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A novel cross-layer optimized video adaptation driven by perceptual semantics is presented.The design target is streamed live video
to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications
are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and
enables perceptual semantic feedback.The framework relies on temporal/spatial abstraction for video applications serving beyond
recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time)
and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds
reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high
performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying
with information-centric-networking philosophy and architecture.

1. Introduction

Video services have become part of everyday interactions and
contribute to a major portion of network traffic. Usage of
video can surpass the recreational arena to provide additional
insights in out-of-the-ordinary scenarios, such as emergen-
cies or e-health aid.

Our interest is the use of live, point-to-point, beyond
recreational video streaming. The goal of such service is to
provide valuable information through the live video, in order
to enhance the end-user’s awareness of ongoing situations.
We consider scenarios where best effort satellite networks
become a reliable alternative to unavailable terrestrial com-
munications infrastructure. However, these networks offer
stringent conditions that challenge the user’s satisfaction.The
relevance of this realistic scenario is supported by direct
contact and fieldwork with decisionmakers using these types
of video services during disaster and emergency response
events [1].

In this paper, we propose a novel, complete model
and solution for live video transmission of user generated

to enhance situational awareness. It is composed of novel
QoE framework that allows fully controlled adaptation and
enables perceptual semantic feedback. The framework is
based on temporal/spatial abstraction for video applications
serving beyond recreational purposes. To the best of our
knowledge, the aim of offering complete solution for the
given scenario requirements (video for beyond recreational
needs to enhance awareness) and its constraints (challenging
communications with scarce bandwidth suffering from both
congestion and erasures) has not been addressed before.
Moreover, we use novel tools to tackle these issues and
provide robust and feasible scheme.

Existing Strategies for Congestion Avoidance. Video streaming
is growing in popularity on the best effort internet. Existing
technologies such as dynamic adaptive streaming over HTTP
(DASH), layered on top of TCP, have well-known advantages.
However, they are not applicable in our design for situation
awareness where, for example, satcom scenarios need to be
considered. In such scenarios, TCP has low performance for
streaming due to long round trip times and packet erasures.
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This results in a decrease in throughput that causes long
start-up delays in video playback and bounds the video
source rate to just half of the TCP throughput [2]. At the
same time, the topology of our scenario is not compatible
with HTTP/TCP—HTTP options of user generated live
(close to real-time) streaming rely on intermediate servers
to prepare content for the clients (e.g., in order to use
DASH). All of the above affect QoE with freezes in playback
and low image quality. As an alternative, improvements to
general purpose TCP for satellite communications include
performance enhancement proxy (PEP) solutions; however,
they alter the system architecture.

A variety of TCP-friendly congestion control schemes
have been studied for video streaming [3–5].Theirmain focus
is the fairness of the schemes rather than the impact on QoE.
Further, they rely on heavy feedback from the receiver, which
is a problematic issue in long-delayed networks. Real-time
applications, on the other hand, opt for real-time protocol
(RTP) and use ad hoc congestion control schemes [6, 7].
They offer the flexibility our scenario needs at the transport
layer; however, they rarely focus on QoE assessment or on
addressing band-limited long-delayed networks.

In this work, we propose congestion avoidance over
RTP in conjunction with video adaptation, specifically for
QoE in satellite networks. We use utility-based optimization
approach, based on [8, 9]. Related work, as in [10, 11], is
driven by QoS performance objectives. Other approaches
use parameterizations from standardized quality of video
to obtain video quality adaptive algorithms [12]. Finally,
mappings of subjective QoE metrics are also used as opti-
mization functions [13].The drawback of the aforementioned
approaches is the heterogeneity in the choices for mapping
and scenarios, which may not be reproducible or generalized
for broader adoption. Furthermore, the existing approaches
do not address long roundtrip times, which render them
unsuitable for our scenario.

Network Coding for Improving Reliability. In general, wireless
systems (specifically satellite systems) suffer from packet
erasures. These erasures are due to poor wireless reception
conditions and channel fading among others, which the
adaptive coding schemes at the physical layer cannot cope
with. State-of-the-art video codecs include error concealment
features for robustness against erasures; however, they only
suffice for short temporal error propagation and may not
handle more severe losses [14].

Existing erasure recovery strategies primarily include
retransmissions or the use of redundant packets. Retransmis-
sion based schemes (e.g., ARQ and TCP)may provide perfect
erasure recovery. However, the increase in delay and over-
head due to per packet feedback can decrease throughput,
especially when round trip times are high. Rateless coding
schemes like Luby transform (LT) codes [15] and Raptor
codes [16] can generate a fountain of redundant packets and
are especially popular for reliable transmission of large files.
However, these codes are not efficient with small block sizes,
which is the usual structure in video streams [16].

In this work, we examine the use of block coding with
random network coding (RNC) to improve reliability. RNC
[17, 18] allows mixing of packets to send a fixed amount
of redundant packets such that there is sufficient protection
guaranteed and the source packets are recovered without the
need of feedback. It also provides the inherent possibility
of reencoding at intermediate nodes (which is missing in
the traditional block coding schemes). The use of RNC
for reliable communications in wireless networks was first
studied in [19] where RNC was shown to achieve maximum
throughput for both unicast and multicast communication
with packet erasures. In addition, [20–22] discuss the use of
RNC for reliability.

In this paper, we focus on systematic random linear
network coding (SRNC). SRNC provides an erasure recovery
performance similar to maximum distance separable (MDS)
codes such as Reed Solomon (RS) codes [23]. In addition,
with systematic codes input data is embedded in the encoded
output, thereby reducing decoding overhead at the receiver
side. Furthermore, the inherent random structure of SRNC
makes progressive decoding possible, which improves packet
recovery time as compared to using RS codes. This is an
advantage in long-delayed scenarios.

QoE and Semantics. QoE is a multidisciplinary field that
aims to understand the degree of human satisfaction with an
application or service.GeneralQoEmodels for telecommuni-
cations integrate different aspects into a holistic view of QoE
[24]. A thorough review of general purpose QoE models and
QoEmanagement for wireless networks can be found in [25].

With respect to QoE for video in particular, several
features have been studied to improve user’s experience in
streaming, such as video coding parameters [26] or temporal
impairments [27, 28]. Such solutions focus separately on
erasure protection solutions for lossy networks or on dynamic
rate adaptation for best effort cases [13, 29].

In contrast to the aforementioned approaches, we base the
notions of QoE upon [30], focusing on (1) system influential
factors on QoE that relate to the networking scenario at
hand and (2) perceptual features in QoE for video that will
guarantee delivery of valuable information. Moreover, we
follow QoE versus QoS correlation modeling approaches
[31], where our aim is high temporal (related to congestion
avoidance) and spatial (related to reliable transmission) QoE
procurement.

Finally, we propose an additional dimension to our
framework that targets specific user demands for situational
awareness. In multimedia, “classic” semantics deals with
heterogeneous metadata that sensors observe and/or tag
when capturing video. It has applications in information
retrieval, integration, and aggregation of varied data types
such as semantic-aware delivery of multimedia [32]. Fur-
thermore, semantic tagging describing pure observations is
used in computer-based systems with artificial intelligence
to perceive and abstract situations [33]. Rather than doing
perception through classic semantics, we propose a novel
human-analysis-driven perceptual semantics approach to tag
videos based on the spatial/temporal characteristics of the
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video a user is perceiving. This provides a mechanism to
specifically target and improve the user’s perceptual needs
and enhance situational awareness.

Contributions. The main contributions of this paper can be
summarized in terms of the following novel aspects:

(i) Novel scenario: we concentrate on the use of video
to fulfill beyond recreational needs, for example,
situational awareness in critical situations; hence the
key issue is the iterative use of video over scarce
bandwidth. Under these circumstances, video trans-
mission cannot be thought of as a standard streaming
solution for domestic use over the internet, nor
can it rely on well-known and available encoders
or solutions, but on very robust and well-controlled
adaptation and coding.

(ii) Novel decoupling of time/space for the video adapta-
tion/coding: we address the user’s specific perceptual
demands and map, in time and in space, the cor-
responding network triggers that degrade the user’s
perceptual awareness. Based on this mapping, we
propose a robust and controlled optimization by
decoupling the time and space domains. In addition,
this approach proves to be useful in tackling system-
atically the stringent restrictions of our communica-
tions scenario and meets the user’s demands.

(iii) Novel perceptual semantic level: we propose a novel
perceptual semantics dimension that is intrinsically
related to the situational awareness scenario and
the end-user driven nature of our approach. Such
problems have not been addressed by current state-
of-the-art video streaming solutions that focusmainly
on communication for recreational needs. The end-
user is involved in interactive adaptation through
perceptual semantics feedback such that specific user-
demanded perceptual spatiotemporal enhancements
are possible. Furthermore, it is compliant to current
content-aware networking trends.

(iv) The use of network coding: network coding is used
to improve reliability. It proves to perform sim-
ilar to MDS codes, with several advantages over
MDS codes including reduced decoding complexity,
smaller delay, and flexibility to perform adaptive
coding. In addition, this scheme allows the extension
of coding at intermediate nodes in more complex
networking scenarios, providing better performance
in terms of throughput and reliability.

(v) Experimental validation: we show through a time/
space graphical analysis that the joint optimizations
achieve planar, homogeneous performance with high
values of QoE metrics. This performance is achieved
regardless of both erasures and congestion degrading
the network. In addition, both optimizations guar-
antee good performance of the perceptual semantics
level to meet the user’s perceptual demands for situ-
ational awareness. Moreover, our framework has

proven to be of high relevance in realistic scenarios
[1].

The rest of the paper is organized as follows. In Section 2
we present the scenario. In Section 3, we discuss the system
model. In Section 4, we present the QoE optimization in
the time domain. Section 5 discusses the QoE optimization
in the space domain. Section 6 presents the integration
of perceptual semantics into the framework. In Section 7,
we present our experimental results. Finally, we present
concluding remarks in Section 8.

Notation. Let F𝑞 be a finite field. We denote F𝑎1×𝑎2
𝑞

as the set
of all 𝑎1 × 𝑎2 matrices with entries in F𝑞 and F𝑎1

𝑞
as the set of

all column vectors with 𝑎1 entries in F𝑞. Boldface uppercase
letters are used to denote matrices and boldface letters to
denote column vectors. I𝑎 is used to denote 𝑎 × 𝑎 identity
matrix. The notation ∪I𝑎 × 𝑎1

𝑎
represents the set that contains

𝑎1 distinct columns of identity matrix I𝑎. ∇𝑅⋅ denotes the
gradient with respect to 𝑅.

2. Scenario

We consider point-to-point live streaming of user generated
video content for beyond recreational purposes in challeng-
ing communications scenarios. The end-user is receiving the
live stream and has the possibility of demanding enhance-
ments of video features interactively. The received stream is
helping the user improve his/her awareness of the situations
depicted in the video, with no use of artificial intelligence in
the perceptual and awareness processes [34, 35]. Emergen-
cies, monitoring, or telemedicine are an example of potential
scenarios.

2.1. Spatiotemporal Abstraction of Video Services Beyond
Recreational. We propose spatiotemporal abstraction that is
closer to the perceptual demands of the user. This abstrac-
tion is inspired by situational awareness scenarios [36] and
diverges from traditional spatiotemporal concepts in video
coding, for instance.

The spatial abstraction refers to precise time-space
accounts of an ongoing situation such as precision of details
and accuracy for identification in a crowd. The temporal
abstraction refers to insights in the temporal aspects of
dynamically changing situations such as evolution of events
and temporal tracking [34].

2.2. Networks in Emergency Scenarios. We assume a sender
with access to a band-limited communications network. We
consider portable/mobile IP-based satellite services, such as
the broadband global area network (BGAN) [37], often used
in emergency scenarios, provided by a network of geosta-
tionary satellites. These types of services, while ubiquitous,
offer limited broadband capacity compared to state-of-the-
art wireless terrestrial mobile networks. In addition, inherent
long propagation delays are present (in particular in geo-
stationary satellite topologies) and losses from the wireless
medium render the network unreliable. As a generalized case
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we consider best effort provisioning since guaranteed services
may not be available. Congestion is thus present.

3. System Model

3.1. QoS/QoE Modeling by Time/Space Decoupling

3.1.1. System Influential Factors Indicators

Definition 1. Quality of Service, QoS, is the ability of the
network or service to provide or guarantee a certain level of
performance for a data flow.

We consider the following QoS metrics to quantify the
influence of the effects of congestion and erasures in the best
effort satellite scenario.

Definition 2. Erasure rate 𝜖 is a random variable that follows
an i.i.d random process. It represents packet erasure rate due
to channel fading in wireless links.

Definition 3. Congestion-induced erasure rate 𝜖𝑐 is a random
variable that follows an i.i.d random process. It represents
packet erasure rate due to congestion in best effort wireless
networks.

Definition 4. Network delay 𝜏 is used as an indicator of con-
gestion.

Definition 5. Degree of congestion 𝜂 represents how congested
the network is with respect to the maximum available rate
offered 𝑟

max
av . 𝜂 = 𝑟av/𝑟

max
av , where 0 < 𝜂 ≤ 1 and 𝑟av ≤ 𝑟

max
av

is the available rate to the user at any given time. A value
of 𝜂 tending to 0 indicates severe congestion, while 𝜂 → 1
indicates no congestion. (𝑟max

av depends on the underlying
network (i.e., for the BGAN network in the best effort mode
𝑟
max
av ≈ 500 kbps)).

3.1.2. QoE Framework. We first present the framework used
to decompose the system and perceptual aspects of the
scenario in Section 2, according to standard QoE definitions.

Definition 6. Quality of experience, QoE, is the degree of
delight or annoyance of the user of an application or service
[30]. Continuingwith the taxonomy proposed by [30], QoE is
decomposed into influential factors and perceptual features.

(a) QoE System Influential Factors. These factors signify
the technical aspects affecting quality of the application or
service, such as media capture, coding, transmission, and
playback. Such factors may lead to noticeable degradations
such as artifacts, blockiness, and freezes. In the scenario con-
sidered in this paper, the QoE system influential factors are
linked to the underlying network performance, for example,
the best effort wireless satellite network and its QoS.

Other influential factors affecting QoE are context and
human factors. Human factors, surrounding emotional and
sociological backgrounds, are out of scope of this paper.
Context aspects can be a natural extension of the work we
present here.

(b) Perceptual Features of QoE. These features are the per-
ceivable characteristics of a user’s experience contributing to
the overall quality [30]. These features are directly linked to
our spatiotemporal abstraction for video services presented
in Section 2. Henceforth, we distinguish a time and space
domain decomposition based on the spatiotemporal percep-
tual features in QoE.

In the space domain, we refer to user’s dissatisfaction
due to a lack in accuracy, artifacts in the video caused by
packet erasures, and source coding distortion, among others.
In the time domain, we refer to user’s dissatisfaction due to
persistent freezes in the video playback that prevent tracking
dynamically changing situations. In Section 7.2 we discuss
the metrics used to measure the spatiotemporal perceptual
features of QoE.

3.1.3. QoS/QoE Mapping. Figure 1 summarizes the proposed
time-space decomposition. Our analysis is as follows.

Congestion affects QoE primarily in the time domain,
inducing freezes in video playback. If congestion can be
tracked at the transport layer, rate adaptation to the network’s
available rate can be performed and QoE in the time domain
will be improved.

Erasures affect QoE in the space domain, inducing arti-
facts in video. Channel coding in the network layer can help
recover from erasures, thereby improving QoE in the space
domain.

By mapping congestion to the time domain and erasures
to the space domain, we are able to propose decoupled
solution for the joint problem affecting our scenario. Hence,
we propose two QoE-driven optimizations, jointly operative
but working separately, one for the time domain and the other
for the space domain, to work at the transport and network
layers, respectively.

A decoupled solution provides advantages in terms of
flexibility of the design since the formulation and perfor-
mance evaluation of the two optimizations can be treated
separately. A potential concern is whether the optimizations
can affect one another when they are operating at the
same time. In Section 7 we show that, under reasonable
assumptions, this cross-influence is minimal.

3.2. Perceptual Semantics Model. Classic semantics based
approaches typically use unprocessed sensorial observations
[33]. Our proposed perceptual semantics approach represents
more complex abstractions of a viewed scene. Based on the
spatial/temporal abstraction for video services in Section 2
and its mapping to perceptual features in QoE as shown in
Figure 1, our proposal is to utilize the end-user’s (analyst)
perception, to do semantic tagging that enables an enhance-
ment of the received video stream signal tailored to the user’s
demand.

We propose perceptual tagging that indicates the spa-
tial/temporal predominance according to the level of percep-
tion of the user. A tag indicating predominance of temporal
features implies that the user is perceiving a situation that
demands more attention to the dynamics of the scene (e.g.,
rapid movements). On the other hand, predominance of
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Figure 1: Scenario-specific QoE framework with decoupling in time and space domains of QoE.
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Figure 2: Scenario.

spatial features indicates moments of less movement but
densely overloaded frames, which requires more detail to
identify features.

In scenarios where perception is not achieved by artificial
intelligence, human analysis interprets the sensory informa-
tion (i.e., perceiving). Hence, we propose semantic tagging
to be performed by the user, as he/she is ultimately the one
perceiving and foreseeing what might be of interest in the
video.

3.3. Topology. We consider a point-to-point scenario where
the underlying satellite network topology can have several
intermediate nodes. In this paper we consider channel coding
for reliability only at the source node. However, our system
model can be extended to allow network coding at intermedi-
ate nodes of the network (this is out of the scope of this paper
and a part of ongoing work). Figure 2 shows the overall block
diagramof the source-destination topology andour proposed
solution.

3.4. Cross-Layer Optimization. As seen in Figure 1, we pro-
pose a decoupled cross-layer QoE-driven optimization
framework consisting of two types of optimization, one in the
time domain and the other in the space domain of QoE.

In the time domain, as shown in Figure 3(a), we use an
online adaptation strategy that uses end-to-end feedback at
transport layer to cope with congestion. Network delay 𝜏

and congestion-induced erasures 𝜖𝑐 can be inferred from the
feedback and used to estimate 𝑟av. The application layer rate

𝑟
∗

APP to be used by the video streaming application is 𝑟
∗

APP =

𝑟av. As a result, the transmission rate at the network layer 𝑅 is
𝑅
∗

≈ 𝑟
∗

APP(we consider overhead due to layer encapsulation
to be negligiblewhen calculating the rates) after optimization,
which matches the application layer rate.

Figure 3(b) shows the integration of the QoE optimiza-
tions in the time and space domains. The available rate 𝑟av is
first estimated online by the optimization in the time domain.
𝑟av is used as input to the optimization in the space domain to
obtain the optimal code rate 𝜌

∗ for erasure protection using
RNC coding. As a result, the application layer rate is adapted
to 𝑟
∗

APP = 𝜌
∗
𝑟av and the transport layer packets are encoded

using RNC at a sublayer of the network layer. Finally, the IP
sublayer transmits at a rate 𝑅

∗
≈ 𝑟av. The optimization in the

space domain can be performed offline, and look-up tables
can be available online with optimal values for a certain set of
input values.

The online adaptation strategy, resulting in dynamic
rate adaptation, fulfills two purposes, namely, (1) congestion
control at transport layer and (2) online adaptation of the
video source for maximized QoE.

Note that RNC is chosen to be at the network layer
in order to enable the possibility of coding at intermediate
nodes in future work. Network layer packets are accessible at
intermediate nodes; hence coding at this layer would bemore
efficient in our model.

3.5.Matricial SystemModel. We consider the frame structure
of standard state-of-the-art video codecs tomodel the source.
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Figure 3: Proposed cross-layer optimization framework.

Coded frames are grouped into groups of pictures (GoPs).
EachGoPhas three types of frames, namely I, P, andB frames,
each of different importance. Network coding can be used to
provide unequal protection (UEP) for these different frames
[9]; however, in this work, we consider equal protection and
focus on the allocation of redundant packets to the complete
GoP block.

We consider each GoP to have a fixed number of frames
𝑁frame. The frame rate 𝑟fr is such that the codec outputs each
GoP in a fixed time𝑇GoP = 𝑁frame/𝑟fr. We denote𝑁GoP as the
total number of GoP’s output by the codec during the entire
streaming session such that 𝑁GoP × 𝑇GoP = 𝑇.

The codec outputs the 𝑛th GoP, coded at application layer
rate 𝑟APP, for 𝑛 ∈ {1, 2, . . . , 𝑁GoP} at time 𝑡𝑛 ∈ {0, 𝑇GoP, 2𝑇GoP,
. . . , (𝑁GoP − 1)𝑇GoP}. Although 𝑁frame is fixed, frame sizes
vary depending on the 𝑟APP. For the 𝑛th GoP, each frame is
fragmented into multiple packets of equal length 𝑙 (in bits)
and delivered from the transport layer to the (RNC+IP) layer
for end-to-end delivery. We denote 𝐾(𝑛) = ⌈(𝑟APP × 𝑇GoP)/𝑙⌉
as the total number of packets from the 𝑛th GoP.We drop the
index 𝑛 for simplicity in formulation; however, as the source
𝑟APP is time varying, coding parameters depending on 𝑟APP
can also vary from one GoP to another.

We define S ∈ F𝑀×𝐾
𝑞

as containing all the packets from a
GoP. Each packet is a column vector of 𝑀 symbols where 𝑀

is a function of field size 𝑞 with packet length 𝑙, given by𝑀 =

𝑙/log
𝜔
𝑞, and 𝜔 is a prime number called the characteristic of

the field.
Encoding is done at the RNC layer as shown in

Figure 3(b). The encoding process is linear such that the 𝑁

coded packets corresponding to 𝐾 source packets are given
by

X = SG, (1)

where X ∈ F𝑀×𝑁
𝑞

. G ∈ F𝐾×𝑁
𝑞

is the corresponding generator
matrix of linear (𝑁,𝐾) code, with 𝑁 = 𝐾/𝜌, where 𝜌 =

𝑟APP/𝑟av is the code rate used for encoding.
Specifically in SRNC, the𝑁 coded packets are composed

of the embedded𝐾 source packets (systematic phase) and the

redundant 𝑁 − 𝐾 packets, product of linear combination of
the source packets (nonsystematic phase). Hence, the gener-
ator matrix 𝐺 results in G = [I𝐾 C], where C ∈ F𝐾×𝑁−𝐾

𝑞

is a matrix with random coefficients from the finite field F𝑞.
The linear combining is random and it is not constrained to
specific combination of coding parameters. This allows us to
have flexibility in choosing coding parameters (𝑁,𝐾) which
may vary from one GoP to another.

After the addition of IP headers, these 𝑁 IP packets are
transmitted to the destination over an erasure channel where
the packets can be erased. We denote the channel function
H : F𝑀×𝑁

𝑞
→ F𝑀×𝐿
𝑞

, which maps 𝑁 encoded packets to 𝐿

received packets. We denote the received unit by the matrix
Y ∈ F𝑀×𝐿

𝑞
such that each received packet is a column vector

of𝑀 symbols. In our case, the channel model is linear and we
have Y = XH = SGH, withH ∈ ∪I𝑁×𝐿

𝑁
.

ThematrixH represents the erasure of packets, consisting
of all the columns of I𝑁 except the columns 𝑖 ∈ {1, 2, , . . . , 𝑁}

if the 𝑖th column/packet is erased by the channel.The channel
matrix deletes the packets of X which are lost and hence Y
consists only of received packets.

4. Optimization in the Time Domain

In this section we present the formulation and implementa-
tion of the QoE-driven optimization in the time domain, as
part of the cross-layer model in Figure 3. In our QoE decou-
pling approach, we have identified congestion with freezes
in the video playback and hence propose an optimization
for improved QoE in the time domain. The implementation
of this optimization results in a dynamic rate adaptation
algorithm.

4.1. Formulation. Consider a best effort wireless scenario
with a network varying over time 𝑡.

The general formulation of our objective optimization
problem is presented in (2), where the utility function 𝑈

is dependent on the QoS parameters. The QoS parame-
ters considered are the transmission rate 𝑅, delay 𝜏, and
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congestion-induced erasures 𝜖𝑐, all of them varying with time
𝑡 (𝑅, 𝜏, and 𝜖𝑐 are function of time 𝑡; for clarity in stating the
optimization problem we have dropped 𝑡 in (2)–(5)). 𝑟max

av is
the upper bound on maximum rate offered by the network.
The available rate 𝑟av ≤ 𝑟

max
av offered by the network may vary

over time and is unknown to the user. Consider

𝑅
∗
= argmax
𝑅

𝑈 (𝑅, 𝜏, 𝜖𝑐) ,

s.t. 𝑅 ≤ 𝑟
max
av .

(2)

Consider an additive model, where the utility 𝑈 is com-
posed of two functions, namely, one representing QoE’s im-
provement with increasing assignment of network resources
and a second one representing the dynamics degrading the
network in the best effort scenario. Consider

𝑈 (𝑅, 𝜏, 𝜖𝑐) = 𝑈QoE (𝑅) −𝑈QoS (𝑅, 𝜏, 𝜖𝑐) , (3)

where 𝑈QoE(𝑅) is a concave function, defined in (4) based
on the logarithmic mappings from QoS to QoE. Studies have
shown that if the rate is increased in a controllable fashion
(e.g., by increasing the application layer rate of the video),
QoE behaves with a logarithmic relationship [39]. Consider

𝑈QoE (𝑅) = 𝜅 ⋅ log (𝑅) , 𝜅 > 0. (4)

𝑈QoS(𝑅, 𝜏, 𝜖𝑐), on the other hand, expresses the penalizing
effect of a congested network scenario, where injecting
higher rate than the currently available one for the user
(𝑟av) translates into accumulating delay 𝜏 and eventually an
overflow of network buffers leading to packet losses. Hence,
we formulate 𝑈QoS as a bilinear function of 𝜏 and 𝑅 in

𝑈QoS (𝑅, 𝜏, 𝜖𝑐) = 𝛾 (𝜏, 𝜖𝑐 (𝜏)) ⋅ 𝜏 ⋅ 𝑅. (5)

Notice that we define the function 𝛾(⋅) > 0 to strengthen
or weaken the effect of 𝑈QoS in the overall optimization
depending on the level of congestion perceived, as proposed
in [40, 41], for flow control applications.

4.2. Implementation as Dynamic Rate Adaptation

4.2.1. Solution to the Optimization Problem

Proposition 7. The optimization problem stated in (2) where
the utility function 𝑈 is defined as in (3) is solved using the
discrete rate update algorithm (6), to find the value of 𝑅 at time
𝑡𝑘+1, for 𝑘 ∈ N, where 𝑇𝑠𝑎𝑚𝑝 = 𝑡𝑘+1−𝑡𝑘 is the network sampling
time, 𝛿 is the step size, and ∇𝑅⋅ is the gradient with respect to 𝑅.
Consider

𝑅 (𝑡𝑘+1) = 𝑅 (𝑡𝑘) + 𝛿 [∇𝑅𝑈𝑄𝑜𝐸




𝑡=𝑡
𝑘

− ∇𝑅𝑈𝑄𝑜𝑆




𝑡=𝑡
𝑘

] . (6)

Proof. First we prove that𝑈 is concave and hence an optimal
value 𝑅

∗ that solves (2) exists. The function 𝑈QoE from (4)
is strictly concave increasing with 𝑅, while −𝑈QoS is concave,
decreasing with 𝑅. The sum of concave functions is concave;
hence 𝑈is concave and an optimal 𝑅∗ ≤ 𝑟

max
av that solves (2)

exists. Further, the gradient ascentmethod can be used to find

the optimal 𝑅∗, where 𝑅 is varying over time in the direction
of the positive gradient of 𝑈 : 𝑑𝑅/𝑑𝑡 = ∇𝑅𝑈. In practice, rate
updates happen in discrete time, and if we consider sampling
time 𝑇samp = 𝑡𝑘+1 − 𝑡𝑘, the rate control update is expressed as
in (6).

Observe that ∇𝑅𝑈QoS changes with the current network
conditions at time 𝑡; as a result, knowledge ofQoS levels at the
transport layer is needed to solve the optimization problem.
Such knowledge of the network is based on feedback from the
receiver end. If we consider feedback delay, themeasurements
represent QoS levels at delayed points. This is especially true
in the case of long delay networks, such as satellite networks,
where propagation delay is noticeable.

Proposition 8. In the case of a delayed network, with prop-
agation delay 𝜏𝐷, the algorithm in (6) that solves (2), with 𝑈

defined from (3), (4), and (5), is expressed as in

𝑅 (𝑡𝑘+1) = 𝑅 (𝑡𝑘)

+ 𝛿 [

𝜅

𝑅 (𝑡𝑘)

− 𝛾 (𝑡𝑘 − 𝜏𝐷) 𝜏 (𝑡𝑘 − 𝜏𝐷)] .

(7)

Proof. The algorithm is triggered when new network mea-
surements are available at the sender side; however, those
are measurements corresponding to the network state at time
𝑡𝑘 − 𝜏𝐷. Furthermore, if we consider the rate control update
with sampling time to be greater than the network’s roundtrip
time (𝑇samp > 𝑇RTT), we can assume that the receiver is
able to report on network changes related to the last rate
control action from the sender at time 𝑡𝑘. Consequently,
we can express (6) as 𝑅(𝑡𝑘+1) = 𝑅(𝑡𝑘) + 𝛿[∇𝑅𝑈QoE|𝑡=𝑡

𝑘

−

∇𝑅𝑈QoS|𝑡=𝑡
𝑘

−𝜏
𝐷

], where the gradient of 𝑈QoE is evaluated at
time 𝑡𝑘 and the gradient of 𝑈QoS is evaluated at time 𝑡𝑘 − 𝜏𝐷.
Substituting𝑈QoS and𝑈QoE for (5) and (4) we obtain (7).

The function 𝛾(⋅) is chosen such that the response of the
adaptation depends on the current measurements indicating
congestion and can react faster to increasing delay constraints
and packet loss as described by (8), where 𝑡𝑖 = 𝑡𝑘 − 𝜏𝐷. Note
that 𝛾(𝑡𝑖) responds to increases in 𝜖𝑐, which are accompanied
with increases in delay 𝜏. Hence other sources of packet
erasures not related to congestion will not trigger a change
in the rate control update. Consider

𝛾 (𝑡𝑖)

=

{
{
{
{
{

{
{
{
{
{

{

𝛾 (𝑡𝑖−1) , 𝛾 (𝑡𝑖−1) = 𝛾 (𝑡0) , 𝜏 (𝑡𝑖) ≤ 𝜏
max

,

𝜆𝛾 (𝑡𝑖−1) , 𝜏 (𝑡𝑖) > 𝜏
max

, 𝜖𝑐 (𝑡𝑖) > 𝜖
max
𝑐

,

𝛾 (𝑡𝑖−1) −

1
𝛾 (𝑡𝑖−1)

, 𝛾 (𝑡𝑖−1) > 𝛾 (𝑡0) , 𝜏 (𝑡𝑖) ≤ 𝜏
max

.

(8)

The delay-driven rate update obtained from (6) using the
value of 𝛾(⋅) according to (8) provides a smooth (an advantage
to user’s QoE [29]) output that is also capable of reacting fast
to severe degradations in QoS. 𝛾(𝑡0) and 𝜆 > 1 are chosen for
a desired response time, while 𝜏

max and 𝜖
max
𝑐

correspond to
upper bound limits to 𝜏 and 𝜖𝑐, set according to application
requirements.
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4.2.2. Cross-Layer Aspects and Practical Issues. The optimiza-
tion proposed in this section is used within the whole cross-
layer framework in Figures 3(b) and 3(a), such that 𝑅

∗
≈

𝑟av. Further, in order to maintain coherence of our model in
time and avoid synchronization issues at different layers, we
assume that𝑇GoP < 𝑇samp.The obtained application layer rate
𝑟
∗

APP for the 𝑛th GoP is thus invariant for the duration of the
whole GoP.

Cross-layer feedback from the receiver is provided by
the real-time control protocol, RTCP, (RFC 3550) with a
frequency of reporting of 1/𝑇samp. In order to obtain 𝜖𝑐 and
𝜏 to estimate 𝑅

∗, the following fields from both sender and
receiver RTCP reports are required (following RFC 3550
standard): fraction lost, delay since last report (DLSR), and last
sent report (LSR).

The obtained algorithm results in high granularity rate
adaptation. Therefore it requires a video codec capable of
performing on-the-fly encoding with fine granularity. The
standard codec H.264/AVC offers such features, with pos-
sibility of adaptation of its quantization parameters (QP) at
encoding time. The VP8 codec also offers such capabilities
[42], with the option of real-time encoding with on-the-fly
reconfiguration of application layer rate.The extension of the
H.264 codec for scalable video coding (SVC) could also be
considered under certain assumptions. SVCwould offermore
coarse granularity in achieving the rate 𝑅

∗, depending on
the combinations of temporal/spatial/amplitude scalability
layers. Therefore, additional buffering might be needed in
order to diminish potential impact on congestion. Further,
computational complexity during real-time coding of all
layers would increase.

5. Optimization in the Space Domain

In our decoupling approach, we identify erasures with arti-
facts in the video to be solved using an optimization in the
space domain. In this section, we present the formulation and
implementation of such QoE-driven optimization, as part of
the cross-layer model in Figure 3.

The objective of the optimization in the space domain is
to optimize application rate 𝑟

∗

APP and code rate 𝜌
∗, in order

to use SRNC to cope with erasures with maximized QoE of
video.

5.1. Formulation. Let us consider 𝑟av to be the available rate
estimated using the algorithm in (6). In order to protect the
video stream from network erasures, SNRC coding will be
used with a certain allocated code rate 𝜌. A low value of 𝜌

implies more erasure protection, at the expense of a lower
rate for the application layer (𝑟APP = 𝜌𝑟av). Given that a lower
𝑟APP results from higher compression rates, QoE in the space
domain is damaged with low values of 𝜌.

Hence, we propose in (9) maximizing QoE by maximiz-
ing 𝑟APP, such that SRNC is used with an optimal code rate
𝜌
∗ that guarantees a residual erasure rate 𝜓. Consider

𝑟
∗

APP =max 𝑟APP,

s.t. 𝑟APP ≤ 𝑟av,

𝜖
res

(𝜖, 𝑞, 𝑟APP, 𝑟av) ≤ 𝜓,

(9)

where 𝜖
res

(𝜖, 𝑞, 𝑟APP, 𝑟av) is the residual erasure rate of SRNC
with field size 𝑞.

We target an offline solution to (9) in order to obtain the
optimal values (𝑟∗APP and 𝜌

∗) corresponding to all the possible
estimated available rates 𝑟av. A look-up table with these values
is generated. As 𝑟av is time varying and is estimated from
feedback, the look-up table is accessed online and optimal
𝑟
∗

APP and 𝜌
∗ are obtained corresponding to 𝑟av. Consider

(𝑃𝑒) = (1− 𝜖)
𝐾
+

𝐾−1
∑

𝑗1=0

[

[

(

𝐾

𝑗1
) (1− 𝜖)

𝑗1

⋅ 𝜖
𝐾−𝑗1
𝑁−𝐾

∑

𝑗2=𝐾−𝑗1

(

𝑁 − 𝐾

𝑗2
) (1− 𝜖)

𝑗2
𝜖
𝑁−𝐾−𝑗2

⋅

𝐾−𝑗1−1

∏

𝑗3=0
(1− 𝑞

𝑗3−𝑗2
)
]

]

.

(10)

5.2. Implementation Based on SRNC. In this section, we
present the implementation of SRNC and its performance.

Following the matricial model in Section 3, we have 𝐾 =

⌈(𝑟
∗

APP × 𝑇GoP)/𝑙⌉ and 𝑁 = 𝐾/𝜌
∗ depending on 𝑟APP and 𝑟av.

Hence the residual erasure rate 𝜖
res is expressed as a function

of 𝐾 and 𝑁 − 𝜖
res

(𝜖, 𝑞, 𝐾,𝑁). Moreover, as noted earlier, we
receive Y = XH = SGH consisting of 𝐿 coded packets
for each GoP. From the received unit Y, we can obtain the
source unit S, when (i) GH is known at the receiver and (ii)
rank(GH) = 𝐾. If these two conditions are fulfilled, then at
the destination source packets are obtained by S = Y(GH)

−1.
In order to recover GH we use pseudorandom network

coding [43]. The index of the codebook is sent along with
each coded packet (the columns of X). The receiver, which
has the same codebook, can recover GH with this index.
The advantage of this option is low overhead (only the index
per packet) compared with the overhead of sending the
coefficients (each column ofG) attached to each coded packet
[17].

Gauss-Jordan elimination (instead of Gaussian elimina-
tion) is used for progressive decoding. As a result, it is not
necessary to wait for the complete block and packet recovery
time is reduced. In comparison, state-of-the-art RS codes
require a complete block to start decoding.

The source packets are finally recovered if rank(GH) = 𝐾.
Let us denote 𝑃𝑒 = 𝑃{rank(GH) = 𝐾} as the probability
of successfully decoding the original packets. Based on 𝑃𝑒,
we evaluate the residual erasure rate for SRNC in the next
proposition.

Proposition 9. If SRNC is used with field size 𝑞 and 𝐾 source
packets (from the systematic phase) with 𝑁 − 𝐾 redundant
packets (from the nonsystematic phase) are transmitted over
the erasure channel with random erasure rate, 𝜖, then the
residual erasure rate for SRNC is given by

𝜖
𝑟𝑒𝑠

(𝜖, 𝑞, 𝐾,𝑁) = 1− (𝑃𝑒)
1/𝐾

, (11)

where 𝑃𝑒 = 𝑃{rank(GH) = 𝐾} is given by (10).
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Figure 4: Effect of the field size on residual erasure probability.

Proof. We will first evaluate 𝑃𝑒. Let 𝑗1 and 𝑗2 be the number
of packets received from the systematic and nonsystematic
phases, respectively. 𝑗1 ≤ 𝐾, 𝑗2 ≤ 𝑁 − 𝐾, and the dimensions
of GH are 𝐾 × (𝑗1 + 𝑗2). The probability of receiving all the
source packets from the systematic phase, 𝑗1 = 𝐾, is (1 − 𝜖)

𝐾.
Once all the source packets are received, redundant packets
are not needed. If only some of the original packets are
received, 𝑗1 < 𝐾, then at least 𝑗2 ≥ 𝐾−𝑗1 packets are required
from the nonsystematic phase for successful decoding. The
probability ofmatrixGH having full rank𝐾when 𝑗1 columns
are independent is given by ∏

𝐾−𝑗1−1
𝑗3=0 (1 − 𝑞

𝑗3−𝑗2
) using the

model in [44]. Combining both cases, 𝑗1 = 𝐾 and 𝑗1 < 𝐾,
we have 𝑃𝑒 given in (10). Once we have the probability of
successful decoding of all the 𝐾 packets, the residual erasure
rate is simply given by (11).

In Figure 4, we present numerical results illustrating the
effect of field size on 𝜖

res. For our results, we choose 𝑟APP =

200 kbps, 𝑙 = 1400 bytes, and 𝑇GoP = 1 second (𝑟APP, 𝑙,
and 𝑇GoP are chosen corresponding to the realistic scenarios
which we are considering for experiments in Section 7) such
that𝐾 = ⌈(𝑟APP×𝑇GoP)/𝑙⌉ = 18.We vary the code rate 𝜌 from
0.5 to 1 and consider erasure rate 𝜖 = 1%. Our results show
that (i) a field size of 𝑞 = 256 is enough for SRNC to guarantee
performance similar to that of MDS codes and (ii) there is up
to 47%gain in code rate, achievablewith 𝑞 = 256 as compared
to 𝑞 = 2 for a target erasure rate of 𝜓 = 10−6. A higher code
rate will result in greater budget allocation to the application
rate which improves the QoE in the space domain.

6. Integration of Perceptual Semantics

We propose the use perceptual semantics to enhance spe-
cific perceptual features, following the model introduced in

Section 3.2. Further, we integrate perceptual semantics with
the joint time and space optimizations.

6.1. Formulation. We focus on using our proposed perceptual
semantics for enhancement at source coding level. In single or
scalable layer state-of-the-art video encoding, there are three
types of resolution:defined-temporal (frame rate), amplitude
(quantization step), and spatial (frame size).

We map enhancement of temporal features to higher
frame rates and predominance of spatial features to higher
spatial and amplitude frame resolution. In this way, dynamics
of a scene can bemore closely followed (temporal preference)
and details of a scene can be better identified (spatial
preference). The mapping is intuitive and nonintrusive and
relies on the intrinsic architecture of video codecs currently
in use to facilitate the video communications.

We propose mapping perceptual semantics to a system
quantified with the variable 𝛼 ∈ [0, 1]. 𝛼 = 0 and 𝛼 = 1
express full preference of the spatial and temporal perceptual
features, respectively. Intermediate values of 𝛼 represent
weighed spatiotemporal preferences.

We denote the feasible set of finite values of frame
rate, as 𝐹𝑇(𝑟APP), while 𝐹𝑆(𝑟APP) is the feasible set for the
spatial factors. Both are a function of the application layer
rate 𝑟APP. Note that higher frame rates and frame sizes are
possible to attain with higher 𝑟APP [45]; hence, the feasible
sets 𝐹𝑆(𝑟APP) and 𝐹𝑇(𝑟APP) corresponding to higher values of
𝑟APP will contain a greater number of possible values that
can be chosen from. For example, in the case of scalable
video coding, if temporal dyadic scalability is performed, the
available values of frame rate contained in 𝐹𝑇(𝑟APP) would
be the base layer frame rate and the frame rates from the
enhancement layers. The combination of all layers adds up
to the full frame rate, that is, a full 30Hz frame rate if 𝑟APP is
sufficient with 𝐹𝑇(𝑟APP) = {3.75Hz, 7.5Hz, 15Hz, 30Hz}.

In order to choose the appropriate value of frame rate and
resolution according to ourmapping of perceptual semantics,
we formulate the following optimization function:

(𝑟
∗

fr, 𝑠
∗

fr) =max (𝛼𝑟fr + (1−𝛼) 𝑠fr)

s.t. 𝑟fr ∈ 𝐹𝑇 (𝑟APP) ,

𝑠fr ∈ 𝐹𝑆 (𝑟APP) ,

(12)

where 𝑟fr = 𝑟fr/𝑟
max
fr and 𝑠fr = 𝑠fr/𝑠

max
fr are the normalized

values of frame rate 𝑟fr and spatial/amplitude resolution
𝑠fr with respect to maximum available values set for the
application.

Note that the optimization in (12) can be applied to single
or scalable layer video coding.

6.2. Implementation. The implementation into the cross-
layer optimization model from Section 3.4 is as follows.

The video streaming application uses a state-of-the-art
codec such that the frame rate, frame size, and codec rate
can be configured on-the-fly. In order to facilitate the role of
perceptual semantics, we use a return path to send the tags
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chosen by the user. A semantics-aware adaptation block at the
sender interprets the semantic tags coming from the end-user
by mapping it to the proper decisions in (12) and forwarding
to the video codec.

We propose the use of semantic web protocols to enable
the semantic feedback to the transmitter through the APP-
to-APP cross talk of the semantic tagging [46]. At the
transport layer, the application-specific information can be
encapsulated into RTCP feedback packets compliant with
the extended reports defined in RFC4585. This way, the
perceptual semantics feedback loop is coherent with the
cross-layer optimization.

Our framework complies with the notion of a semantic
information-based network. Hence, it is coherent with the
content-aware trends in networking where the focus is on
the network as a platform for information dissemination
rather than simply an enabler of communication links. This
framework can be mapped to information-centric network-
ing (ICN) architectures such as publish/subscribe for live
video as in [47]. A feasible topology mapping of ICN to our
scenario is discussed in [48].

7. Experimental Results

7.1. Experimental Setup. The setup consists of a point-to-
point streaming connection.The receiver and sender applica-
tions are connected through an emulated network using the
NetEM emulator.

7.1.1. Setup. Following Figure 3(b), we describe each block.
At application layer we use the state-of-the-art video

codec VP8 [42]. At transport layer, we use the RTP/UDP
protocol and a standard implementation of RTCP protocol
for feedback. At network layer, each transport layer packet is
encapsulated into an IP packet.

The online optimization has been implemented to output
a rate control update of 𝑅

∗ with every new RTCP report,
according to (7).The offline optimization uses a look-up table
to output the optimal 𝑟∗APP and code rate 𝜌

∗ values from the
budget rate 𝑟av.

We simulate SRNC coding by adding, for each GoP
coming from the transport layer at rate 𝑟APP, redundant
(dummy) packets such that 𝑅∗ = 𝑟APP/𝜌

∗.

7.1.2. Network Emulation. With respect to erasures, packets
are erased at the random rate 𝜖 when no erasure protection
is performed. When SRNC is used, packets are erased
corresponding to the residual erasure probability of SRNC
𝜖 = 𝜖res(𝜖, 𝑞, 𝑟

∗

App, 𝑟av).
Congestion events are emulated as a drop (step-like) from

maximum available rate 𝑟
max
av , which occurs halfway through

one streaming session, at 𝑇/2. In practice, we use traffic
shaping in the NetEm emulator to create the drops in 𝑟

max
av ,

such that 𝑟av = 𝜂 ⋅ 𝑟
max
av .

7.1.3. Perceptual Semantics. The evaluation of the perceptual
semantics approach of Section 6, integrated into the cross-
layer optimization model, is performed using a simulation

Table 1: Feasible sets considered for simulation of perceptual
semantics.

𝑟APP (in kbps) Feasible set 𝐹
𝑇

Feasible set 𝐹
𝑆

𝑟APP ≤ 64 {3.75, 7.5, 10, 15} {QCIF}
64 < 𝑟APP ≤ 192 {3.75, 7.5, 10, 15} {QCIF,CIF}
192 < 𝑟APP ≤ 384 {3.75, 7.5, 10, 15} {CIF,QCIF}
384 < 𝑟APP ≤ 500 {3.75, 7.5, 10, 15, 30} {QCIF,CIF, 640 × 360}

platform where the video streaming application is simulated
by generating packets of size 𝑙 encoded at a rate 𝑟APP. Network
simulation follows the same guidelines as used with the time
and space optimizations. All parameters in Table 2 apply,
except for those related to the application layer.

Wemodel a user’s semantic tagging from temporal/spatial
features with the parameter 𝛼. 𝛼may vary over time through-
out one single streaming session, such that the sender is
receiving feedback of these changes and adapts to them using
(12). We assume that these tags are changed by the user every
10 s. We consider time variation of semantic tagging TAG𝑇𝑆
as a user alternating between spatial and temporal tags, each
lasting 10 seconds.

Table 1 summarizes the feasible sets for values of frame
rate 𝑟fr dependent on 𝑟APP, in order to solve the algorithm
in (12). The values chosen correspond to typical feasible
combinations in current state-of-the-art codecs.

7.1.4. Experiments. Table 2 summarizes the values of the
parameters used for the experiments.

Experiments with and without space and time domain
QoE optimizations are considered. Each experiment consists
of one streaming session lasting 𝑇 seconds. A large value
of 𝑇 (3 minutes) helps guarantee statistical significance with
respect to erasure rates as well as spatiotemporal variations in
the video.

For each experiment, a looped standard video sequence
served as the input source. Furthermore, each experiment
utilizes a specific value of 𝜖 and 𝜂. The ranges of values for
𝜖 are 0%–15%, while, for 𝜂, the range is from 100% to 50%.

The range of values considered for 𝑟av and 𝑟APP corre-
sponds to realistic values for an application using a mobile
satellite service, such as the BGAN network. Such network
offers roughly maximum 𝑟

max
av = 500 kbps in a best effort

configuration. The propagation delay 𝜏𝐷 corresponding to
a GEO-stationary satellite network is also configured in
NetEm. The value of 𝜓 was chosen according to 3GPP (3rd
Generation Partnership Project) specifications for real-time
scenarios.

7.2. Performance Metrics

7.2.1. Spatiotemporal Perceptual Features of QoE. Wemeasure
the spatial and temporal perceptual features of QoE, coherent
with the framework described in Section 3.1.2 and our spa-
tiotemporal abstraction of the video.

Application layer information, both at the media and the
bitstream levels, is collected at the receiver and the sender for
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Table 2: Parameters in experimental setup for time and space
optimizations.

Experiments (1)
QoE (time)

(2)
QoE (space)

(3)
Joint QoE

Video sequences Pedestrian, foreman, and coastguard
𝑇 (streaming time) 3min

APP
𝑁frame 15
𝑟fr 15 fps

𝑟APP(𝑡1) 500 kbps [100–500 kbps] 500 kbps

Transport pkt size 𝑙 1400 B
𝑇samp 2 s

Network 𝑞 — 256 256
𝜓 — 10−3 [38] 10−3 [38]

Network
emulation

𝜏
𝐷

250ms
𝜖 no [0–15] % [0–15] %

𝑟
max
av 500 kbps [100–500 kbps] 500 kbps
𝜂 [100–50] % 0% [100–50] %

offline performance assessment. A frame concealment strat-
egy is used to avoid misalignment of sent/received video and
the associated impact on full reference (FR) spatiotemporal
video assessment. This implies that a lost frame is replaced
in the sequence by the last frame received, using bitstream
level data from actual frames sent and received. In addition,
bitstream level data also provides frame play-out timestamps.

QoE𝑆𝑇 measures the spatiotemporal perceptual features
of video. It is an FR media level metric, considered in [49],
where it was shown to exhibit good correlation to subjective
metrics. It is defined asQoE𝑆𝑇 = 𝜇(𝜃)−𝑤⋅𝜎(𝜃), with variables
𝜃, 𝜇(⋅), 𝜎(⋅), and 𝜔 as follows. 𝜃 is, in our case, the vector
with frame-by-frame full reference video qualitymetric SSIM
from each experiment [50]. 𝜇(⋅) indicates the mean value
function. 𝜎(⋅) is the standard deviation and 𝑤 > 0 is a
weight value. This metric considers the variability of quality
throughout the streaming session; hence it is able to represent
the impact of time variations in the network.

QoE𝑇measures the temporal perceptual features of video.
It is a nonreference metric at bitstream level, representing
video flow continuity. QoE𝑇 is defined as the probability that
no freezes appear in the video playback. Freezes are defined as
events in which the time Δ elapsing between two consecutive
frames displayed during video playback exceeds a tolerated
threshold 𝜉. Hence we can define QoE𝑇 as QoE𝑇 = 𝑃{Δ < 𝜉}.

7.2.2. Perceptual Semantics. We define the combined metric
Ω to measure tradeoffs of using perceptual semantics with
and without cross-layer optimization. It is defined as follows:

Ω = 𝑤1 ⋅QoE𝐴 +𝑤2 ⋅QoE𝑇 +𝑤3 ⋅ (1−Δ 𝛼) (13)

with 𝑤1 + 𝑤2 + 𝑤3 = 1 and Ω ∈ [0, 1]. QoE𝐴 = 1 − 𝑝,
where 𝑝 is the average packet loss rate at the receiver. Δ 𝛼 =

|�̂�−𝛼| evaluates the performance of the perceptual semantics
algorithm to determine whether the algorithm is achieving
the user-demanded 𝛼. The best performance, that is, Ω = 1,
occurs when no losses degrade the video (QoE𝐴 → 1),

freezes in playback are minimal (QoE𝑇 → 1), and the
perceptual semantic adaptationmatches the one requested by
the user (Δ 𝛼).

7.3. Joint Optimizations in the Time and Space Domains. The
purpose of this experiment is to evaluate the performance
of the joint optimizations in the time and space domains
according to the proposed model in Figure 3(b). Hence, we
consider degradations due to both congestions and erasures.
Congestion events and erasures are emulated as in the previ-
ous sections with the parameters of Table 2 for Experiment
(3). For each experiment a different value of 𝜂 and 𝜖 was
considered.

We compare the results of the joint optimization with a
solution unaware of network dynamics, where the application
layer is blind to the network dynamics, the transport layer
is not performing any congestion control, and there is no
protection against erasures.

7.3.1. Effect on QoE𝑇. The three-dimensional QoE plots in
Figure 5 show that, for all cases of congestion and erasures
tested, the values of the flow continuity metric are all above
0.9 when using both optimizations. This implies that more
than 90% of the time, the user is not experiencing freezes
during video playback. The complete framework compared
to a non-QoE optimized approach has gains of up to 60% in
flow continuity.

7.3.2. Effect on QoE𝑆𝑇. The complete solution achieves in
overall a planar surface in QoE𝑆𝑇, as shown in Figure 6.
This implies that, regardless of both erasures and congestion
affecting QoE, the combination of the online and offline
strategies is able to deliver smooth performance.

Moreover, for all cases of congestion and erasures tested,
the values of QoE𝑆𝑇 metric are all above 0.9 when using the
completeQoE framework, guaranteeing very small variations
in quality over time.The gain with respect to a nonoptimized
approach is of up to 80%.The cases with higher improvement
correspond to higher erasure rates and greater degree of
congestion 𝜂. The gradient of the gains in QoE𝑆𝑇 for higher
values of 𝜂 is only dependent on the increase in erasure rates,
while, for lower values of 𝜂, the gain increases jointly as 𝜂 and
𝜖 increase.

These results represent a high QoE in the space domain
together with smooth QoE performance throughout the
entire streaming session, a characteristic highly valued
by end-users. This behavior was observed with all video
sequences tested.

7.4. Trade-Offs in the Decoupling Approach. We comment on
the trade-offs by analyzing the isolated performance of both
time and space optimizations and their effects on themetrics.

7.4.1. Optimization in Time Domain. In this case we consider
degradations due to congestion only and compare the per-
formance to a solution that is unaware of such degradations.
The results are summarized in Figure 7 for videos coastguard,
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pedestrian, and foreman. The parameters for this experiment
correspond to Experiment (1) from Table 2.

(a) Effect on 𝑄𝑜𝐸𝑇. As can be observed from Figure 7(a), the
flow continuity measured with QoE𝑇 is improved up to 50%.
The highest advantage is achieved for lower values of 𝜂.

(b) Effect on 𝑄𝑜𝐸𝑆𝑇.The online optimization is able to avoid
congestion events; hence packet loss due to congestion is
minimized, proving that the space-time decoupling premise
is valid. As a consequence, the improvements in QoE are
not only in time domain metrics but also in the space do-
main.

It can be observed from Figure 7(b) that the most signifi-
cant improvements occur for congestion events with 𝜂 < 70%
in QoE𝑆𝑇, with improvement of over 100%. For higher values

of 𝜂, the metric also shows a gain from 4.5% to 50% using the
QoE optimization in the time domain.

7.4.2. Optimization in the Space Domain. In this experiment
we compare the optimization in the space domain (where for
each 𝑟av an optimal𝜌∗ is obtained to configure anduse SRNC)
to a nonoptimized strategy with no erasure protection (𝜌 =

1). This case considers only degradations in the network due
to erasures. We assume 𝑟av is constant throughout the entire
streaming session (𝜂 = 100%; there is no congestion). We
assume the transmission rate 𝑅 = 𝑟av, and 𝑟av = 𝑟av. For each
experiment, there is a corresponding pair of values (𝜖, 𝑟av).
The parameters are set as in Table 2 for Experiment (2).

(a) Effect on 𝑄𝑜𝐸𝑇. By optimizing the rate budget 𝑟av when
using SRNC, we ensure that the redundancy added will not
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congest the network. QoE in the time domain is therefore not
affected by the use of SRNC, as is intended in our decoupling
approach.

Notwithstanding, SRNC, similar to other block erasure
codes, adds delay at encoding/decoding. The systematic
characteristic of SRNC aswell as the possibility of performing
progressive RNC decoding significantly reduces the delays
imposed by erasure protection. Therefore, we can assume a
reduced start-up delay in the video playback.This small price
to pay has a duration not longer than a GoP, 𝑇GoP, thereby
guaranteeing minimal impact of SRNC on QoE in the time
domain.

(b) Effect on 𝑄𝑜𝐸𝑆𝑇. Figure 8 shows the results for videos
foreman and coastguard, in our three-dimensional analysis
of QoE, where we plot QoE metrics versus 𝜖 versus 𝜂. Using
the optimization in the space domain, the main advantage
is achieved in scenarios with high available rate and high
erasure rates, with up to 38% improvement in QoE𝑆𝑇 metric
compared to a nonoptimized strategy. The higher advantage
occurs for higher values of 𝑟av.

We show minimal effects of the decoupling approach
on QoE𝑆𝑇 with the following example. Consider the surface
representing the case where space optimization is not utilized
in Figure 8. In an erasureless scenario (𝜖 = 0, 𝑟av = 𝑟APP),
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reduction of 20% in 𝑟APP has degradation of under 1% in
QoE𝑆𝑇, while reduction in goodput due to erasures 𝜖 = 20%
represents 40% degradation in QoE𝑆𝑇. This shows that the
spatial perceptual features of QoE are not sacrificed when
part of the budget rate is used for erasure protection. This
is confirmed by the smooth performance of our solution in
Figure 8. Due to the joint operating optimizations in both
the time and space domains, we gain benefits in both. In
time a rate 𝑟av that avoids congestion is ensured. In space we
optimally assign the resources for SRNC (𝜌∗) and application
layer (𝑟∗APP) such that we obtain a target residual erasure rate
𝜓 and the spatial perceptual features of QoE are preserved.

7.5. Perceptual Semantics with and without Time and Space
Optimizations. To our knowledge, there is no similar frame-
work in the literature to match our proposed perceptual
semantics framework and hence comparison to solutions that
do not have a similar goal would be unfair. Therefore, our
results focus onnot having such a kind of framework. In order
to observe the combined effects of the adaptation through
perceptual semantics with the cross-layer optimization, we
compare the use of cross-layer optimization to cope with the
network constraints to a situation where it is not used.

We analyze the effects of time-varying perceptual tagging,
representing a realistic case where the user identifies different
situations that demand attention towards temporal or spatial
features. These variations are represented as alternations of
temporal and spatial tagging. Figure 9 shows the perfor-
mance in terms of the combined metric Ω.

In addition to achieving the expected 𝛼 demanded
through the use of semantic tagging, the performance is
above 80% regardless of the degradations of the network,
thanks to the cross-layer optimization. The performance
is highly degraded due to congestion as well as erasures
when no cross-layer optimization is used, with performance
dropping to 40%.

Figure 9 confirms the analysis by showing that the cross-
layer optimization preserves the perceptual semantics.

8. Conclusions

In this work, we proposed a solution to deliver point-to-point
video services in best effort satellite networks for purposes
beyond recreational, such as for situational awareness. We
used QoE framework to decouple the problems inherent to
the scenario, relating congestion with freezes in the time
domain and packet erasures with artifacts in the space
domain. Both impairments degrade the QoE of video and
as a result the ability of video to help gain situational
awareness. Our decoupled approach facilitates the design to
optimize QoE both in the time and in the space domains,
thereby providing a feasible solution for dynamic adaptive
streaming tailored to the scenario’s needs. As a consequence
of decoupling and tackling these two problems separately, we
have performed a time/space graphical analysis with varying
network conditions in form of congestion and erasures.
Furthermore, driven by the temporal-spatial abstraction of
video and its perceptual features, we presented a novel model
for perceptual semantics, based upon the user’s demands.
We also proposed the framework to be integrated into an
interactive video adaptive solution, for user situational aware-
ness. We discussed how to practically implement perceptual
semantics into an adaptive loop that works with underlying
cross-layer optimization. Our experimental results showed
the benefits of this decoupled approach in terms of objective
QoE metrics. We were able to achieve homogenous high
performance, regardless of both erasures and congestion
degrading the network. Our simulation results also showed
how perceptual semantic tagging achieved the expected user
demands while the underlying cross-layer optimization pre-
served performance. Future work includes the extension of
our analysis to the general networkwhere intermediate nodes
can perform coding for higher reliability and throughput.
Furthermore, other aspects of QoE, such as context, can be
studied within our decoupled QoE framework. In addition,
extensions of perceptual semantics in the ICN context will be
pursued. The ICN umbrella allows the future consideration
of our scheme for live multicast dissemination to a number
of users assessing simultaneously an ongoing critical mission.
The last mile networking elements in ICN could be in charge
of the multicast distribution. Moreover, we will study more
pertinent QoE metrics to match user’s satisfaction when
using perceptual semantics.
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