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Abstract

Background: Collateral growth in patients with coronary artery disease (CAD) is highly heterogeneous. Although
multiple factors are thought to play a role in collateral development, the contribution of genetic factors to coronary
collateral circulation (CCC) is largely unknown. The goal of this study was to assess whether functional single nucleotide
polymorphisms (SNPs) in genes involved in vascular growth are associated with CCC.

Methods: 677 consecutive CAD patients were enrolled in the study and their CCC was assessed by the Rentrop
method. 22 SNPs corresponding to 10 genes involved in postischemic neovascularization were genotyped and
multivariate logistic regression models were adjusted using clinically relevant variables to estimate odds ratios
and used to examine associations of allelic variants, genotypes and haplotypes with CCC.

Results: Statistical analysis showed that the HIF1A rs11549465 and rs2057482; VEGFA rs2010963, rs1570360, rs699947,
rs3025039 and rs833061; KDR rs1870377, rs2305948 and rs2071559; CCL2 rs1024611, rs1024610, rs2857657 and
rs2857654; NOS3 rs1799983; ICAM1 rs5498 and rs3093030; TGFB1 rs1800469; CD53 rs6679497; POSTN rs3829365
and rs1028728; and LGALS2 rs7291467 polymorphisms, as well as their haplotype combinations, were not associated
with CCC (p < 0.05).

Conclusions: We could not validate in our cohort the association of the NOS3 rs1799983, HIF1A rs11549465, VEGFA
rs2010963 and rs699947, and LGALS2 rs7291467 variants with CCC reported by other authors. A validated SNP-based
genome-wide association study is required to identify polymorphisms influencing CCC.
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Background
In patients with coronary artery disease (CAD), the perfu-
sion of the myocardial tissue is impaired. To mitigate
myocardial ischemia, a neovascularization process, which
includes the creation of a capillary network in the ische-
mic myocardium (angiogenesis) and the growth of collat-
eral arteries (arteriogenesis) is initiated to enhance blood
flow to the myocardium. Collateral arteries are natural
vascular bypasses that can significantly reduce the degree
of myocardial ischemia. They develop through the growth
of small pre-existing arterioles [1]. Thus, patients with
good collateral circulation have a lower mortality (36 %)
than patients with low levels of collateralization [1]. Pa-
tients with CAD are highly heterogeneous in their arterio-
genic response, even those with totally occluded arteries
[2], with this variability attributed to genetic and envir-
onmental factors [3]. Collateral vascular growth and
angiogenesis are parts of the same process leading to
neovascularization. They complement each other: col-
lateral growth and arteriogenesis provide bulk flow to
the tissue, and angiogenesis promotes a capillary net-
work that salvages the ischemic area. Angiogenesis and
arteriogenesis are driven by distinct, but partially over-
lapping, cellular and molecular pathways [4]. In this
study we examine putative genetic markers of coronary
collateral growth. Our group has previously reported
that the p.Pro141Leu polymorphism located in the
urokinase-type plasminogen activator gene (PLAU), a
gene expressed at collateral growth sites during arterio-
genesis, is associated with coronary collateral development
in patients with severe CAD [5]. To this end, we per-
formed an association study to relate coronary collateral
circulation (CCC) to 22 SNPs corresponding to 10 genes
with suspected or demonstrated functional involvement in
the process of postischemic neovascularization, and their
corresponding haplotypes, in a Spanish cohort of patients
with CAD.

Methods
Study subjects
The study was conducted between 2008 and 2012. We
evaluated a Spanish cohort of 677 consecutive CAD pa-
tients with severe (≥70 %) stenosis who had been sched-
uled to undergo diagnostic coronary angiography at the
Centre Cardiovascular Sant Jordi (CCSJ) or the Hospital
Universitari Vall d’Hebron (HUVH) in Barcelona, Spain.
The protocol was approved by the Bioethics Committee
of the two centers (Ethics Committee of Clinical Re-
search of the HUVH and the Bioethics Committee of
the CCSJ), and authorized written consent was obtained
from all the subjects. The exclusion criteria were: recent
(less than 1 month previously) acute myocardial infarc-
tion; anemia; recent angioplasty; prior revascularization
by percutaneous coronary intervention; coronary artery
bypass surgery; and renal infection, inflammation or
chronic failure. Epidemiological and clinical data in-
cluded hypertension, diabetes mellitus (DM), DM type,
hyperlipidemia, smoking history, family history of car-
diopathies (FHC), history of angina, angina type and
acute myocardial infarctions (AMI); with those not re-
ferring to type recorded as present or absent.

Coronary angiography and coronary collateral artery
scoring
Selective coronary angiography was performed using
multiple orthogonal projections via the Judkins tech-
nique. Injection of the contrast in the donor artery was
performed at a sustained high pressure with an auto-
mated controlled machine (ACIST CVi Contrast Deliv-
ery System®). CCC was assessed angiographically using a
“modified” Rentrop’s method [6] without occlusion of
the recipient artery. The following scale was used to as-
sess the level of filling of the channels: 0 = no visible fill-
ing of any collateral channels; 1 = collateral filling of
branches of the vessel to be dilated without any dye
reaching the epicardial segment of that vessel (that is,
right coronary artery injection showing retrograde filling
of septal branches to their origin from the left anterior
descending artery, without visualization of the latter oc-
cluded artery); 2 = partial collateral filling of the epicardial
segment of the vessel being dilated; and 3 = complete col-
lateral filling of the vessel being dilated. In patients with
more than one collateral vessel, the highest Rentrop score
was recorded.
CAD patients were classified according to the degree

of CCC as either poor CCC (Rentrop 0–1) (n = 546) or
good CCC (Rentrop 2–3) (n = 131). CCC was assessed
by three experienced cardiologists who were blinded to
the epidemiological, clinical and genetic data. The de-
gree of agreement in the evaluation of CCC was high
among the 3 observers, as determined by the kappa
coefficient: κ = 0.987; 95 % confidence interval (95 %CI),
0.953-1.000 (P < 0.001) using the first 100 angiograms.

SNP selection and genotype analysis
22 SNPs of genes involved in postischemic neovasculari-
zation were selected attending the following criteria: a)
their suspected or proved functional or/and clinical sig-
nificance regarding angiogenesis or arteriogenesis when
known; b) their location within coding, 5' or 3' untrans-
lated, or intronic sequences with known potential sites
for factor binding; and c) a minor allele frequency of
more than 5 % in the population studied (NCBI). We
searched genes directly or indirectly involved in angio-
genesis and/or arteriogenesis containing functional poly-
morphisms. Particularly, HIF1A [7–9], VEGFA [10–12],
KDR [13, 14], NOS3 [15, 16], TGFB1 [17–19] and
LGALS2 [20, 21] have been involved in both processes.
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Furthermore, CCL2 [22] and ICAM1 [23] play an im-
portant role in arteriogenesis, while CD53, which con-
trols TNFα levels [24], also plays an important role in
this process [25]; and POSTN has been reported to be
involved in angiogenesis [26] (Table 1). The SNPs located
in or near these genes that were analyzed in this study are
listed in Table 1 and details of them are as follows. HIF1A
rs11549465 and rs2057482 affect mRNA production and
are associated with CAD [27]; the first is also related to
collateral circulation [28]. VEGFA rs2010963, rs1570360
and rs699947 influence protein production [29], and along
with rs3025039 and rs833061 they have also been related
to VEGFA serum levels [30–32]. Moreover, VEGFA
rs2010963 and rs699947 have been associated with collat-
eral circulation [33] and CAD [34]. KDR rs1870377 and
rs2305948 affect primary protein structure, whereas
rs2071559 is located 5’ upstream, being all related to CAD
[35]. CCL2 rs1024611 affects mRNA production [36–38];
and along with rs1024610, MCP1 plasma levels [39–41].
CCL2 rs1024611 and rs1024610 have been associated with
myocardial infarction [39, 42]. NOS3 rs1799983 has func-
tional consequences for the protein [43, 44] which are as-
sociated with coronary arteriogenesis [45, 46] and CAD
[47]. ICAM1 rs5498 affects the primary structure of the
protein and both it and rs3093030, located near the 3’ end
of the gene, are related to sICAM1 plasma levels [48–51]
and to coronary artery calcification [52]. TGFB1 rs1800469
is located towards the 5’ end of the gene and has been as-
sociated with coronary heart disease complications [53].
CD53 rs6679497 is an intronic polymorphism associated
with TNFα levels [24] which plays a role in modulating
arteriogenesis [25]. POSTN rs3829365 and rs1028728 are
located in the 5’ UTR of the gene, with the first being asso-
ciated with heart failure [54]. Finally, LGALS2 rs7291467 is
located in intron 3 and has been associated with arterio-
genesis [21] and CAD [55–57].
Blood samples were drawn from patients undergoing

coronary artery catheterization. Genomic DNA was iso-
lated using the QIAmp DNA Blood kit following the
manufacturer’s protocol (Qiagen©, UK). TaqMan SNP
genotyping assays (Applied Biosystems, Foster City, CA,
USA) were performed to determine genotypes from the
blood samples using a 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems, Foster City, CA, USA). Geno-
type assessments were reproduced in three independent
assays.

Statistical Analysis
Data were summarized and presented in the form of
mean, standard deviation and percentage as descriptive
statistics. Continuous data that were not normal-
distributed were analyzed using the Mann–Whitney U
test. In this study, age does not show a normal distribu-
tion (Shapiro-Wilk p-value <0.001). Associations among
categorical data were assessed using Fisher’s exact or chi-
square test, and Hardy Weinberg equilibrium was assessed
using the chi-square test. Multivariate logistic regression
models were adjusted using clinically relevant variables to
estimate odds ratios (ORs) and 95 %CIs among genotypes,
haplotypes and the risk of poor CCC. Interaction terms
between SNPs, haplotypes and significant covariates were
also analyzed in the multivariate regression models. Statis-
tical analysis was performed using STATA 11.2 software.
The power to detect a genetic association was estimated
using the same statistical package. The SNPStats software
available at http://bioinfo.iconcologia.net/en/SNPStats_
web was used to calculate linkage disequilibrium (mea-
sured as Lewontin’s D0-values) between SNPs, to estimate
haplotype frequencies, and to evaluate haplotype associ-
ation with CCC.
Results
A total of 677 CAD patients (median of age 66 years,
107 females/570 males) stratified according to the level
of coronary collateralization (546 poor; 131 good) were
enrolled in the study. The clinical and epidemiological
parameters of the patients according to CCC develop-
ment are listed in Table 2. Statistical analysis showed
that there were no differences among the poor and good
CCC groups in terms of age, gender, hypertension or
hyperlipidemia history, smoking, angina history or previ-
ous myocardial infarction (Table 2). However, the inci-
dence of DM (55.9 %) and the percentage of patients
prescribed with statins (44.3 %) were significantly higher
in the poor CCC group, with p values of 0.037 and 0.035
respectively (Table 2).
None of the SNPs studied, with the exception of

NOS3 rs1799983 and POSTN rs3829365, showed any
deviation from Hardy–Weinberg equilibrium (HWE)
(tested by conventional χ2) (Table 3). Therefore, rs1799983
(PHWErs1799983 = 0.0157) and rs3829365 (PHWErs3829365 =
0.0000) were not included in further genetic association
tests.
The genotype and allele distributions of all the poly-

morphisms in the population studied are shown in
Table 2, and they did not show any differences between
patients with good collateralization and patients with
poor collateralization (p ≥0.05) (Table 3). Haplotype as-
sociation analysis of polymorphisms in strong LD has
more power than single locus tests to detect gene–dis-
ease associations. Thus, we also checked for haplotype
combinations of polymorphisms in the VEGFA, KDR,
CCL2, ICAM1, and POSTN genes to detect associations
with CCC. To this end, we first estimated LD between
the polymorphisms of these genes. There was a strong
pairwise LD between the SNPs within these genes (data
not shown), and VEGFA, KDR, CCL2, ICAM1 and

http://bioinfo.iconcologia.net/en/SNPStats_web
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Table 1 SNPs analyzed in the study

Gene Role in angiogenesis/
arteriogenesis

SNP Other HGVS
names

Location Functional
category

FS score Association
to CCC

Association to CAD Functional relevance

HIF1A Both [7, 8] rs11549465 p.Pro582Ser Exon 2 Missense variant 0.627 [28] [27] Influences transactivation activity [27, 58]

rs2057482 c.*45 T > C 3’-UTR 3’ UTR variant 0 - [27] Influences transactivation activity [27]

VEGFA Both [10–12] rs2010963 c.-634C > G Promoter Regulatory region
variant

0.257 [33] [34] Influences protein production [29]
Related to VEGFA serum levels [30]

rs1570360 c.-1154A >
G

Promoter Regulatory region
variant

0.242 - - Influences protein production and
related to VEGFA serum levels [31]

rs699947 c.-2055A > C Upstream
gene

Regulatory region
variant

0.176 [33] [34] Influences protein production and
related to VEGFA serum levels [30, 31]

rs3025039 c.*237C > T 3’-UTR 3’ UTR variant 0 - - Related to VEGFA serum levels [32]

rs833061 c.-958C > T Promoter Regulatory region
variant

0.282 - - Related to VEGFA serum levels [30]

KDR Both [13, 14] rs1870377 p.Gln472His Exon 11 Missense variant 0.103 - [35] -

rs2305948 p.Val297Ile Exon 7 Missense variant 0.621 - [35] -

rs2071559 c.-906 T > C Promoter
flanking

Regulatory region
variant

- [35] -

CCL2 Arteriogenesis [22] rs1024611 g.2493A > G Promoter
flanking

Regulatory region
variant

0.208 - Related to myocardial infarction [39, 42] Related to MCP1 serum levels [39–41]
Influences mRNA expression [36–38]

rs1024610 g.2936 T > A Promoter
flanking

Regulatory region
variant

0.158 - Related to myocardial infarction [39] Related to MCP1 serum levels [39]

rs2857657 g.5837G > C Non
coding
exon

Non coding
transcript exon
variant

0.176 - - -

rs2857654 g.2236C > A Promoter
flanking

Regulatory region
variant

0 - - -

NOS3 Both [15, 16] rs1799983 p.Asp298Glu Exon 7 Missense variant 1 [45, 46] [47] Influences activity by different susceptibility
to cleavage [43, 44]

ICAM1 Arteriogenesis [23] rs5498 p.Lys469Glu Exon 2 Missense variant 0.092 - Related to coronary artery calcification
[52]

Related to s-ICAM1 levels [48–50]

rs3093030 c.-286C > T Non
coding
exon

Non coding
transcript exon
variant

0.208 - - Related to s-ICAM1 levels [49, 51]

TGFB1 Both [17–19] rs1800469 c.*309 T > C Promoter Regulatory region
variant

0.208 - [53] -

CD53 - rs6679497 c.-17-
5027C > G

Intron 2 Regulatory region
variant

- - Associated to TNFα levels [24], which has
been related to arteriogenesis [25]
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Table 1 SNPs analyzed in the study (Continued)

POSTN Angiogenesis [26] rs3829365 c.-33C > G Promoter
flanking

Regulatory region
variant

0 - Associated with heart failure [54] -

rs1028728 c.-953 T > A Promoter
flanking

Regulatory region
variant

0.5 - - -

LGALS2 Both [20, 21] rs7291467 c.6 +
3279C > T

Intron 1 Regulatory region
variant

[21] Related to myocardial infarction [55–57] -

Abbreviations: CCC, coronary collateral circulation; CAD, coronary artery disease. FS score: functional effects of SNPs obtained from 16 bioinformatics tools and databases. (http://compbio.cs.queensu.ca/F-SNP/)
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Table 2 Epidemiological and Clinical Characteristics of CAD
patients with poor and good CCC

Characteristic Poor CCC Good CCC p value

n = 546 (%) n = 131 (%)

Age (years) 65.26 ± 10.88 66.76 ± 10.06 0.187

Gender (male) 460 (84.25) 110 (83.97) 0.937

Hypertension (n) 372 (68.13) 97 (74.05) 0.188

Diabetes mellitus (n) 146 (26.74) 47 (35.88) 0.037*

Hyperlipidemia (n) 381 (69.78) 96 (73.28) 0.430

Smoking (n) 126 (23.08) 33 (25.19) 0.608

Angina history (n) 383 (70.15) 93 (70.99) 0.849

Previous myocardial infarction (n) 196 (35.90) 43 (32.82) 0.509

Medication with statins (n) 188 (34.43) 58 (44.27) 0.035*

Abbreviations: CCC, coronary collateral circulation. Values are given as mean (S.D.)
or numbers of patients (%). p <0.05 was considered as statistically significant (*)
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POSTN haplotype analysis showed that the haplotype
frequencies in patients with good collaterals were similar
to those in patients with poor CCC (data not shown).

Discussion
An increasing number of SNPs are being accepted as
underlying contributors to numerous cardiovascular dis-
orders. Different researchers have shown the importance
of several polymorphisms in CCC susceptibility [21, 28,
33, 46, 47]. In vitro studies have suggested that the
p.Asp298Glu polymorphism plays a functional role, with
the Asp 298 variant being associated with a decreased
eNOS activity [43, 44], the consequences of which may
include impaired collateral development. The Asp vari-
ant has been associated with poor CCC in 291 CAD pa-
tients with chronic coronary occlusions [45], and similar
results have been reported in a series of 477 CAD pa-
tients with high-grade coronary stenosis ≥70 % [46].
However, because NOS3 p.Asp298Glu deviates from
HWE in our population, we could not analyze this poly-
morphism in our samples.
Another polymorphism which has been studied in re-

lation to coronary arteriogenesis is p.Pro582Ser located
in the HIF1A gene. The C/T polymorphism at nucleo-
tide 85 of exon 12 results in a Pro/Ser polymorphism at
residue 582 of HIF-1α. This substitution alters the
amino acid sequence in the carboxyl-terminal domain of
HIF-1α, which regulates protein stability and transcrip-
tional activity [58]. Resar et al. demonstrated that CT or
TT genotypes affecting residue 582 of the HIF-1α protein
were associated with the absence of coronary collaterals in
100 patients with CAD [27]. This result indicates that
p.Pro582Ser substitution could influence the expression
of angiogenic growth factors, thus leading to reduced
collateral formation. Although we could not validate
these results in our 677 CAD patients, our results are
in agreement with those published by Alidoosti et al.
(2011) which found no association between rs11549465
variants and the extent of CCC (n = 196) [59]. Despite
that study being conducted in Iranian CAD patients,
our results support Alidoosti’s observations, with our
study being more robust based on a significantly higher
number of patients (n = 677). Taking all this into ac-
count, the relevance of p.Pro582Ser HIF1A to CCC sus-
ceptibility is still under debate.
Unlike the results reported by Lin et al., 2010, showing

that the VEGFA c.-634C > G (+405C > G) (rs2010963)
and c.-2055A > C (A-2578C) (rs699947) polymorphisms
were associated with the coronary arteriogenic response
in 393 CAD patients [33], our results do not confirm the
existence of any association between CCC and the allelic
or genotypic distribution of this polymorphism. Given
that the study by Lin et al. was conducted in Chinese pa-
tients, this discrepancy could be attributed to differences
in population genetics.
Galectin-2, which is encoded by the LGALS2 gene, is

an inhibitor of arteriogenesis [21]. This inhibition is
dependent of the gene expression on the cell surface of
monocytes, acting as a modulator of monocyte/macro-
phage responses during collateral artery growth. CAD
patients with poor CCC have increased monocytic
mRNA expression of galectin-2, independent of different
stimulations of these cells. Interestingly, the mRNA ex-
pression of galectin-2 was significantly associated with
the LGALS2 rs7291467 genotype, which has been associ-
ated with CCC in a small group of patients (n = 50) [21].
The same researchers also found that galectin-2 was able
to inhibit collateral circulation in a mouse model of limb
ischemia [21]. However, we have being unable to dem-
onstrate an association between arteriogenic response
and the allelic or genotypic distribution of this poly-
morphism in our cohort of patients. This may be attrib-
utable to the fact that van der Laan’s study used the
collateral flow index as a quantitative measure of CCC,
instead of poor and good CCC based on a qualitative
angiographic Rentrop score.
The most extensively studied chemokine contributing

to postischemic neovascularization is the monocyte
chemo-attractant protein-1 (MCP-1); a protein which is
overexpressed in collateral growth, allowing for monocyte
recruitment sites [60]. The crucial role of monocytes in
collateral growth is exemplified by the observations that
genetic targeting of the MCP-1 gene (CCL2) and of the
MCP-1 receptor gene (CCR2) leads to defective collateral
growth [61, 62]. However, none of the SNPs of CCL2,
rs2857654, rs1024611, rs1024610 and rs2857657, analyzed
individually or their haplotype combinations were associ-
ated with CCC development.
The main limitation of the study is that the collaterali-

zation assessment is based on the angiographic Rentrop
score, which is a qualitative rather than a quantitative



Table 3 Association of genotype and allele distribution of examined polymorphisms with CAD patients with poor and good CCC

Gene dbSNP ID Patients n Genotype count (frequency) P valuea Allele count (frequency) P valueb HWE P

VEGFA rs2010963 GG GC CC G C

Poor CCC 531 247 (46.52) 224 (42.18) 60 (11.30) 0.5760 718 (67.61) 344 (32.39) 0.495 0.8216

Good CCC 121 50 (41.32) 58 (47.93) 13 (10.75) 158 (65.29) 84 (34.71)

rs1570360 GG GA AA G A

Poor CCC 451 207 (45.90) 197 (43.68) 47 (10.42) 0.782 611 (67.74) 291 (32.26) 0.521 0.8494

Good CCC 97 47 (48.45) 42 (43.30) 8 (8.25) 136 (70.10) 58 (29.90)

rs699947 CC AC AA C A

Poor CCC 494 138 (27.94) 245 (49.59) 111 (22.47) 0.816 521 (52.73) 467 (47.27) 0.968 0.5199

Good CCC 104 31 (29.81) 48 (46.15) 25 (24.04) 110 (52.90) 98 (47.12)

rs3025039 CC CT TT C T

Poor CCC 498 386 (77.51) 106 (21.29) 6 (1.20) 0.665 878 (88.15) 118 (11.85) 0.714 0.9533

Good CCC 105 84 (80) 19 (18.10) 2 (1.90) 187 (89.05) 23 (10.95)

rs833061 CC CT TT C T

Poor CCC 526 124 (23.57) 268 (50.95) 134 (25.48) 0.471 516 (49.05) 536 (50.95) 0.232 0.6392

Good CCC 121 33 (27.27) 63 (52.07) 25 (20.66) 129 (53.31) 113 (46.69)

KDR rs1870377 TT AT AA T A

Poor CCC 496 291 (58.67) 178 (35.89) 27 (5.44) 0.613 760 (76.61) 232 (23.39) 0.328 0.8991

Good CCC 106 67 (63.21) 35 (33.02) 4 (3.77) 169 (79.72) 43 (20.28)

rs2305948 CC CT TT C T

Poor CCC 582 487 (83.68) 88 (15.12) 7 (1.20) 0.199 1062 (91.24) 102 (8.76) 0.207 0.3210

Good CCC 153 120 (78.43) 32 (20.92) 1 (0.65) 272 (88.89) 34 (11.11)

rs2071559 TT CT CC T C

Poor CCC 544 147 (27.02) 276 (50.74) 121 (22.24) 0.319 570 (52.39) 518 (47.61) 0.140 0.8355

Good CCC 129 29 (22.48) 64 (49.61) 36 (27.91) 122 (47.29) 136 (52.71)

CCL2 rs1024611 AA AG GG A G

Poor CCC 576 332 (57.64) 210 (36.46) 34 (5.90) 0.221 874 (75.87) 278 (24.13) 0.826 0.3186

Good CCC 153 94 (61.44) 46 (30.06) 13 (8.50) 234 (76.47) 72 (23.53)

rs1024610 AA AT TT A T

Poor CCC 516 312 (60.47) 180 (34.88) 24 (4.65) 0.516 804 (77.91) 228 (22.09) 0.715 0.6077

Good CCC 112 68 (60.71) 36 (32.15) 8 (7.14) 172 (76.79) 52 (23.21)

rs2857657 CC CG GG C G

Poor CCC 511 309 (60.47) 181 (35.42) 21 (4.11) 0.365 799 (78.18) 223 (21.82) 0.832 0.8093

Good CCC 111 71 (63.96) 33 (29.73) 7 (6.31) 175 (78.83) 47 (21.17)

rs2857654 CC AC AA C A

Poor CCC 580 336 (57.93) 211 (36.38) 33 (5.69) 0.248 883 (76.12) 277 (23.88) 0.993 0.4284

Good CCC 153 93 (60.78) 47 (30.72) 13 (8.50) 233 (76.14) 73 (23.86)

NOS3 rs1799983 GG GT TT G T

Poor CCC 513 211 (41.13) 216 (42.11) 86 (16.76) 0.596 638 (62.18) 388 (37.82) 0.686 0.0157*

Good CCC 110 46 (41.82) 48 (43.64) 16 (14.54) 140 (63.64) 80 (36.36)

ICAM1 rs5498 AA AG GG A G

Poor CCC 516 136 (26.36) 246 (47.67) 134 (25.97) 0.308 518 (50.19) 514 (49.81) 0.958 0.1039

Good CCC 112 33 (29.46) 46 (41.08) 33 (29.46) 112 (50.00) 112 (50.00)

rs3093030 CC CT TT C T

Poor CCC 517 134 (25.92) 248 (47.97) 135 (26.11) 0.415 516 (49.90) 518 (50.10) 0.883 0.1535
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Table 3 Association of genotype and allele distribution of examined polymorphisms with CAD patients with poor and good CCC
(Continued)

Good CCC 112 33 (29.46) 47 (41.97) 32 (28.57) 113 (50.45) 111 (49.55)

TGFB1 rs1800469 GG GA AA G A

Poor CCC 483 198 (50.00) 228 (47.20) 57 (11.80) 0.696 624 (64.60) 342 (35.40) 0.979 0.8844

Good CCC 100 43 (43.00) 43 (43.00) 14 (14.00) 129 (64.50) 71 (35.50)

CD53 rs6679497 GG GA AA G A

Poor CCC 483 198 (41.00) 228 (47.20) 57 (11.80) 0.826 624 (64.60) 342 (35.40) 0.572 0.6712

Good CCC 100 43 (43.00) 43 (43.00) 14 (14.00) 129 (64.50) 71 (35.50)

POSTN rs3829365 GG GC CC G C

Poor CCC 405 357 (88.15) 22 (5.43) 26 (6.42) 0.795 736 (90.86) 74 (9.14) 0.535 0.0000*

Good CCC 76 69 (90.79) 3 (3.95) 4 (5.26) 141 (92.76) 11 (7.24)

rs1028728 AA AT TT A T

Poor CCC 389 242 (62.21) 128 (32.91) 19 (4.88) 0.230 612 (78.66) 166 (21.34) 0.105 0.7373

Good CCC 77 54 (70.13) 22 (28.57) 1 (1.30) 130 (84.42) 24 (15.58)

LGALS2 rs7291467 AA AG GG A G

Poor CCC 581 160 (27.54) 292 (50.26) 129 (22.20) 0.106 612 (52.67) 550 (47.33) 0.080 0.9589

Good CCC 151 37 (24.50) 68 (45.03) 46 (30.47) 142 (47.02) 160 (52.98)

HIF1A rs11549465 CC CT TT C T

Poor CCC 518 402 (77.60) 111 (21.43) 5 (0.97) 0.563 915 (88.32) 121 (11.68) 0.474 0.4122

Good CCC 112 84 (75) 26 (23.21) 2 (1.79) 194 (86.61) 30 (13.39)

rs2057482 CC CT TT C T

Poor CCC 497 339 (68.21) 148 (29.78) 10 (2.01) 0.490 826 (83.10) 168 (16.90) 0.328 0.1151

Good CCC 111 70 (63.06) 38 (34.24) 3 (2.70) 178 (80.18) 44 (19.82)
aFisher’s exact test was used to evaluate differences between genotype groups. bPearson’s chi-squared, χ2, was used for to evaluate the allele distribution.
*p <0.05 was considered as statistically significant
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technique. A modified Rentrop method without occlu-
sion of the recipient artery was performed in the current
work. This method, as well as the inclusion of a large
portion of patients with subocclusive lesions (>70-100 %),
probably might explain why such a relative low number of
patients displayed well-developed collateral arteries in this
cohort. Also, functional polymorphims in interferon-
beta signaling genes, which are involved in arteriogenesis
from clinical studies [63, 64], were not included in the
study.

Conclusions
Despite having previously reported that PLAU p.Pro141-
Leu (rs2227564) was associated with coronary arteriogen-
esis [5], none of the rs11549465, rs2057482, rs2010963,
rs1570360, rs699947, rs3025039, rs833061, rs1870377,
rs2305948, rs2071559, rs1024611, rs1024610, rs2857657,
rs2857654, rs1799983, rs5498, rs3093030, rs1800469,
rs6679497, rs3829365 or rs1028728 polymorphisms ana-
lyzed located in or close to genes involved in postischemic
neovascularization (VEGFA, KDR, CCL2, ICAM1 and
POSTN) or their haplotype combinations were associated
with CCC development. In addition, in our cohort of pa-
tients we could not validate the association of the NOS3
rs1799983, HIF1A rs11549465, VEGFA rs2010963 and
rs699947, and LGALS2 rs7291467 polymorphisms with
CCC development reported by other authors. We and
others have demonstrated the potential role of certain
polymorphisms as factors associated with CCC [5, 21, 28,
45, 46], but usually they have not been validated in other
cohorts of patients. In addition, SNPs may influence col-
lateral development not only individually, but also when
acting together with other SNPs, through gene haplotype
networks, as demonstrated by the role of several inflam-
matory gene haplotype networks in CCC [65]. In conclu-
sion, a validated SNP-based GWAS is needed to reveal
and/or confirm the SNPs that predict coronary arterio-
genic response.
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