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Abstract 

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively 

isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring 

anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, 

and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance 

and assimilation by heat and drought were more frequent during relatively moist periods, but these effects 

were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species 

exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic 

embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and 

maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low 

levels of embolism experienced by juniper refuted the notion that very low water potentials during drought 

are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to 

hydraulic failure than isohydric species. Because direct association of stomatal behavior with embolism 

resistance can be misleading, we advocate consideration of stomatal behavior relative to embolism resistance 

for classifying species drought response strategies.  

Keywords: drought, increased temperature, global change, mortality, iso- vs. anisohydric behavior, stomatal 

conductance, hydraulic conductivity, hydraulic failure, carbon starvation. 
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Introduction 

Drought-induced forest mortality has become a major focus of attention in plant ecological research 

(Allen et al. 2010). Plant responses to drought include adjustments at different timescales and have been 

characterized according to different schemes (e.g. Chaves et al. 2003; Maseda & Fernández 2006; Choat et al. 

2012). A useful framework classifies plants based on stomatal regulation of leaf water potential in response to 

changes in atmospheric moisture demand and soil water supply (isohydric vs. anisohydric species; Stocker 

1956; Larcher 1975; Jones 1998; Tardieu & Simonneau 1998). The iso- vs. anisohydric dichotomy has been 

given a central role in theories explaining the physiological causes of drought-induced mortality, and has been 

proposed as a predictive trait of the specific underlying mechanism of mortality (McDowell et al. 2008, Plaut et 

al. 2012).  

Relatively isohydric plants respond quickly to declining water availability and rising atmospheric 

moisture demand by closing their stomata in order to control water losses and avoid excessively low leaf water 

potentials that could cause cavitation and, ultimately, hydraulic failure. The hypothesized cost to this strategy 

is a negative carbon balance due to an inability to maintain photosynthetic rates during drought (McDowell et 

al. 2008; Galiano et al. 2011). Moreover, when declining water availability is accompanied by elevated 

temperature, increased respiration rates could raise the likelihood of carbon starvation (Adams et al. 2009, 

2013). At the other end of the continuum, anisohydric plants show less strict stomatal regulation in response 

to drought, and their leaf water potentials more directly track the fluctuations in soil water availability and 

atmospheric moisture demand. In these species, xylem may operate with narrower safety margins (the 

difference between the minimum xylem pressure a stem experiences and the pressure at which it would lose 

some fraction of its hydraulic conductivity, e.g. 50% loss), and they have been hypothesized to be exposed to 

greater risk of hydraulic failure than isohydric plants (McDowell et al. 2008). Although recent research shows 

that carbon starvation and hydraulic failure are highly interrelated processes that should be studied 

concurrently (McDowell 2011; Sala et al. 2012; Sevanto et al. 2014), the link between stomatal regulation and 

the likelihood of different modes of mortality is still an open question with important implications for our 

ability to understand and model plant drought responses (McDowell et al. 2013).  A
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The use of the iso-/anisohydric dichotomy to characterize drought responses in general and the 

process of drought-induced mortality in particular can be problematic for several reasons. Firstly, this 

categorization reflects two theoretical extremes, while the stomatal behavior of many plants is better 

represented as occurring along a spectrum between these two endpoints (Klein 2014), and it is likely to be 

more flexible than implied by a dichotomic classification. Several studies have shown that the iso- vs. 

anisohydric characterization may vary within species as a function of soil water availability (Franks et al. 2007; 

Domec and Johnson 2012; Zhang et al. 2011). Secondly, the iso-/anisohydric classification, which was originally 

proposed in the context of short-term diurnal stomatal responses, rests on the frequently untested 

assumption that a rapid stomatal response implies the maintenance of relatively constant leaf water potentials 

over much longer periods. This is not necessarily the case, depending on the relative vulnerability of stomata 

and xylem to declining water potentials (Martínez-Vilalta et al. 2014). The use of iso-/anisohydry in this context 

may conflate species differences in stomatal regulation behavior with differences in resistance to drought-

induced embolism, which calls for alternative ways of comparing stomatal responses across species (Klein 

2014). In addition, different mechanisms of stomatal closure in conifers (based on high abscisic acid 

concentrations vs. very low leaf water potentials; Brodribb and McAdam 2013; Brodribb et al. 2014) may 

complicate the relationship between stomatal regulation and leaf water potential dynamics across species.  

Most studies use the relationship between stomatal conductance and either leaf water potential or 

vapor pressure deficit (VPD) to characterize stomatal behavior. Some studies have shown that higher stomatal 

sensitivity in response to drying soil (Zhao et al. 2013) or narrower carbon safety margins, defined as the 

difference between leaf water potential when growth is zero and leaf water potential when net 

photosynthesis is zero (closed stomata, Mitchell et al. 2014), can lead plants to a negative carbon balance and 

faster depletion of their reserves. At the same time, the same stomatal conductance at a given water potential 

or VPD value may have very different implications depending on the xylem hydraulic vulnerability of the 

species and fails to account for the fact that leaf water potentials (particularly midday values) are affected by 

the vulnerability to embolism. The hydraulic connectivity to the soil is another key factor that can complicate 

the interpretation of correlations between stomatal conductance and water potential or VPD. Plaut et al. 

(2012) and Sevanto et al. (2014) demonstrated that pre-dawn leaf water potentials may not reflect soil 

moisture content during drought in piñon pine (Pinus edulis) due to plant hydraulic isolation from the soil. 

Finally, studies of drought responses in plants have frequently focused on soil water availability as the major 
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stress driver. These studies have shown that stomatal sensitivity (timing of closure during drought) and the 

magnitude of decrease in hydraulic conductivity under similar drought conditions ranges widely between and 

within species, depending on hydraulic architecture and root properties (Rogiers et al. 2011; Will et al. 2013). 

However, drought has two components: reduced soil water availability and increased atmospheric water 

demand, and stomata respond to both. Vapor pressure deficit increases non-linearly with temperature, 

generally increasing atmospheric water demand and transpiration at a given stomatal conductance (gs) (Oren 

et al. 1999, Breshears et al. 2013). As a result, warming has been shown to exacerbate the effects of drought 

(Williams et al. 2013). This is important in the context of climate change, because the confidence in future 

projections is much higher for temperature and VPD than for rainfall and soil water content (IPCC, 2013) and, 

hence, changes in the former may be more reliable drivers to predict changes in vegetation.  

In the present study, we used an ecosystem-scale experiment in a piñon-juniper woodland 

(dominated by Pinus edulis and Juniperus monosperma) in northern New Mexico, USA, to test the hypothesis 

that relatively isohydric plants are less prone to hydraulic failure than relatively anisohydric plants because of 

their earlier stomatal closure during drought. Experimental treatments were used to simulate different 

climatic conditions including ambient, reduced precipitation, increased temperature and the combination of 

both. Piñon-juniper woodlands have been a model system to study drought-related mortality (Breshears et al. 

2005, 2009a; McDowell et al. 2008, Plaut et al. 2012, 2013; Limousin et al. 2013). P. edulis has been 

characterized as a relatively isohydric species and J. monosperma as relatively more anisohydric (West et al. 

2007; Plaut et al. 2012). Additionally, P. edulis is more vulnerable to drought-induced xylem embolism than J. 

monosperma (Linton et al. 1998, Wilson et al. 2008). Our main objectives here were to: (1) determine the 

individual and combined effects of temperature and soil moisture on plant hydraulics and gas exchange of 

coexisting P. edulis and J. monosperma, and (2) analyze stomatal regulation of these two plant species with 

contrasting hydraulic resistance, and how this regulation relates to their differential vulnerability to drought. 

We expect the effects of increased temperature (Heat) and reduced precipitation (Drought) to be additive (or 

even multiplicative), so that the combined treatment (Heat & Drought) would have the greatest impact on 

plant performance, with lower stomatal conductance and photosynthesis rates and higher embolism levels. 

Differences in stomatal regulation between species will differ depending on whether we express stomatal 

conductance as a function of absolute water potential, as a function of the distance to a “dangerous” plant 

water potential (e.g., hydraulic safety margin), or directly as a function of percent loss of hydraulic conductivity 
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in the xylem. We assessed the relevancy of these three representations for understanding plant responses to 

drought in the context of predicting tree mortality. Finally, per McDowell et al. (2008) we hypothesize that the 

anisohydric J. monosperma will be more prone to hydraulic failure than the isohydric P. edulis, and this will be 

reflected in narrow safety margins. 

Material and Methods 

Site description and experimental design  

The study was conducted at the Los Alamos Survival/Mortality Experiment located on Frijoles Mesa at 

2175 m a.s.l. in Los Alamos County, New Mexico (35°49’5”N 106°18’19”W). Mean annual temperature (25-year 

mean 1987-2011) is 9.2 ºC, January being the coldest month (-2ºC on average) and July the warmest month 

(20ºC). Mean annual precipitation (1987-2012) is 415 mm of which roughly 50 % falls during the North 

American Monsoon season from July to September (Los Alamos Weather Machine 

http://environweb.lanl.gov/weathermachine/). The site is dominated by piñon pine (Pinus edulis Engelm.) and 

juniper (Juniperus monosperma (Engelm.) Sarg.); shrubby gambel oak (Quercus gambelii Nutt.) and an 

occasional ponderosa pine (Pinus ponderosa C. Lawson) occurs in the vicinity. Soils are Hackroy clay loam 

derived from volcanic tuff with a typical profile of 0 to 8 cm of sandy loam, 8 to 35 cm of clay and 35 to 150 cm 

Bedrock (Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture 

http://websoilsurvey.nrcs.usda.gov/). Soil depth at the site ranges from 40 to 80 cm. 

A manipulative experiment was established at the site in spring of 2012 using open top chambers and 

a drought structure to impose the treatments.  A total of 63 trees, 32 J. monosperma and 31 P. edulis, were 

randomly selected and assigned to one of the five treatment combinations : (1) control (C), with no heating 

and no precipitation exclusion; (2) control chamber (CC), trees located inside open top chambers with 

temperature regulated to match outside air temperature and no rain exclusion; (3) drought (reduced 

precipitation, D), with ~45 % precipitation interception; (4) heat (H), with a chronic temperature increase of ~5 

ºC; and (5) heat & drought (HD), both treatments at the same time. On average, trees in the D and HD 

treatments were located 10.6 m and 11.0 m from the nearest edge of the drought structure, respectively. This 

equals a distance of 4.9 and 4.1 times tree height for each treatment. All the trees in C and D treatments 

lacked chambers, whereas open top chambers were installed surrounding CC, H and HD trees. In total, 18 

chambers of different sizes were built, with some chambers including multiple trees (up to five) when the A
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spatial arrangement of trees did not allow building of separate chambers. Ambient temperature was 

monitored on site (sensors: CS215 Temperature and Relative Humidity Probe, Campbell Scientific, Logan, UT, 

USA) and used as a reference for chamber temperature control. Similar sensors were installed inside each 

chamber at two heights, 1 m and 2/3 of canopy height; and chamber temperature was determined from the 

average. Precipitation exclusion for D and HD treatments was accomplished by means of thermoplastic 

polymer troughs covering ~45 % of total plot area. Start date for all treatments was June 11
th

 2012. 

 Five to nine individuals per species and treatment were monitored, with size ranging from 0.5 to 5.5 

m tall and 1 to 5 m of canopy width. Physiological data were collected monthly during spring to fall 2012 and 

2013 with a total of seven campaigns per year. The two first physiological campaigns of 2012 were carried out 

before the treatments began. Meteorological data were recorded using a Campbell Scientific CR1000 

datalogger at a maximum frequency of every 30 minutes throughout the experimental period for all 

parameters except precipitation, which was measured continuously. Meteorological sensors included an AIO 

102778 Weather Sensor, (Climatronics, Bohemia, NY, USA) for air temperature, relative humidity, wind speed 

and direction and barometric pressure, Campbell Scientific CS215 for additional measurements of air 

temperature and relative humidity, LI-200S Pyranometer (Li-Cor, Lincoln, NE, USA) for global radiation, Li-Cor 

LI-190SB Quantum Sensor for photosynthetically active photon flux density, and TR-525USW-R3 Tipping 

Bucket Rain Gauge (Texas Electronics, Dallas, TX, USA). Soil water content (SWC) was measured periodically at 

10 to 60 cm depth using Diviner 2000 probes (Sentek Sensor Technologies, Stepney, SA, Australia). The SWC 

values reported here are the averages for the top 40 cm of soil, as this was the minimum soil depth in the 

study area.  

Water potentials and leaf gas exchange 

All sampling campaigns lasted two consecutive days during which water potentials and gas exchange 

were measured for all trees. Two twigs per tree were collected at two times: before sunrise to measure 

predawn water potential (ψpd) and between 11:30 and 13 h (solar time) on the same day to measure midday 

water potential (ψmd). Twigs were immediately placed in plastic bags and stored in a refrigerator until they 

were measured (within 1-2 hours) at the field site using a Scholander-type pressure chamber (PMS 

Instruments, Albany, OR, USA). Daily change in water potential (Δψ) was calculated as the difference between 

ψpd and ψmd. Instantaneous determinations of leaf stomatal conductance (gs) and net assimilation rate (AN) A
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were conducted using a Li-Cor LI-6400 infrared gas-exchange analyzer system. These measurements were 

carried out at mid-morning, when highest stomatal conductance could be expected, under the following 

conditions: 380 ppm of CO2 concentration (as the average of ambient air fluctuation between 360-400 ppm), 

1500 µmol m
-2

 s
-1 

light-saturating photosynthetic photon flux density (PPFD), block temperature fixed to 20 or 

25 ºC depending on the air temperature (to reduce the temperature gradient between inside and outside the 

leaf chamber), and relative humidity on full scrub (as ambient air humidity was very low and this procedure 

allowed greater stability). Environmental conditions outside the chambers during measurement varied 

between 13 and 33 ºC for temperature and 750 - 1800 µmol m
-2

 s
-1

 for PPFD. Measurements were taken once 

steady state gas exchange had been maintained for at least 2 min, on sun-exposed shoots on the southern 

hemisphere of the canopy. Leaf area of measured foliage was determined using a Li-Cor LI-3100C area meter 

and used to correct gas exchange rates.  

Percentage loss of hydraulic conductivity  

Percentage loss of xylem hydraulic conductivity was estimated from the vulnerability curves measured 

in a subset of our experimental trees (n=3 per species per treatment) from August to October 2013 (14-16 

months after treatments began) in a companion study (Zeppel et al., in prep; Supporting Information Figure 

S1). Branches were cut in the field and wrapped in plastic bags. Once in the laboratory they were cut under 

water and allowed to rehydrate in a refrigerator for 24 hours before processing to avoid any potential artifacts 

(Wheeler et al. 2013). Water potentials after rehydration were roughly 0.02 MPa higher than predawn water 

potentials, indicating xylem integrity. Vulnerability curves were generated using the air injection method 

(Cochard et al. 1992) and fitted with a Weibull function (Neufeld et al. 1992): 

PLC = 100 - 100·e
[-(Pw/a)^b]

        (1) 

where PLC is the percentage loss of hydraulic conductivity, Pw is the applied pressure that corresponds to the 

negative value of the plant water potential, and a and b are fitted parameters. From equation (1) we can 

estimate: 1) the water potential corresponding to 50 % loss of conductivity (ψ50= -b); 2) the air-entry point, ψe, 

an estimation of the xylem tension at which pit membranes are overcome and embolism starts to spread 

(Domec and Gartner 2001); and 3) the hydraulic failure threshold, ψmax, an estimate of the maximum tension 

of the xylem before failing and becoming non-conductive. ψe and ψmax were estimated following Domec and 

Gartner (2001) and are linear approximations of the applied pressures at the air entry point and at complete A
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embolism respectively. In our study, they correspond to average PLC values of approximately 10 and 90 %, 

respectively. As no significant treatment effects were detected at the species level, all treatments’ level data 

were pooled to make composite vulnerability curves for each species. Therefore, average values of a and b by 

species were used in this study to estimate PLC from ψmd values measured over the study period. In order to 

characterize hydraulic safety margins (ψsf), we subtracted ψe from ψmd (Meinzer et al. 2009). Positive ψsf 

values indicate that the ψmd of the sample is above ψe and therefore PLC would be expected to be ~0 %. 

Negative values indicate the likely presence of embolism; the more negative the value the greater the level of 

embolism. The results were qualitatively identical if other definitions of safety margins were used, e.g. ψ50 or 

ψmax instead of ψe (data not shown). 

Statistical analysis  

We used general linear mixed models to study the time series of ψpd, ψmd, ψsf, AN, gs, PLC and SWC. 

Sampling date, heating (yes or no), drought (yes or no) and their interaction were used as explanatory 

variables in the fixed part of the models. Similar models were used to study the response of these variables 

(ψpd, ψmd, ψsf, AN, gs and PLC) to soil water content. Tree nested into chamber was included as a random factor 

in all statistical models. For this purpose all outside chamber trees were considered to be in the same 

(fictitious) chamber (no chamber). Similar mixed models with drought, heating and their interaction as fixed 

factors were used to assess the relationships between response variables: Δψ versus ψpd, gs versus ψsf, and gs 

versus PLC. When analyzing the relationship between gs and ψsf and PLC we only used data from campaigns for 

which PPFD > 1250 µmol m
-2

 s
-1

 and air temperature > 18 ºC, to avoid gs depression due to suboptimal light 

and temperature conditions. 

Prior to all analyses, data were log or square root transformed to achieve normality whenever 

required (see Supporting Information, Tables S1-S13). A different model was fitted for each species in all 

statistical tests except for seasonal variation of SWC where both species were considered together. Our model 

selection procedure always started from the saturated model and progressively removed the variables with 

the lowest explanatory power until the minimal adequate model with the lowest Akaike Information Criterion 

(AIC) was obtained. Models within two AIC units of the best fitting model were considered equivalent in terms 

of fit and the simplest one was selected. All analyses were carried out using the R Statistical Software version A
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3.0.2 (R Development Core Team, 2012), using the function lme of the nlme package for Linear and Nonlinear 

Mixed Effects Models.  

Results 

Over the study period, temperature was above the 25 year average and precipitation varied 

considerably between studied years (Figure 1). Annual precipitation in 2012 and 2013 was 226 and 426 mm, 

respectively, compared with the 25 year average of 415 mm. 2013 was wetter than 2012 but 30 % of rainfall 

was concentrated in just one week of September (Figure 1c) thus most sampling conducted in 2013 was also 

during a relatively dry period compared to historical conditions. Soil moisture varied between 3.8 and 43.4 % 

in control treatments, with an average around 18%. A large peak in SWC was observed after the heavy rains of 

September 2013 (Figure 1d). Winters were cold with sporadic snowfalls from November to April. The two 

growing seasons studied were warm with average temperature (May - October) of 20.2 and 19.0 ºC in 2012 

and 2013, respectively, compared with the 15.7 ºC 25 year average for these months. High temperature and 

evaporative demand occurred in the dry pre monsoon period, with maximum values around 35 ºC and 4 kPa 

(Figure 1a, b). Treatment trees showed a consistently lower SWC than controls but differences among 

treatments were relatively small due in part to the regional dry conditions. Only the interaction between 

heating and date was significant (P<0.001), although distinctive periods with significant treatment effects 

could not be identified (Figure 1d). There were no differences in temperature and VPD between C and CC 

treatments (P=0.26 and 0.19, respectively). Daily average temperature was roughly 4.4 ºC higher in H and HD 

chambers than in D and controls (Figure 1a).  Higher temperatures in H and HD treatments were also reflected 

in an increased evaporative demand of about 0.54 kPa daily mean from May to October (Supporting 

Information, Figure S2). 

Overall, H and D treatments resulted in lower ψpd, ψsf, gs and AN, but the differences were not 

significant for all dates (Figures 2 and 3). In general the differences were clearer (and significant) during 

moderately wet periods (spring, autumn), whereas they decreased under extremely dry conditions or under 

extremely wet periods such as September 2013. Between species, drought effects were more noticeable 

(more dates with significant differences) in J. monosperma than in P. edulis (Table1). Significant effects (P<0.05) 

were more frequently associated with drought than heat treatments, particularly in J. monosperma 

(Supporting Information Tables S1-S5). Most of the differences detected between treatments for PLC over 
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time in J. monosperma have little biological significance since PLC was typically less than 7% (except June 2013, 

Figure 2c). Interestingly, the interaction between the sampling date and drought and warming, HD treatment, 

had no additional effect on P. edulis for any of the variables studied (i.e., its effect was not different from that 

of D or H treatments alone), and it only affected the interaction between sampling date and ψpd, AN, and gs 

(P<0.05) for J. monosperma. In some cases plants subjected to the combined HD treatment were closer to the 

controls (C + CC) than either D or H plants (Figures 2, 3). 

Neither drought, nor the combined treatment had any significant effect on the physiological variables’ 

(ψpd, ψsf, PLC, AN and gs) responses to SWC in any of the species. Only heated P. edulis trees showed lower ψpd 

for a given SWC (P-value of intercept and slope <0.05, Supporting Information Table S6; see also Figure S3a). 

Stomatal conductance and AN were also affected by heat in both species (Supporting Information Table S11; 

Figure S3d,e). 

Predawn water potentials (ψpd) tracked the changes in environmental conditions, particularly SWC 

and VPD (Figure 2), and the average values ranged from -0.9 to -6.6 MPa in J. monosperma and from -0.9 to -

2.7 MPa in P. edulis. ψpd were highest in spring and autumn, and plants achieved the most negative water 

potentials in the dry pre-monsoon season. In 2013, spring was drier than autumn, and it was reflected in the 

Ψpd of both species (Figure 2a). Midday water potentials (ψmd) were correlated with Ψpd in both species 

(R
2

juniper=0.87 and R
2

piñon=0.23, P<0.001 in both cases). 

Vulnerability curves measured in this study showed higher hydraulic resistance at all pressures in J. 

monosperma than P. edulis with an average ψ50 of -10.8 MPa and -4.4 MPa respectively (Supporting 

Information Figure S1). When ψmd values were related to air-entry water potentials, the corresponding 

hydraulic safety margins (ψsf) reflected similar temporal dynamics between species but very different absolute 

values: ψsf was always positive for J. monosperma (implying PLC < 10% in this species), whereas it was negative 

throughout the study period for P. edulis (Figure 2b; note that the scale is different for each species). These 

safety margins result in a PLC range from 10 to 40 % in P. edulis whereas J. monosperma shows barely 

detectable hydraulic conductivity losses except during the driest season in 2013 (Figure 2c). In J. monosperma 

ψpd and ψsf remained nearly constant at high soil moisture levels and dropped sharply when SWC decreased 

below 20 %. A similar pattern was shown by P. edulis, although the decline was less steep in this species 

(Supporting Information Figure S3a, b; Tables S6-S7). A
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Stomatal conductance (gs) dynamics were consistent with ψpd patterns for the two species. However, 

in spite of large differences in absolute ψpd values between species, the isohydric P. edulis and the anisohydric 

J. monosperma showed similar seasonal stomatal behavior, closing their stomata at similar times in early 

summer under dry conditions and showing a fast recovery after monsoon rains (Figure 3a). Despite similar 

temporal patterns, absolute AN values were slightly higher in J. monosperma than P. edulis, as shown by the 

fact that the slope of the regression between P. edulis and J. monosperma AN values was slightly, but 

significantly, lower than one (95% confidence interval = 0.81 - 0.97); see Supporting Information Figure S4). 

However, this difference declined during relatively dry periods, and AN rapidly approached ~0 in both species 

as drought developed (Figures 3b; S4). Similar to AN, absolute gs values were slightly lower in P. edulis (Figure 

S5, Supporting Information); and in this case the difference between species was greater in heated trees 

(P<0.05). Net assimilation rate and stomatal conductance appeared sensitive to SWC over the entire range of 

SWC variation, but the decline in AN and gs accentuated when SWC dropped below 20 % (Supporting 

Information Figures S3d and e; Tables S9-10). 

 The difference between predawn and midday water potentials (Δψ), a measure of the water potential 

reduction through the plant associated with whole-plant water transport at midday, decreased in both species 

in response to drying soil (as indicated by declining ψpd) (R
2

juniperus=0.34 and R
2

pinus=0.64, P<0.001 in both cases; 

Figure 4, Supporting Information Table S11). Δψ decline in P. edulis was steeper than in J. monosperma. 

However, this relationship was unaffected by treatments in either species. 

Stomatal conductance was also examined as a function of hydraulic measures for those dates with 

optimum values of PPFD and temperature (Figure 5). In J. monosperma, gs decreased steeply with narrowing 

ψsf (P<0.001, R
2
=0.67; Figure 5a, Supporting Information Table S12), and this relationship was similar across 

treatments. A similar behavior was observed in P. edulis, but in this case ψsf explained less than 10% of 

stomatal conductance variability (P<0.001, R
2
=0.07). For this species the only significant treatment effect 

indicated that droughted (D) plants had slightly lower gs for a given ψsf than controls (P<0.05; Figure S6a). 

There was a strong negative relationship between stomatal conductance and percent loss of xylem hydraulic 

conductivity (PLC) for J. monosperma across treatments (R
2
=0.75; Supporting Information Table S13), although 

the range of variation of gs occurred within a mere 10 % variation in PLC (from 0 to 10 %; Figure 5b). P. edulis 

drought (D) trees showed lower gs values when PLC was 0 (P-value of intercept difference <0.05). A clear 

reduction of stomatal conductance with increasing PLC was also observed in P. edulis, although in this case the 
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model explained only 7% of variance in gs (P<0.05, R
2
=0.07). The previous results implied that, although 

stomatal closure occurred at much higher (less negative) water potentials in P. edulis (as expected), hydraulic 

safety margins were always wider in J. monosperma (Figure 2b), even under extremely dry conditions, due to 

the high sensitivity of its stomata to increasing PLC.   

Discussion 

Effects of drought and warming on plant hydraulics and gas exchange  

Stomatal and hydraulic responses to heat and reduced precipitation treatments clearly illustrate that 

low water availability and an increase in temperature can have a negative impact on tree performance 

regardless of the species’ strategy to face drought. As expected, drought and heat treatments impacted plant 

performance resulting in lower water potentials, gs and AN rates than controls (Fig. 2 and 3). Treatment effects 

were not always significant and differences in SWC were small due to regionally dry conditions in 2012 and 

2013. But, ψpd was lower in D and HD trees relative to the controls, supporting the effectiveness of the 

drought treatment and suggesting that similar SWC may simply reflect higher water use in the control 

treatments.  

Significant differences between treatments were more frequent under moderate ambient 

temperatures and water availability, likely because even control trees were severely water-limited throughout 

much of the study period such that treatment effects often disappeared during the driest part of the year (cf. 

Zhao et al. 2013) and conversely, even drought treatments had abundant water during periods of anomalously 

high precipitation (SWC ~40 %), such as in September 2013. This is in agreement with a previous study 

conducted in a nearby area (Mesita del Buey, ~8 km distant) showing that water is not available for plant 

extraction at SWC < 18 % on the clay loam portion of the soil (Breshears et al. 2009b). This result is also 

consistent with the threshold-like responses to SWC observed for some physiological parameters in this study 

for SWC ~20 % (Supporting Information Figure S3). Interestingly, measured SWC fluctuated around 18 %, close 

to this SWC threshold, for most of the study period and regardless of treatment (Figure 1d). 

The combined treatment, heat and drought, is the most realistic scenario according to IPCC (2013) 

projections of increasing drought (in terms of frequency and intensity) and warmer temperatures. Our 

hypothesis was that this treatment would have the largest impact on plants’ performance. However, the 

interaction between drought and heat did not exacerbate stress beyond that experienced by trees in either A
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the heat or drought treatments and thus we reject our initial hypothesis. This is likely because homeostatic 

regulation of water use resulted in all experimental treatments reaching the SWC threshold of 20% at 

approximately the same times (Figures 1d and S3), suggesting that immediate synergistic effects on plants 

hydraulics and stomatal control in response to an increase in temperature and a lower level of soil water 

content cannot be assumed. Other studies accounting for the effects of both temperature and water 

availability have shown that high VPD associated with warmer temperatures intensifies the effects of drought 

(Williams et al. 2013, Will et al. 2013, Duan et al. 2014), and that the soil moisture content at which whole 

plant C balance became negative increases with temperature (Adams et al. 2009, Zhao et al. 2013). It remains 

to be established to what extent the lack of interaction between reduced precipitation and warming observed 

in our study is due to the extremely dry ambient conditions during our study period. This interaction may be 

easier to detect in moister environments or in other variables not measured here. 

Anisohydric species are not necessarily more prone to hydraulic failure 

 The marked seasonality of temperature and precipitation in the study area, together with our study 

treatments, provided a wide range of environmental conditions, from reasonably favorable with elevated soil 

water content and moderate temperature to extremely dry conditions under low soil water content and high 

temperatures. Over this seasonal and experimental drought gradient P. edulis water potentials showed the 

expected isohydric behavior, with relatively low temporal variation in ψpd, whereas J. monosperma presented 

a typical anisohydric pattern (Figure 2a, West et al. 2007, Plaut et al. 2012, Limousin et al. 2013). This 

contrasting behavior in terms of water potential dynamics did not result in clear differences in the temporal 

dynamics of gs or AN between species (Figure 3). Stomata closed and constrained AN at similar times and under 

similar environmental conditions in both species, albeit at very different leaf water potentials (Figures 3 and 5).  

This difference is likely related to different mechanisms of stomatal closure in the two conifers studied here. 

Whereas stomatal closure in pines seems to be characterized by high abscisic acid (ABA) concentrations, in 

junipers stomatal closure may occur at relatively low ABA levels, presumably due to low guard cell turgor 

associated with their particularly negative leaf water potentials (Brodribb and McAdam 2013; Brodribb et al. 

2014). Interestingly, our observations coupled with these different mechanisms of stomatal closure imply that 

low water potentials are not necessarily associated with loose stomatal regulation, one of the key assumptions 

of the iso-/anisohydric paradigm. Although gs and AN were slightly higher in the relatively anisohydric J. A
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monosperma than in P. edulis (Supporting Information Figures S4, S5), it is unclear whether this small 

difference has important biological implications. Our results are consistent with previous studies showing that 

gas exchange of anisohydric species is not necessarily less constrained than isohydric species during drought 

(Quero et al. 2011), calling into question the generality of the hypothesis that anisohydric species are less 

prone to the carbon starvation process (McDowell et al. 2008). 

Surprisingly, tight control of ψmd and earlier response to drying soil in P. edulis (steeper relationship 

between ψmd and ψpd) was not enough to avoid excessive hydraulic tensions that cause embolism in this 

species (Sperry et al. 2002; McDowell et al. 2008). In fact ψmd was beyond the air entry point (Pe, Meinzer et al. 

2009) throughout the entire study period in P. edulis, implying chronic embolism, whereas hydraulic safety 

margins were always positive for J. monosperma, indicating avoidance of embolism (Figure 2b, 5a). Two main 

causes explain the contrasting pattern of embolism we observed in these two species over the course of the 

study. Firstly, J. monosperma is highly resistant to cavitation (low ψ50, Supporting Information Figure S1), as 

reported previously for this species (Linton et al. 1998; Wilson et al. 2008, Plaut et al. 2012), and is well-

recognized for its greater drought tolerance and survival ability during a previous severe drought that caused 

widespread mortality of co-occuring P. edulis (Breshears et al. 2005, 2009a). Secondly, although stomatal 

closure occurs at much lower water potentials in J. monosperma than in P. edulis, when stomatal response is 

presented as a function of hydraulic safety margins (Figure 5a) or PLC (Figure 5b), it becomes clear how 

conservative stomatal behavior actually is in juniper. Our results show that in J. monosperma, stomatal 

conductance is curtailed as soon as xylem tensions approached the air entry point (Pe), avoiding any significant 

xylem cavitation. This result is not consistent with the hypothesis that anisohydric species will risk embolism 

during drought and thus are more likely to experience hydraulic failure than isohydric plants (McDowell et al. 

2008). 

 More generally, our results challenge the notion that the regulation of leaf water potential per se can 

be used to establish the most likely physiological mechanism of drought mortality in these conifers. P. edulis 

and J. monosperma have long been recognized as examples of isohydric and anisohydric trees (Lajtha and 

Barnes 1991, West et al. 2007, Plaut et al. 2012). More recently, the differing stomatal behavior of these two 

species has been used to hypothesize that isohydric species (piñon) are more likely to experience carbon 

starvation than anisohydric species (juniper), which are more likely have hydraulic failure at mortality than 

isohydric species (McDowell et al. 2008, Breshears et al. 2009a). However the iso vs. anisohydric 
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characterization of plant species is typically based on a descriptive observation of stomatal response or leaf 

water potential dynamics without regard to species differences in embolism resistance (Linton et al. 1998, 

Wilson et al. 2008, Supporting Information Figure S1) or other relevant plant attributes related to stomatal 

closure mechanisms (Brodribb and McAdam 2013; Brodribb et al. 2014), maintenance of turgor in leaves 

(Meinzer et al. 2014) or phloem transport (Nikinmaa et al. 2013; Sevanto et al. 2014). Our findings 

demonstrate that conflation of stomatal behavior with these other elements, and particularly with embolism 

resistance in P. edulis and J. monosperma, has misled hypothesis development for drought-induced mortality 

in trees. Consequently, iso- vs. anisohydric characterization of stomatal behavior, as typically based on 

observations of leaf water potential dynamics and/or stomatal conductance, should not form the basis of 

assumptions or hypotheses for the physiological mechanism of drought-induced mortality among tree species. 

Instead, we advocate consideration of stomatal behavior relative to embolism resistance for predicting the 

physiological process by which trees die from drought (cf. Klein 2014; Martínez-Vilalta et al. 2014).  

In conclusion, our study highlights the complexity of characterizing stomatal regulation and the 

importance of how variables are expressed when assessing the physiological implications of such regulation. 

We examined stomatal responses through a wide range of drought conditions in two model species, the 

relatively isohydric P. edulis and relatively anisohydric J. monosperma and conclude that the latter can be 

considered to have either a lower stomatal control (the classical view, if gs is related to absolute water 

potentials), a higher stomatal control (if gs is related to hydraulic safety margins) or a similar behavior (if the 

temporal dynamics of gs or its response to SWC are considered) compared to the former species. This 

discrepancy arises from the fact that the original classification between iso- vs. anisohydric plants is based 

strictly on their capacity to regulate leaf water potentials (Stocker, 1956; Jones, 1998; Tardieu & Simonneau, 

1998). Nonetheless, this classification fails to account for the large differences in vulnerability to embolism 

among species (Choat et al. 2012; Ogasa et al. 2013) and within species (Anderegg 2014). Moreover, different 

species may operate over very different ranges of water potentials even under similar environmental 

conditions, reflecting differences in stomatal closure mechanisms (Brodribb et al. 2014), rooting depth, xylem 

anatomy (Zeppel et al. in prep), leaf turgor regulation (Meinzer et al., 2014) and phloem transport (Nikinmaa 

et al. 2013). These distinctions in hydraulic behavior are important and we show that they have very relevant 

implications for how we understand the mechanism of drought-induced mortality in iso- vs. anisohydric 

species (cf. McDowell et al. 2008). We argue that a more integrative approach incorporating stomatal and 

A
cc

ep
te

d 
A

rti
cl

e



17 
This article is protected by copyright. All rights reserved. 

xylem responses with declining water potential (cf. Klein 2014; Martínez-Vilalta et al. 2014) would be a step 

forward in classifying drought response strategies and predicting physiological mechanisms of mortality.  
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Table 1. Number of days with significant treatment effects from drought (D)and heat (H) to controls (C&CC) or 

their interaction  (HD) relative to H and D (not to controls),on predawn water potential (ψpd),hydraulic safety 

margin (ψsf), Percent loss of hydraulic conductivity (PLC), stomatal conductance (gs), and net assimilation rate 

(AN). The + and - symbols indicate positive and negative effects, and n.s. indicates non-significant effects. 

 J. monosperma P. edulis 

Variable \ Treatment  D H HD D H HD 

ψpd 9 - 4- 0 6- 4- n.s. 

ψsf 8- 3- n.s. 2- 1- n.s. 

PLC 7+ 3+ n.s. 2+ 1+ n.s. 

gs 5- 1-/1+ 0 7- 5- n.s. 

AN 6- 2- 0 5- 5- n.s. 
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Figure 1. Meteorological conditions during the course of the experiment from June 2012 to October 2013.  

Panels: a) temperature; b) vapor pressure deficit (VPD) cumulative precipitation; c) cumulative precipitation 

and d) soil water content (SWC). In panels (a) and (b) solid lines represent daily mean values of the air outside 

the chambers (no heating) (C&D), inside control chambers (CC), and inside heated chambers (HD) (H omitted 

due to overlapping); whereas shaded lines indicate maximum and minimum daily values. Panel c shows 

cumulative precipitation at the SUMO meteorological station (ambient) and as calculated in the reduced 

rainfall treatments (D& HD).Panel d shows the average SWC from 0 to 40 cm depth. Different colors indicate 

different treatments. Vertical lines indicate heating treatment beginning in panels a and b, and the first rainfall 

interception date in c and d.  

Figure 2.Time series of (a) predawn water potentials (ψpd), (b) hydraulic safety margin (ψsf) and (c) percentage 

loss of hydraulic conductivity (PLC) in branches of P. edulis and J. monosperma during the experimental period 

of 2012 and 2013. PLC was estimated from ψmd by hydraulic vulnerability curve (Supporting Information Fig. 

S1). Means and standard errors are shown. N varies from five to 13 depending on treatment and species. 

Vertical dashed lines indicate the date the treatments began and in Fig. 3b red horizontal lines show the point 

at which ψmd achieves the air-entry point, ψe. Asterisks indicate significant differences between treatments (H 

& D) and controls for a given date(*: 0.01<P<0.05, **: 0.001<P<0.01, ***: P<0.001). 

Figure 3.Time series of (a) stomatal conductance (gs) and (b) net assimilation rate (AN) in leaves of P. edulis and 

J. monosperma during the experimental period of 2012 and 2013.Means and standard errors are shown. N 

varies from five to 13 depending on treatment and species. Vertical dashed lines indicate the date the 

treatments began. Asterisks indicate significant differences between treatments (H & D) and controls for a 

given date(*: 0.01<P<0.05, **: 0.001<P<0.01, ***: P<0.001).  

Figure 4.Relationship between the predawn to midday difference in water potential (Δψ) and predawn water 

potential (ψpd) in branches of P. edulis and J. monosperma (solid grey triangles and black circles, 

respectively).Data corresponds to values measured in all trees during the different campaigns carried out 

through the experiment (N=435 and 419 for J. monosperma and P. edulis respectively). Data from different 

treatments are pooled together.  Power regression fits are depicted for both species. A
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Figure 5. Relationship between stomatal conductance (gs) and hydraulic safety margin (ψsf; a) and between gs 

and percentage loss of hydraulic conductivity (PLC; b) in P. edulis and J. monosperma (solid grey triangles and 

black circles, respectively). In Fig. 5a, the vertical dashed line indicates the point at which the ψmd reaches the 

air-entry point, ψe. Data correspond to values measured in all trees during the different campaigns carried out 

through the experiment (N=280 and 269 for J. monosperma and P. edulis, respectively). Solid lines are species-

specific linear models for juniper (black) and piñon (grey). 
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