Correction: A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

Daniela Lehr¹, Markus R. Wagner², Johanna Flock³, Julian S. Reparaz², Clivia M. Sotomayor Torres^{2,4}, Alexander Klaiber¹, Thomas Dekorsy³ and Sebastian Polarz^{*1}

Correction

Address:

¹Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany, ²ICN2 Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, 08193 Bellaterra (Barcelona), Spain, ³Department of Physics, University of Konstanz, 78457 Konstanz, Germany and ⁴Catalan Institute of Research and Advanced Studies (ICREA), Barcelona 08010, Spain

Email:

Sebastian Polarz* - sebastian.polarz@uni-konstanz.de

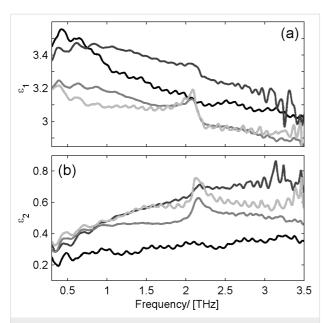
* Corresponding author

Keywords:

chemical doping; metal oxides; semiconductor nanoparticles; single-source precursors

Beilstein J. Nanotechnol. **2015**, 6, 2330–2331. doi:10.3762/bjnano.6.239

Received: 01 December 2015 Accepted: 01 December 2015 Published: 08 December 2015


Associate Editor: J. J. Scheider

© 2015 Lehr et al; licensee Beilstein-Institut. License and terms: see end of document.

This correction refers to Beilstein J. Nanotechnol. 2015, 6, 2161–2172. doi:10.3762/bjnano.6.222

In the original article an incorrect graphic was displayed for Figure 8. The correct form of Figure 8 is as follows:

Open Access

Figure 1: Figure 8 in the original article: Measured dielectric function of $ZnO_{1-x}Cl_x$ (a) real part; (b) imaginary part with x=0.0% (black lines), 1.4% (dark gray lines), 1.8% (gray lines) and 2.5% (light gray lines); An infrared-active phonon at about 2 THz is scaling in intensity with increasing CI concentration.

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Nanotechnology* terms and conditions: (http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjnano.6.239