ =0,e=8/5h=1m=4/5u=—1) (if
1 =0).

by) The possibility F1 = 0. In this case we have a weak focus of order at least two. According
to Lemma 3.5 in this case the condition 1 # 0 is verified.

) The case F, # 0. By [28] the weak focus has order one and considering Lemma 3.1 and
the condition # # 0 we arrive at the following 2 configurations:

o n,f?),51,); S,©,©: Example= (33): c=1,e=-2h=-1,m=7/16,u = —1/16)
(if < 0);

o n,f? ;S,S,N®: Example = ((33): c=1,e=4,h=5/4, m=5/2,u=—-1) (if
7 >0).

B) The possibility > = 0. Since by Lemma 3.5 we have F3F3 # 0 and 1 > 0, according
to[28] the weak focus has order three and we get one configuration

° nf ;S,S,N®: Example = ((3.3): c=1/6,e=1,h=7/18, m=7/12, u = —1).

2) The case W4 > 0. According to [8] in this case we have two foci if either W, < 0 or
(W, > 0 and W1 W3 < 0); and we have two nodes if W, > 0 and W; W3 > 0.

a) The subcase W, < 0 or (W, > 0, W;W3 < 0). We have two foci and for the existence of at
least one weak focus, the condition 74 = 0 is necessary.

a1) The possibility Ty # 0. Then both foci are strong. So considering Lemma 3.1 we arrive
at the following 4 configurations

o f,f,51);S,©,©: Example = (33): c= -2,e=2/5h=1m=0u=-2) (if
7 <0)

e f,f,sn);S,5,N*: Example = (33): c= -2, e=1/5h=1m=0,u=-2) (if
0> 0

. f,f,ﬁ(z);(g)SN,S: Example = ((33): c = =2, e =, h =1, m =0, u = —2) (where
&=y"1(0) ~ 0.38248); (if y =0, M # 0);

° f,f,s%a); (g)S: Example = ((3.3): c=—1,e=1/2,h =10/27, m =1, u = —4/27) (if
n=0,M=0).

ay) The possibility Ty = 0. Considering the condition E; # 0 and (3.5) we get p3p4 = 0. Then
at least one focus is weak and without loss of generality we may assume that the singularity
M3(1,0) is a weak focus, i.e. m = (¢ — eu)/2. In this case we obtain

Ta=0, T3= —A3A4p%p4, o = u(ceu — ? +2€h)2
F1 = u(ceu — c* + 2eh) (2¢* + 3ce + 2eh + 2ceu + e*u).

) The case T3 # 0. Then only the focus M3(1,0) is weak.

1) The subcase Fi # 0. By [28] the weak focus has order one and considering Lemma 3.1
we arrive at the following 4 configurations
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° f,f(l),s?(z); S,0,©: Example = (33): ¢c=—-1,e=3,h=1m=1u= -1) (if
1 <0)

o f,fW,51);S,S,N®: Example = (33): c= -1, e=8h=1m=7/2,u=-1) (if
1> 0);

° f,f(l),s?(z); (g)SN,S: Example = (3.3): c=—-1,e=¢ h=1,m=({—-1)/2, u=—-1)
(where & = 171(0) ~ 7.754938)  (if 7 = 0, M # 0);

° f,f(l),sﬂ(2);(g)5: Example = (33) : c =1,e = =5, h = =2/5,m = =2, u = —1/25)
(if 7 =0, M = 0).

ap) The subcase F; = 0. We claim that in this case if we have two foci (i.e. 73 < 0 and
74 < 0), then the condition # < 0 must hold. Indeed, since yp # 0 the condition F; = 0
implies 2c? + 3ce + 2eh + 2ceu + e*u = 0. We observe that e # 0 otherwise ¢ = 0 and this
implies o = 0. So we obtain h = —(2¢? 4 3ce + 2ceu + ¢*u) / (2e) and calculations yield

n=4dc(c+e)¥i(ce,u)/e?, po=u(c+e)*(3c+eu)?
7 =4(c+e)(3c+eu), T4 =4c(c+e)(c®+ ce+2ceu — *u +e*u)/e?,

where ¥1(c,e,u) is the polynomial from (3.7). Since the condition pp < 0 implies u < 0,
it was shown in the proof of the statement (ii) of Lemma 3.5 (see page 28) that in this case
sign (Y1) = 1. Therefore sign (17) = sign (c(c +¢)).

We observe that the the conditions c¢(c +¢) > 0 (i.e. 7 > 0) and u < 0 imply ¢? + ce +
2ceu — e*u + e*u? > 0. Indeed, if ce < 0 then we have

¢® + ce + 2ceu — e*u + e*u* = c(c + e) — e*u + e*u® + 2ceu > 0
due to c(c +e) > 0 and u < 0. Assuming ce > 0 we have again
¢® + ce + 2ceu — e*u + e*u® = ce — e’u + (c +eu)? > 0.

So we get 74 > 0 and this proves our claim.

Considering Lemma 3.5 (see the statement (ii)) we deduce that in this case the condition
F> # 0 must hold, i.e. by [28] the weak focus has order two. Thus considering Lemma 3.1 we
get the configuration

o f,.f?,57);S,©,©: Example= (33): c=-1,e=4h=9/4m=3/2, u=-1),

B) The case T3 = 0. Then p3 = ps = 0 and both elemental singularities are weak singularities
(foci or centers). The condition p3 = ps = 0 implies m = (c —eu)/2 and h = (eu — c)/2 and
we calculate

po = u(c+e)*(c—eu)?, Fi=—2u(c+e)*(c—eu)(c+eu),
E1 = —u?(c+e)*(c —eu)*(c+eu)/2
and we arrive at the next remark.
Remark 3.7. If for a system (3.3) the conditions p3 = ps = 0 and E; # 0 hold, then FM # 0.

Indeed, from the above expressions it immediately follows F; # 0. On the other hand
considering the relations m = (¢ — eu) /2 and h = (eu — ¢) /2 we calculate Coefficient| M, xy] =
—16(c + eu)? # 0 due to E; # 0.

Therefore considering Lemma 3.1 we arrive at the following 3 configurations of singulari-
ties:

o fU,f1),50,);S,©,©@: Example = (33): c=1e=-2h=-3/8,m=23/8u=
—1/8) (ify <0)
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o f, ) S1(y); S,S,N*:  Example = ((33) : ¢ = 4/15,e = =2, h = —1/120, m =
1/120, u = —1/8) (1f17 > 0);

o f,fM) ) ()SNS Example = ((33) : ¢ = 5/16,¢e = =2, h = —1/32, m =
1/32, u = —1/8) (if n =0).

b) The subcase Wp > 0 and W; W3 > 0. We have two nodes which are generic due to W, # 0.
So considering Lemma 3.1 we arrive at the following 4 configurations

® 1,1,5M3);S,©,©: Example= (33):c=1,e=1,h=1m=0,u=-2) (ifn<0)

e n,m,5M); S,S,N*: Example = (33):c=1,e=3h=1,m=0,u=-2) (ify>0)

o n,1,510); ()SN S: Example = (33): c=1,e=¢ h=1m =0, u = —2) (where
E=7n"10 ) ~2719192)  (ifn =0, M;«EO;

o 7, nsn( 2); ( )S: Example = ((3.3): ¢ = —1/2,e=—-3/5,h=—-5/6, m =1, u = —25/35)
(if 7 =0, M =0).

3) The case Wy = 0. Since E; # 0 (i.e. p1 # 0) by (3.5) we obtain 1374 = 0 and therefore at
least one elemental singular point is a node with coinciding eigenvalues and we may assume

that such a singular point is M3(1,0) (i.e. 73 = 0) . Considering [8] we examine three subcases:
W3 <0, Ws > 0and W3 = 0.

a) The subcase W3 < 0. According to [8] the second elemental singularity is a focus. We
claim that in this case we could not have a finite star node. Indeed, supposing that M3(1,0)
is a star node considering (3.4) we gete = 0, h = —cu/2 and m = —c/2. Then we calculate
W3 = c*u?(1 + u)? > 0 which contradicts our assumption.

a1) The possibility T4 # 0. In this case we have a strong focus and considering Lemma 3.1
we get the following 4 configurations:

o n',f,57); 5,©,©: Example= (33): c=1e=-1,h=1/2,m=—-1,u=—-1) (if
7 <0y

o 14 ,f,81(2); S, S, N*: Example = (33):c=2,e=-1,h=-1/8, m=0,u=-1) (if
1> 0);

o n?,f,5M); (3)SN,S: Example = (33): c=3,e=0h=1,m=-3/2,u=-1) (if
=0, M#0);

° nd,f,sﬂ(z);(g)S: Example = (33): ¢ = —2,e=0,h=0m=1,u=-1) (ifn=0,
M =0).

ay) The possibility Ty = 0. Since 73 = 0 we must have p3 # 0 and then the condition 74 =0
implies p4 = 0. In this case we have a weak focus.

«) The case F1 # 0. The weak focus is of order one. Since Wy = 0, by Lemma 3.5 (the
statement (i) we have M # 0. So considering Lemma 3.1 we get the following 3 configurations:

. nd,f(l),ﬁ(Z); S,©,©: Example = (33): c=-1,e=1,h=0,m=2u=-1) (if
7 <0y

o 1 f ;S,S,N®: Example = (33): c=—-5,e=1,h=2,m=0,u=—-1) (f
n>0);

o n, f) 5m @ ,(g)SN,S: Example = ((3.3) : ¢ = —(16¢%+1)/4,e = (42 —1)*/4,h =
& m=(1 —2@')/2 u = —1) (where & = 771(0) = —0.91591) (if 5 = 0).

B) The case F1 = 0. Then the weak focus has at least order two.

B1) The subcase F, # 0. According to Lemma 3.5 (the statement (iv)) in this case the
condition 77 < 0 holds and according to Lemma 3.1 we get the configuration
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o nl,f?),50;5,©,0@: Example = (33) : ¢ = —2/5,¢ = 3/20,h = —2/5,m =
7/5, u = —8).

B,) The subcase F, = 0. By Lemma 3.5 (the statement (iv)) in this case the conditions F, =
F3 = 0 and # = 0 are satisfied. Moreover, as it was shown in the proof of the statement (iv)
(see page 29) for systems (3.3) the following conditions are fulfilled: c =0, m = —eu/2 h =
—eu /2. In this case we obtain

Fi=F=F=To=1=0, T:.F =e2u'/2, uy ="’ M = —8e%u%x?

and as g < 0 we get 73F < 0 and M # 0. Therefore by [28, Main Theorem, statement (by)]
besides the one-direction node we have a center and considering Lemma 3.1 we obtain the
configuration

o 19, ¢,57y); ()SN S: Example = (33): c=0,e=2h=1,m=1,u=—1).

b) The subcase W3 > 0. According to [8] the second elemental singularity is a generic node.

by) The possibility Uz # 0. In this case by Lemma 3.6 we cannot have a finite star node and
Considering Lemma 3.1 we get the following 4 configurations:

o un,n ,81(2); S,©,©: Example = (33): c=2e=1h=9/8m=0u=-1) (if
n <0);

o n,n? ,87(3); S,S,N®: Example = (33):¢c=0,e=1,h=1/8,m=0,u=-1) (if
1> 0);

o n,nY, S7i(2); ()SNS Example = (33): c = —2,e =0, h=4,m=1,u=-1) (if
n=0,M#0);

o 1, ndsn( 2); ( )S: Example = ((3.3): c=—-2,e=0,h=0,m=1,u=-1/5) (ify =0,

= 0).

bz) The possibility Uz = 0. By Lemma 3.6 we have one finite star node (which is unique)
and in this case the condition M # 0 holds. Hence by Lemma 3.1 we get the configuration

e n,n",5Mp); ()SN S: Example = ((33): c=2,e=0,h=2,m=—1,u=-2).

¢) The subcase W3 = 0. In this case we have 173 = 74 = 0, i.e. each one of the nodes has
coinciding eigenvalues.

c1) The possibility Uz # 0. In this case by Lemma 3.6 we cannot have a star node and
Considering Lemma 3.1 we get the following 4 configurations:

o nl,n?,57); S,©,©: Example = ((33): c=2,e=-2h=-5m=1u=—4) (f
n <0);

o né nd /87(5); 5,5, N®: Example = ((33) : ¢ =2,e = —=1/2,h =3/4,m = =3/4,u =
—1) (ify > 0);

o n ni, ST ),( )SN, S: Example = (33): c=-1,¢e=0,h= -1, m=1/2, u = —9/4)
(if § = 0, M # 0);

o ni nd STL(2); ( )S: Example = (33): c=1,e=0,h=0,m = —-1/2,u = —1/4) (if
n=0,M=0).

c2) The possibility Uz = 0. By Lemma 3.6 one of the nodes is a star node. We may assume
Mj3(1,0) to be a star node, i.e. the conditions e =0, h = —cu/2 and m = —c/2 hold. In this
case we calculate po = c*u W3 = cu?(1 + u)? and due to pp < 0 the condition W3 = 0 gives
u = —1. So and we get the configuration

o n,n*,51); (3)SN,S: Example = (3.3): c=—1,e=0,h=—-1/2,m=1/2, u = -1).
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The possibility E; = 0 In this case p; = 0 and besides two anti-saddles we have a cusp.
Then ¢ = —eu and by (3.5) we obtain

Wy=W;=0, W, =A3Ai31s, Wi = A3A5(13+ 1),
Ta=T3=0, T2 =—A304p301, T1 = —A304(p3 + p1).

1) The case Wy < 0. According to [8, Table 1, line 74] we have a node and a focus. Moreover
the node is generic, whereas the type of the focus depends on the invariant polynomial 7.

a) The subcase T, # 0. The focus is strong and considering Lemma 3.1 we arrive at the
following 4 configurations

° n,f,cAp(z); S,©,©: Example= (33):c=1,e=1,h=1,m=0,u=-1) (ify <0)

° n,f,cAp(z); S,S,N®: Example = ((33): c = —3/2,e=—-1,h=2,m=2,u=-3/2)
(if 7 > 0);

° n,f,cAp(z);(g)SN,S: Example = ((33): ¢ =¢, e = —1,h =2, m =2, u = {) (where
&=y"10) ~ —1.5278) (if y =0, M # 0);

o 1,f,CP); (3)S: Example = (33): c=8,e=1,h=28m=—-10,u = —8) (ifn =0,
M = 0).

b) The subcase T, = 0. Then the focus is weak and without loss of generality we may
assume that the singularity M3(1,0) is a weak focus, i.e. m = (¢ —eu)/2 and since ¢ = —eu
we get m = —eu. We calculate

o = 4e*u(h —eu®)?, Fy = 4e*u(h — eu)(h — eu?),

We remark that in this case the condition F; # 0 holds, otherwise we get i = eu and then we
calculate Wy = —210¢12(1 — 1)%4% > 0 due to o = 4e*(u — 1)%u® < 0.

Thus in this case by [28] we have a first order weak focus. Since by Lemma 3.5 (the
statement (7)) the condition M # 0 holds, according to Lemma 3.1 we arrive at the following
3 configurations

. n,f(l),cAp(z); S,©,©: Example = (33): c=1l,e=1,h=2,m=1u=—1) (f
7 < 0)

. n,f(l),CAp(Z); S,S,N®: Example = (33): c=1,e=1,h=6/5,m=1,u=—-1) (if
1> 0);

° n,f(l),cAp(z);(g)SN,S: Example = (33): c=1,e=1,h=¢ m=1,u = —1) (where
& =n"10) ~ 1.311184) (if = 0).

2) The case Wy > 0. According to [8, Table 1, line 73] we have two nodes and both are
generic and considering Lemma 3.1 we arrive at the following 4 configurations:

° n,n,cAp(z); S,©,©: Example = (33): c=3,e=3h=3/2,m=1u=-1) (f
n <0);

° n,n,cAp(z); S,S,N®: Example = ((33): c=3,e=3h=21/20m=1,u=—-1) (f
1> 0);

° n,n,cAp(z);(g)SN,S: Example = ((33) : ¢ =3,e =3, h =¢ m =1,u = —1) (where
&=y"1(0) ~ 1.090358) (if # =0, M # 0);

° n,n,cAp(Z);(g)S: Example = (33): c=1l,e=1,h=2,m=-2,u=-1) (fy =0,
M=0).

3) The case W = 0. According to [8, Table 1, line 73] we have two nodes and at least one is
with coinciding eigenvalues. Since E; = 0, by Lemma 3.6 we could not have a finite star node.
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We assume that the singular point M3(1,0) is a point with coinciding eigenvalues. So we
impose 73 = 0 and since p; = 0 (due to E; = 0) by (3.5) we obtain W; = AZA%1.

a) The subcase Wy # 0. Then 14 # 0 and hence the second node is generic. So considering
Lemma 3. 1 we arrive at the following 4 configurations

o un,n /CP(); 5,©,©: Example = (33 :c=1e=1h=1/2,m=0,u=-1) (f
n<0)

o n,nd,cAp@); S,S,N*: Example = (33): c=1,e=1,h=5/2,m=2,u=-1) (if
n>0);

o n,n%cp 2),(2)SN S: Example = (33): c=1l,e=1,h=(1+¢&%)/2,m=¢&u=—1)
(where@’—;y 1(0) ~ 0.5694) (if y =0, M # 0);

o n,n? CPay; (3)5. Example = ((3.3) : ¢ = 64/125, e =1, h = 544/625, m = —152/125, u =
—4/5) (if y =0, M = 0).

b) The subcase W; = 0. Then 174 = 0 and hence the singular point M4(0,1) is a node with
coinciding eigenvalues. It was shown above that none of the nodes could be a star node.

We claim that in this case the condition # < 0 holds. Indeed considering the relations
¢ = —eu and h = (m? + ¢*u?) / (2¢) we calculate

1y = (m* + de*u? + 83 mu? + 22 mPu® 4 e*ut) /e = p(e,m,u) /.

Consider the equation ¢(e,m, u) = 0. We observe that the polynomial ¢ is homogeneous of
degree 4 with respect to ¢ and m and it is bi-quadratic in u. So denoting m /e = z we calculate
Discrim [¢(1,z,u), u?] = 16(1 +z)?(1 + 2z) and clearly the condition (1 + z)?(1 +2z) > 0 must
hold.

Assume 1+ z # 0. Then 14 2z > 0 and setting a new variable w as follows: 1+ 2z = w? >
0 (i.e. z = (w? — 1) /2) we calculate

¢(1,z,u) = [4u® + (w —1)*] [4u® + (w + 1)*].

It is clear that the condition u # 0 implies ¢(1,z,u) # 0.
Suppose now z = —1. This yields m = —e and then we have

ple,—e,u) = e*(u> —1)> = 0.
Since pp < 0 (i.e. u < 0) we get u = —1 and then we calculate
B=1=0, n=—-16*= g

and as pp < 0 this completes the proof of our claim.
Thus in the case W, = W; = 0 we get the unique configuration
o né nl /P S, ©,©: Example = ((33): c=1l,e=1h=1,m=~1,u=-1).

3.2.2 The case jp >0

Following [8] we shall consider two subcases: E; # 0 and E; = 0.

The subcase E; # 0 Then the double singular point is a a semi-elemental saddle-node.
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The possibility Wy < 0. According to [8] besides the saddle-node we have a saddle
and a focus. Moreover by [28] their types depend on the invariant polynomials 7; and F;
i=1,...,4).

1) The case Ty # 0. Then p3p4 # 0 and both elemental singularities are strong.

a) The subcase 1 < 0. Then systems (3.3) possess one real and two complex infinite singular
points and according to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be 3 distinct
configurations at infinity:

s, f,51p); N°, ©©: Example = (33): c=2e=1/2h=1m=0u=1) (if
6 < 0);

s, f,57 ; N/, ©,©: Example = (33): c=0,e=1,h=1,m=0,u=1) (if 6 > 0);

o5, f,57(); N, ©,©: Example = (33): c=2e=1,h=1,m=0,u=1) (if 6 =0).

b) The subcase 1 > 0. In this case systems (3.3) possess three real infinite singular points.
Since for these systems the condition ug > 0 holds, taking into consideration Lemmas 3.1
and 3.5 (the statement (iii))) we could have at infinity only 6 distinct configurations. The
corresponding examples are:

s, f,5My); S, N, N*: Example = (33): ¢c=2,e=2/5h=-2/5m=-8/5u=1)
(if6 <0,6 < 0)

e s, f,5M4); SN/, N: Example = (33) : ¢ =1/2,e = 1,h =0,m = =2, u = 2) (if
9<0%>®

e, f,57(); S,N®, Nf: Example = ((33): ¢ = =3/2,e=1/2,h =0,m = =2, u = 2) (if
6 > 0);

® s, f,5n3); S,N% , N%: Example = ((3.3) : ¢ = 6/5,e =1/5,h = 1,m = 0, u = 1) (if
0=0,0, < 0)

e s, f,57(); S,N/, N%: Example = (3.3): c =1/4,e =1/2,h = —=1/4,m =0, u = 1/4)
(if0 =0,6 > 0)

e s, f,57); S,N, N Example = (3.3) : ¢ = =3,e = =1, h = 2,m = 3,u = 2) (if
=00 = 0)

c) The subcase 1 = 0. In this case systems (3.3) possess at infinity either one double and one
simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by Lemmas
3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

o s, f,57(); (5)SN, N*: Example = (S3): (33): c=0,d=-1,e=1,f=1,¢g=2h=
1) (if 0 < 0);

o s, f,57(); (3)SN, N/t Example = (S3): (33): c=1,d=0,e=1,f=0,g=1/2,h=
1) (if 6 > 0);

° s,f,ﬁ(z);(g)SN, N9 Example = (S3) : (c=1,d =0,¢ = 1, f=0g¢g=1h=1)(f
6 =0),
if M # 0 and one configuration

s, f,5M); (g)N: Example = (S4): (33):¢c=0,d=—-1,e=0,f=2,¢9=1h=-1)
if M =0.

2) The case Ty = 0. Considering the condition E; # 0 and (3.5) we get p3ps = 0. Then

at least one singularity is weak and without loss of generality we may assume that such a
singularity is M3(1,0).

a) The subcase T3 # 0. In this case only one singularity is weak and considering the
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condition p3 = 0 (i.e. m = (c — eu)/2) we calculate

po = u(c® —2eh —ceu)?, Tz = u(c +eu)*(c+ 2h — eu)(c* — 2eh — ceu)?,
T F = u?(c +eu)*(c +2h — eu)?(c* — 2¢h — ceu)? /8.
We observe that the condition 73 # 0 implies 73F # 0 and we consider two possibilities:
T3 F < 0and 73.F > 0.

a1) The possibility T3 F < 0. According to [28, Main Theorem, the statement (b)] the weak
singularity is a focus.

«) The case F1 # 0. Then the order of the weak focus is one.

«1) The subcase 1 < 0. According to Lemma 3.5 (the statement (iii)) the condition 6 = 6, = 0
could not be satisfied. So by Lemma 3.1 there can only be 3 distinct configurations at infinity:

o5, f(V ; N®, ©,©: Example = (33): c=-3,e=-2,h=—-1,m=-1/2,u=1)
m9<m

os, f(1) ) NS, ©,©: Example = (33): c=—1,e=—-3,h=0m=1u=1) (if
0 > 0);

os, f() ; NY, ©,©: Example = (33):c=1,e=2,h=1/2,m=3/2,u=1) (if
0 =0).

«2) The subcase 1 > 0. In this case systems (3.1) possess three real infinite singular points.
Since for these systems the condition 9 > 0 holds, taking into consideration Lemmas 3.1 and
3.5 (the statement (iii)) we could have at infinity only the following 6 distinct configurations:

os, f(V ; S,N*°, N®: Example = ((33): c=7/2,e=1,h=4,m=1,u=23/2) (if
9<091<0)

o5, f,5m); S,Nf, Nf: Example = (3.3): ¢ = —1/2,e =1, h =3/2,m = —5/2, u =
9/2) (1f9<091>0)

o s, fU),515); S,N®, Nf: Example = ((33): c = —3/2,e=1,h=4,m=-5/2,u=7/2)
m9>m

osf ; 5, N® Nd Example = ((33): c=1/4,e=7/4,h=3/32, m =13/16, u =
1/4) (1f9_0 91<0)

o 5, f1),57(); S,N/, N Example = ((33) : ¢ = 1/4,¢ = —1/4,h = —5/32,m =
3/16, u_4/4)(ﬁ9__091>0)

os, 1) ; S,N4, N%: Example = ((3.3): c=3/10,e=1,h = —1/10, m = —3/10, u =

1/10) (1f9 = O 91 = 0).

«3) The subcase 1 = 0. In this case systems (3.1) possess at infinity either one double and
one simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by
Lemmas 3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

°s, f ( )SN N®: Example = ((33) : ¢ =3/2,e=1/42,h = -7, m = —1,u =
1M)m9<m
os, f() ( )SN N/f: Example = ((3.3): ¢ =50, e =& h = —58, m = (50 — 8%) /2, u =
8) (where é’ 17 1(0) ~ 44.635072) (if 6 > 0);
2 _
o s, f(V ()SNNd Example:((3.3):c:(;‘,e:)(,hzw,m:

(¢€— 8)()/2, u = 8) (where (&, x) = (171(0),071(0)) ~ (1.1776729,0.1071644)) (if 6 = 0),

if M # 0 and one configuration
os, 1) ( )N: Example = ((3.3): ¢ = —3, e = —1/405, h = —65, m = 1, u = 2025) if
= 0.
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B) The case F1 = 0. We claim that in this case the condition e # 0 holds. Indeed, since the
condition p3 = 0 gives m = (c — eu)/2, supposing e = 0 we obtain yp = c*u > 0 and then
F1 = —2c*u # 0. So e # 0 and due to a time rescaling we may assume ¢ = 1. In this case we
calculate

Fi = u(cu — 4 2h) (3¢ +2¢* +2h +u +2cu), po = u(cu — c*+2h)?
and as pg # 0 the condition F; = 0 implies 1 = — (3¢ + 2¢* 4+ u + 2cu) /2. Then we have

po =u(c+1)*(Bc+u)?, Fa= —c(1+c)*u?(c+u)*(3c+u)?(6c+u),
n=4c(c+1)¥2(c,u), 6=-81+c)(Bc+u)¥s(c,u), »=4(c+1)3c+u), (3.10)
oy =4c(1+c)[(c+u)?+c—u], Et=—14+c)*u?(c+u)(Bc+u)t/2,

where

Yolc,u) = 12¢* + u* 4 3cu®(3 + 2u) + 4¢3 (9 + 7u) + 3¢*(9 + 6u + 7u?),
Y¥3(c,u) = 4c* +2c(u — 3)u — (u — 1)u? + 4c(3 4 2u) + (9 — u + 4u?).

Lemma 3.8. Assume that the conditions pg > 0, Ey # 0, T4 = F1 = 0 and Wy < 0 hold. Then we
have: (i) M # 0; (ii) the condition n = 0 implies 0 > 0; (iii) if in addition T3 F < O then (iiiy) the
condition 5 < 0 implies 0 > 0 and (iiiy) the conditions 1 > 0 and 6 < 0 imply 6, > 0.

Proof: Since poE; # the condition 7; = 0 gives p3ps = 0 and we may consider p3 = 0. Then
forcing the condition F; = 0 we have e # 0 (we may assume ¢ = 1 as it is mentioned above)
and = —(3c +2¢? + u + 2cu) /2 and we arrive at the relations (3.10).

(i) Suppose that the condition M = 0 holds. We calculate Coefficient[M, xy] = —16¢(3 +
2¢ —u)(c +u)xy and as E;14 # 0 the condition M = 0 implies 3 +2c — u = 0, i.e. u = 3 + 2c.
Then we obtain M = —72(1+ ¢)(1 +2¢) (x? + 3cy? 4 2c%y?). Hence the condition M = 0 yields
c = —1/2 and this implies 1374 = 1/4 > 0, i.e. we get a contradiction.

(ii) Assume that the condition # = 0 is fulfilled. The only intersection of the curves 7 = 0
and 6 = 0 outside the union {yp = 0,E; = 0, Wy = 0} is the point (co, up) ~ (—0.5745,2.1564)
for which Wy > 0. In any other open subset of the region & defined by {9 > 0,E; # 0, Wy <
0} these curves do not intersect. So when 17 = 0 the polynomial 6 has a fixed sign which could
be different if R is disconnected. Checking the sign of 6 on the points of the curve # = 0 in
any subset of 7} we detect that 0 is always positive.

(iii) Assume now that the condition 73F < 0 holds. Due to p; = 0 this is equivalent to
T3 < 0 (as we have a weak focus).

(iii1) As we mentioned above the only intersection of the curves # = 0 and 6 = 0 outside
the union {yy = 0, E; = 0, Wy = 0} is in the domain W; > 0 where we also have 73 > 0. On
the other hand inside the intersection of the region % with the region defined by 13 < 0 we
can have either 7 > 0 or 7 < 0 (respectively 6 > 0 or 8 < 0). But since there is no intersection
of these curves it means that some combinations of signs is not possible. It remains to observe
that in the domain < 0 we have 6 > 0.

(iiiy) Considering the intersection points of the curve 6; = 0 with § = 0 (respectively with
n = 0) we detect that they are also in the complement of the region of 73 < 0 and o > 0.
Moreover in this region the curve ; = 0 is located on the domain where 7 > 0 and 6 > 0. It
remains to observe that in the region where § < 0 we have 6; > 0. This completes the proof
of the lemma.

We consider two subcases: F, # 0 and F, = 0.
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B1) The subcase F> # 0. In this case the weak focus is of order two and by the above remark
and Lemma 3.1 we arrive at the following configurations of singularities:

o5, f? N/, ©,©@: Example = ((33): c=—1/2,e=1,h=1/2,m=—-3/8,u =
1/4) (1f;7<0)

o5, ; S,Nf, Nf: Example = ((33): ¢ = —3/2,e =1, h =5,m = —13/4, u = 5)
mq>oe<m

osf ;S,N®, N/: Example = (33) : ¢ = =3, e =1, h =41/2, m = —13/2, u =
w)mn>09>m

o5, [ ; S,Nf, N*: Example = (383):c=¢e=1h=—(2824+232+10)/2, m =
(5—10)/2 u _10) (where & = 671(0) ~ —2.6027488) (if > 0, 8 = 0);

o 5, f?,515); (3)SN, Nf: Example = (33): c = —4/5,e =1, h = (28 +15¢)/50, m =

—(4+ 56)/10 u = ¢) (where & = 71(0) ~ 2.23643428) (if 7 = 0).

B2) The subcase F, = 0. Considering (3.10) and the condition E1 74 # 0 we get (6c +u) =0,
i.e. ¢ = —u/6. Calculations yield:

Ta=Fi=F=0, m=u(6—u)/3, 1=u’(u—6)(81 —126u+50u%)/972,

3.11
F3Fy =523y —6), 6 =u®(u—6)(729 — 459u + 25u?) /486 (3.11)

and clearly the conditions 73 < 0 and u > 0 (due to yp > 0) imply u > 6,7 > 0 and F3F4 # 0.
Hence we could not have a center in this case. Considering Lemma 3.8 and Lemma 3.1 we
arrive at the following configurations of singularities:

o5, [ ;S,N/, N/: Example = (33): c = —2,e=1,h=17,m = —7,u = 12) (if
0 < 0);

o5, f0) ; S,N®, Nf: Example = ((33) : c= -3, e=1,h=81/2,m = —21/2, u =
18) (if 6 > 0)

o5, 0 ; S,N/, N%: Example = ((33) : ¢ = —&/6,e = 1,h = &5 —9)/36, m =

—7¢/12, u = g) (where & =27(17 +3v/21)/50) (if 6 = 0).
ay) The possibility T3 F > 0. According to [28] the weak singularity is a saddle.
«) The case F1 # 0. Then the order of the weak saddle is one.

1) The subcase 1 < 0. According to Lemmas 3.5 (the statement (iii)) and 3.1 there can only

be 3 distinct configurations at infinity:

fsn ; N®, ©,©: Example = (33): c=2,e=4h=-2m=-1,u=1) (if
9<m

fsn ; NS, ©,©: Example = (33) : c =2, e =2, h=-2,m=0,u=1) (f
9>®

f 51, ; NY, ©,©: Example = (33): c=2,e=10/3,h = -2, m= —2/3,u = 1)
(if 9 = 0)

«2) The subcase 1 > 0. In this case systems (3.1) possess three real infinite singular points.
Since for these systems the condition y > 0 holds, taking into consideration Lemmas 3.1 and
3.5 (the statement (iii)) we could have at infinity only the following 6 distinct configurations:

o s, f,57(5); S,N®, N®: Example = (3.3): ¢ =3,e=17/2,h = =8, m = —11/4, u = 1)
(if 6 < 0,61 < 0);

o s, f,57(); S,Nf, Nf: Example = ((33): c = —=5/2,e = -1, h=3,m=—1,u =1/2)
(1f9<0 01 > 0);

W), f,515); S,N*, Nf: Example = ((33): c =3,e=8,h= -8 m=—-5/2,u=1) (if
0> 0);



Global configurations of singularities 45

D, f, S7(2); S,N®, N%: Example = ((33): c =2,e =40, h = =9, m = —4, u = 1/4) (if
9_0 91 < 0);

Y, f,515); S,Nf, N%: Example = (3.3): c =4,e=40,h = —21/2, m = =3, u = 1/4)
(ife_o 0 >0)

f 1(2); S, N?, N Example = (3.3): c= —1,e = —12,h =3, m =1, u = 1/4) (if
9_0 91_0)

a2) The subcase 7 = 0. In this case systems (3.1) possess at infinity either one double and
one simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by
Lemmas 3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

s, f,575); (5)SN, N*°: Example = ((3.3): ¢ =1/2,e=27/10,h=—5/3, m = -1, u =
25/27) (if 6 < 0);

W, f, 571 ( )SN, N/: Example = (33): c=&e=1,h=-2,m= ({—-1)/2,u=1)
(where ¢ =5~ ( ) ~ 1.137298) (if 6 > 0);

s(l),f,sn(2), (g)SN, N7 Example = ((33): c=¢, e=x, h=-2,m=(—x)/2,u=1)
(where (¢, x) = (171(0),071(0)) ~ (0.824045, 2.1573787)) (if 6 = 0),
if M # 0 and one configuration

W), f,572); (§)N: Example = ((3.3) : ¢ =3/4, e = —1331/1620, h = —10/11, m =1, u =
2025/1331)
if M =0.

B) The case 1 = 0. Then the order of the weak saddle is at least two. In this case by
Lemma 3.8 we have M # 0 (i.e. at infinity we could not have a triple singularity) and the
condition 77 = 0 implies 6 > 0 (see the statement (ii) of this lemma).

We consider two subcases: F, # 0 and F, = 0.

B1) The subcase F» # 0. According to [28] the weak saddle is of the order two. As M # 0
by Lemmas 3.1 and 3.5 (the statement (v)) we arrive at the following configurations:
f §7(3); N, ©,©: Example = (33): ¢ = —4/25,e =1, h = —=172/625, m =
—4/5 u = 36/25) (ifn <0,0<0)
2, f, sy Nf ©,©: Example = ((33): c=—-2,e=1,h=1/2,m = =3/2,u =1)
(if 17 < 0 0 > 0)
f 51, ; N, ©,©: Example = ((33): c=-1/5,e=1,h = (13—-15¢)/50, m =
(1 +5§)/10 u = ¢) (where ¢ = 671(0) ~ 1.568605)  (if 7 < 0,0 = 0);
f 57(3); ;' S,N®°, N®: Example = ((3.3) : c=1/20,e=1,h = —-3/16, m = —3/40, u =
1/5) (1f;7>0 9<091<0)
s, f,5m5); S,N/, N/t Example = ((33) : ¢ = =9/8,e =1, h =1/2,m = —5/8, u =
1/8) (if;7>0 9<091>0)
2, f, §7(3); S, N , Nf: Example = ((3.3): ¢ =1/10,e =1, h = —2/5, m = —3/20, u =
2/5) (1f17 >0 9>0)
s(2>,f,ﬁ(2); S, N>, N4 Example = ((33): ¢ =1/20,e =1, h = — (31 +220¢) /400, m =
(1 —ZOC)/4O u = ¢) (where ¢ = 071(0) ~ 0.193463) (if 7 > 0,60 =0,6; < 0);
2, f,515); S,Nf, N%: Example = ((3.3): ¢ = (1+8Z)/4,e=1,h = —3(1+4¢)/8, m =
& u= 1/4) (where E=—(B3++5)/8) (ify>0,0=0,0; >0);
s?), f,575); () SN, Nf: Example = (3.3) : ¢ = —6/5,e = 1, h = (35¢ + 18)/50, m =
—(5¢ +6)/10, u = ¢) (where & = 71(0) ~ 0.07381883) (if 7 = 0).

B2) The subcase F», = 0. As it was shown earlier (see page 44, p. B2)) in this case we get
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¢ = —u/6 and then we calculate:
1y = u?(u —6)(25u — 42) /324, 6, = —u®(u —6)(22u — 27)/864.

So considering (3.11) we observe that the condition 74 < 0 implies 42/25 < u < 6 and then
n < 0 and 6, F3F; # 0. Hence we could not have a center in this case. Considering Lemma
3.1 we arrive at the following three configurations of singularities:

o 5, f,5m); N°, ©,©: Example = (3.3) : ¢ = —17/60,e = 1, h = —17/720, m =
—119/120, u = 17/10) (if 6 < 0);

o5, f,57); Nf, ©,©: Example = (33): c=—1/3,e=1,h=1/18, m = =7/6, u =
2) (if 6 > 0);

. 5(3),f,57(2); N4, ©,©: Example = ((33) : ¢ = —¢/6,e = 1,h = &(5¢ —9)/36, m =
—7E/12, u = &) (where & = 27(17 — 3+/21)/50) (if 6 = 0).

b) The subcase T3 = 0. In this case we have p3 = ps = 0 and hence both singularities are
weak. Considering Remark 3.7 we have F; # 0 and M # 0, i.e. both singularities have order
one and at infinity there could not be a triple singularity. Moreover, we claim, that in this case
the condition 6 = 6; = 0 could not be satisfied. Indeed, suppose the contrary, that 6 = 6; = 0.
As it was shown in the proof of the statement (iii) of Lemma 3.5 (see page 28) in this case for
systems (3.3) the conditions m = —c and h = —eu must hold. However this implies

03 =eu—3c, pg=c—eu, uy=4u(c*—e*u)?

and evidently the condition p3 = p4 = 0 yields yp = 0 and this contradiction proves our claim.

b1) The subcase 1 < 0. Then systems (3.3) possess one real and two complex infinite singular
points and according to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be 3 distinct
configurations at infinity:

o s, fV,5115); N®, ©,©: Example = (33): c =2, e=1,h=1/4m = —1/4,u =
5/2) (if 6 < 0);

. s(l),f(l),ﬁ(z); Nf, ©,©: Example = (33): c=1,e=0,h=—1/2,m=1/2,u =1)
(if 6 > 0);

° s(l),f(l),ﬁ(z); N, ©,©: Example= (3.3): c=2,e=1,h=¢&/2—-1,m=1-&/2, u =
&) (where & = 671(0) ~ 2.50977025) (if 6 = 0).

by) The subcase 7 > 0. In this case systems (3.3) possess three real infinite singular points.
Taking into consideration the conditions u > 0, 6>+ 6? # 0 and Lemmas 3.1 and 3.5 (the
statement (iii)) we could have at infinity only 5 distinct configurations. The corresponding
examples are:

o s, ) 571,); S,N®, N®: Example = ((3.3) : ¢ = 619/5,¢ = 1, h = 1001/10, m =
—1001/10, u = 324) (if 6 < 0,601 < 0);

. s(l),f(l),ﬁ(z); S,Nf, Nf: Example = (3.3) : c =1,e =0,h = —1/2,m = 1/2,u =
1/10) (if 6 < 0,61 > 0);

o s, 1) 5715); S,N®, N/t Example = (3.3) : c =1L, e = 0,h = —=1/2,m = 1/2, u =
3/25) (if 6 > 0);

o s, f1),5715); S,N*®, N¥: Example = ((33) : ¢ = 6804/55, ¢ = 1, h = 5508/55, m =
—5508/55, u = 324) (if 6 = 0,6, < 0);

o s, f1) 571 (5); S,Nf, N*: Example = ((33): c=1,e=0,h=—1/2,m=1/2, u =1/9)
(if 6 = 0,6, > 0).
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b3) The subcase n = 0. Since by Lemma 3.8 we have M # 0, in this case systems (3.3)
possess at infinity one double and one simple real singular points. So by Lemmas 3.1 and 3.5
(the statement (7ii)) we have the following 3 configurations :

o s, ) 571y ( )SN, N*: Example = (33): c =& e = = (324—-¢)/2,m =
(E—324)/2, u = 324) (where & = 171(0) ~ 123.8421627) (f 0)

o s, f1),575); (5)SN, Nf: Example = ((33): c=1,e=0,h=—1/2,m=1/2, u =1/8)
(if § > 0);

o s(), (1), 51 (2); G )SN N%: Example = (33): c =& e=1,h=(x—¢&)/2,m = (&—
X)/2, u=x) (where (& x) = (171(0),671(0)) = (123 +55v/5)/2,161 +721/5) (if 6 = 0).

The possibility Wy > 0. According to [8, Table 1, line 75] besides the semi-elemental
saddle-node we have a saddle and a node and this node is generic (due to Wy # 0, i.e.
737y # 0).

1) The case T4 # 0. Then p3p4 # 0 and the saddle is strong.

a) The subcase 1 < 0. According to Lemma 3.1 we obtain 4 distinct configurations:

®5,1,5M); N, ©,©: Example = (33): c=-3,e=0h=1m=1,u=1) (if0 <0);

®5,1,57); N/, © ©: Example= (33): c=4,e=0h=2,m=1u=1) (if 6 > 0);

®5,1,57(); N, ©,©: Example = (33): c=3,e=1,h=4m=1u=4) (iff=0,
02 # 0);

® 5,1,5M(y); N*, ©,©: Example = (33):c=-2,e=1,h=0,m=1,u=1) (if60=0,
6, = 0).

b) The subcase 17 > 0.

Taking into consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity
only 9 distinct configurations. The corresponding examples are:

®5,1,5M(y); S, N, N*: Example = (33):¢c=-3/2,e=0h=1/3, m=1,u=1) (if
6 <0,6; <0);

e 5,1,5M(); S,Nf, N/: Example = (33): c = —1/2,e =0,h =1/3,m =1, u =1) (if
6 <0,6; >0);

® 5,1,5M); S,N°, N/: Example = (33) : ¢ = =1/2,e =0,h =2,m =1, u = 1) (if
6 > 0);

® 5,1,57y); S, N, N?: Example = ((33) : c = —3/2,e =0,h=1/2,m =1, u = 1) (if
0=0,0; <06, 75 0);

® s,1,5M); S,N*, N*: Example = (33):c=4e=1h=-3m=-2u=1) (f
8 =0,0; <0,0, =0);

o 5,1,57(5); S,N/, N%: Example = (33): ¢ = =1/2,e =0,h =1/2,m = L, u = 1) (if
6 =0,0,0 >0,0, #0);
e 5,1,575); S,N/, N*: Example = (33) : c = =2, e =1, h =3, m = =2, u = 1) (if

6 =0,0; >0,0, =0);

® 5,1,57y); S, N4, N4: Example = ((3.3) : ¢
0 =6, =0,0; #0);

® 5,1,5My); S, N, N*: Example = (33) : c =2, e=1h=—-1,m= -2,u=1) (f
0 =61 =0,06;=0).

¢) The subcase 1 = 0 In this case systems (3.3) possess at infinity either one double and one
simple real singular points (if M # 0) or one triple real singularity (if M = 0). By Lemma

0,e=-1/2,h =1, m=0,u =2) (if



48 J.C. Artés, |. Llibre, D. Schlomiuk and N. Vulpe

3.1 we could have at infinity exactly 5 distinct configurations. So we have the following 4
configurations:

® 5,1,57y); ( )SN, N®: Example = (33): c=1,e=0,h=1/2,m = -3/8, u=1) (f
0 < 0);

® 5,1,5M); @)SN Nf: Example = (33): c=1,e=0,h=2,m=3/2, u=1) (if 6 > 0);

® 5,1,5M5); (3)SN, N*: Example = ((33) : c = L,e =1, h = =2(7+5v2),m = 0, u =
17 +12/2) (f9 = 0,6, # 0);

® 5,1,5M3); @)SN, N*: Example = (33): c = —4,e=1,h=7/2,m=—-1/2,u =1) (if
6 =0,6, =0)
if M # 0 and one configuration

® 51,57 ); ( JN: Example = ((33): c=1,e=1,h=40/27, m =3/2, u = 64/27)
if M =0,

2) The case T4 = 0. By (3.5) we get p3p4 = 0 and hence the saddle is weak. We consider two
subcases: F; # 0 and F; = 0.

a) The subcase F1 # 0. Then by [28] the weak saddle has order one.

a1) The possibility n < 0. Considering Lemmas 3.1 and 3.5 (the statement (iii)) there can
only be 3 distinct configurations at infinity:

. s(l),n,ﬁ@); N*, ©,©: Example = (33): c=1e=1h=-2,m=—-1,u=23) (if
0 < 0);

o sV, n,5m,); Nf, ©,©: Example = ((33): c=2,e=0,h=2,m=1,u=1) (if 6 >0);

o s, n,57); N¥, ©,©: Example = ((33): c = —-3,e=1h=7/2,m = —3/4,u = 4)
(if 6 =0).

as) The possibility 1 > 0. Since for these systems the condition p > 0 holds, taking into
consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity only 6 distinct
configurations. The corresponding examples are:

o s, n,57); S,N®, N®: Example = (3.3): c=0,e=1,h=—1/2, m = —3/4, u = 3/2)
(if 6 < 0,61 < 0);

o s, n,5m); S,N/, Nf: Example = (33): c=1,e =0,h =2, m =1/2,u =1) (if
8 <0,0; > 0);

o s, n,5m); S,N®°, Nf: Example = (33): c=1,e=0,h=2,m=1/2,u=9/5) (if
0 > 0);

o s, n,575); S,N®, N*: Example = (3.3): ¢ =2/3,e =1, h = =2, m = —=5/3, u = 4)
(if 6 =0,0; <0);

. s(l),n,ﬁ(z); S,Nf, N%: Example = (3.3): c=0,e = —1,h = -2, m = -3, u =4) (if
0 =0, 91 > 0),'

o s, n,5m,); S, N9, N%: Example = ((33): ¢ =2/3,e =1,h = -2, m = —2/3,u = 2)
(if0=0,0, =0).

a3) The possibility 1 = 0. In this case systems (3.3) possess at infinity either one double
and one simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by
Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

s n ,57(p); ( )JSN, N*: Example = ((33): c=1,e=2,h= -3, m=-3/2, u=2) (if
0 < 0);

o s, 1n,575); (Q)SN, N/: Example = (33): c=1,e=0h=2m=1/2,u=2) (f
0 > 0);
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. s(l),n,ﬁ(Z);(g)SN, N% Example = (33) : c =% —2,e=1,h=¢B3—-¢—&),m =
-1l u= &) (where ¢ = 771(0) ~ 1.3816417) (if 0 = 0)
if M # 0 and one configuration

o s, 1,57 5); (3)N: Example = ((3.3) : ¢ =17 —3v/33, e = 1, h = (155 — 27v/33) /2, m =
—1, u =19 — 3/33)
if M = 0.

b) The subcase F1 = 0. In this case according to [28] the weak saddle is of order at least
two. We claim that for /1 = 0 we could not have 6 = 6; = 0. Indeed, suppose the contrary.
As it was shown in the proof of the statement (iii) of Lemma 3.5 (see page 28) in this case for
systems (3.3) the conditions m = —c and h = —eu must hold. Then we have p3 = eu —3c =0
(i.e. ¢ = eu/3) and this implies

Fr=16e*u*(u—9)/81, po = 4e*u®(u—9u)?/81

and evidently the condition o # 0 gives F; # 0. The contradiction we have obtained proves
our claim.

by) The possibility F, # 0. Then we have a weak saddle of order two.

«) The case 1 < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be
3 distinct configurations at infinity:

o s(z),n,s?(z); N*, ©,©: Example = (33): c=—-1/3,e=1,h=1/6,m = -5/6, u =
4/3) (if 6 < 0);

o 5, n,5m); Nf, ©,©: Example = ((33): c=—-3,e=1,h=—13/4, m = —7/4,u =
1/2) (if6 > 0);

s, n,51,); N, ©,©: Example = ((3.3): c = (841 +800Z)/400, e =1, h = —29(1421 +
1200¢) /8000, m = ¢, u = 841/400) (where § = (—2253 + /23281 )/1600) (if 6 = 0).

B) The case n > 0.

Thus as for these systems the condition yo > 0 holds, taking into consideration Lemmas
3.1 and 3.5 (the statement (iii)) we could have at infinity only 5 distinct configurations. The
corresponding examples are:

o5, n,575); S,N®, N®: Example = ((3.3): ¢ = —2/3,e=1,h =25/27, m = —13/9, u =
20/9) (if6 < 0,6, <0);

o 5@, n,5m,); S,Nf, Nf: Example = (33): c=1,e=1h=—4m=0,u=1) (if
0 <0,00 >0);

o 59, n,5m,); S,N®, Nf: Example = ((33): ¢ =1/2,e =1,h = —4, m = —5/4, u = 3)
(if 0 > 0);

o s?),n,5m,); S,N®, N: Example = ((33) : ¢ = =3/5,e = 1, h = (27 +5¢)/50, m =
—(3+45¢)/10, u = ¢) (where ¢ = 071(0) ~ 2.1793598) (if § = 0,6; < 0);

° 5(2),71,@(2); S,Nf, N%: Example = (33): c = —2,e =1, h = (3¢ —2)/2,m = —(2+
&)/2, u = &) (where & = 671(0) ~ 0.07264) (if 6 = 0,6, > 0)

¥) The case n = 0 In this case systems (3.3) possess at infinity either one double and one
simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by Lemmas
3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

5, n,57); @)SN, N®: Example = ((3.3): c=¢, e =1, h = — (434 146¢ +40¢2) /40, m =
(208 — 43) /40, u = 43/20) (where ¢ = 571(0) ~ —0.5715053) (if 6 < 0);

o 5@, 1,57 ); (9 SN, N/: Example = ((33) : ¢ = —2(5++/13)/3,¢e = 1,h = —(56 +
19v13)/9, m = —(8+V/13)/3, u = 2) (if 6 > 0);
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o 5@, n,57); (3) SN, N*: Example = (33) : ¢ = & e = 1,h = —(282 4+ 38 +20x +
xX)/2,m = (x —&)/2,u = x) (where (& x) = (171(0),071(0)) ~ (—0.574581, 2.156464))
(if & = 0)

if M # 0 and one configuration

° 5(2),11,%(2); (g)N: Example = ((3.3): c=—-1/2,e=1,h=1/2, m=—-5/4, u=2)
if M = 0.
by) The possibility F, = 0. Then by [28] we have either a weak saddle of order three or an
integrable saddle.
As it was shown earlier (see page 44, p. f2)) in this case we get c = —u/6 and then we
calculate:
Ty = u*(u—6)(25u —42)/324, o = u’(u —6)%/144.

So considering (3.11) we observe that the conditions 73 > 0 and 7 > 0 imply 0 < u < 42/25
and then 7 < 0, § < 0 and F3F4; # 0. Hence we could not have an integrable saddle and
considering Lemma 3.1 in this case we get a single configuration of singularities:

5, n,57(); N®, ©,©: Example=(33): c=—1/6,e=1h=—1/9, m=~7/12, u =
1).

The possibility Wy, = 0. Since E; # 0 (i.e. p; # 0) by (3.5) we obtain 374 = 0 and
therefore at least one elemental singular point is a node with coinciding eigenvalues and we
may assume that such a singular point is M3(1,0) (i.e. 73 = 0) . On the other hand considering
[8] we conclude that besides this node we have a semi-elemental saddle-node M;»(0,0) and a
saddle M4(0,1).

1) The case Uz # 0. Then the node M3(1,0) is a one-direction node.
a) The subcase T4 # 0. We obtain p3ps4 # 0 and the saddle is strong.

a1) The possibility 1 < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can
only be 3 distinct configurations at infinity:

o 5,157 5); N, ©,©: Example = (33): c=2e=1h=1/8m=0u=1) (if
0 < 0);

os,n',57); N/, ©,©: Example= ((33): c=0,e=1,h=1/8 m=0,u=1) (if 6 > 0);

e s5,n,57,); N, ©,©: Example = ((33): c=—11/4,e=1,h=9/8, m =0, u = 1/4)
(if 6 = 0).

ay) The possibility 7 > 0. Since for these systems the condition y¢ > 0 holds, taking into
consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity only 6 distinct
configurations. The corresponding examples are:

®5s, nd,ﬁ@); S,N®, N®: Example = ((33): c=—4,e=—-1,h=15/8, m=3,u=1) (f
8 <0,0; <0);

o 5,n,57); S,N/, N/: Example = (33): c =0,e = =1, h = =1/2,m =2, u =2) (if
0 <0,6, >0);

e s5,n,575); S,N°, N/: Example = ((33): c =0,e = -1, h=—9/8, m =2, u=1) (if
6 > 0);

e 5,n%,57(); S,N®, N%: Example = ((33) : ¢ = —6,e = —1,h = 10, m = 3, u = 4) (if
6 =0,0; <0);

o s,n%,57(5; S,N/, N%: Example = ((33) : ¢ = 0,e = 1,h =8 m = —6,u = 4) (if
0 =0, 91 > 0),'
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° s,nd,ST(z); S,N%, N Example = ((33): c =10,e =1, h = -2, m = —10, u = 2) (if
6 =0,0, =0).

a3) The possibility 7 = 0. In this case systems (3.3) possess at infinity either one double
and one simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by
Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

os,n, 81 (y); ( )SN, N*®: Example = (3.3): c=1,e=0,h=1/2, m=—-1/2, u =2) (if
8 <0);

o s, n? /87 (2); ( )SN, Nf: Example = (33): c=1,e=0,h =1, m = —1/2,u = 1) (if
6 > 0);

o 5,157 5); ( )SN, N%: Example = ((33) : c =1,e=0,h =1/2,m = —1/2, u = 1) (if
0 =0)
if M # 0 and one e configuration

o s,n,575); ()N: Example = (33): c=1,e=0,h=0,m=—-1/2, u=1)
if M =0.

b) The subcase Ty = 0. We obtain p3p4 = 0 (then py = 0 due to 73 = 0) and the saddle is
weak.

b1) The possibility F1 # 0. In his case we have a weak saddle of order one.

«) The case 1 < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can be 4
distinct configurations at infinity:

o s, n,57(y); N°, ©,©: Example = (33): c=4,e=1h=2m=0,u=28) (if
6 < 0);

o s pd /57 Nf ©,©: Example = (33): c=—-1l,e=1,h=2,m=0,u=3) (if
6 > 0);

o s, nd,515); N, ©,©: Example = ((33): c = ({2 —48)/32, e =1, h=2+(/4 m =
-1, u= (Cz + 16C+ 80)/32) (where & = 0-1(0) ~ —9.4251021) (if & =0, 6, # 0);

o s pd /S1p); N*, ©,©: Example = (33):c=-3,e=1,h=2m=0,u=1) (if
6=0,0,=0).

B) The case n > 0. Since pp > 0, by Lemma 3.1 there are 10 possibilities. However
according to Lemma 3.5 (the statements (iii); and (v)) the at infinity we cannot have in this
case the configurations S, N4 N9orS,N*, N*.

Thus at infinity we could only have 8 distinct configurations. The corresponding examples
are:

o sV, n?,5m5); S,N®, N*: Example = ((33): c =17/4, e =1/4, h= -2, m = -2, u = 1)
(if 6 < 0,0, <0);

o s, n, 571 5); S,Nf, Nf: Example = (33): c = —7/6,e =1, h =4, m = =3, u = 41/6)
(if6 < 0,0, > 0);

o s, nd,515); S,N*®, Nf: Example = ((33): c = —23/32,e=1,h=3/4,m=—1,u =
25/32) (if 6 > 0);

o s, n,515); S,N*®, N*: Example = ((3.3) : ¢ = (12— /287)/156, e = —12(14+v/287) /13, h =
(114 +/287)/144, m = 1/12, u = 1/144) (if 6 = 0,6, < 0,6, # 0);

o s, n?,515); S,N®, N*: Example = (33): c=1,e=5h=—4,m=—2,u=1) (if
920,91 <0, 92—0)

o s, n?,5m,); S,Nf, N¥: Example = ((33) : ¢ = (2—V7)/6,e = 2(4—V7)/3,h =
(=14++V7)/4, m=—1/2,u=1/4) (if0 =0,6, >0, 6, # 0);
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° s(l),nd,s?(2); S,Nf, N*: Example = (33): c=1l,e=1,h=-2m=0,u=1) (f
0=0,00 >0,0, =0);

o s, n?,5m,); S,N%, N*: Example = ((33): c=1/3,e=1h=—-1,m=—1/3,u =1)
(if 0 =6, =0).

) The case 1 = 0 In this case systems (3.3) possess at infinity either one double and one
simple real singular points (if M # 0) or one triple real singularity (if M = 0). Since by Lemma
3.5 (the statements (iii))

So by Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configura-
tions: o

o s pd sn( ),(g)SN, N®: Example = (33): c=1—-20,e =1, h=¢ m =, u=1)
(where & = 71(0) ~ —7.41375) (if 0 < 0);

o sV, n?,515); (3)SN, N/: Example = ((3.3) : ¢ = =28 +2T+2,e=—1,h= -1+ -
VI+2E m=¢ u=2) (where g =7"1(0) ~ 1.42926) (if 0 > 0);

)
o s, nd,5m); ( )SN, N¥: Example = ((3.3) : _ X ox w h =
)

,e =
x—1’ X(x-1) "7

1, u = x?) (where (¢, x) = (n71(0), W. ( ) &~ (—2.58495, 36.90034)) (if 6 = 0)
if M # 0 and one configuration

o s, n? 5 5); (3)N: Example = ((33) : ¢ = 32/27,e = —1,h = —8/9, m = 20/27, u =
16/27)
if M = 0.

by) The possibility 1 = 0. In this case we have a weak saddle of order at least two. We
consider two cases: F, # 0 and F, = 0.

«) The case F» # 0. Then the weak saddle has order two.

Assume that for systems (3.3) the conditions poE; # 0 and T4 = = Wy = 0 are satisfied.
As it was shown earlier (see page 43) the conditions 74 = 0 (we assume p3 = 0) and F; = 0
imply the relations (3.10). Therefore the condition Wy = 0 (which in this case is equivalent to
74 = 0) gives

Ei = —(1+ )% (c+u)Bc+u)t/2, Fo=—c(1+c)*u?(c+u)*(3c+u)?(6c+u),
Fs=—c(1+c)u?(c+u)2c+u)(Bc+u)?, 1 =4c(1+c)[(c+u)®+c—ul =4c(1+c)plc,u),
(3.12)
and as F, # 0 the condition 74 = 0 implies ¢(c,u) = 0. Since Discriminant[¢,c] = 1+ 8u
in order to have a real solution we set 1+ 8u = v* (i.e. u = (v®> —1)/8) and then we obtain
(c,v* —1) = (3+8c —4v+v?)(3+8c +4v +v?)/64 = 0. We may consider only the first
factor because the second factor is obtained from the first one by replacing v by —v and we
arrive at the same result.
So ¢ = (4v — v*> — 3) /8 and we calculate
Ta=Fi=Wi=0, puo=2"23w-5%*-1)3,
Fr=—-2"%(v-5)%0—3)(v—-1)°1+2)°50 - 19),
1 =-2"30w-5)2v-3)(v—1)%1+0)(205 + 670 — 650> + 9°),
0= (v—5)%v—-3)(v—1)>%1+0)(11 4+ v — 50> + ) /256,
01 = —(v—5)%(v —1)3(1 4 v)(38v — 361 + 166v> — 660° + 7v*) /256,
0 =21 (v —-5)*(v—3)(v—1)*(1+0)(v* —v—4).

~—

& m=

(3.13)

As we have only one parameter v which satisfies |v| > 1 (due to p9 > 0) we could only obtain
the following configurations:
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o5 pnd ,515); N®, ©,©: Example = ((3.3): ¢ = —3/8,e=1,h=3/16,m = -9/8, u =
15/8) (if 5 <0, b < 0);
° s(z),nd,s?(z); N/, ©,©: Example = ((33) : ¢ = —15/8,e = 1,h = =3/16, m =

—9/8, u=3/8) ﬁfq<()9>(»

o s(z),nd,sn( N, ©,©: Example = ((33) : ¢ = 3—-&)(¢—1)/8, e =1, h = (& —
1)(¢? —25—7)/16 m=—(E—1)%/8 u = (& — 1) 8) (where ¢ = 671(0) ~ 4.10277) (if
n <0,0=0);

o 5@, nd,57y); S,Nf, Nf: Example = (3.3): c=1/8,e =1, h = =7/16, m = —1/8, u =
3/8) (ifn>0,0<0);

o s, n,57(); S,N®, Nf: Example = ((33) : ¢ = 3/32,e = 1,h = —69/128, m =
—9/32,u =21/32) (ifn > 0,0 > 0);

o 5, n?,575); S,N®, N¥: Example = (33) : ¢ = 3—¢&)(E—1)/8,e = L,h = (-
1)(¢2—28-7)/16,m = — (¢ —1)?/8, u = (&% — 1) 8) (where & = 671(0) ~ —1.24914) (if
n>0,0=0);

o 52, n4,515); (3)SN, Nf: Example = ((3.3): c= (3—¢)(E—1)/8,e=1,h = ({—1)(Z% -
280 —-7)/16, m = —(&—1)2/8, u = (¢> —1)/8) (where & =5 1(0) ~ —1.25774) (if 7 = 0).

B) The case F, = 0. Since E; # 0 considering (3.12) we get ¢(6c + u) = 0 and then we
obtain either c = —u/6 or ¢ = 0.

In the first case we have

po = (u—6)*u>/144, 74 = (u—6)u*(25u — 42)/324

and clearly due to pp # 0 the condition 74 = 0 gives u = 42/25. So we obtain a system
without parameters for which we detect # < 0, 8 < 0 and F3F4 # 0.

Thus we get the unique configuration

o 5, n,575); N®°, ©,©: Example = ((33) : ¢ = —=7/25,e = 1,h = =7/250, m =
—49/50, u = 42/25)

In the second case when ¢ = 0 calculations yield

po=u>, 0=8u—1u?, 6=w—-1u*/4, n=Wy=F3=0

and there will be 3 configurations at infinity, depending on the value of the invariant poly-
nomial 6. On the other hand on the phase plane besides a one-direction node we have an
integrable saddle (see [28, Main Theorem, the statement ()]). Thus we arrive at the following
conﬁgurations

o5 nl /5T1(2); ( )SN, N*°: Example = ((3.3) : 0,e=1,h=-1/4,m=—-1/4,u=1/2)
(if 6 < 0);

o 5, n /ST(3); ()SN Nf: Example = (33) : c =0,e = 1,h = —1,m = —1,u = 2) (if
6 > 0);

o5, n? /ST (3); ( )SN, N*: Example = ((3.3): c=0,e=1,h=-1/2,m=-1/2, u=1) (if
6 = 0).

2) The case U3 = 0. Then the node M3(1,0) is a star node. Considering the corresponding
matrix from (3.4) we obtaine = 0, h = —cu/2 and m = —c/2 and ¢ # 0, otherwise we get
degenerate systems. So we may assume ¢ = 1 (due to time rescaling) and we arrive at the

family of systems

X¥=x+uy—x*—uxy—uy’, y=—xy, (3.14)
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for which we calculate

77:]:1:,/—"4:92:0, Ho = U, ]\Z:_Suzyz
To=2u(u—1), 6 =8u(u—1), F=u*(u—1)(9+2u)/2,

and therefore the conditions 73 = 0 and 6 = 0 (respectively = 0 and M = 0) are equivalent.
Moreover, the condition § = 0 implies /, = 0.

Thus considering these implications, by Lemma 3.1 we could only have the following three
configurations:

o 5,1",572); ()SN, N™: Example = ((3.14): u =1/2 (if 6 < 0);
@) @)SN, Nf: Example = ((3.14): u =2 (if 8 > 0);

® S, 1,51

7

o 5,1n*,57(y); (3)SN, N*: Example = ((3.14): u =1 (if 6 = 0).

The subcase E; = 0 In this case p; = 0 and besides the two elemental singularities we
have a cusp. Moreover, since yg > 0 from (3.5) if follows A3Ay < 0, i.e. the two elemental
singularities are a saddle and an anti-saddle. The condition E; = 0 gives ¢ = —eu and then
e # 0, otherwise we get degenerate systems. So systems (3.3) become

X = —ux — uPy + ux® + 2hxy + uy?, = x+uy — x> +2mxy — uy?, (3.15)
for which calculations yield

po=4u(h+mu)?, Ta=T3=0, To=popsps, T1 = po(p3+ p1),
Wy=Ws=0 W, =iy, Wi=pu5(13+14),
0 = 64(h + mu) [(h+u)* — u(m —u)?],
n= —4(./\/22 —N1N3) /3, ]\71 = 8(./\/1X2 — 2]\/23(]/ —N3]/2),

(3.16)

where

p3=2(m+u), pg=2h—u), w=4m*+u*)—-8h 1 =4(h+u®)+8mu?
N = (2m —u)? —6h —3u, Ny =2hm—hu+mu+4u?, N3= (2h+u)*+ 6mu® —3u°.

Lemma 3.9. If for a system (3.15) the condition pg > 0 holds then the condition W, < 0 implies
6> 0.

Proof: Assume that the condition W, < 0 holds. This implies 1374 < 0 and we may assume
73 < 0, i.e. the singular point M3(1,0) is either a focus or a node, and then for the saddle
we have 74 > 0. We set a new parameter v as follows: 73 = —7?2 < 0 and we get h =
(4m? + 4u® + v?) /8. Calculations yield

0= 2[(4(m +u)? +0?)| (14 +uv?), uo = u[(4(m+u)*+0?)]*/16.

Hence due to the condition po > 0 and 74 > 0 we obtain 6 > 0 for any value of the parameter
v. This completes the proof of the lemma. B

Lemma 3.10. If for a system (3.15) the condition uy > 0 holds then the condition M=0 implies
Wy > 0and T, # 0.
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Proof: According to (3.16) the condition M = 0 implies N7 = N, = N3 = 0. The equality
N1 =0 gives h = [(2m — u)? — 3u] /6 and then we obtain N> = [(2m — u)® + 27u?] = 0 and
since u # 0 (due to o # 0) we set two new parameters w as follows: v = 2m —u # 0 (ie.
m = (u+v)/2) and u = vw. Then we get N = v?(v + 27w?)/6 = 0 which yields v = —27w?.
So we obtain m = —27w?(1+w)/2, u = —27w® and h = 27w?(1 + 9w) /2 and for these values
of the parameters of systems (3.15) we get M = 0 and

Wy = —3%w¥ (14 3w)'®(12w — 5) (15w — 4), T» = 3w (1 +3w)8, up = —3°0°(1 + 3w)°.

Clearly due to y9 > 0 we have W, > 0 and 7, # 0 and hence the lemma is proved.

The possibility W, < 0 In this case the anti-saddle is a focus and the existence of weak
singularities depends on the invariant polynomial 75.

1) The case T # 0. Then p3ps # 0 and the saddle as well as the focus are strong ones.
Therefore considering Lemmas 3.9, 3.10 and 3.1 we could only obtain the following 3 config-
urations:

o5, f, cAp(z); Nf, ©,©: Example = ((3.15): h=2,m=0,u=1) (ify <0);

o5, f, (P S, N®, N/: Example = ((3.15): h =4, m = —=5/2, u =1) (if 5 > 0);

® 5, f,CPry (3)SN, NI: Example = (3.15): h = (5+4¢2)/8, m = §,u = 1) (where { =
77 1(0) ~ —1.474363) (if = 0).

2) The case T, = 0. In this case we have at least one weak singularity.

a) The subcase T; # 0. So by (3.16) only one singularity is weak and its type is governed by
the invariant polynomial .

a1) The possibility H < 0. According to [28, Main Theorem, the statement (d)] we have a
weak focus of order one and we obtain the following 3 configurations

. s,f(l),cAp@); Nf, ©,©: Example = ((3.15): h=1,m= -2, u=1) (if, 5 <0);

° s,f(1>,cAp(2); S,N*®, N/: Example = ((3.15): h = 1/12, m = —13/12, u = 1/12) (if
n>0);

° s,f(l),cAp(z);(TZ))SN, Nf: Example = ((3.15): h = (1+8&%)/8, m = —& u = ¢) (where
& =n"1%0) ~ 1.762699) (if 7 = 0).

ay) The possibility H > 0. Then by[28] the weak singularity is a saddle of order one and we
arrive at the following 3 configurations

o s, £,y NI, ©,©@: Example = (3.15): h=1,m=0,u=1) (ify <0);

o s, f,épo); SN, N/: Example = ((3.15): h = 567/400, m = —6/5,u = 6/5) (if
n > 0);

o s, £,p ) (Q)SN, Nf: Example = ((S3) + b =27/4,c=—3/2,d = —3/4,¢ =3, f =
3/2,g=5/4,h=1) (ify =0).

b) The subcase T; = 0. Then p3 = ps = 0 and this implies h = 0 and m = —u. In this case
for systems (3.15) we calculate

_ 9P 1 9Q _

- — — _ _ 1)\2,,3 — _ 13\2,,3
U—ax—f—ay 0, 7 108(u —1)“u®, po =4(u—1)u".

So we get Hamiltonian systems which besides a cusp have a center and an integrable saddle.
Since the condition yg > 0 implies # < 0 we obtain the unique configuration
®5,C, C/]\O(2); N/, ©,©: Example = ((3.15): h=2, m = =2, u = 2).
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The possibility W, > 0 In this case the anti-saddle is a generic node and we consider
two cases: T, # 0 and 7, = 0.

1) The case T, # 0. The saddle is strong.

a) The subcase 1 < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only
be 3 configurations:

5,1, cAp(Z); N®, ©,©: Example = ((3.15): h=—-1,m=1,u=2) (if 6 <0);

®5,1,0P ) Nf, ©,©: Example = ((3.15): h=—1,m=0,u=1) (if 8 > 0);

°s, n,cAp(z); N4, ©,©: Example = ((3.15): h = 2(vV2—-1),m=0,u=2) (if 6 = 0).

b) The subcase 1 > 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only
be 6 configurations:

®s, n,cAp(z); S,N%®, N®: Example = ((3.15): h=—11/6, m =5/3, u=7/4) (if6 <0,6; <
0);

®5,1,CP () S, N/, Nf: Example = ((3.15): h=0,m=3,u=1) (if6 <0,6; > 0);

®5,1,CPy); S,N®, N/t Example = ((3.15): h=2,m=3,u=1) (if6 > 0);

®5,1,Cp(y); S, N, N*: Example = ((3.15): h = (10v/13 —13)/4, m = =7/4, u = 13/4) (if
6 =0,0; <0);

®5,1,CP ) S, Nf, N¥: Example = ((3.15): h=0,m =2, u=1) (if § = 0,0; > 0);

®5,1,CP(); S, N, N%: Example = ((3.15): h= -2, m =2, u=2) (if0 =6, =0).

¢) The subcase 17 = 0. In this case systems (3.3) possess at infinity either one double and one
simple real singular points (if M # 0) or one triple real singularity (if M = 0). So by Lemmas
3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

° s,n,cAp(z);(g)SN, N®: Example = ((S3) : b=—-1,c=-2,d=4e=-1,f=2,g9=
“3,h=1) (if6 < 0);

° s,n,@(z);@)SN, N/ Example = ((S3) : b= —4,c=1,d=1e=-1,f= -1, =
3, h=1) (if6 > 0);

o 5,1,6p5); (SN, N*: Example = ((S3): b=—1/3,c=-2,d=4/3,e=-3,f=2,g=
~1/3,h=1) (if0=0)
if M # 0 and one configuration

o 5,1, ) (N: Example = ((3.15): h =108, m = 0, u = 27)
if M =0.

2) The case T, = 0. Then the saddle is weak and and we claim that in this case:
(i) the weak saddle could only be of order one and the condition M # 0 holds;
(ii) the conditions 8 = 0; = 0 and p # 0 are incompatible.

Indeed, the condition 7, = 0 implies p3p4 = 0 and we may consider that p3 = 0, i.e. for
systems (3.15) we have m = —u. Then we calculate

po = 4u(h—u*)?, Fi=4(h—uw)u(h—u?),
0 = 64(h — u?)[(h + u)* — 4u®], Coefficient|M, xy| = —48(h — u)u

and since o # 0 the condition F; = 0 as well as the condition M=0, implies i = u and then
Wy = —1024(—1 +u)%° < 0 due to g > 0, i.e. the claim (i) is proved.
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Assume now that § = 0. Since u # 0 we set a new parameter v as follows: I + u = 2uv
and then the condition 6 = 0 gives u = v?. In this case we calculate

0=0, uo=4(v—-1%°% 6, =>512(v—1)%7

and since the condition pg # 0 implies 6; # 0 the claim (i) is proved.

a) The subcase 1 < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only
be 3 configurations:

o 5(1),n,cAp(2); N*, ©,©: Example = ((3.15): h=2, m = —5/6, u =2) (if 6 < 0);

. s(l),n,ffa(z); Nf, ©,©: Example = ((3.15): h =2, m =1, u =2) (if 6 > 0);

° s(l),n,cAp@); N, ©,©: Example = ((3.15): h=4,m=0,u=4) (if 6 = 0).

b) The subcase n > 0. As it was mentioned above in the case 8 = 0 we have 6; # 0 and
according to Lemmas 3.1 and 3.5 (the statement (iii)) there can be only 5 configurations:

e s, n,éppy; S, N®, N®: Example = ((3.15): h =100, m =79, u = 100) (if 6 < 0,6; < 0);

1

2)
s, n,py; S,N/, NI: Example = ((3.15): h =1, m =4, u=1) (if 6 < 0,6, > 0);
o s n, P2y SN, N2 Example = ((3.15): h =2, m =4, u=2) (if 6 > 0);
o s g, CP(2); S, N, N*: Example = ((3.15): h =100, m = 80, u = 100) (if 6 = 0,6, < 0);
o sl n, P2y S, NI, N Example = ((3.15): h =1/4, m = —3/4, u = 1/4) (if 6 = 0,6, >
0).

¢) The subcase 7 = 0. Since M # 0 in this case systems (3.3) possess at infinity one double
and one simple real singular points. So by Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we
have the following 3 configurations:

o s1),1,6P(); (9)SN, N*: Example = ((S3) : b = =9/2,¢ =1,d =1/2,e = =2, f =
-1, ¢=-11/2, h=4) (if6 <0);

o s, 1,cpp; (9 SN, Nf: Example = ((S3) : b = =9/2,¢ = 1,d = 1/2,e = =2, f =
-1,§=-5/2,h=1) (if6>0);

o s1,1,6P(p); (3)SN, N: Example = ((S3) : b= —-3/2,¢=1/3,d =1/6,e = =2/3, f =
-1/3,g=-3/2,h=1) (if6=0).

The possibility W, = 0 We have a node with coinciding eigenvalues and we observe
that it could not be a star node because the corresponding linear matrices for the elemental

singularities are
u  2h—u? 2h—u  u?
Ms = (—1 2m+u>’ M= <1+2m —u)'
with u £ 0.

1) The case T, # 0.

So according to Lemmas 3.10, 3.9 and 3.1 there can only be 3 configurations:

o5, nd,cAp(z); N/, ©,©: Example = ((3.15): h=1/2, m=0,u=1) (if y <0);

o 5,n%,¢p); S,N®, NI: Example = ((3.15): h=5/2,m= -2, u=1) (if 5 >0);

. s,nd,cApQ);@)SN, Nf: Example = ((S3) : b =4,c = —1,d = ~l,e=1,f =1,¢g =
3/4,h =5/4) (ifn =0).

2) The case T, = 0.

So according to Lemmas 3.10, 3.9 and 3.1 there can only be 3 configurations:
. s(l),nd,cAp(z); Nf, ©,©: Example = ((3.15): h=—1,m = —1,u=1) (if y <0);
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. s<1>,nd,€p(2); S,N*®, Nf: Example = ((3.15): h =4/5, m = —2/6/5, u = 4/5) (if 5 > 0);

o s, n?,épp); 3)SN, N/: Example = ((3.15): h = 81/125, m = —117/125, u = 81/125)
(if n = 0).

Thus we have examined all the possibilities for the family of systems possessing three dis-
tinct finite singularities of total multiplicity 4 and we proved the existence of 296 geometrically
distinct configurations.
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