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ABSTRACT

Background: The APOE effect on Alzheimer Disease (AD) risk is stronger in 
women than in men but its mechanisms have not been established. We assessed the 
APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in 
healthy elderly control individuals (HC).

Methods: Cross-sectional study. HC from the Alzheimer’s Disease Neuroimaging 
Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-
PET analyses (n = 328) were selected. CSF amyloid-ß1–42 (Aß1–42), total-tau (t-tau) 
and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed 
the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance 
(ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was 
measured by FreeSurfer. FDG and CTh difference maps were derived from interaction 
and group analyses.

Results: APOE4 carriers had lower CSF Aß1–42 and higher CSF p-tau181p values 
than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The 
APOE-by-sex interaction on brain metabolism and brain structure was significant. 
Sex stratification showed that female APOE4 carriers presented widespread brain 
hypometabolism and cortical thinning compared to female non-carriers whereas male 
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APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical 
thickening compared to male non-carriers.

Conclusions: The impact of APOE4 on brain metabolism and structure is modified 
by sex. Female APOE4 carriers show greater hypometabolism and atrophy than 
male carriers. This APOE-by-sex interaction should be considered in clinical trials in 
preclinical AD where APOE4 status is a selection criterion.

INTRODUCTION

The apolipoprotein E (APOE) genotype is the 
strongest genetic risk factor for Alzheimer’s disease 
(AD) [1]. It has three isoforms, ε2, ε3 and ε4. The APOE 
ε4 allele (APOE4) increases the risk for AD [2]. The 
effect of the APOE4 allele on AD biomarkers in healthy 
controls (HC) has been widely studied [3], [4]. APOE4 
carriers have consistently lower cerebrospinal fluid (CSF) 
ß-amyloid 1–42 (Aß1–42) levels than non-carriers, but the 
differences in tau levels are more controversial [5]–[7]. 
Most, [8]–[10] but not all [18F]-fluorodeoxyglucose 
(FDG) PET studies [11]–[13] have shown hypometabolism 
in AD-related regions in APOE4 carriers in late-middle 
age [8] and even earlier [10]. A gene-dosage effect on 
the hypometabolism has also been reported [9]. The 
relationship between the APOE genotype and brain 
structure is more controversial. Many cross-sectional 
studies have reported cortical thinning or hippocampal 
atrophy, [3], [4], [14] while several others have found no 
relationship [15] and two have reported increased gray 
matter in relation to the APOE4 allele [16], [17].

Several factors might account for the conflicting 
results. First, the age-range differences between 
studies are critical because distinct effects of APOE 
across the lifespan have been described [18]. Not all 
brain changes associated with the APOE genotype 
reflect incipient AD. APOE has been implicated in 
normal human brain development [19]. Second, there 
are amyloid dependent [20] and independent [21] 
mechanisms underlying the APOE influences on AD 
risk. However, most studies assessing the role of APOE 
on brain structure and metabolism do not assess AD 
pathophysiological biomarkers to disentangle these 
mechanisms. Third, APOE4 is likely to interact with 
other pathological factors, complicating the isolation 
of a unique genetic effect [4]. And fourth, some of the 
inconsistent imaging and biochemical findings related 
to APOE in HC might result from neglecting a possible 
APOE-by-sex interaction [6]. Most studies to date have 
included sex as a covariate in the analyses but they did 
not explicitly test for an APOE-by-sex interaction.

The finding that the APOE effect on AD risk is 
stronger in women than in men was reported in early 
studies, [22], [23] confirmed in meta-analyses, [23], [24] 
and in a recent longitudinal study [6]. However, only 
two studies have assessed APOE-by-sex interactions 

on AD biomarkers. Altmann et al found a significant 
interaction for tau in mild cognitive impairment 
patients [6]. Damoiseaux et al reported a significant 
APOE-by-sex interaction for CSF tau levels and default 
mode network abnormalities in healthy controls [25].

The interaction between APOE4 and sex on brain 
structure and metabolism has not been established. This 
interaction could affect the design and interpretation 
of prevention trials in preclinical AD in which 
APOE is a selection criterion (i.e. the Alzheimer’s 
Prevention Initiative APOE4 Trial, NIH project number 
1UF1AG046150–01). The aim of the present study was to 
examine the interactions between APOE4 and sex on brain 
metabolism and structure, based on the hypothesis that the 
APOE4 allele exerts a differential adverse effect on brain 
metabolism and structure depending on sex.

RESULTS

Demographic and clinical of the participants 
in the CSF, FDG and MRI subsets are summarized 
separately in the Table 1. CSF was available in 274 HC 
individuals, 328 had an FDG PET, 225 had a 3T MRI, 
and 137 subjects had all three biomarkers. There were 
no significant differences between the MRI, PET and 
CSF subsets in age, sex, APOE status, MMSE or CSF 
biomarkers. There were no significant differences in age, 
APOE status, MMSE or CSF biomarkers between males 
and females in all three subsets. In the FDG and CSF 
subsets, males had higher years of education than females 
(p < 0.001), but in the MRI subset this difference did not 
reach significance.

APOE4 carriers had lower CSF Aß1–42 values than 
non-carriers in all three subsets (p < 0.001). APOE4 
carriers had higher CSF p-tau181p values in the three 
subsets, but these only reached significance in the FDG and 
CSF subset which had larger sample sizes (p < 0.001 and 
p = 0.004 respectively). APOE4 carriers had higher CSF 
t-tau values in the three subsets, but these only reached 
significance in the CSF subset (p < 0.05). There were 
no significant differences in MMSE scores or education 
between APOE4 carriers compared to non-carriers in 
any of the subsets. There were no significant differences 
between males and females in CSF biomarkers. Neither 
was there an APOE-by-sex interaction on CSF Aß1–42, CSF 
t-tau or CSF p-tau181pvalues in the analysis of covariance 
(ANCOVA) analyses.



Oncotarget26665www.impactjournals.com/oncotarget

APOE-by-sex interaction on brain metabolism

Fig. 1A presents this FDG voxel-wise interaction 
analysis across the cerebral hemispheres, showing voxels 
with an APOE-by-sex interaction, covaried by age and 
years of education (p < 0.005, k = 50). Two clusters 
emerged, one located mainly in the anterior cingulate 
region and the other in the temporal region. To analyze the 
directionality, we isolated the temporal cluster, averaged 
the FDG uptake, and plotted it in box and whisker plots 
(Fig. 1B). As shown, this interaction was driven by the 
decreased metabolism in female APOE4 carriers and 
the increased metabolism in male APOE4 carriers. The 
main and interactive effects of APOE4 status and sex 
on brain metabolism in the ANCOVA analysis were 
significant in the model (interaction term between APOE4 
status and sex: ß-coefficient = 0.069, standard error 
[SE] = 0.021, p = 0.001; main effect of APOE4 status: 
ß-coefficient = –0.037, SE = 0.016, p = 0.019; main effect 
of sex: ß-coefficient = −0.041, SE = 0.018, p = 0.026). 
Similar results were found for the anterior cingulate 
cluster (not shown).

Fig. 2 shows the sex stratified APOE4 group 
analyses for FDG, covaried by age and years of education. 
Female APOE4 carriers showed widespread clusters 

of decreased metabolism (p < 0.005) across the whole 
cerebral cortex in both hemispheres with respect to APOE4 
non-carriers (Fig. 2A). Male APOE4 carriers showed an 
isolated cluster of decreased metabolism (p < 0.005) in the 
precuneus with respect to non-carriers (Fig. 2B).

To examine the impact of CSF biomarkers in the 
APOE-by-sex interaction on brain metabolism, we 
included CSF Aß1–42 and CSF p-tau181p as covariates in 
the analyses. The inclusion of the CSF biomarkers did 
not significantly alter the results of the APOE-by-sex 
interaction analysis (not shown) nor the female APOE4 
carriers vs non-carriers comparison (Fig. 3A1–3A3). In 
the male APOE4 carriers vs non-carriers comparison 
two clusters of increased metabolism emerged in APOE4 
carriers with respect to male non-carriers in prefrontal 
regions and a cluster in the medial temporal region when 
CSF Aß1–42 levels or both Aß1–42 and CSF p-tau181p levels 
(but not CSF p-tau181p levels alone, Fig. 3 B2) were 
included as a covariate (Fig. 3B1 and 3B3).

APOE-by-sex interaction on brain structure

Fig. 4A presents the vertex-wise interaction 
analysis across the whole cortical mantle, covaried 
by age and years of education, showing voxels with 

Table 1: Demographic, cerebrospinal fluid and clinical data in the CSF, FDG-PET and MRI 
Alzheimer’s Disease Neuroimage Initiative subsets.

MRI (N = 168) FDG-PET (N = 328) CSF (N = 274)

APOE4 N (%) 50 (29.76%) 87 (26.5%) 71 (25.9%)

AGE 73.4 (6.02) 74.5 (5.57) 74.4 (5.97)

SEX (% Females) 53.6% 49.4% 50.4%

MMSE 29.1 (1.07) 29.0 (1.24) 29.1 (1.15)

YEARS OF EDUCATION 16.6 (2.55) 16.3 (2.77) 16.3 (2.69)

Aß1–42*** TOTAL 200.7 (49.92) 201.4 (52.46) 200.6 (52.51)

APOE4− 211.3* (46.32) 213.5* (46.87) 212.1* (47.81)

APOE4+ 175.4* (49.58) 165.2* (51.85) 167.9* (51.87)

p-taup181*** TOTAL 32.4 (16.41) 30.78 (18.14) 30.48 (17.97)

APOE4− 31.3 (16.68) 28.3* (15.31) 28.2* (15.23)

APOE4+ 35.0 (15.62) 38.1* (23.38) 36.9*(23.10)

t-tau*** TOTAL 66.0 (31.88) 68.9 (34.57) 68.4 (32.12)

APOE4− 65.1 (32.60) 67.0 (34.84) 66.0** (30.29)

APOE4+ 68.2 (30.34) 74.5 (33.41) 75.1** (36.22)

APOE4+ = apolipoprotein E ε4 allele carrier, APOE− = apolipoprotein E ε4 allele non-carrier
Values are expressed as mean (standard deviation) unless specified.
*equals p < 0.001 and
**equals p < 0.05 for the APOE4 carriers vs non-carriers comparison within each subset. Note that 137 subjects were 
included in the three subsets.
***CSF data only available in 146 subjects in the MRI subset and 242 subjects in the PET subset.
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Figure 1: FDG APOE-by-sex interaction analysis. A. Areas in which there is a FDG-uptake interaction between sex and the 
APOE4 status (p < 0.005 uncorrected) co-varied for age and years of education displayed across the medial and frontal views of the cerebral 
cortex. B. Box and whisker plot illustrating individual FDG-uptake values in the temporal cluster. For each plot, the central black lines show 
the median value, the regions above and below the black line show the upper and lower quartiles, respectively, and the whiskers extend 
to the minimum and maximum values. As illustrated, the female APOE4 carriers showed decreased metabolism in the temporal cortex 
with respect to female non-carriers. FDG = fluorodeoxyglucose; APOE = apolipoprotein E, APOE4+ = apolipoprotein E ε4 allele carriers, 
APOE4− = apolipoprotein E ε4 allele non-carriers.

Figure 2: Sex-stratified FDG analyses. Analysis between APOE4 carriers and APOE4 non-carriers (p < 0.005 uncorrected) in 
A. females and B. males, co-varied for age and years of education across the lateral and medial views of the cerebral cortex. As shown, 
female APOE4 carriers showed widespread clusters of decreased metabolism with respect to female APOE4 non-carriers (Fig. 2A), 
whereas male APOE4 carriers only showed an isolated cluster of decreased metabolism (p < 0.005) in the precuneus with respect to male 
non-carriers (Fig. 2B). FDG = fluorodeoxyglucose; APOE4 = apolipoprotein E ε4 allele.
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Figure 3: Sex-stratified FDG analyses with CSF biomarker levels included as a covariate. Row 1. CSF Aß1–42 levels; Row 2. 
CSF p-tau181p levels; Row 3 CSF Aß1–42 and p-tau181p levels. The analysis between female APOE4 carriers and female APOE4 non-carriers 
A1-A3. showed several clusters of decreased metabolism (p < 0.005 uncorrected) co-varied for age. As illustrated, female APOE4 carriers 
showed decreased metabolism in the anterior cingulate cortex with respect to female non-carriers after the inclusion of the CSF biomarkers 
as a covariate. The analysis between male APOE4 carriers and male APOE4 non-carriers B1-B3. showed several clusters of increased 
metabolism (p < 0.005 uncorrected) co-varied for age. As illustrated, male APOE4 carriers showed increased metabolism in several clusters 
in the dorsolateral prefrontal cortex with respect to male APOE4 non-carriers after the inclusion of CSF Aß1–42 levels or both CSF Aß1–42 
and CSF p-tau181p as a covariate (B1 and B3), but not after the inclusion of the CSF p-tau181p levels alone (B2). FDG = fluorodeoxyglucose; 
APOE = apolipoprotein E, APOE4: apolipoprotein E ε4 allele

an APOE-by-sex interaction. Two large clusters  
(Family-wise error corrected [FWE] p < 0.05) emerged, 
one in the dorsolateral frontal region and one in the 
temporoparietal region. To analyze the directionality, 
we then isolated the temporoparietal cluster, averaged 
the cortical thickness (CTh), and plotted it in a box and 
whisker plot (Fig. 4B). As shown, this interaction was 
mainly driven by the increased CTh in male APOE4 
carriers. The main effects and the interactive effects of 
APOE4 status and sex in the ANCOVA analysis were 
significant in the model (interaction term between APOE4 

status and sex: ß-coefficient = −0.228, SE = 0.045, 
p < 0.001; main effect of sex: ß-coefficient = 0.149, 
SE = 0.039, p < 0.001; main effect of APOE4 status: 
ß-coefficient = 0.062, SE = 0.030, p = 0.041). Similar 
results were found for the remaining cluster (not shown).

Fig. 5 shows the sex-stratified APOE4 CTh 
analyses, covaried by age and years of education. Male 
APOE4 carriers showed 3 large clusters (FWE corrected) 
of increased CTh with respect to non-carriers. Two of 
the clusters were observed in the left hemisphere, one 
in the dorsolateral frontal region and another in the 
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Figure 4: CTh APOE-by-Sex interaction analysis. A. Family-wise corrected (p < 0.05) clusters with an interaction between sex 
and the dichotomized APOE4 genotype co-varied for age and years of education displayed across the lateral and posterior views of the 
cerebral cortex. B. Box and whisker plot illustrating individual CTh values in the temporo-parietal and occipital cluster. For each plot, 
the central black lines show the median value, regions above and below the black line show the upper and lower quartiles, respectively, 
and the whiskers extend to the minimum and maximum values. As illustrated, male APOE4 carriers showed increased CTh in the 
temporo-parietal and occipital cluster. CTh = cortical thickness; APOE = apolipoprotein E, APOE4+ = apolipoprotein E ε4 allele carriers, 
APOE4− = apolipoprotein E ε4 allele non-carriers.

Figure 5: Sex-stratified CTh analyses. Analysis between male APOE4 carriers and male APOE4 non-carriers, co-varied for age and 
years of education. As shown, male APOE4 carriers presented large clusters of increased CTh (FWE p < 0.05) in temporo-parieto-occipital 
regions, mainly in the left hemisphere. The analysis between female APOE4 carriers and female APOE4 non-carriers showed clusters of 
decreased CTh which did not survive FWE correction (not shown). CTh = cortical thickness; APOE = apolipoprotein E; FWE = family-
wise error corrected (p < 0.05).
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temporoparietal, occipital and precuneus regions. The 
third cluster was observed in the right hemisphere in the 
parietal and occipital regions. Female APOE4 carriers 
showed cortical thinning in several regions than female 
APOE4 non-carriers (not shown as this analysis did not 
survive FWE correction).

To examine the influence of CSF biomarkers on 
the APOE-by-sex interaction on brain structure, we 
included CSF Aß1–42 and CSF p-tau181p as covariates in 
the analyses. The vertex-wise APOE-by-sex interaction 
analysis across the whole cortical mantle showed a 
reduction in the significance maps when including CSF 
biomarkers as covariates, especially Aß1–42 (Fig. 6). In 
the sex-stratified APOE4 CTh analyses, the clusters of 
increased CTh in male APOE4 carriers disappeared when 
CSF Aß1–42 levels (but not CSF p-tau181p levels) were 
included as a covariate (Fig. 7). No result survived FWE 
correction in females.

All analyses were repeated excluding APOE ε2 
allele carriers and including CSF t-tau as a covariate. 
We also restricted the analyses to non-hispanic white 
subjects (not shown). The results were not significantly 
altered in any case.

DISCUSSION

This study shows for the first time that the impact of 
the APOE4 genotype on brain structure and metabolism 
is modified by sex. We found a significant APOE-by-sex 
interaction on brain metabolism and structure. Female 
APOE4 carriers showed brain hypometabolism and 
cortical thinning with respect to female non-carriers 
whereas male APOE4 carriers showed only a small cluster 
of hypometabolism and cortical thickening with respect 
to male non-carriers. CSF core AD biomarkers had an 
influence on brain structural results (and to a lesser extent 
on brain metabolism).

Epidemiologically, there is strong evidence that 
supports the APOE-by-sex interaction [6], [11], [23]. 
The only study assessing the APOE-by-sex interactions 
on MRI demonstrated the interaction on resting state 
functional connectivity but not on gray matter volume 
[25]. Our results expand these findings. We show an 
APOE-by-sex interaction on both brain structure and 
metabolism. The discrepancy on brain structure could be 
due to the differences in the subject population or technical 
differences (CTh analyses vs voxel-based morphometry 
[26]). Our FDG results are congruent with those of the 
aforementioned resting state functional connectivity 
analyses. APOE appears to affect brain network activity 
which is closely related to neuroenergetic functions [27].

Our metabolic findings suggest that women are 
metabolically more susceptible to the APOE4 genotype. 
Neglecting a possible APOE-by-sex interaction on brain 
metabolism could be one of the reasons for the discordant 
FDG results [8]–[13]. Male APOE4 carriers showed 

increased CTh and females decreased CTh. The finding 
of cortical thickening in AD vulnerable areas in middle 
aged (48–75 years old) APOE4 carriers with respect to 
non-carriers has already been described [16], [17], but 
it is in contrast with other works assessing older cohorts 
[3], [4], [14], [15].

The discrepancies on brain structure might be 
conciliated if we consider a 2-phase phenomenon model 
in preclinical AD [28]. In this framework, pathological 
cortical thickening associated with low CSF Aß1–42 would 
be followed by atrophy once CSF p-tau181p becomes 
abnormal [28]. Accordingly, our study shows that the 
clusters of increased CTh in male APOE4 carriers 
disappear when we included CSF Aß1–42 as a covariate. 
The hypometabolism in female APOE4 carriers did 
not disappear when CSF Aß1–42 levels were included as 
a covariate. The APOE4 genotype might therefore exert 
its effects on brain glucose metabolism—at least in part—
independently of amyloidogenic pathways [29]. Of note, 
the inclusion of CSF Aß1–42 levels as a covariate prompted 
the emergence of several areas of increased metabolism 
in male APOE4 carriers. Increased brain metabolism 
in relation to brain amyloidosis has been previously 
described [30].

Altogether, our findings support that the 
mechanisms underlying the increased AD risk in female 
APOE4 carriers might occur downstream of Aß pathology 
[6]. The APOE4 effect on lowering CSF Aß1–42 levels is 
marked in both men and women (with no sex differences) 
and was also found in our work [6], [25]. The impact 
of an APOE-by-sex interaction on CSF has only been 
assessed twice and, as in the present work, always with 
data from the ADNI study. The absence of an APOE- 
by-sex interaction on CSF Aß1–42 levels is in agreement 
with the two previous works [6], [25]. The impact on CSF 
p-tau181p levels is less clear. We did not find an APOE- 
by-sex interaction on CSF p-tau181p levels. Such an 
interaction was reported initially [25] in HC but was 
not confirmed in the later work with a larger sample 
size [6]. Nonetheless, this last work did find the 
interaction for CSF p-tau181p levels in mild cognitive 
impairment patients. Women, moreover, would be 
more susceptible and would present more abnormal 
neuronal injury biomarkers [25] and faster clinical 
decline [6]. Accordingly, female APOE4 carriers showed 
hypometabolism and cortical thinning with respect to 
non-carriers, suggesting that female APOE4 carriers 
might be more advanced in the aforementioned 2-phase 
phenomenon model in preclinical AD [28].

The mechanisms by which the APOE allele modifies 
the risk for AD have been extensively studied but are not 
completely understood. Both ß-amyloid-dependent [20] 
and ß-amyloid-independent [21] mechanisms have 
been described. APOE appears to affect brain network 
activity and neuroenergetic functions [27] and to 
increase microglia reactivity at Aβ plaques in mouse 



Oncotarget26670www.impactjournals.com/oncotarget

Figure 6: CTh APOE-by-Sex interaction analysis with CSF biomarker levels included as covariates. Family-wise corrected 
(p < 0.05) clusters with an interaction between sex and the dichotomized APOE4 genotype co-varied for age and: A. CSF Aß1–42 levels; 
B. CSF p-tau181p levels; C. CSF Aß1–42 and p-tau181p levels. As illustrated, the inclusion of CSF Aß1–42 levels as a covariate significantly 
diminished the clusters showing a CTh APOE-by-sex interaction. CTh = cortical thickness; APOE = apolipoprotein E.

Figure 7: Sex stratified CTh analyses with CSF biomarker levels included as a covariate. The analysis between male 
APOE4 carriers and male APOE4 non-carriers showed several clusters of increased CTh (p < 0.005 uncorrected) co-varied for age and CSF 
p-tau181p levels. There were no significant clusters of increased CTh male APOE4 carriers vs male APOE4 non-carriers after the inclusion 
of CSF Aß1–42 levels as a covariate. CTh = cortical thickness; APOE = apolipoprotein E.
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models [31], [32]. These metabolic and inflammatory 
responses in relation to the APOE genotype might differ in 
males and females, accounting for the differences found.

This work has potential clinical implications. 
Clinical trials in preclinical AD in which APOE4 status 
is a selection criterion are underway (Alzheimer’s 
Prevention Initiative APOE4 Trial, NIH project number 
1UF1AG046150–01). Our results emphasize the 
importance of sex stratification when considering the AD 
risk and its impact on AD topographical biomarkers [33] 
conferred by the APOE genotype. More broadly, the 
present work stresses the need to consider interactions 
between biomarkers and risk factors in the AD preclinical 
phase [28].

The strengths of this study are the inclusion of a 
relatively high number of subjects and the fact that the 
results were found in two different topographical AD 
biomarkers, [34] with congruent findings between the 
two. The study has some limitations. It is cross-sectional 
and the age-range sampled does not include young HC 
to assess the age-range in which amyloid is starting to 
deposit in the brain of APOE4 carriers [35].

In conclusion, the impact of APOE4 on brain 
structure and metabolism is modified by sex in HC. This 
interaction should be considered in current clinical trials 
in preclinical AD in which APOE4 status is a selection 
criterion.

MATERIALS AND METHODS

Study participants and clinical classification

Data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (http://adni.loni.usc.edu). The 
ADNI was launched in 2003 by the National Institute 
on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies 
and non-profit organizations, as a $60 million, 5-year 
public-private partnership. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early AD. 
Determination of sensitive and specific markers of very 
early AD progression is intended to aid researchers and 
clinicians to develop new treatments and monitor their 
effectiveness, as well as lessen the time and cost of 
clinical trials.

The Principal Investigator of this initiative is 
Michael W. Weiner, MD, VA Medical Center and 
University of California – San Francisco. ADNI is the 
result of efforts of many co-investigators from a broad 

range of academic institutions and private corporations, 
and subjects have been recruited from over 50 sites 
across the U.S. and Canada. The initial goal of ADNI was 
to recruit 800 subjects but ADNI has been followed by 
ADNI-GO and ADNI-2. To date these three protocols have 
recruited over 1500 adults, ages 55 to 90, to participate 
in the research, consisting of cognitively normal older 
individuals (HC), people with early or late MCI, and 
people with early AD. The follow up duration of each 
group is specified in the protocols for ADNI-1, ADNI-2 
and ADNI-GO. Subjects originally recruited for ADNI-1 
and ADNI-GO had the option to be followed in ADNI-2. 
For up-to-date information, see http://www.adni-info.org.

We included all HC with available CSF and/or 
a 3T-MRI and/or an FDG PET.

CSF analyses

ADNI procedure

Methods for CSF acquisition and biomarker 
measurement using the ADNI cohort have been reported 
previously [36]. Aß1–42, total tau (t-tau) and phospho-tau 
(p-tau181p) levels were measured using the multiplex xMAP 
Luminex platform (Luminex) with Innogenetics (INNO-
BIA AlzBio3) immunoassay kit–based reagents.

MRI and FDG-PET imaging procedures

ADNI acquisition procedure

The details of MRI and FDG-PET acquisition are 
available elsewhere (http://www.adni-info.org).
FDG-PET processing procedure

FDG-PET images were downloaded in the most 
processed format. They were intensity-scaled by the 
reference pons-vermis region [37], spatially normalized 
using SPM8 [http://www.fil.ion.ucl.ac.uk/spm/] to the 
Montreal Neurological Institute (MNI) PET template 
and spatially smoothed with a Gaussian kernel of full 
width at half-maximum (FWHM) of 8 mm. All resulting 
images were visually inspected to check for possible 
registration errors. Voxel-wise results were displayed at 
p < 0.005 (uncorrected) using an extent threshold k = 50, 
and projected on an inflated single-subject cortical surface 
reconstruction.

Cortical thickness processing procedure

Cortical reconstruction of the structural images 
was performed with the FreeSurfer software package, 
version 5.1 (http://surfer.nmr.mgh.harvard.edu). The 
procedures have been fully described elsewhere [38]. 
Estimated surfaces were inspected to detect errors in the 
automatic segmentation procedure. Fifty-seven of the 
225 N3 processed MRI analyzed were excluded because 



Oncotarget26672www.impactjournals.com/oncotarget

of segmentation errors and 168 were included in the 
analyses. A Gaussian kernel of 15 mm full-width at half 
maximum was applied. To avoid false positives, we tested 
Monte Carlo simulation with 10,000 repeats in Qdec 
(family-wise error [FWE], p < 0.05). Only regions that 
survived FWE are presented in the figures.

Statistical methods

Group analyses were made using SPSS (SPSS 
Inc, Chicago, IL). Comparisons between groups were 
performed using the two-tailed Student t test for 
continuous variables and a chi-square test for categorical 
variables.

The main objective of our work was to study the 
APOE-by-sex interaction on brain metabolism and brain 
structure. Two approaches were used: interaction and 
sex-stratified analyses. We carried out an ANCOVA as 
implemented in SPM and FreeSurfer for the PET and 
MRI analyses, respectively, using the APOE genotype 
(APOE4 carrier vs APOE4 non-carrier) and sex as binary 
categorical independent variables, and age and years 
of education as variables of no interest to assess the 
interaction.

To examine the impact of CSF biomarkers on 
the FDG PET and CTh analyses, we introduced CSF 
biomarkers as covariates in the analyses. All analyses were 
repeated excluding APOE2 carriers and restricting to only 
non-hispanic white subjects.

Clusters derived from the interaction analyses in 
FDG or CTh were isolated to analyze the directionality 
of the interactive effects for each variable within an 
ANCOVA model, using age as a covariate. Specifically, 
we used the following model for FDG-PET and MRI:

Mean cluster FDG uptake (or mean cluster CTh) 
= â0 + â1*SEX + â2*APOE + â3*[SEX*APOE] + age

The same ANCOVA approach was used for the CSF 
analyses to test for an interactive effect of APOE genotype 
and sex in CSF biomarker levels.
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