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Abstract. For ε �= 0 sufficiently small we provide sufficient con-
ditions for the existence of periodic solutions for the Lienard dif-
ferential equations of the form

x′′ + f(x)x′ + n2x+ g(x) = ε2p1(t) + ε3p2(t),

where n is a positive integer, f : R → R is a C3 function, g : R → R
is a C4 function, and pi : R → R for i = 1, 2 are continuous 2π–
periodic function. The main tool used in this paper is the averaging
theory of second order. We also provide one application of the main
result obtained.

1. Introduction and statement of the main results

In a recent paper Ma and Wang [5] have studied the existence of
periodic solutions for the class of Lienard differential equations of the
form

(1) x′′ + f(x)x′ + V ′(x) + g(x) = p(t),

where f, V, g, p : R → R are continuous and p is 2π–periodic. They
have also assumed that g and V ′ are locally Lipschitz; and the function
V is a 2π/n–isochronous potential, i.e. all nontrivial solutions of x′′ +
V ′(x) = 0 are 2π/n–periodic, where n is a positive integer. The authors
have provided sufficient bounded conditions related with the functions
involved in equation (1) to ensure the existence of periodic solutions
for this equation. We shall study a particular subclass of equations (1)
which such a bounded conditions are not necessary.
In this paper we consider the subclass

(2) x′′ + f(x)x′ + n2x+ g(x) = ε2p1(t) + ε3p2(t),

of Lienard differential equations (1) where n is a positive integer, ε is
a small parameter, f : R → R is a C3 function in a neighborhood of
x = 0, g : R → R is a C4 function in a neighborhood of x = 0, and
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pi : R → R for i = 1, 2 are continuous 2π–periodic functions. Note
that here we are taking V (x) = n2x2/2 which is a 2π/n–isochronous
potential, already considered in [5].
The objective of this paper is to give sufficient conditions on the

functions f , g and pi to assure the existence of periodic solutions for
the equation (2). Here the functions f and g do not need to satisfy the
bounded conditions of [5].
In general to obtain analytically periodic solutions of a differential

system is a very difficult problem, many times impossible. Here using
the averaging theory this difficult problem for the differential equations
(2) is reduced to find the zeros of a nonlinear system of two functions
with two unknowns. We must mention that the averaging theory for
finding periodic solutions in general does not provide all the periodic
solutions of the system. More precisely, the main tool used will be
the averaging theory of second order for computing periodic orbits,
see [3, 1, 2, 4]. This theory provides a quantitative relation between
the solutions of some non–autonomous periodic differential system and
the solutions of the averaged differential system, which is autonomous.
In this way a finite dimensional function f is computed, the simple
zeros of this function correspond with the periodic orbits of the non–
autonomous periodic differential system for values of a parameter ε �= 0
sufficiently small. Here a simple zero a of a function f means that
the Jacobian of f at a is not zero. For a general introduction to the
averaging theory see for instance the book of Sanders, Verhulst and
Murdock [7].
In order to present our results we need some preliminary definitions

and notations. We define the constants

α =

∫ 2π

0

p1(t) sin(nt)dt and β =

∫ 2π

0

p1(t) cos(nt)dt.

and the two functions

f21(u, v) = −n2u2 + v2

24n6

(
3n2(a1b1 − a2n

2)u+
(
10b21 + n2(a21 − 9b2)

)
v
)

− 1

2πn3

∫ 2π

0

sin(nt)

((∫ t

0

p1(s) cos(ns) ds

)

· (−b1v + (n2a1u+ b1v) cos(2nt) + n(a1v − b1u) sin(2nt))

+n

(
np2(t) +

(∫ t

0

p1(s) sin(ns)

n
ds

)

·
(
nb1u+ n(b1u− a1v) cos(2nt) + (n2a1u+ b1v) sin(2nt)

)))
dt,
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and

f22(u, v) =
n2u2 + v2

24n4

((
10b21 + n2(a21 − 9b2)

)
u+ (3n2a2 − 3a1b1)v

)

+
1

2πn2

∫ 2π

0

(
n2p2(t) cos(nt) + cos(nt)

(∫ t

0

p1(s) sin(ns)

n
ds

)

·n
(
nb1u+ n(b1u− a1v) cos(2nt) + (n2a1u+ b1v) sin(2nt)

)

+cos(nt)

(∫ t

0

p1(s) cos(ns) ds

)

·
(
− b1v + (n2a1u+ b1v) cos(2nt) + n(a1v − b1u) sin(2nt)

))
dt,

where

a1 = f ′(0), a2 =
1

2
f ′′(0), b1 =

1

2
g′′(0), and b2 =

1

6
g′′′(0).

Our main result is the following.

Theorem 1. Assume that the functions f and g of the Lienard dif-
ferential equation (2) satisfy that f is a C3 function in a neighbor-
hood of x = 0, g is a C4 function in a neighborhood of x = 0, and
f(0) = g(0) = g′(0) = 0. Suppose also that the constants α = β = 0.
Then for ε �= 0 sufficiently small and for every simple zero (u∗, v∗) of
the system

f21(u, v) = 0, f22(u, v) = 0,

there exists a periodic solution x(t, ε) of the differential equation (2)
such that x(0, ε) ≈ εu∗ +O(ε2) and x′(0, ε) ≈ εv∗ +O(ε2).

Theorem 1 is proved in section 2.
In the next corollary we apply Theorem 1 to a given Lienard differ-

ential equation (2) and we show that such an equation has two periodic
solutions.

Corollary 2. Assume that

f(x) = a1x+a2x
2, g(x) = b1x

2+b2x
3, p1(t) = 1, and p2(t) = sin(nt),
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where

a1 =
−7n5 + 2n3 + n

−6n4 − 4n2 + 2
,

a2 =
n(7n7 − 6n6 − 2n5 + 2n4 − n3 + 6n2 − 2)

(n2 + 1)2(3n2 − 1)2
,

b1 =
2n5

3n4 + 2n2 − 1
, and

b2 =
n2(49n8 + 132n6 − 144n5 − 10n4 − 96n3 + 4n2 + 48n+ 1)

36(n2 + 1)2(3n2 − 1)2
.

Then, for ε �= 0 sufficiently small the Lienard differential equation (2)
has two periodic solutions xi(t, ε) for i = 1, 2 such that

x1(0, ε) ≈ ε+O(ε2) and x′
1(0, ε) ≈ ε+O(ε2),

x2(0, ε) ≈ 2ε+O(ε2) and x′
2(0, ε) ≈ O(ε2).

Corollary 2 is proved in section 2.
In section 3 we summarize the averaging theory of second order for

studying periodic solutions that we shall need for proving Theorem 1.

2. Proof of the results

In this section we shall prove Theorem 1 and Corollary 2.

Proof of Theorem 1. First we shall write the Lienard differential equa-
tions (3) in the normal form for applying the averaging theory, see
Theorem 3 of the appendix.
We change the variable x by a new variable z doing the rescaling

x = εz. Then equation (3) becomes

(3) z′′ + f(εz)z′ + n2z +
g(εz)

ε
= εp1(t) + ε2p2(t).

Since f is a C3 function in a neighborhood of x = 0, g is a C4 function
in a neighborhood of x = 0, and f(0) = g(0) = g′(0) = 0, we can write

f(εz) = εf ′(0)z + ε2
1

2
f ′′(0)z2 +O(ε3) = εa1z + ε2a2z

2 +O(ε3),

g(εz) = ε2
1

2
g′′(0)z2 + ε3

1

6
g′′′(0)z3 +O(ε4) = ε2b1z

2 + ε3b2z
3 +O(ε4).

Thus

f(εz)z′ +
g(εz)

ε
= ε(a1zz

′ + b1z
2) + ε2(a2z

2z′ + b2z
3) +O(ε3).
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We introduce a new variable w = z′. Then the differential equation
(3) can be written as the differential system

(4)

z′ = w,

w′ = −n2z + ε(p1(t)− a1zw − b1z
2) + ε2(p2(t)− a2z

2w − b2z
3)

+O(ε3).

Now we change the variables (z, w) by the new variables (u, v) defined
through the equality

(5)

⎛
⎜⎜⎝
z

w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos(nt)
sin(nt)

n

−n sin(nt) cos(nt)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u

v

⎞
⎟⎟⎠ .

We do this changes in order that the differential system in the new
variables (u, v) starts with terms of order O(ε) and we can apply the
averaging theory described in the appendix. Thus the differential sys-
tem (4) in the new variables becomes

(6)

u′ = ε
1

n3
G1 sin(nt) + ε2

1

n4
G2 sin(nt) +O(ε3)

= εF11(t, u, v) + ε2F21(t, u, v) +O(ε3),

v′ = ε
1

n3
G1 cos(nt) + ε2

1

n4
G2 cos(nt) +O(ε3)

= εF12(t, u, v) + ε2F22(t, u, v) +O(ε3),

where

G1 = −n2p1(t) + A
(
B1 cos(nt) + C1 sin(nt)

)
,

G2 = −n3p2(t) + A2
(
B2 cos(nt) + C2 sin(nt)

)
,

A = nu cos(nt) + v sin(nt),

Bi = n(biu+ aiv),

Ci = −n2aiu+ biv,
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In short, the differential system (6) is in the normal form for applying
the averaging theory described in Theorem 3 of the appendix. Using
the notation of the appendix we have that T = 2π.
Let Fi(t, u, v) = (Fi1(t, u, v), Fi2(t, u, v)) for i = 1, 2. Now we com-

pute the function f1(u, v) defined in the appendix and we get, from the
assumptions, that

f1(u, v) =
1

2π

(∫ 2π

0

F11(t, u, v)dt,

∫ 2π

0

F12(t, u, v)dt

)

=
1

2π

(
−α

n
, β

)
= (0, 0).

Since the function f1(u, v) = (0, 0) we shall apply the apply the
averaging theory of second order. So we first compute

∫ t

0

F11(s, u, v)ds = −
∫ t

0

p1(s) sin(ns)

n
ds

− 3

12n4

(
(b1u

2n2 − 2a1uvn
2 + 3b1v

2) cos(nt)

+(b1u
2n2 + 2a1uvn

2 − b1v
2) cos(3nt)

−4
(
(−a1u

2n3 + a1v
2n+ 2b1uvn) sin

3(nt)

+b1n
2u2 + 2b1v

2 − a1n
2uv

))
,

∫ t

0

F21(s, u, v)ds =

∫ t

0

p1(s) cos(ns) ds

+
1

12n3

(
− n(a1n

2u2 − 2b1vu− a1v
2)

·(3 cos(nt) + cos(3nt)− 4)

−3
(
2a1uvn

2 + b1(3n
2u2 + v2)

)
sin(nt)

+
(
b1(v

2 − n2u2)− 2a1n
2uv

)
sin(3nt)

)
,

D(u,v)(F1(t, u, v)) =

⎛
⎜⎜⎝

∂F11(t, u, v)

∂u

∂F11(t, u, v)

∂v
∂F21(t, u, v)

∂u

∂F21(t, u, v)

∂v

⎞
⎟⎟⎠

Now we are ready to compute the function

(7) f2(u, v) = (f21(u, v), f22(u, v)),
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defined in the appendix, and we get the functions f21(u, v) and f21(u, v)
which appear in the statement of the theorem.
Now, from Theorem 3, we obtain that for every ε �= 0 sufficiently

small and for every simple zero (u∗, v∗) of the system (7), i.e. satisfying
that

det

⎛
⎜⎜⎝

∂f21(u, v)

∂u

∂f21(u, v)

∂v
∂f22(u, v)

∂u

∂f22(u, v)

∂v

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
(u,v)=(u∗,v∗)

�= 0,

there exists a periodic solution (u(t, ε), v(t, ε)) of the differential system
(6) such that

(u(0, ε), v(0, ε)) → (u∗, v∗) when ε → 0.

Going back through the change of variables (5) the periodic solu-
tion (u(t, ε), v(t, ε)) of the differential system (6) becomes the periodic
solution

z(t, ε) = cos(nt)u(t, ε) +
1

n
sin(nt)v(t, ε),

w(t, ε) = −n sin(nt)u(t, ε) + cos(nt)v(t, ε),

of the differential system (4) such that

(z(0, ε), w(0, ε)) → (u∗, v∗) when ε → 0.

Finally, since x = εz the periodic solution (z(t, ε), w(t, ε)) of the differ-
ential system (4) provides the periodic solution

x(t, ε) = ε

(
cos(nt)u(t, ε) +

1

n
sin(nt)v(t, ε)

)
,

of the Lienard differential equation (2) such that

x(0, ε) ≈ εu∗ +O(ε2).

Moreover, since x′ = εw the theorem follows. �
Proof of Corollary 2. We shall apply the results of Theorem 1 to the
Lienard differential equation of the statement of Corollary 2. So we
compute the functions f21(u, v) and f22(u, v) defined just before the
statement of Theorem 1, and we obtain

−
(
u3 − 7u+ 6

)
n4 +

(
u3 − 2vu2 −

(
v2 + 2

)
u+ 8v − 4

)
n2 − 2v3 + u

(
v2 − 1

)
+ 2

4n (3n4 + 2n2 − 1)
,

(
7v + u

(
2u2 − vu− 8

))
n4 + v

(
u2 + 2vu− v2 − 2

)
n2 + v3 − v

4n (3n4 + 2n2 − 1)
,

respectively.
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Doing the resultant of the functions f21 and f22 with respect to the
variable v we obtain a cubic polynomial in the variable u which has
the following three roots

u1 = 1, u2 = 2, u3 =
−3n6 + 31n4 − 25n2 + 5

(n2 + 1)3
.

In a similar way doing the resultant of the functions f21 and f22 with
respect to the variable u we obtain another cubic polynomial in the
variable v which has the following three roots

v1 = 1, v2 = 0, v3 =
−15n6 + 35n4 − 13n2 + 1

(n2 + 1)3
.

From the properties of the resultants it follows that all the solutions
(u∗, v∗) of the system f21(u, v) = 0, f22(u, v) = 0 are of the form (ui, vj)
being ui and vj some of the above roots. Trying the nine possible
solutions, we obtain only two solutions for the system f21(u, v) = 0,
f22(u, v) = 0, namely

(u∗
1, v

∗
1) = (1, 1) and (u∗

2, v
∗
2) = (2, 0).

Then applying Theorem 1 the corollary follows. �
For more information about the resultants see for instance [6].

3. Appendix: The averaging theory of second order

In this section we recall the averaging theory of second order to find
periodic orbits.

Theorem 3. Consider the differential system

(8) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R×D → Rn, R : R×D×(−εf , εf ) → Rn are continuous
functions, T-periodic in the first variable, and D is an open subset of
Rn. Assume that the following hypothesis (i) and (ii) hold.

(i) F1(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, R and DxF1 are locally
Lipschitz with respect to x. We define f1, f2 : D → Rn as

f1(z) =
1

2π

∫ T

0

F1(s, z)ds,

f2(z) =
1

2π

∫ T

0

[DzF1(s, z)

∫ s

0

F1(t, z)dt+ F2(s, z)]ds.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0},
there exist a ∈ V such that f1(a)+εf2(a) = 0 and dB(f1+εf2) �=
0 (see its definition later on).
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Then for |ε| > 0 sufficiently small, there exists a T−periodic solution
ϕ(·, ε) of the system such that ϕ(0, ε) → a when ε → 0.

As usual we have denoted by dB(f1+εf2), the Brouwer degree of the
function f1 + εf2 : V → Rn at its fixed point a. A sufficient condition
for showing that the Brouwer degree of a function f at its fixed point
a is non–zero, is that the Jacobian of the function f at a (when it is
defined) is non–zero.
If the function f1 is not identically zero, then the zeros of f1 + εf2

are mainly the zeros of f1 for ε sufficiently small. In this case Theorem
3 provides the so-called averaging theory of first order.
If the function f1 is identically zero and f2 is not identically zero,

then the zeros of f1 + εf2 are the zeros of f2. In this case Theorem 3
provides the so-called averaging theory of second order.
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