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Abstract 34 

 35 

Well defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the 36 

validation of land-models used for future projections. The productivity-precipitation relationship may be 37 

studied in two ways: the spatial approach relates differences in productivity to those in precipitation 38 

among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach 39 

relates inter-annual productivity changes to variation in precipitation within sites (the temporal fits, with 40 

flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the 41 

fits, because they can reduce precipitation below the natural range and are thus well suited to study 42 

potential effects of climate drying. Here, we analyze the effects of dry treatments in eleven multi-year 43 

precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that 44 

structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept 45 

of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. 46 

The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This 47 

implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model 48 

projections of productivity under future climate within the precipitation ranges covered by the 49 

experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due 50 

to mechanisms that reduced either water- or nutrient losses. The expected decrease of the intercept was 51 

observed in only one experiment, and only when distinguishing between the late and the early phases of 52 

the experiment. This implies that we currently do not know at which precipitation-reduction level or at 53 

which experimental duration structural changes will start to alter ecosystem productivity. Our study 54 

highlights the need for experiments with multiple, including more extreme, dry treatments, to identify 55 

the precipitation boundaries within which the current temporal fits remain valid. 56 

 57 

  58 
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Introduction 59 

Altered precipitation patterns are projected for many regions of the world (IPCC, 2013; Solomon 60 

et al. 2009). This includes more frequent droughts, even in regions where average annual rainfall is 61 

projected to increase (IPCC 2012, 2013). The shortage of water often reduces plant growth which, on a 62 

broader scale, translates into decreased productivity of terrestrial ecosystems. Therefore, in large parts of 63 

the world, the future changes in precipitation are likely to reduce the net primary productivity (NPP). 64 

The projection of the future status of the physical, biogeochemical and biological components of 65 

the Earth System is achieved by means of global models. Global models include land models with 66 

modules that project the future state of ecosystems and that include the mechanistic knowledge of the 67 

response of ecosystem productivity to changing precipitation.  For this reason, ecosystem productivity, 68 

and specifically the NPP-precipitation relationship, is one of the targeted benchmarks for the evaluation 69 

of the performance of these land models (Luo et al. 2012, Randerson et al. 2009). However, using NPP-70 

precipitation relationships as benchmarks confronts the dilemma of obtaining the relationship in either a 71 

spatial framework, under a broad scale including sites with different precipitation regimes, or in a 72 

temporal framework, focusing on individual sites and inter-annual variability in precipitation over 73 

several years. 74 

The global or across-sites ANPP-MAP relationship (ANPP, aboveground NPP; MAP, mean 75 

annual precipitation) is referred to as the spatial fit (Lauenroth and Sala 1992) and reflects the variation 76 

in the ANPP of ecosystems as a result of long-term influence of climatic conditions (black line in Fig. 77 

1). Globally, ANPP increases with increasing MAP, but this effect saturates at higher MAP, around 78 

2500 mm yr
-1

 (Huxman et al. 2004, Del Grosso et al. 2008). The spatial fit partly reflects the controls 79 

that water availability exerts on carbon exchange by vegetation, but it also reflects the influence of 80 

structural and functional traits of ecosystems (such as soil properties, nutrient pools, compositions of 81 

plant and microbial communities, and traits of plants and vegetation) that constrain ANPP and are 82 

shaped by long-term exposure to climatic conditions. Because the ongoing climate change will likely 83 

manifest itself on a relatively short time scale, the spatial fit may not be the ideal predictor of how 84 

ecosystems will respond to the expected changes in precipitation in the coming decades (Knapp and 85 

Smith 2001). 86 

The within-site variation in ANPP in response to variation in annual precipitation (AP) is 87 

typically referred as the temporal fit (Lauenroth and Sala 1992). The temporal fit reflects the sensitivity 88 

of ecosystems to short-term variations in weather-dependent water availability (green line in Fig. 1). It 89 

also reflects the ecosystem resilience determined by reversible adjustments in plant physiology and 90 

morphology (e.g. stomatal conductance or leaf area) and by transient changes in ecosystem structure and 91 
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functioning. Such reversible adjustments may recover within one or two years (Sala et al. 2012), and 92 

therefore do not imply permanent ecosystem changes. Transient changes in the structure of the 93 

vegetation (e.g. leaf area index, canopy cover, root density) are responsible for the control of 94 

productivity as legacies from precipitation in the previous year that combine with the effects of 95 

precipitation in the current year (Yahdjian and Sala 2006, Sala et al. 2012, Anderegg et al. 2015). For 96 

many sites, the projected decreases in precipitation will likely exceed the current ranges in AP (IPCC 97 

2013). As the effects of as yet unobserved extreme drought and precipitation events may not be 98 

predictable from current observations, the current temporal fit may not be an ideal predictor of ANPP 99 

responses to more intense and frequent droughts either. 100 

Temporal and spatial ANPP-precipitation relationships usually differ (e.g. Paruelo et al. 1999) 101 

because the slope of the temporal fit depends on reversible mechanisms acting in the short term, whereas 102 

the slope of the spatial fit results from long-term changes in traits and structure that characterize the 103 

ecosystem. Globally, the spatial slope is generally steeper than the temporal slope, suggesting that 104 

ANPP is more sensitive to long-term differences in climate than to inter-annual variation in weather. 105 

This discrepancy in sensitivity to weather versus climate is a major source of uncertainty in the 106 

projection of ANPP under climate change because the projection depends on the framework of the 107 

relationship used, either spatial or temporal. To date, it remains unresolved whether the temporal fits are 108 

best for such model benchmarking, or if fits describing higher effects of precipitation, as suggested by 109 

the spatial fit, would be more appropriate. 110 

To project the fate of natural ecosystems under future decreased rainfall scenarios, precipitation-111 

reduction experiments are a highly valuable tool. A number of such experiments were conducted over 112 

several years in natural grassland, shrubland and forest ecosystems covering a wide range of annual 113 

precipitation levels, but they have not yet been analyzed to verify whether responses to altered 114 

precipitation resemble the spatial or the temporal fit, or neither of these two. In the present study, we 115 

explored the results from eleven multi-year precipitation-reduction experiments to analyze the response 116 

of ANPP to the reduction of AP in the dry treatment. We aim to disentangle the validity of current 117 

ANPP-AP relationships, i.e, the temporal fit, under a drier climate using the data obtained from 118 

experiments that have been running for several years.  119 

We hypothesized that due to the short-term duration of experiments, ANPP in dry treatments 120 

would be as expected from the ANPP-AP relationship in the control (dotted red line in Fig. 1), i.e. they 121 

would follow the current site-specific temporal fit.  However, if the treatment was severe enough to 122 

cause fundamental changes in the structure and functioning of the ecosystem the ANPP would be 123 

altered. The site temporal fit accounts for the current effects of natural AP variability on ANPP, 124 

therefore if the dry treatment alters ANPP in a way that is different from the site temporal fit, it would 125 
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manifest itself as a decrease in the intercept of the ANPP-AP relationship in the dry treatment compared 126 

to that in the control. We hypothesize a decrease in the intercept (continuous red line in Fig. 1) because 127 

that would imply that  part of the additional effects of the dry treatment  in ANPP would resemble long-128 

lasting adjustments in vegetation and soils like the ones responsible for the spatial fit. Similarly, 129 

treatment effects appearing after several years of manipulation of the precipitation would manifest as 130 

step-changes in the intercept. Our focus on the intercept builds on the study by Bestelmeyer et al. 131 

(2011), who noted the value of the relationship between environmental drivers and biological responses 132 

as descriptors of ecosystem states and used the changes in the intercepts of the relationships as one 133 

indicator of changes in ecosystem state. 134 

 135 

Materials and methods 136 

Data for the analysis 137 

We collected data from experiments conducted in natural or semi-natural ecosystems, where the 138 

amount of precipitation was experimentally decreased by means of rainout shelters, sliding curtains  or 139 

throughfall exclusion either under continuous or episodic treatments (see Vicca et al. 2012, 2013). To 140 

reduce the uncertainties, we selected experiments with a minimum duration of four years, yielding 141 

altogether eleven experiments conducted at different sites (Table 1, Fig. S1, Fig. 2a). The selected 142 

minimum duration provides at least four data points for fitting separate control and treatment temporal 143 

fits (Fig. 2a, Table 1). MAP across these sites ranged from 235 to 1344 mm y
-1

, with a median of 703 144 

mm y
-1

. Mean annual temperature ranged from 3.0 to 18.4 ºC, with a median of 12.3 ºC (Table 1). Most 145 

of the ecosystems had woody vegetation (three shrublands, BRA, GAR, and OLD, and three forests, 146 

PRA, PUE, and WAL), three were a mixture of herbaceous plants and shrubs (KIS, LAH, and MAT), 147 

and two were completely herbaceous (RAM and STU). The intensity of the dry treatments ranged 148 

between 7 and 58% decrease in annual precipitation, with a median of 27% (Table 1). Details for 149 

individual sites and experiments are found in the references listed in Table 1 and Fig. S1. 150 

For each experiment, the data used were MAP, annual ANPP, and AP, the accumulated amount 151 

of precipitation annually reaching the ecosystem. An annual cycle was considered between two standing 152 

biomass measurements and can be based on a calendar year from January to December or from summer 153 

to summer, depending on the season when the measurements were taken. Data were recorded for 4-12 154 

years of manipulation (Table 1). AP for the controls was the natural local precipitation, whereas AP for 155 

the treatments was the amount of water entering the plots after manipulation of the natural rain. 156 

Manipulation consisted of blocking a fraction of the natural rain to simulate drought, with varying 157 

intensities, timings, and durations depending on the experiment (Table 1). In herbaceous or mixed 158 
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ecosystems ANPP was estimated from destructive measurements at peak standing biomass (LAH, MAT 159 

and STU) or at the end of growing season (RAM). At the woody sites, ANPP was estimated by 160 

summing the increase in standing biomass during a 12-month period and the litter produced during the 161 

same period. 162 

ANPP modelling 163 

The spatial fit was obtained as a linear model of the average ANPP of the control data from the 164 

years when the experiments were running versus the MAP at each site. Linear models for the temporal 165 

fit between ANPP and AP and treatment were fitted independently for each site. The procedure started 166 

with modeling the interaction between AP and treatment (i.e. control or drought). Next, the interaction 167 

was removed from the model because it was not significant for any of the experiments (Table 2.1). For 168 

the sites where treatments had no effect, the treatment was then removed and ANPP was modeled with 169 

AP only to obtain the temporal slope. In a further step, we bootstrapped the slopes to obtain percentile 170 

estimates of their confidence intervals. Analyses were performed with base R and the package:boot for 171 

R (Canty and Ripley 2010). Additionally, a multilevel approach by linear mixed modelling is included 172 

in the supplementary section. 173 

However, changes may have occurred in the middle of the experimental period, and these would 174 

be not detected when combining data from before and after such changes. We therefore developed a 175 

procedure for the detection of such changes using three different response variables of the effects of the 176 

treatment on ANPP: difANPP, ratioANPP and ratioANPPfix. The variable difANPP was obtained, for 177 

each year, as the difference in mean ANPP in the control and mean ANPP in the treatment. The variable 178 

ratioANPP was obtained similarly, but as the ratio of the two means. The variable ratioANPPfix is the 179 

ratio of the ANPP standardized to the meanANPP of the site. This standardization removes the variation 180 

in ANPP that can be explained by the ANPP-AP relationship in the control treatment.  181 

The standardization follows from the reasoning that the temporal relationship 182 

 ANPP = a + b * AP                                                                                     (1) 183 

can be split into a constant value and a variable value by splitting AP as follows: 184 

AP = MAP + dAP,                                                                                       (2) 185 

where dAP is the deviation of AP from MAP. Substituting in the equation for the temporal relationship 186 

we obtain the expression 187 

ANPP = a + b * (MAP + dAP) = a + b * MAP + b * dAP                         (3) 188 
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where a + b * MAP is a constant value equivalent to the mean ANPP for the site under control 189 

conditions, i.e. the fixed or structural component of ANPP which we coin ANPPfix. The remainder of 190 

Eq 3, b * dAP, is the non-fixed or variable component representing the plasticity of ANPP in response to 191 

weather variability. From Eq. 3, the fixed component of ANPP can then be derived as follows 192 

ANPPfix = ANPP - b * dAP 193 

We subsequently estimated ANPPfix for both the control and the dry treatment using the slope, 194 

b, of the ANPP-AP relationship of the control. We estimated the response variable ratioANPPfix as the 195 

ratio among the ANPPfix value for the treatment and ANPPfix for the control. We have used the 196 

standardization of the ratio of ANPP whenever there is an effect of AP on ANPP because it removes the 197 

possible differences in the intensity of the treatment derived from natural variation of precipitation, i.e. 198 

in a year with low precipitation during the period of treatment the intensity of the treatment will be low 199 

irrespective of the precipitation outside this period. 200 

In order to test whether difANPP, ratioANPP and ratioANPPfix decreased or increased 201 

(monotonically) over time, we conducted the Mann-Kendall non-parametric test for trend detection after 202 

ensuring that there was not autocorrelation. We then identified potential step-changes, first searching for 203 

the best dummy variable to split the data into an “early” group and a “late” group. We built all the 204 

possible dummies starting with the dummy having the two earliest years in the “early” group and the 205 

remaining in the “late” group and successively moving the earliest year in the “late” group to the “early” 206 

group until only the latest two years remained in the “late” group. The best dummy variable was 207 

identified as the one yielding the lowest AIC when modelling the response variable. Finally, we 208 

modelled each response variable with time (in years) as the explanatory variable and compared the AIC 209 

of this model with the AIC of the model having the best dummy as the explanatory variable. When the 210 

latter AIC was lower we concluded that a step-change had occurred. Trend analyses were performed 211 

with the package:Kendall for R (McLeod 2011) 212 

 213 

Results 214 

MAP significantly predicted the mean ANPP across-sites (Fig. 2b) with a value of 0.52 g 215 

biomass · m
-2

 · y
-1

· mm
-1

 for the coefficient of the spatial slope (Table 2.3). The within-site models 216 

including the interaction between AP and the dry treatment were significant in two sites, KIS and LAH, 217 

although significance was restricted only to the AP coefficient (Table 2.1). The models without 218 

interaction term were significant for three sites, LAH, KIS and WAL (Table 2.2).  LAH showed a 219 

significant effect of both AP and treatment, whereas treatment but not AP, was significant for WAL 220 
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(Table 2.2, Fig. 3).  At two additional sites, GAR and RAM, the coefficients of the slopes were 221 

marginally significant (Table 2.2, Fig. 3). Finally, simple models including only AP yielded lower AIC 222 

and were significant in KIS and RAM (KIS, R
2
 = 0.46, F(1, 20) = 16.75, p < 0.001; RAM,  R

2
 = 0.28, 223 

F(1, 13) = 5.08, p = 0.042), as well as marginally in GAR (R
2
 = 0.35, F(1, 8) = 4.26, p = 0.073), whereas 224 

the model including only the dry treatment was better in WAL (R
2
 = 0.26, F(1, 22) = 7.71, p = 0.011).  225 

The mixed modelling did not clearly unravel any additional control by temperature, vegetation type or 226 

intensity of the treatment, most likely because of the limited number of sites (see supplementary 227 

material).  228 

Irrespective of the response variable tested (difANPP, ratioANPP or ratioANPPfix), KIS and 229 

WAL were the only sites where the Mann-Kendall test revealed a significant temporal trend in the 230 

response to the dry treatment.  The response decreased in KIS (Fig. 4a, b) and increased in WAL (Fig. 231 

4g, h), as indicated by the tau values of the Mann-Kendall test (Table 3).  232 

The ANPP-AP relationship does not include time as explanatory variable and, although the effect 233 

of the step-change is contributing to the significant higher intercept under dry treatment in WAL, the 234 

ANPP-AP relationships may hide temporal trends in the effect of the treatment. In KIS the negative 235 

trend of the treatment was not strong enough to elicit a significantly lower intercept in the ANPP-AP 236 

relationship and was masked by the combination of data from before and after the step change. 237 

However, adding time (in years) as explanatory parameter in the modelling of ANPP in KIS 238 

(F(4,17)=6.74, pval=0.002) yielded, besides a clear AP effect, a marginally significant interaction 239 

between treatment and year (t=-1.80, p=0.089).  240 

 The best dummy variable significantly split response variables into two groups at four sites 241 

(Table 3). In KIS, STU and WAL, the dummy variable was significant for the response variable 242 

ratioANPPfix, but standardization is meaningless for STU and WAL where AP showed no effects on 243 

ANPP, i.e. presented no significant slope (Table 2.2, Fig. 3). In LAH, on the other hand, AP did 244 

significantly influence ANPP (Table 2.2) and the dummies for the variable responses difANPP and 245 

ratioANPP were significant. Nonetheless, in LAH a step-change lacked the support of the non-246 

significant dummy for the more meaningful variable ratioANPPfix (Table 3), and it also lacked the 247 

support of the Mann-Kendall test. In KIS the step-change suggested by the dummy for the response 248 

variable ratioANPPfix (Table 3, Fig. 4a, b) was supported by the decreasing trend revealed by the 249 

Mann-Kendall test. In WAL the dummies for the response variables difANPP and the simple ratioANPP 250 

(Fig. 4g) supported the step-change that agrees with the Mann-Kendall test (Table 3). At both KIS and 251 

WAL, the AIC values of the models including the dummy variables were lower compared to the model 252 

with time (in years) as explanatory variable (Table 4) supporting the occurrence of a step-change in both 253 

experiments.  254 
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 255 

 256 

Discussion 257 

The data from the experiments presented the expected spatial and temporal patterns. The spatial 258 

model had a slope steeper than the slopes of the temporal fits for several experiments (Fig. 2b, Fig. 3). 259 

The value of 0.52 g biomass · m
-2

 · y
-1

· mm
-1 

for the slope of the spatial fit was lower than estimates in 260 

the range 0.60-0.69 obtained with only herbaceous ecosystems (Sala et al. 2012). The slope of the 261 

temporal fit was significantly different from zero only in four of the eleven sites, a situation similar to 262 

that reported by Sala et al. 2012, who found non-significant temporal models in more than half of the 263 

sixteen sites studied. 264 

LAH and WAL were the only two experiments where the intercept of the ANPP-AP relationship 265 

differed between dry and control treatments (Table 2.2), but with the intercept of the dry treatment 266 

higher than the control intercept, instead of lower as we hypothesized. In these two experiments, 267 

permanent rainout shelters removed a fixed fraction of every precipitation event. This sort of 268 

manipulation reduces AP but may have little or no effect on the frequency or the length of the dry 269 

periods. This presumably contrasts with inter-annual variability in natural AP in the control, where a 270 

lower AP is more likely associated with fewer rain events and longer and more intense drought periods. 271 

This difference is likely underlying the higher efficiency in water use at the driest LAH site.  272 

In LAH, the abundance of biological soil crusts leads to a high spatial heterogeneity and a 273 

horizontal redistribution of fallen water (Eldridge et al. 2000) that accumulates in small soil pockets 274 

within the soil crust. These small soil pockets where annual vegetation develops generally receive 275 

sufficient water to complete the vegetation cycle and replenish the soil seed bank that serves as buffer 276 

against temporal rainfall variability (Harel et al. 2011), resulting in productivity more dependent on the 277 

distribution of precipitation events than on their intensity above a minimum threshold. In wetter sites, 278 

such as WAL, it is more likely that intercepting a fixed fraction of precipitation all year around is 279 

removing water during periods when the soil storage is full. In such periods, the treatment is not 280 

reducing plant available soil water but reduces the water lost by percolation beyond the reach of roots or 281 

as runoff. In that case, the dry treatment has no or a weak impact on ANPP and this is then translated 282 

into higher intercepts. However, this does not explain the 8.4 % higher ANPP in the dry treatment in 283 

WAL, that was instead hypothesized as a consequence of lower nutrient leaching under the dry 284 

treatment leading to the cumulative conservation of base cations for which the control treatment soil 285 

became limited with time (Hanson et al. 2001, Johnson et al. 2008).  286 
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A temporal trend in the treatment effect appeared only at two sites, KIS and WAL, where the 287 

changes of the effects over time were better defined by a step-change than by a continuous trend (Table 288 

4, Fig. 4b, c, g, i). The step-change at WAL occurred only three years before the end of the experiment, 289 

and it is therefore unknown if the observed effect would be maintained in time or was the result of a 290 

transient effect. Still a clear upward trend was present, suggesting a cumulative effect of a lower loss of 291 

some mineral elements in the dry treatment (Johnson et al. 2008). The importance of the result in WAL 292 

needs to be contextualized within the climate change predictions taking into account the importance of 293 

the type of manipulation, i.e. a permanent reduction in the precipitation within each rain event. The 294 

virtue of the result in WAL is that it brings to the discussion that an enhancement in productivity may be 295 

the consequence of a reduction in the nutrient leaching, an effect of precipitation reduction that may not 296 

be discarded in other experiments as well, but that may be easily masked by stronger negative effects of 297 

water stress on plant growth. 298 

The step-change at KIS is most likely related to a naturally dry early spring in 2007 preceding 299 

the dry treatment during May-June: whereas the average April precipitation in the region is 40 mm 300 

(Kovacs-Láng et al. 2000), in 2007 it reached only 1.4 mm. The response to the treatment since 2007 301 

was larger than expected from the temporal fit in the control and indicates a substantial change from 302 

which the ecosystem did not recover at least until 2012. The change was most likely caused by increased 303 

mortality among dominant plant species, as earlier reported for natural strong drought events in the 304 

region (Kovács-Láng et al. 2005). The non-reversal of the change might have been reinforced by the 305 

repetitive occurrence of naturally dry springs, i.e. monthly precipitation during April was 5.9 mm and 306 

4.9 mm in 2009 and 2011, respectively. The characteristics of the soil in KIS, a sandy soil with very low 307 

water retention, and the manipulation of precipitation consisting of the complete removal of all rain 308 

events during the period of treatment, are factors that most likely facilitated the development of 309 

conditions of extreme drought that lead to the observed step change.  310 

The three sites where changes in the intercept were found, either during the whole experimental 311 

period as in LAH and WAL or only after a few years of treatment, as in KIS, highlight three different 312 

aspects of the precipitation-reduction experiments. LAH demonstrates how soil properties interact with 313 

the treatment, and how an apparently absent treatment effect was revealed by comparing not the realized 314 

ANPP but the ANPP-AP relationship (see also Fig. 4f). The unexpected increase in the intercept in 315 

WAL reveals an effect of the dry treatment that cannot be deduced from a spatio-temporal framework, 316 

which does not provide evidence for the productivity-enhancing effects of decreasing nutrient leaching. 317 

Presumably, such positive effects are typically overshadowed by the negative effects of drought events 318 

on ANPP. On the other side, the result observed in KIS fits perfectly with fundamentals of the spatio-319 

temporal framework. Indeed, droughts elicit multiple short-term direct and indirect effects on ANPP, 320 
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most of which only last from one to a few years (Reichmann et al. 2013). However, droughts that are 321 

longer or more intense than ecosystems are adjusted to may generate long-lasting structural and 322 

functional impacts, such as higher plant mortality or nutrient leaching, that reduce ANPP more than 323 

expected from the temporal fit (see e.g. van der Molen et al. 2011). When such drought episodes become 324 

more frequent than the time needed for ecosystem recovery, the ecosystem structure and functioning can 325 

change permanently (Fagre et al. 2009, Briske et al. 2006) and  the decreased ANPP may become 326 

characteristic of the new ecosystem state. 327 

Besides KIS, none of the remaining experiments provided evidence of rainfall manipulation 328 

driving the ANPP-AP relationship towards the lower intercepts that could arise via mechanisms 329 

governing the spatial fit. We were anticipating decreases in the intercepts that could also be detected by 330 

decreasing step-changes, if these drought experiments were pushing AP beyond the current range or 331 

beyond a certain threshold. This would indicate altered ecosystem function due to the shift of 332 

ecosystems towards structures more resistant to drought at the expense of stronger reductions in ANPP.  333 

The absence of these shifts at most sites may imply i) that the experiments did not exceed critical 334 

drought thresholds beyond which permanent changes in the ANPP-AP relationship occur or, ii) that the 335 

experiments were of insufficient duration, and changes had not yet occurred (see for instance Anderegg 336 

et al. 2013) either because the mechanisms responsible for structural changes have a lag-time or because 337 

they manifest themselves only after cumulative effects of chronic drought which is in agreement with 338 

the step changes being found in two of the longest experiments (11 and 12 years for KIS and WAL 339 

respectively, Table 1). In most experiments, the lowest AP under the dry treatment was lower than the 340 

minimum AP in the site precipitation range (see % min AP in Table 1). We, therefore, expected that the 341 

ecosystems would be pushed close to their limits. However, at sites with short precipitation records (see 342 

the number in brackets in the MAP column in Table1), we must consider the possibility that the actual 343 

minimum AP in the dry treatment may be higher than the minimum AP in a longer record, especially in 344 

the drier sites with a wide range of naturally occurring AP variation (Tielbörger et al. 2014). In such 345 

cases treatments would not be expected to cause changes in ecosystem properties. Data from long-term 346 

monitoring suggest that the ANPP-AP relationship may change after an extraordinary sequence of wet 347 

years (Peters et al. 2012), which reinforces the hypothesis that a certain duration of the experiments is 348 

required for the detection of changes in ecosystems. 349 

Most current experiments do not yet allow for determining which of the above possibilities is 350 

most likely. In order to do so, and at the light of results in KIS, these experiments should be continued to 351 

determine the effects of prolonged droughts. At the same time, future experiments should simulate more 352 

severe droughts in order to be able to identify thresholds for ecosystem changes (Beier et al. 2012, Bahn 353 

et al. 2014). While the spatial model may be useful to validate the average ANPP of a given site, it does 354 
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not reflect short-term within-site variability. The results for most of the experiments included in the 355 

present study do not provide evidence that temporal fits estimated within the ecosystem’s current AP 356 

range are not appropriate for validation of within-site ANPP variability under a mild to moderately drier 357 

climate. Nonetheless, the step-change identified in KIS reveals that downshifts from current 358 

relationships may occur beyond certain precipitation thresholds or after key events.  359 

Well-defined and standardized benchmarks such as the ANPP-precipitation relationship are 360 

required to evaluate the performance of the biogeochemical and vegetation components of global 361 

models (Luo et al. 2012). Accurate current temporal fits are a prerequisite to understand the context of 362 

variability in which drought-induced changes can unfold, but the demands for a good ANPP-363 

precipitation benchmark also include the identification of AP boundaries within which current temporal 364 

fits remain valid, as well as the identification of the key events that can induce step changes.  Efforts in 365 

these directions are needed for reliably projecting ANPP, given that current state-of-the-art global 366 

carbon cycle models are likely to be too sensitive to precipitation variability (Piao et al. 2013). 367 

Thresholds for changes in ecosystem structure and function, i.e. boundaries of the AP range for current 368 

temporal fits, may or may not exist and will only be revealed by precipitation change studies that are 369 

severe enough (Beier et al. 2012, Reichstein et al. 2013, Smith 2011). With this purpose, an ideal 370 

experimental design would include the simultaneous application of multiple levels of reduction in AP 371 

(e.g. one, one and a half, two times the AP decrease projected by climate models) (Smith et al. 2014). 372 

Such efforts aimed at providing the information necessary to properly validate the performance of land-373 

surface models are essential for model improvement and, particularly, for the reliability of ANPP 374 

estimation under future climate when droughts are expected to be more intense. 375 

Our results suggest that it is not necessary to take into account the higher sensitivity of ANPP to 376 

lower precipitation predicted by the spatial fit when precipitation removal treatments are mild to 377 

moderate (see Table 1), although we acknowledge that lagged or cumulative effects may not have 378 

appeared within the current duration of the eleven experiments included in our analysis. Despite 379 

potentially being unrealistic in terms of anticipated climate change, we recommend pushing the 380 

ecosystems far beyond the current AP range of the control temporal fit in order to reveal the critical 381 

thresholds for long-term higher-than-expected declines in ANPP, but also to disentangle the mechanisms 382 

that contribute to fundamental changes in ecosystems. The boundaries of the resistance and/or resilience 383 

of ecosystems to dry spells is, after all, the basis for the split between the spatial and the temporal fits. 384 
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Table 1. Drying experiments in natural ecosystems with four or more years of data. Vegetation type is simplified to woody or herbaceous or a mixture of 511 

both types of plants (BRA, GAR, KIS, LAH, MAT and OLD are shrublands and PRA, PUE and WAL are forests). Num. years  indicates the number of 512 

years with data available, it is the same for both control and drought treatment except for RAM, where the length of the drying experiment was 4 years but 513 

the data available for control temporal fit was 11 years long. MAT, mean annual temperature; MAP, mean annual precipitation; MedAP, median annual 514 

precipitation; AP, annual precipitation. Values in brackets in MAP indicate the number of years with data available for the calculation of MAP, MedAP and 515 

the site AP range. The % reduction in AP indicates the average % of precipitation annually removed by the treatment. % minAP in drying indicates in which 516 

percentage the minimum AP in the drying treatment was lower than the minimum AP of the longest record for the site (actual values are probably higher for 517 

the sites with short records). 518 

experiments abrev. 
num. 

years 
vegetation MAT MAP MedAP 

AP site, 

range 

AP control, 

range 

AP drying, 

range 

AP, 

% reduct. 

% minAP 

in drying 

ref. site 

description 

             

Brandbjerg BRA 6 woody 8.0 658 (33) 657 458-894 600-1010 543-938 7.3 19 
Larsen et al. 

(2011) 

Garraf GAR 5 woody 15.6 570 (12) 528 403-956 424-822 135-391 58.2 -67 
Peñuelas et al. 

(2007)  

Kiskunsag KIS 11 herb/woody 10.4 571 (13) 545 364-1025 364-678 303-564 21.5 -17 Beier et al. (2009)  

Lahav LAH 9 herb/woody 18.4 235 (9) 235 132-336 135-248 95-175 29 -28 
Sternberg et al. 

(2011)  

Matta MAT 9 herb/woody 17.7 498 (9) 459 348-761 348-584 248-409 29.5 -29 
Tielbörger et al. 

(2014)  

Oldebroek OLD 5 woody 10.1 1014 (13) 1018 820-1233 777-1039 633-808 19.4 -23 
Peñuelas et al. 

(2007)  

Prades PRA 11 woody 11.7 555 (20) 505 332-996 376-926 301-741 19.9 -9 

Ogaya and 

Peñuelas (2007), 

Barbeta et al. 
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(2013) 

Puechabon PUE 10 woody 13.4 916 (30) 910 550-1548 682-1231 498-899 27 -9 
Limousin et al. 

(2009) 

RaMPs RAM 
11 con / 

4 dro 
herb 13 748 (11) 748 558-875 558-874 488-880 18.1 -13 Fay et al. (2011)  

Stubai STU 5 herb 3.0 1359 (5) 1305 1240-1659 1240-1659 732-1186 34 -41 
Hasibeder et al. 

(2015) 

Walker 

Branch 
WAL 12 woody 14.3 1344 (56) 1351 932-1940 932-1674 624-1121 33 -33 

Hanson et al. 

(2001) 

 519 

  520 
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Table 2.  Summary of the linear models of ANPP versus AP and treatment, with (1) and without (2) interaction, within each site, as well as summary of the 521 

spatial fit obtained modeling the mean ANPP from control data for each site versus the MAP. r squ, R squared values of the model; F, F values of the model 522 

preceded by the degrees of freedom in brackets; p val, p values of the whole model; t / coef includes two values, t stands for t values of the coefficients for 523 

the main effects (AP and treatment) and their interaction, and coef stands for the estimates of these coefficients. The whole summaries are only included for 524 

the sites where at least one coefficient of the model differed from zero, as indicated by the asterisks after the t values. (*), p< 0.1; *, p <0.05, **, p<0.01. 525 

Sites: BRA- Brandbjerg, GAR-Garraf, KIS-Kiskunsag, LAH-Lahav, MAT-Matta, OLD-Oldebroek, PRA-Prades, PUE – Puechabon, RAM-RaMPs, STU - 526 

Stubai, WAL - Walker Branch. 527 

 528 

ANPP vs. AP and treatment           

             
 (1) including interaction     (2) only main effects   

 ANPP= AP+treatment+AP:treatment  ANPP=AP+treatment 

site r squ F p val t / coef, AP t, treatment t, AP:treatment  r squ F p val t / coef, AP t / coef, treatment 

BRA    ns ns ns     ns ns 

GAR    ns ns ns  0.48 (2,7) 3.21 0.102 2.34 / 0.16 (*) ns 

KIS 0.51 (3,18) 6.17 0.005 2.47 / 0.04 * ns ns  0.50 (2,19) 9.64 0.001 3.13 / 0.05 ** ns 

LAH 0.50 (3,14) 4.69 0.019 2.72 / 0.35 * ns ns  0.49 (2,15) 7.24 0.006 3.78 / 0.39 ** 2.29 / 30.9 * 

MAT    ns ns ns     ns ns 

OLD    ns ns ns     ns ns 

PRA    ns ns ns     ns ns 

PUE    ns ns ns     ns ns 

RAM    ns ns ns  0.29 (2,12) 2.39 0.133 1.97 / 0.45 (*) ns 

STU    ns ns ns     ns ns 

WAL    ns ns ns  0.28 (2,21) 4.01 0.033 ns 2.38 / 64.8 * 

             

             

(3) meanANPPcontrol vs. MAP         

 r squ F p val t /coef , MAP         
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spatial 0.51 (1,9) 9.46 0.013 3.08 / 0.52 *         

 529 

  530 
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Table 3. For each individual site and for each explanatory variable (difANPP, ratioANPP and ratioANPPfix), results of 1) Mann-Kendall test for monotonic 531 

trends and of 2) linear models of the explanatory variables versus the best dummy variable for each site. Only significant results are shown. In 1) the 532 

columns headed tau_pval indicate the tau value of the Mann-Kendall test and the associated pval (positive tau values indicate an increasing trend and 533 

negative tau values indicate a decreasing trend). In 2) the columns headed %effect_pval under the response variables ratioANPP and ratioANPPfix, indicate 534 

the percent increase in the effect of the treatment in the late dummy group as compared to the early dummy group, and columns headed year show the last 535 

year in the first dummy group, i.e. the last year before the hypothetical occurrence of a step change 536 

  1) Mann-Kendall   2) dummy 

    

  difANPP ratioANPP ratioANPPfix   difANPP  ratioANPP  ratioANPPfix  

site tau_pval tau_pval tau_pval   pval year % effect_pval year % effect_pval year 

BRA -- -- --   -- -- -- -- -- -- 

GAR -- -- --   -- -- -- -- -- -- 

KIS -0.67** -0.64** -0.60*   *** 2006 -25.6** 2006 -23.0 ** 2006 

LAH -- -- --   (*) 2004 20.3(*) 2004     

MAT -- -- --   -- -- -- -- -- -- 

OLD -- -- --   -- -- -- -- -- -- 

PRA -- -- --   -- -- -- -- -- -- 

PUE -- -- --   -- -- -- -- -- -- 

RAM -- -- --   -- -- -- -- -- -- 

STU -- -- --   -- -- -- -- -88.6** 2010 

WAL 0.51* 0.51* 0.54*   ** 2002 12.6** 2002 12.6** 2002 

           

(*), p< 0.1; *, p <0.05; **, p<0.01; ***,p<0.001        

 537 

  538 
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Table 4. AIC values of the models of each of the three response variables, difANPP, ratioANPP and 539 

ratioANPPfix, versus either the best dummy variable or the time (in years). 540 

 541 

 difANPP  ratioANPP  ratioANPPfix 

site AIC dummy AIC time  AIC dummy AIC time  AIC dummy AIC time 

         
KIS 71.4 74  -21.5 -17.2  -22.9 -17.2 

WAL 116.6 121.1  -36.6 -32.5  -35.5 -31.0 

 542 

  543 
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Fig. 1. Schematic overview of the spatial and temporal relationships between ANPP and precipitation. 544 

The black line represents the spatial fit, or across-sites relationship between ANPP and MAP. The green 545 

line represents the temporal fit of a single ecosystem, i.e. the within-site relationship between ANPP and 546 

AP. The red lines represent the ANPP-AP relationship under drier climatic conditions (i.e. with reduced 547 

AP). The dotted red line represents the situation of the current temporal fit, i.e. the ANPP-AP 548 

relationship obtained for the control treatment, being valid under the new drier AP range. The 549 

continuous red line represents the new ANPP-AP relationship under a new ecosystem state when 550 

fundamental changes in the ecosystem reduced the intercept as compared to the current temporal fit. 551 

 552 

 553 

  554 
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Figure 2.  555 

a) ANPP versus AP data including dry and control treatments from the eleven experiments. Experiments 556 

are identified by colors in the figure legend: BRA, Brandbjerg; GAR, Garraf; KIS, Kiskunsag; LAH, 557 

Lahav; MAT, Matta; OLD, Oldebroek; PRA, Prades; PUE, Puechabon; RAM, RaMPs; STU, Stubai; 558 

WAL, Walker Branch. 559 

b) Points indicate the mean ANPP in the control plots versus the MAP for each experiment. The thick 560 

black line is the spatial fit across the MAP range. The colored lines denote temporal fits with the lines 561 

extending across the AP range and each color corresponding to one experiment. Note that LAH and 562 

WAL are represented by two lines according to the differences in intercept between dry and control 563 

treatments as described in Table 2.2, although the differences are too slight for easy appreciation. The 564 

significances of the slopes are presented in Table 2 and Figure 2. 565 

 566 

 567 

 568 

 569 

  570 
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Figure 3. Bootstrapped percentile slope estimates of confidence intervals for the temporal fits of the 571 

eleven sites and for the spatial fit. Vertical dashed black line indicates the lower limit for the confidence 572 

interval of the spatial fit. Confidence intervals of the spatial fit do not overlap with most of the 573 

confidence intervals of the temporal fits. Colors as in Fig. 2. 574 

 575 

 576 

 577 
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Figure 4. Effects of the dry treatment on the response variables ratioANPP and ratioANPPfix at three 579 

selected sites. The response variable difANPP is not included because it was redundant with ratioANPP.  580 

The response variables at the three sites KIS (a, b, c), LAH (d, e, f) and WAL (g, h, i) are plotted against 581 

the year (a, b, d, e, g, h) or the untreated natural AP, i.e. the AP in the control, along the experimental 582 

period (c, f, i). The response variables are ratioANPP (a, d, g, i) and ratioANPPfix (b, c, d, e, f). For 583 

completeness, the two response variables are included but only one variable per site (ratioANPPfix in 584 

KIS and LAH, and ratioANPP in WAL), was chosen as indicative of the convenience of testing for step-585 

changes (depending on the occurrence of AP effects). Arrows in (a, b, d, g) indicate the last year before 586 

the best dummy variables indicate a change between an early and a late group (Table 3). Arrows in (c, f, 587 

i) indicate for every corresponding site the precipitation during the year when the step change occurred. 588 

Arrows are in black when drawn in the panels of these indicative variables and in grey otherwise. In (c, 589 

f, i) the filled circles indicate the first measurement year and the lines indicate the sequence of the 590 

different experimental years.  591 

 592 




