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Abstract

Well defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the
validation of land-models used for future projections. The productivity-precipitation relationship may be
studied in two ways: the spatial approach relates differences in productivity to those in precipitation
among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach
relates inter-annual productivity changes to variation in precipitation within sites (the temporal fits, with
flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the
fits, because they can reduce precipitation below the natural range and are thus well suited to study
potential effects of climate drying. Here, we analyze the effects of dry treatments in eleven multi-year
precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that
structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept
of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit.
The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This
implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model
projections of productivity under future climate within the precipitation ranges covered by the
experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due
to mechanisms that reduced either water- or nutrient losses. The expected decrease of the intercept was
observed in only one experiment, and only when distinguishing between the late and the early phases of
the experiment. This implies that we currently do not know at which precipitation-reduction level or at
which experimental duration structural changes will start to alter ecosystem productivity. Our study
highlights the need for experiments with multiple, including more extreme, dry treatments, to identify
the precipitation boundaries within which the current temporal fits remain valid.
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Introduction

Altered precipitation patterns are projected for many regions of the world (IPCC, 2013; Solomon
et al. 2009). This includes more frequent droughts, even in regions where average annual rainfall is
projected to increase (IPCC 2012, 2013). The shortage of water often reduces plant growth which, on a
broader scale, translates into decreased productivity of terrestrial ecosystems. Therefore, in large parts of
the world, the future changes in precipitation are likely to reduce the net primary productivity (NPP).

The projection of the future status of the physical, biogeochemical and biological components of
the Earth System is achieved by means of global models. Global models include land models with
modules that project the future state of ecosystems and that include the mechanistic knowledge of the
response of ecosystem productivity to changing precipitation. For this reason, ecosystem productivity,
and specifically the NPP-precipitation relationship, is one of the targeted benchmarks for the evaluation
of the performance of these land models (Luo et al. 2012, Randerson et al. 2009). However, using NPP-
precipitation relationships as benchmarks confronts the dilemma of obtaining the relationship in either a
spatial framework, under a broad scale including sites with different precipitation regimes, or in a
temporal framework, focusing on individual sites and inter-annual variability in precipitation over

several years.

The global or across-sites ANPP-MAP relationship (ANPP, aboveground NPP; MAP, mean
annual precipitation) is referred to as the spatial fit (Lauenroth and Sala 1992) and reflects the variation
in the ANPP of ecosystems as a result of long-term influence of climatic conditions (black line in Fig.
1). Globally, ANPP increases with increasing MAP, but this effect saturates at higher MAP, around
2500 mm yr* (Huxman et al. 2004, Del Grosso et al. 2008). The spatial fit partly reflects the controls
that water availability exerts on carbon exchange by vegetation, but it also reflects the influence of
structural and functional traits of ecosystems (such as soil properties, nutrient pools, compositions of
plant and microbial communities, and traits of plants and vegetation) that constrain ANPP and are
shaped by long-term exposure to climatic conditions. Because the ongoing climate change will likely
manifest itself on a relatively short time scale, the spatial fit may not be the ideal predictor of how
ecosystems will respond to the expected changes in precipitation in the coming decades (Knapp and
Smith 2001).

The within-site variation in ANPP in response to variation in annual precipitation (AP) is
typically referred as the temporal fit (Lauenroth and Sala 1992). The temporal fit reflects the sensitivity
of ecosystems to short-term variations in weather-dependent water availability (green line in Fig. 1). It
also reflects the ecosystem resilience determined by reversible adjustments in plant physiology and
morphology (e.g. stomatal conductance or leaf area) and by transient changes in ecosystem structure and
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functioning. Such reversible adjustments may recover within one or two years (Sala et al. 2012), and
therefore do not imply permanent ecosystem changes. Transient changes in the structure of the
vegetation (e.g. leaf area index, canopy cover, root density) are responsible for the control of
productivity as legacies from precipitation in the previous year that combine with the effects of
precipitation in the current year (Yahdjian and Sala 2006, Sala et al. 2012, Anderegg et al. 2015). For
many sites, the projected decreases in precipitation will likely exceed the current ranges in AP (IPCC
2013). As the effects of as yet unobserved extreme drought and precipitation events may not be
predictable from current observations, the current temporal fit may not be an ideal predictor of ANPP

responses to more intense and frequent droughts either.

Temporal and spatial ANPP-precipitation relationships usually differ (e.g. Paruelo et al. 1999)
because the slope of the temporal fit depends on reversible mechanisms acting in the short term, whereas
the slope of the spatial fit results from long-term changes in traits and structure that characterize the
ecosystem. Globally, the spatial slope is generally steeper than the temporal slope, suggesting that
ANPP is more sensitive to long-term differences in climate than to inter-annual variation in weather.
This discrepancy in sensitivity to weather versus climate is a major source of uncertainty in the
projection of ANPP under climate change because the projection depends on the framework of the
relationship used, either spatial or temporal. To date, it remains unresolved whether the temporal fits are
best for such model benchmarking, or if fits describing higher effects of precipitation, as suggested by
the spatial fit, would be more appropriate.

To project the fate of natural ecosystems under future decreased rainfall scenarios, precipitation-
reduction experiments are a highly valuable tool. A number of such experiments were conducted over
several years in natural grassland, shrubland and forest ecosystems covering a wide range of annual
precipitation levels, but they have not yet been analyzed to verify whether responses to altered
precipitation resemble the spatial or the temporal fit, or neither of these two. In the present study, we
explored the results from eleven multi-year precipitation-reduction experiments to analyze the response
of ANPP to the reduction of AP in the dry treatment. We aim to disentangle the validity of current
ANPP-AP relationships, i.e, the temporal fit, under a drier climate using the data obtained from

experiments that have been running for several years.

We hypothesized that due to the short-term duration of experiments, ANPP in dry treatments
would be as expected from the ANPP-AP relationship in the control (dotted red line in Fig. 1), i.e. they
would follow the current site-specific temporal fit. However, if the treatment was severe enough to
cause fundamental changes in the structure and functioning of the ecosystem the ANPP would be
altered. The site temporal fit accounts for the current effects of natural AP variability on ANPP,

therefore if the dry treatment alters ANPP in a way that is different from the site temporal fit, it would
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manifest itself as a decrease in the intercept of the ANPP-AP relationship in the dry treatment compared
to that in the control. We hypothesize a decrease in the intercept (continuous red line in Fig. 1) because
that would imply that part of the additional effects of the dry treatment in ANPP would resemble long-
lasting adjustments in vegetation and soils like the ones responsible for the spatial fit. Similarly,
treatment effects appearing after several years of manipulation of the precipitation would manifest as
step-changes in the intercept. Our focus on the intercept builds on the study by Bestelmeyer et al.
(2011), who noted the value of the relationship between environmental drivers and biological responses
as descriptors of ecosystem states and used the changes in the intercepts of the relationships as one

indicator of changes in ecosystem state.

Materials and methods
Data for the analysis

We collected data from experiments conducted in natural or semi-natural ecosystems, where the
amount of precipitation was experimentally decreased by means of rainout shelters, sliding curtains or
throughfall exclusion either under continuous or episodic treatments (see Vicca et al. 2012, 2013). To
reduce the uncertainties, we selected experiments with a minimum duration of four years, yielding
altogether eleven experiments conducted at different sites (Table 1, Fig. S1, Fig. 2a). The selected
minimum duration provides at least four data points for fitting separate control and treatment temporal
fits (Fig. 2a, Table 1). MAP across these sites ranged from 235 to 1344 mm y™, with a median of 703
mm y™*. Mean annual temperature ranged from 3.0 to 18.4 °C, with a median of 12.3 °C (Table 1). Most
of the ecosystems had woody vegetation (three shrublands, BRA, GAR, and OLD, and three forests,
PRA, PUE, and WAL), three were a mixture of herbaceous plants and shrubs (KIS, LAH, and MAT),
and two were completely herbaceous (RAM and STU). The intensity of the dry treatments ranged
between 7 and 58% decrease in annual precipitation, with a median of 27% (Table 1). Details for

individual sites and experiments are found in the references listed in Table 1 and Fig. S1.

For each experiment, the data used were MAP, annual ANPP, and AP, the accumulated amount
of precipitation annually reaching the ecosystem. An annual cycle was considered between two standing
biomass measurements and can be based on a calendar year from January to December or from summer
to summer, depending on the season when the measurements were taken. Data were recorded for 4-12
years of manipulation (Table 1). AP for the controls was the natural local precipitation, whereas AP for
the treatments was the amount of water entering the plots after manipulation of the natural rain.
Manipulation consisted of blocking a fraction of the natural rain to simulate drought, with varying
intensities, timings, and durations depending on the experiment (Table 1). In herbaceous or mixed
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ecosystems ANPP was estimated from destructive measurements at peak standing biomass (LAH, MAT
and STU) or at the end of growing season (RAM). At the woody sites, ANPP was estimated by
summing the increase in standing biomass during a 12-month period and the litter produced during the

same period.
ANPP modelling

The spatial fit was obtained as a linear model of the average ANPP of the control data from the
years when the experiments were running versus the MAP at each site. Linear models for the temporal
fit between ANPP and AP and treatment were fitted independently for each site. The procedure started
with modeling the interaction between AP and treatment (i.e. control or drought). Next, the interaction
was removed from the model because it was not significant for any of the experiments (Table 2.1). For
the sites where treatments had no effect, the treatment was then removed and ANPP was modeled with
AP only to obtain the temporal slope. In a further step, we bootstrapped the slopes to obtain percentile
estimates of their confidence intervals. Analyses were performed with base R and the package:boot for
R (Canty and Ripley 2010). Additionally, a multilevel approach by linear mixed modelling is included
in the supplementary section.

However, changes may have occurred in the middle of the experimental period, and these would
be not detected when combining data from before and after such changes. We therefore developed a
procedure for the detection of such changes using three different response variables of the effects of the
treatment on ANPP: difANPP, ratioANPP and ratioANPPfix. The variable difANPP was obtained, for
each year, as the difference in mean ANPP in the control and mean ANPP in the treatment. The variable
ratioANPP was obtained similarly, but as the ratio of the two means. The variable ratioANPPfix is the
ratio of the ANPP standardized to the meanANPP of the site. This standardization removes the variation
in ANPP that can be explained by the ANPP-AP relationship in the control treatment.

The standardization follows from the reasoning that the temporal relationship

ANPP=a+b*AP (1)
can be split into a constant value and a variable value by splitting AP as follows:

AP = MAP + dAP, )

where dAP is the deviation of AP from MAP. Substituting in the equation for the temporal relationship

we obtain the expression

ANPP = a + b * (MAP + dAP) =a + b * MAP + b * dAP 3)
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where a + b * MAP is a constant value equivalent to the mean ANPP for the site under control
conditions, i.e. the fixed or structural component of ANPP which we coin ANPPfix. The remainder of
Eq 3, b * dAP, is the non-fixed or variable component representing the plasticity of ANPP in response to

weather variability. From Eq. 3, the fixed component of ANPP can then be derived as follows
ANPPfix = ANPP - b * dAP

We subsequently estimated ANPPfix for both the control and the dry treatment using the slope,
b, of the ANPP-AP relationship of the control. We estimated the response variable ratioANPPfix as the
ratio among the ANPPfix value for the treatment and ANPPfix for the control. We have used the
standardization of the ratio of ANPP whenever there is an effect of AP on ANPP because it removes the
possible differences in the intensity of the treatment derived from natural variation of precipitation, i.e.
in a year with low precipitation during the period of treatment the intensity of the treatment will be low

irrespective of the precipitation outside this period.

In order to test whether difANPP, ratioANPP and ratioANPPfix decreased or increased
(monotonically) over time, we conducted the Mann-Kendall non-parametric test for trend detection after
ensuring that there was not autocorrelation. We then identified potential step-changes, first searching for
the best dummy variable to split the data into an “early” group and a “late” group. We built all the
possible dummies starting with the dummy having the two earliest years in the “early” group and the
remaining in the “late” group and successively moving the earliest year in the “late” group to the “early”
group until only the latest two years remained in the “late” group. The best dummy variable was
identified as the one yielding the lowest AIC when modelling the response variable. Finally, we
modelled each response variable with time (in years) as the explanatory variable and compared the AIC
of this model with the AIC of the model having the best dummy as the explanatory variable. When the
latter AIC was lower we concluded that a step-change had occurred. Trend analyses were performed
with the package:Kendall for R (McLeod 2011)

Results

MAP significantly predicted the mean ANPP across-sites (Fig. 2b) with a value of 0.52 g
biomass - m™ - y*- mm™ for the coefficient of the spatial slope (Table 2.3). The within-site models
including the interaction between AP and the dry treatment were significant in two sites, KIS and LAH,
although significance was restricted only to the AP coefficient (Table 2.1). The models without
interaction term were significant for three sites, LAH, KIS and WAL (Table 2.2). LAH showed a
significant effect of both AP and treatment, whereas treatment but not AP, was significant for WAL
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(Table 2.2, Fig. 3). At two additional sites, GAR and RAM, the coefficients of the slopes were
marginally significant (Table 2.2, Fig. 3). Finally, simple models including only AP yielded lower AIC
and were significant in KIS and RAM (KIS, R? = 0.46, F(1, 20) = 16.75, p < 0.001; RAM, R?=0.28,
F(1, 13) = 5.08, p = 0.042), as well as marginally in GAR (R? = 0.35, F(1, 8) = 4.26, p = 0.073), whereas
the model including only the dry treatment was better in WAL (R? = 0.26, F(1, 22) = 7.71, p = 0.011).
The mixed modelling did not clearly unravel any additional control by temperature, vegetation type or
intensity of the treatment, most likely because of the limited number of sites (see supplementary

material).

Irrespective of the response variable tested (difANPP, ratioANPP or ratioANPPfix), KIS and
WAL were the only sites where the Mann-Kendall test revealed a significant temporal trend in the
response to the dry treatment. The response decreased in KIS (Fig. 4a, b) and increased in WAL (Fig.
4q, h), as indicated by the tau values of the Mann-Kendall test (Table 3).

The ANPP-AP relationship does not include time as explanatory variable and, although the effect
of the step-change is contributing to the significant higher intercept under dry treatment in WAL, the
ANPP-AP relationships may hide temporal trends in the effect of the treatment. In KIS the negative
trend of the treatment was not strong enough to elicit a significantly lower intercept in the ANPP-AP
relationship and was masked by the combination of data from before and after the step change.
However, adding time (in years) as explanatory parameter in the modelling of ANPP in KIS
(F(4,17)=6.74, pval=0.002) yielded, besides a clear AP effect, a marginally significant interaction
between treatment and year (t=-1.80, p=0.089).

The best dummy variable significantly split response variables into two groups at four sites
(Table 3). In KIS, STU and WAL, the dummy variable was significant for the response variable
ratioANPPfix, but standardization is meaningless for STU and WAL where AP showed no effects on
ANPRP, i.e. presented no significant slope (Table 2.2, Fig. 3). In LAH, on the other hand, AP did
significantly influence ANPP (Table 2.2) and the dummies for the variable responses difANPP and
ratioANPP were significant. Nonetheless, in LAH a step-change lacked the support of the non-
significant dummy for the more meaningful variable ratioANPPfix (Table 3), and it also lacked the
support of the Mann-Kendall test. In KIS the step-change suggested by the dummy for the response
variable ratioANPPfix (Table 3, Fig. 4a, b) was supported by the decreasing trend revealed by the
Mann-Kendall test. In WAL the dummies for the response variables difANPP and the simple ratioANPP
(Fig. 49) supported the step-change that agrees with the Mann-Kendall test (Table 3). At both KIS and
WAL, the AIC values of the models including the dummy variables were lower compared to the model
with time (in years) as explanatory variable (Table 4) supporting the occurrence of a step-change in both

experiments.
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Discussion

The data from the experiments presented the expected spatial and temporal patterns. The spatial
model had a slope steeper than the slopes of the temporal fits for several experiments (Fig. 2b, Fig. 3).
The value of 0.52 g biomass - m™ - y™*- mm™ for the slope of the spatial fit was lower than estimates in
the range 0.60-0.69 obtained with only herbaceous ecosystems (Sala et al. 2012). The slope of the
temporal fit was significantly different from zero only in four of the eleven sites, a situation similar to
that reported by Sala et al. 2012, who found non-significant temporal models in more than half of the

sixteen sites studied.

LAH and WAL were the only two experiments where the intercept of the ANPP-AP relationship
differed between dry and control treatments (Table 2.2), but with the intercept of the dry treatment
higher than the control intercept, instead of lower as we hypothesized. In these two experiments,
permanent rainout shelters removed a fixed fraction of every precipitation event. This sort of
manipulation reduces AP but may have little or no effect on the frequency or the length of the dry
periods. This presumably contrasts with inter-annual variability in natural AP in the control, where a
lower AP is more likely associated with fewer rain events and longer and more intense drought periods.

This difference is likely underlying the higher efficiency in water use at the driest LAH site.

In LAH, the abundance of biological soil crusts leads to a high spatial heterogeneity and a
horizontal redistribution of fallen water (Eldridge et al. 2000) that accumulates in small soil pockets
within the soil crust. These small soil pockets where annual vegetation develops generally receive
sufficient water to complete the vegetation cycle and replenish the soil seed bank that serves as buffer
against temporal rainfall variability (Harel et al. 2011), resulting in productivity more dependent on the
distribution of precipitation events than on their intensity above a minimum threshold. In wetter sites,
such as WAL, it is more likely that intercepting a fixed fraction of precipitation all year around is
removing water during periods when the soil storage is full. In such periods, the treatment is not
reducing plant available soil water but reduces the water lost by percolation beyond the reach of roots or
as runoff. In that case, the dry treatment has no or a weak impact on ANPP and this is then translated
into higher intercepts. However, this does not explain the 8.4 % higher ANPP in the dry treatment in
WAL, that was instead hypothesized as a consequence of lower nutrient leaching under the dry
treatment leading to the cumulative conservation of base cations for which the control treatment soil

became limited with time (Hanson et al. 2001, Johnson et al. 2008).

10
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A temporal trend in the treatment effect appeared only at two sites, KIS and WAL, where the
changes of the effects over time were better defined by a step-change than by a continuous trend (Table
4, Fig. 4b, c, g, i). The step-change at WAL occurred only three years before the end of the experiment,
and it is therefore unknown if the observed effect would be maintained in time or was the result of a
transient effect. Still a clear upward trend was present, suggesting a cumulative effect of a lower loss of
some mineral elements in the dry treatment (Johnson et al. 2008). The importance of the result in WAL
needs to be contextualized within the climate change predictions taking into account the importance of
the type of manipulation, i.e. a permanent reduction in the precipitation within each rain event. The
virtue of the result in WAL is that it brings to the discussion that an enhancement in productivity may be
the consequence of a reduction in the nutrient leaching, an effect of precipitation reduction that may not
be discarded in other experiments as well, but that may be easily masked by stronger negative effects of

water stress on plant growth.

The step-change at KIS is most likely related to a naturally dry early spring in 2007 preceding
the dry treatment during May-June: whereas the average April precipitation in the region is 40 mm
(Kovacs-Lang et al. 2000), in 2007 it reached only 1.4 mm. The response to the treatment since 2007
was larger than expected from the temporal fit in the control and indicates a substantial change from
which the ecosystem did not recover at least until 2012. The change was most likely caused by increased
mortality among dominant plant species, as earlier reported for natural strong drought events in the
region (Kovacs-Lang et al. 2005). The non-reversal of the change might have been reinforced by the
repetitive occurrence of naturally dry springs, i.e. monthly precipitation during April was 5.9 mm and
4.9 mm in 2009 and 2011, respectively. The characteristics of the soil in KIS, a sandy soil with very low
water retention, and the manipulation of precipitation consisting of the complete removal of all rain
events during the period of treatment, are factors that most likely facilitated the development of

conditions of extreme drought that lead to the observed step change.

The three sites where changes in the intercept were found, either during the whole experimental
period as in LAH and WAL or only after a few years of treatment, as in KIS, highlight three different
aspects of the precipitation-reduction experiments. LAH demonstrates how soil properties interact with
the treatment, and how an apparently absent treatment effect was revealed by comparing not the realized
ANPP but the ANPP-AP relationship (see also Fig. 4f). The unexpected increase in the intercept in
WAL reveals an effect of the dry treatment that cannot be deduced from a spatio-temporal framework,
which does not provide evidence for the productivity-enhancing effects of decreasing nutrient leaching.
Presumably, such positive effects are typically overshadowed by the negative effects of drought events
on ANPP. On the other side, the result observed in KIS fits perfectly with fundamentals of the spatio-

temporal framework. Indeed, droughts elicit multiple short-term direct and indirect effects on ANPP,

11
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most of which only last from one to a few years (Reichmann et al. 2013). However, droughts that are
longer or more intense than ecosystems are adjusted to may generate long-lasting structural and
functional impacts, such as higher plant mortality or nutrient leaching, that reduce ANPP more than
expected from the temporal fit (see e.g. van der Molen et al. 2011). When such drought episodes become
more frequent than the time needed for ecosystem recovery, the ecosystem structure and functioning can
change permanently (Fagre et al. 2009, Briske et al. 2006) and the decreased ANPP may become
characteristic of the new ecosystem state.

Besides KIS, none of the remaining experiments provided evidence of rainfall manipulation
driving the ANPP-AP relationship towards the lower intercepts that could arise via mechanisms
governing the spatial fit. We were anticipating decreases in the intercepts that could also be detected by
decreasing step-changes, if these drought experiments were pushing AP beyond the current range or
beyond a certain threshold. This would indicate altered ecosystem function due to the shift of

ecosystems towards structures more resistant to drought at the expense of stronger reductions in ANPP.

The absence of these shifts at most sites may imply i) that the experiments did not exceed critical
drought thresholds beyond which permanent changes in the ANPP-AP relationship occur or, ii) that the
experiments were of insufficient duration, and changes had not yet occurred (see for instance Anderegg
et al. 2013) either because the mechanisms responsible for structural changes have a lag-time or because
they manifest themselves only after cumulative effects of chronic drought which is in agreement with
the step changes being found in two of the longest experiments (11 and 12 years for KIS and WAL
respectively, Table 1). In most experiments, the lowest AP under the dry treatment was lower than the
minimum AP in the site precipitation range (see % min AP in Table 1). We, therefore, expected that the
ecosystems would be pushed close to their limits. However, at sites with short precipitation records (see
the number in brackets in the MAP column in Tablel), we must consider the possibility that the actual
minimum AP in the dry treatment may be higher than the minimum AP in a longer record, especially in
the drier sites with a wide range of naturally occurring AP variation (Tielborger et al. 2014). In such
cases treatments would not be expected to cause changes in ecosystem properties. Data from long-term
monitoring suggest that the ANPP-AP relationship may change after an extraordinary sequence of wet
years (Peters et al. 2012), which reinforces the hypothesis that a certain duration of the experiments is

required for the detection of changes in ecosystems.

Most current experiments do not yet allow for determining which of the above possibilities is
most likely. In order to do so, and at the light of results in KIS, these experiments should be continued to
determine the effects of prolonged droughts. At the same time, future experiments should simulate more
severe droughts in order to be able to identify thresholds for ecosystem changes (Beier et al. 2012, Bahn

et al. 2014). While the spatial model may be useful to validate the average ANPP of a given site, it does
12
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not reflect short-term within-site variability. The results for most of the experiments included in the
present study do not provide evidence that temporal fits estimated within the ecosystem’s current AP
range are not appropriate for validation of within-site ANPP variability under a mild to moderately drier
climate. Nonetheless, the step-change identified in KIS reveals that downshifts from current

relationships may occur beyond certain precipitation thresholds or after key events.

Well-defined and standardized benchmarks such as the ANPP-precipitation relationship are
required to evaluate the performance of the biogeochemical and vegetation components of global
models (Luo et al. 2012). Accurate current temporal fits are a prerequisite to understand the context of
variability in which drought-induced changes can unfold, but the demands for a good ANPP-
precipitation benchmark also include the identification of AP boundaries within which current temporal
fits remain valid, as well as the identification of the key events that can induce step changes. Efforts in
these directions are needed for reliably projecting ANPP, given that current state-of-the-art global
carbon cycle models are likely to be too sensitive to precipitation variability (Piao et al. 2013).
Thresholds for changes in ecosystem structure and function, i.e. boundaries of the AP range for current
temporal fits, may or may not exist and will only be revealed by precipitation change studies that are
severe enough (Beier et al. 2012, Reichstein et al. 2013, Smith 2011). With this purpose, an ideal
experimental design would include the simultaneous application of multiple levels of reduction in AP
(e.g. one, one and a half, two times the AP decrease projected by climate models) (Smith et al. 2014).
Such efforts aimed at providing the information necessary to properly validate the performance of land-
surface models are essential for model improvement and, particularly, for the reliability of ANPP

estimation under future climate when droughts are expected to be more intense.

Our results suggest that it is not necessary to take into account the higher sensitivity of ANPP to
lower precipitation predicted by the spatial fit when precipitation removal treatments are mild to
moderate (see Table 1), although we acknowledge that lagged or cumulative effects may not have
appeared within the current duration of the eleven experiments included in our analysis. Despite
potentially being unrealistic in terms of anticipated climate change, we recommend pushing the
ecosystems far beyond the current AP range of the control temporal fit in order to reveal the critical
thresholds for long-term higher-than-expected declines in ANPP, but also to disentangle the mechanisms
that contribute to fundamental changes in ecosystems. The boundaries of the resistance and/or resilience
of ecosystems to dry spells is, after all, the basis for the split between the spatial and the temporal fits.

Acknowledgements

This work emerged from the Carbo-Extreme project funded by the European Community’s 7
Framework Programme under grant agreement FP7-ENV-2008-1-226701 and has been supported by the

13



388
389
390
391
392
393
394
395
396
397
398
399
400
401

402

403
404

405

406
407
408

409
410

411
412

413
414

415
416

ESF-network CLIMMANI and the COST action 5ES1308. ME, JP and RO were supported by the
Spanish Government grants CGL2013-48074-P, the Catalan Government grant SGR 2014-274, and the
European Research Council grant ERC-2013-SyG 610028-IMBALANCE-P. SV is a postdoctoral fellow
of the Research Foundation - Flanders (FWO). OES acknowledges support from the US National
Science Foundation DEB-1235828 and DEB 1354732. PAF acknowledges support from USDA-NIFA
(2010-65615-20632). MS and JK were supported by the Israel Ministry of Science and Technology
(MOST). Research by KT, MS and JK was part of the GLOWA Jordan River project, funded by the
German Ministry of Science and Education (BMBF). GK-D and EL-K were supported by the FP7
(INCREASE: 227628) programmes, and by the Hungarian Scientific Research Fund (OTKA K112576
and PD 115637). MB and RH were supported by the Austrian Science Fund-FWF grant P22214-B17
and the ERA-Net BiodivERSA project REGARDS (FWF-1-1056). PJH was supported by the U.S.
Department of Energy, Office of Science, Office of Biological and Environmental Research. We thank
Roberto Molowny for his advice on data treatment. AT thanks Joke Westerveld for assistance with the

experiment.
Author contributions

ME, SV, JP, and IAJ conceived the paper and analyzed the data. All authors contributed

substantially to the discussion and the writing.
Reference List

Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought's legacy:
multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased
future risk. Global Change Biology, 19, 1188-1196.

Anderegg WRL, Schwalm C, Biondi F et al. (2015) Pervasive drought legacies in forest ecosystems and
their implications for carbon cycle models. Science, 349, 528-532.

Bahn M, Reichstein M, Dukes JS, Smith MD, McDowell NG (2014) Climate-biosphere interactions in a
more extreme world. New Phytologist, 202, 356-359.

Barbeta A, Ogaya R, Penuelas J (2013) Dampening effects of long-term experimental drought on growth
and mortality rates of a Holm oak forest. Global Change Biology, 19, 3133-3144.

Beier C, Emmett BA, Tietema A et al. (2012) Precipitation manipulation experiments - challenges and

recommendations for the future. Ecology Letters, 15, 899-911.

14



417
418

419
420

421
422

423

424
425

426
427

428
429
430

431
432
433

434
435
436

437
438

439
440

441
442

443
444

Beier C, Beierkuhnlein C, Wohlgemuth T et al. (2009) Carbon and nitrogen balances for six shrublands
across Europe. Global Biogeochemical Cycles, 23, GB4008.

Bestelmeyer BT, Ellison AM, Fraser WR et al. (2011) Analysis of abrupt transitions in ecological
systems. Ecosphere, 2, 129.

Briske DD, Fuhlendorf SD, Smeins FE (2006) A unified framework for assessment and application of
ecological thresholds. Rangeland Ecology & Management, 59, 225-236.

Canty A, Ripley B (2010) boot: Bootstrap R (S-Plus) functions. R package version 1.2-42.

Del Grosso S, Parton W, Stohlgren T et al. (2008) Global potential net primary production predicted

from vegetation class, precipitation, and temperature. Ecology, 89, 2117-2126.

Eldridge DJ, Zaady E, Shachak M (2000). Infiltration through three contrasting biological soil crusts in
patterned landscapes in the Negev, Israel. Catena, 40, 323-336.

Fagre DB, Charles CW, Allen CD et al. (2009) Thresholds of climate change in ecosystems. A report by
the U.S. climate change science program and the subcommittee on global change research. U.S.

Geological Survey, Reston, VA.

Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of
precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences, 8, 3053-
3068.

Hanson PJ, Todd DE, Amthor JS (2001) A six year study of sapling and large-tree growth and mortality
responses to natural and induced variability in precipitation and throughfall. Tree Physiology, 21, 345-
358.

Harel D, Holzapfel C, Sternberg M (2011) Seed mass and dormancy of annual plant populations and
communities decreases with aridity and rainfall predictability. Basic and Applied Ecology, 12, 674-684.

Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015) Summer drought alters carbon allocation to

roots and root respiration in mountain grassland. New Phytologist, 205, 1117-1127.

Huxman TE, Smith MD, Fay PA et al. (2004) Convergence across biomes to a common rain-use
efficiency. Nature, 429, 651-654.

IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation
(eds Field CB, Barros V, Stocker TF et al.). Cambridge University Press, NY.

15



445
446

447
448

449
450

451
452
453

454
455

456
457
458

459
460

461
462
463

464
465

466
467

468
469

470
471

IPCC (2013) Climate change 2013: the physical science basis, (eds Stocker TF, Qin D, Plattner G-K et
al.). Cambridge University Press, Cambridge.

Johnson DW, Todd DE, Hanson PJ (2008) Effects of throughfall manipulation on soil nutrient status:
results of 12 years of sustained wet and dry treatments. Global Change Biology, 14, 1661-1675.

Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary
production. Science, 291, 481-484.

Kovacs-Lang E., Kroel-Dulay G., Kertész M. et al. (2000) Changes in the composition of sand
grasslands along a climatic gradient in Hungary, and implications for climate change. Phytocoenologia,
30, 385-407.

Kovacs-Lang E., Kroel-Dulay G., Rédei T. (2005) The effect of climate change on forest-steppe
ecosystems. Magyar Tudomany, 50, 812-817. (in Hungarian)

Larsen KS, Andresen LC, Beier C et al. (2011) Reduced N cycling in response to drought, warming, and
elevated CO; in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of
treatments. Global Change Biology, 17, 1884-1899.

Lauenroth WK, Sala OE (1992) Long-term forage production of north-American shortgrass steppe.
Ecological Applications, 2, 397-403.

Limousin JM, Rambal S, Ourcival J, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term
transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change
Biology, 15, 2163-2175.

Luo YQ, Randerson JT, Abramowitz G (2012) A framework for benchmarking land models.
Biogeosciences, 9, 3857-3874.

McLeod Al (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version
2.2. http://[CRAN.R-project.org/package=Kendall

Ogaya R, Pefiuelas J (2007) Tree growth, mortality, and above-ground biomass accumulation in a holm

oak forest under a five-year experimental field drought. Plant Ecology, 189, 291-299.

Paruelo J, Lauenroth WK, Burke IC, Sala OE (1999) Grassland precipitation-use efficiency varies across
a resource gradient. Ecosystems, 2, 64-68.

16



472
473

474
475
476
477

478
479

480
481

482
483

484
485

486
487
488

489
490

491
492

493
494
495
496

497
498

499

Peters DPC, Yao J, Sala OE, Anderson JP (2012) Directional climate change and potential reversal of
desertification in arid and semiarid ecosystems. Global Change Biology, 18, 151-163.

Pefiuelas J, Prieto P, Beier C et al. (2007) Response of plant species richness and primary productivity in
shrublands along a north-south gradient in Europe to seven years of experimental warming and drought:
reductions in primary productivity in the heat and drought year of 2003. Global Change Biology, 13,
2563-2581.

Piao S, Sitch S, Ciais P et al. (2013) Evaluation of terrestrial carbon cycle models for their response to
climate variability and to CO, trends. Global Change Biology, 19, 2117-2132.

Randerson JT, Hoffman FM, Thornton PE et al. (2009) Systematic assessment of terrestrial

biogeochemistry in coupled climate-carbon models. Global Change Biology, 15, 2462-2484.

Reichmann LG, Sala OE, Peters DPC (2013) Precipitation legacies in desert grassland primary
production occur through previous-year tiller density. Ecology, 94, 435-443.

Reichstein M, Bahn M, Ciais P et al. (2013) Climate extremes and the carbon cycle. Nature, 500, 287-
295.

Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012) Legacies of precipitation fluctuations
on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B:
Biological Sciences, 367, 3135-3144.

Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects.
Journal of Ecology, 99, 651-655.

Smith NG, Rodgers VL, Brzostek et al. (2014) Toward a better integration of biological data from

precipitation manipulation experiments into Earth system models. Reviews of Geophysics, 52, 412-434.

Sternberg M, Holzapfel C, Tielborger K et al. (2011) The use and misuse of climatic gradients for
evaluating climate impact on dryland ecosystems - an example for the solution of conceptual problems.
In: Climate Change - Geophysical Foundations and Ecological Effects (eds Blanco J, Kheradmand, H.
(Ed.), InTech

Tielborger K, Bilton MC, Metz J et al. (2014) Middle-Eastern plant communities tolerate 9 years of

drought in a multi-site climate manipulation experiment. Nature Communications, 5, 1-9.

17



500
501
502

503
504

505
506

507
508

509
510

Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon
dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America,
106, 1704-1709.

van der Molen MK, Dolman AJ, Ciais P et al. (2011) Drought and ecosystem carbon cycling.
Agricultural and Forest Meteorology, 151, 765-773.

Vicca S, Gilgen AK, Serrano MC et al. (2012) Urgent need for a common metric to make precipitation
manipulation experiments comparable. New Phytologist, 195, 518-522.

Vicca S, Bahn M, Estiarte M et al. (2014) Can current moisture responses predict soil CO, efflux under

altered precipitation regimes? A synthesis of manipulation experiments. Biogeosciences, 11, 2991-3013.

Yahdjian L, Sala OE (2006) Vegetation structure constrains primary production response to water
availability in the Patagonian steppe. Ecology, 87, 952-962.

18



511

512

513

514

515

516

517

518

Table 1. Drying experiments in natural ecosystems with four or more years of data. Vegetation type is simplified to woody or herbaceous or a mixture of

both types of plants (BRA, GAR, KIS, LAH, MAT and OLD are shrublands and PRA, PUE and WAL are forests). Num. years indicates the number of

years with data available, it is the same for both control and drought treatment except for RAM, where the length of the drying experiment was 4 years but

the data available for control temporal fit was 11 years long. MAT, mean annual temperature; MAP, mean annual precipitation; MedAP, median annual

precipitation; AP, annual precipitation. Values in brackets in MAP indicate the number of years with data available for the calculation of MAP, MedAP and

the site AP range. The % reduction in AP indicates the average % of precipitation annually removed by the treatment. % minAP in drying indicates in which

percentage the minimum AP in the drying treatment was lower than the minimum AP of the longest record for the site (actual values are probably higher for

the sites with short records).

. . . .
experiments  abrev. num. vegetation  MAT MAP MedAP AP site, AP control, AP drying, AP, % minAP ref._S|t_e
years range range range % reduct. in drying description
Brandbjerg BRA 6 woody 80 658(33) 657  458-894  600-1010  543-938 7.3 19 '-aré%”ﬁ; al.
Garraf  GAR 5 woody 156 570(l2) 528  403-956  424-822  135-391 582 -67 Pe”‘(*;'%s;;t al.
Kiskunsag KIS 11 herb/woody 10.4 571(13) 545  364-1025 364-678 303564 215 17 Beier et al. (2009)
Lahav  LAH 9  herb/woody 184 235(9) 235  132-336  135-248  95-175 29 28 Ste”(‘ggﬁ)et al.
Matta ~ MAT 9  herbiwoody 17.7 498(9) 459  348-761  348-584  248-409 295 -29 T'e'b(%gfj)et al.
Oldebroek  OLD 5 woody  10.1 1014 (13) 1018  820-1233 777-1039  633-808  19.4 23 Pe”‘(ﬁ('%s;;t al.
Ogaya and
Prades =~ PRA 11 woody 117 555(20) 505  332-996  376-926  301-741  19.9 9 Pefiuelas (2007),
Barbeta et al.
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Puechabon
RaMPs
Stubai
Walker
Branch
519
520

PUE 10
11con/
RAM 4 dro
STU 5
WAL 12

woody
herb
herb

woody

13.4 916 (30)
13 748 (11)
30 1359 (5)

143 1344 (56)

910

748

1305

1351

550-1548

558-875

1240-1659 1240-1659

932-1940

682-1231

558-874

932-1674

498-899

488-880

732-1186

624-1121

27

18.1

34

33

(2013)

Limousin et al.
(2009)

-13 Fay et al. (2011)

Hasibeder et al.
(2015)
Hanson et al.
(2001)
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Table 2. Summary of the linear models of ANPP versus AP and treatment, with (1) and without (2) interaction, within each site, as well as summary of the

spatial fit obtained modeling the mean ANPP from control data for each site versus the MAP. r squ, R squared values of the model; F, F values of the model

preceded by the degrees of freedom in brackets; p val, p values of the whole model; t / coef includes two values, t stands for t values of the coefficients for

the main effects (AP and treatment) and their interaction, and coef stands for the estimates of these coefficients. The whole summaries are only included for

the sites where at least one coefficient of the model differed from zero, as indicated by the asterisks after the t values. (*), p< 0.1; *, p <0.05, **, p<0.01.

Sites: BRA- Brandbjerg, GAR-Garraf, KIS-Kiskunsag, LAH-Lahav, MAT-Matta, OLD-Oldebroek, PRA-Prades, PUE — Puechabon, RAM-RaMPs, STU -

Stubai, WAL - Walker Branch.

ANPP vs. AP and treatment

(1) including interaction (2) only main effects
ANPP= AP+treatment+AP:treatment ANPP=AP+treatment
site r squ F p val t / coef, AP t, treatment  t, AP:treatment r squ F p val t / coef, AP t / coef, treatment
BRA ns ns ns ns ns
GAR ns ns ns 0.48 (2,7)3.21  0.102 2.34/0.16 (*) ns
KIS 0.51 (3,18)6.17  0.005 2.47/0.04 * ns ns 0.50 (2,19)9.64 0.001 3.13/0.05 ** ns
LAH 0.50 (3,14)4.69 0.019 2.72/035%* ns ns 0.49 (2,15) 7.24  0.006 3.78/0.39 ** 2.29/30.9*
MAT ns ns ns ns ns
OoLD ns ns ns ns ns
PRA ns ns ns ns ns
PUE ns ns ns ns ns
RAM ns ns ns 0.29 (2,12)2.39 0.133 1.97/0.45 (*) ns
STU ns ns ns ns ns
WAL ns ns ns 0.28 (2,21)4.01 0.033 ns 2.38/64.8*

(3) meanANPPcontrol vs. MAP
rsqu F pval t/coef, MAP
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spatial

0.51

(1,9) 9.46

0.013

3.08/0.52*

22



531
532
533
534
535
536

537
538

Table 3. For each individual site and for each explanatory variable (difANPP, ratioANPP and ratioANPPfix), results of 1) Mann-Kendall test for monotonic
trends and of 2) linear models of the explanatory variables versus the best dummy variable for each site. Only significant results are shown. In 1) the
columns headed tau_pval indicate the tau value of the Mann-Kendall test and the associated pval (positive tau values indicate an increasing trend and
negative tau values indicate a decreasing trend). In 2) the columns headed %effect_pval under the response variables ratioANPP and ratioANPPfix, indicate
the percent increase in the effect of the treatment in the late dummy group as compared to the early dummy group, and columns headed year show the last
year in the first dummy group, i.e. the last year before the hypothetical occurrence of a step change

1) Mann-Kendall 2) dummy
difANPP ratioANPP  ratioANPPfix difANPP ratioANPP ratioANPPfix

site tau_pval tau_pval tau_pval pval year % effect_pval year % effect_pval year
BRA - - - - - - - - -
GAR - - - - - - - - -
KIS -0.67** -0.64** -0.60* iolele 2006 -25.6** 2006 -23.0 ** 2006
LAH - - - ™*) 2004 20.3(*) 2004
MAT - - - - - - - - -
OLD - - - - - - - - -
PRA - - - - - - - - -
PUE - - - - - - - - -
RAM - - - - - - - - -
STU - - - - - - - -88.6** 2010
WAL 0.51* 0.51* 0.54* * 2002 12.6** 2002 12.6** 2002

(*), p< 0.1; *, p <0.05; **, p<0.01; *** p<0.001

23



539
540

541

542

543

Table 4. AIC values of the models of each of the three response variables, difANPP, ratioANPP and
ratioANPPfix, versus either the best dummy variable or the time (in years).

difANPP ratioANPP ratioANPPfix
site AIC dummy AIC time AIC dummy  AIC time AIC dummy  AIC time
KIS 714 74 -21.5 -17.2 -22.9 -17.2
WAL 116.6 121.1 -36.6 -32.5 -35.5 -31.0
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Fig. 1. Schematic overview of the spatial and temporal relationships between ANPP and precipitation.
The black line represents the spatial fit, or across-sites relationship between ANPP and MAP. The green
line represents the temporal fit of a single ecosystem, i.e. the within-site relationship between ANPP and
AP. The red lines represent the ANPP-AP relationship under drier climatic conditions (i.e. with reduced
AP). The dotted red line represents the situation of the current temporal fit, i.e. the ANPP-AP
relationship obtained for the control treatment, being valid under the new drier AP range. The
continuous red line represents the new ANPP-AP relationship under a new ecosystem state when

fundamental changes in the ecosystem reduced the intercept as compared to the current temporal fit.

spatial

ANPP

Precipitation, MAP or AP
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Figure 2.

a) ANPP versus AP data including dry and control treatments from the eleven experiments. Experiments
are identified by colors in the figure legend: BRA, Brandbjerg; GAR, Garraf; KIS, Kiskunsag; LAH,
Lahav; MAT, Matta; OLD, Oldebroek; PRA, Prades; PUE, Puechabon; RAM, RaMPs; STU, Stubai;
WAL, Walker Branch.

b) Points indicate the mean ANPP in the control plots versus the MAP for each experiment. The thick
black line is the spatial fit across the MAP range. The colored lines denote temporal fits with the lines
extending across the AP range and each color corresponding to one experiment. Note that LAH and
WAL are represented by two lines according to the differences in intercept between dry and control
treatments as described in Table 2.2, although the differences are too slight for easy appreciation. The
significances of the slopes are presented in Table 2 and Figure 2.
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Figure 3. Bootstrapped percentile slope estimates of confidence intervals for the temporal fits of the

eleven sites and for the spatial fit. Vertical dashed black line indicates the lower limit for the confidence

interval of the spatial fit. Confidence intervals of the spatial fit do not overlap with most of the

confidence intervals of the temporal fits. Colors as in Fig. 2.
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Figure 4. Effects of the dry treatment on the response variables ratioANPP and ratioANPPfix at three
selected sites. The response variable difANPP is not included because it was redundant with ratioANPP.
The response variables at the three sites KIS (a, b, ¢), LAH (d, e, f) and WAL (g, h, i) are plotted against
the year (a, b, d, e, g, h) or the untreated natural AP, i.e. the AP in the control, along the experimental
period (c, f, i). The response variables are ratioANPP (a, d, g, i) and ratioANPPfix (b, c, d, e, f). For
completeness, the two response variables are included but only one variable per site (ratioANPPfix in
KIS and LAH, and ratioANPP in WAL), was chosen as indicative of the convenience of testing for step-
changes (depending on the occurrence of AP effects). Arrows in (a, b, d, g) indicate the last year before
the best dummy variables indicate a change between an early and a late group (Table 3). Arrows in (c, f,
1) indicate for every corresponding site the precipitation during the year when the step change occurred.
Arrows are in black when drawn in the panels of these indicative variables and in grey otherwise. In (c,
f, i) the filled circles indicate the first measurement year and the lines indicate the sequence of the

different experimental years.
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