

1 **Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship**
2 **Estiarte M^{1,2}, Vicca S³, Peñuelas J^{1,2}, Bahn M⁴, Beier C^{5,6}, Emmett BA⁷, Fay PA⁸, Hanson PJ⁹,**
3 **Hasibeder R⁴, Kigel J¹⁰, Kröel-Dulay G¹¹, Larsen KS⁵, Lellei-Kovács E¹¹, Limousin JM¹², Ogaya**
4 **R², Ourcival JM¹², Reinsch S⁶, Sala OE¹³, Schmidt IK⁵, Sternberg M¹⁴, Tielbörger K¹⁵, Tietema**
5 **A¹⁶, Janssens IA³**

6

7 ¹ CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, E-08193 Spain,

8 ² CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, E-08193 Spain

9 ³ Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium

10 ⁴Institute of Ecology, University of Innsbruck, Innsbruck, Austria

11 ⁵Department of Geoscience and Natural Resource Management, University of Copenhagen,
12 Rolighedsvej 23, 1958 Frederiksberg C, Denmark.

13 ⁶NIVA, Center for Catchments and Urban Water Research, Oslo, NO-0349, Norway

14 ⁷ Center for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd, LL57 2UW, UK

15 ⁸ USDA-ARS, 808 E Blackland Rd, Temple, TX 76502, USA

16 ⁹Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, TN 37831-6301, USA

17 ¹⁰The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, Hebrew University,
18 Rehovot, Israel

19 ¹¹Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, H-2163, Hungary

20 ¹²Centre d'Ecologie Fonctionnelle et Evolutive CEFE, UMR5175, CNRS, Université de Montpellier,
21 Université Paul-Valéry Montpellier, EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France

22 ¹³School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ 85287,
23 USA

24 ¹⁴ Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University,
25 Tel Aviv 69978, Israel

Post-print of: Estiarte, M. and Peñuelas, J. "Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship" in *Global Change Biology* (Ed. Wiley), vol. 22, issue 7, p. 2570-2581 (July 2016). The final version is available at DOI 10.1111/gcb.13269

26 ¹⁵Department of Biology, Plant Ecology Group, University of Tübingen, Auf der Morgenstelle 3, 72076
27 Tübingen, Germany

28 ¹⁶ Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090
29 GE Amsterdam, Netherlands

30

31 Keywords: precipitation, aboveground productivity, drought, precipitation-reduction experiments,
32 spatial fit, temporal fit

33

34 **Abstract**

35

36 Well defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the
37 validation of land-models used for future projections. The productivity-precipitation relationship may be
38 studied in two ways: the spatial approach relates differences in productivity to those in precipitation
39 among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach
40 relates inter-annual productivity changes to variation in precipitation within sites (the temporal fits, with
41 flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the
42 fits, because they can reduce precipitation below the natural range and are thus well suited to study
43 potential effects of climate drying. Here, we analyze the effects of dry treatments in eleven multi-year
44 precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that
45 structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept
46 of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit.
47 The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This
48 implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model
49 projections of productivity under future climate within the precipitation ranges covered by the
50 experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due
51 to mechanisms that reduced either water- or nutrient losses. The expected decrease of the intercept was
52 observed in only one experiment, and only when distinguishing between the late and the early phases of
53 the experiment. This implies that we currently do not know at which precipitation-reduction level or at
54 which experimental duration structural changes will start to alter ecosystem productivity. Our study
55 highlights the need for experiments with multiple, including more extreme, dry treatments, to identify
56 the precipitation boundaries within which the current temporal fits remain valid.

57

58

59 **Introduction**

60 Altered precipitation patterns are projected for many regions of the world (IPCC, 2013; Solomon
61 et al. 2009). This includes more frequent droughts, even in regions where average annual rainfall is
62 projected to increase (IPCC 2012, 2013). The shortage of water often reduces plant growth which, on a
63 broader scale, translates into decreased productivity of terrestrial ecosystems. Therefore, in large parts of
64 the world, the future changes in precipitation are likely to reduce the net primary productivity (NPP).

65 The projection of the future status of the physical, biogeochemical and biological components of
66 the Earth System is achieved by means of global models. Global models include land models with
67 modules that project the future state of ecosystems and that include the mechanistic knowledge of the
68 response of ecosystem productivity to changing precipitation. For this reason, ecosystem productivity,
69 and specifically the NPP-precipitation relationship, is one of the targeted benchmarks for the evaluation
70 of the performance of these land models (Luo et al. 2012, Randerson et al. 2009). However, using NPP-
71 precipitation relationships as benchmarks confronts the dilemma of obtaining the relationship in either a
72 spatial framework, under a broad scale including sites with different precipitation regimes, or in a
73 temporal framework, focusing on individual sites and inter-annual variability in precipitation over
74 several years.

75 The global or across-sites ANPP-MAP relationship (ANPP, aboveground NPP; MAP, mean
76 annual precipitation) is referred to as the spatial fit (Lauenroth and Sala 1992) and reflects the variation
77 in the ANPP of ecosystems as a result of long-term influence of climatic conditions (black line in Fig.
78 1). Globally, ANPP increases with increasing MAP, but this effect saturates at higher MAP, around
79 2500 mm yr⁻¹ (Huxman et al. 2004, Del Grosso et al. 2008). The spatial fit partly reflects the controls
80 that water availability exerts on carbon exchange by vegetation, but it also reflects the influence of
81 structural and functional traits of ecosystems (such as soil properties, nutrient pools, compositions of
82 plant and microbial communities, and traits of plants and vegetation) that constrain ANPP and are
83 shaped by long-term exposure to climatic conditions. Because the ongoing climate change will likely
84 manifest itself on a relatively short time scale, the spatial fit may not be the ideal predictor of how
85 ecosystems will respond to the expected changes in precipitation in the coming decades (Knapp and
86 Smith 2001).

87 The within-site variation in ANPP in response to variation in annual precipitation (AP) is
88 typically referred as the temporal fit (Lauenroth and Sala 1992). The temporal fit reflects the sensitivity
89 of ecosystems to short-term variations in weather-dependent water availability (green line in Fig. 1). It
90 also reflects the ecosystem resilience determined by reversible adjustments in plant physiology and
91 morphology (e.g. stomatal conductance or leaf area) and by transient changes in ecosystem structure and

92 functioning. Such reversible adjustments may recover within one or two years (Sala et al. 2012), and
93 therefore do not imply permanent ecosystem changes. Transient changes in the structure of the
94 vegetation (e.g. leaf area index, canopy cover, root density) are responsible for the control of
95 productivity as legacies from precipitation in the previous year that combine with the effects of
96 precipitation in the current year (Yahdjian and Sala 2006, Sala et al. 2012, Anderegg et al. 2015). For
97 many sites, the projected decreases in precipitation will likely exceed the current ranges in AP (IPCC
98 2013). As the effects of as yet unobserved extreme drought and precipitation events may not be
99 predictable from current observations, the current temporal fit may not be an ideal predictor of ANPP
100 responses to more intense and frequent droughts either.

101 Temporal and spatial ANPP-precipitation relationships usually differ (e.g. Paruelo et al. 1999)
102 because the slope of the temporal fit depends on reversible mechanisms acting in the short term, whereas
103 the slope of the spatial fit results from long-term changes in traits and structure that characterize the
104 ecosystem. Globally, the spatial slope is generally steeper than the temporal slope, suggesting that
105 ANPP is more sensitive to long-term differences in climate than to inter-annual variation in weather.
106 This discrepancy in sensitivity to weather versus climate is a major source of uncertainty in the
107 projection of ANPP under climate change because the projection depends on the framework of the
108 relationship used, either spatial or temporal. To date, it remains unresolved whether the temporal fits are
109 best for such model benchmarking, or if fits describing higher effects of precipitation, as suggested by
110 the spatial fit, would be more appropriate.

111 To project the fate of natural ecosystems under future decreased rainfall scenarios, precipitation-
112 reduction experiments are a highly valuable tool. A number of such experiments were conducted over
113 several years in natural grassland, shrubland and forest ecosystems covering a wide range of annual
114 precipitation levels, but they have not yet been analyzed to verify whether responses to altered
115 precipitation resemble the spatial or the temporal fit, or neither of these two. In the present study, we
116 explored the results from eleven multi-year precipitation-reduction experiments to analyze the response
117 of ANPP to the reduction of AP in the dry treatment. We aim to disentangle the validity of current
118 ANPP-AP relationships, i.e, the temporal fit, under a drier climate using the data obtained from
119 experiments that have been running for several years.

120 We hypothesized that due to the short-term duration of experiments, ANPP in dry treatments
121 would be as expected from the ANPP-AP relationship in the control (dotted red line in Fig. 1), i.e. they
122 would follow the current site-specific temporal fit. However, if the treatment was severe enough to
123 cause fundamental changes in the structure and functioning of the ecosystem the ANPP would be
124 altered. The site temporal fit accounts for the current effects of natural AP variability on ANPP,
125 therefore if the dry treatment alters ANPP in a way that is different from the site temporal fit, it would

126 manifest itself as a decrease in the intercept of the ANPP-AP relationship in the dry treatment compared
127 to that in the control. We hypothesize a decrease in the intercept (continuous red line in Fig. 1) because
128 that would imply that part of the additional effects of the dry treatment in ANPP would resemble long-
129 lasting adjustments in vegetation and soils like the ones responsible for the spatial fit. Similarly,
130 treatment effects appearing after several years of manipulation of the precipitation would manifest as
131 step-changes in the intercept. Our focus on the intercept builds on the study by Bestelmeyer et al.
132 (2011), who noted the value of the relationship between environmental drivers and biological responses
133 as descriptors of ecosystem states and used the changes in the intercepts of the relationships as one
134 indicator of changes in ecosystem state.

135

136 Materials and methods

137 Data for the analysis

138 We collected data from experiments conducted in natural or semi-natural ecosystems, where the
139 amount of precipitation was experimentally decreased by means of rainout shelters, sliding curtains or
140 throughfall exclusion either under continuous or episodic treatments (see Vicca et al. 2012, 2013). To
141 reduce the uncertainties, we selected experiments with a minimum duration of four years, yielding
142 altogether eleven experiments conducted at different sites (Table 1, Fig. S1, Fig. 2a). The selected
143 minimum duration provides at least four data points for fitting separate control and treatment temporal
144 fits (Fig. 2a, Table 1). MAP across these sites ranged from 235 to 1344 mm y^{-1} , with a median of 703
145 mm y^{-1} . Mean annual temperature ranged from 3.0 to 18.4 °C, with a median of 12.3 °C (Table 1). Most
146 of the ecosystems had woody vegetation (three shrublands, BRA, GAR, and OLD, and three forests,
147 PRA, PUE, and WAL), three were a mixture of herbaceous plants and shrubs (KIS, LAH, and MAT),
148 and two were completely herbaceous (RAM and STU). The intensity of the dry treatments ranged
149 between 7 and 58% decrease in annual precipitation, with a median of 27% (Table 1). Details for
150 individual sites and experiments are found in the references listed in Table 1 and Fig. S1.

151 For each experiment, the data used were MAP, annual ANPP, and AP, the accumulated amount
152 of precipitation annually reaching the ecosystem. An annual cycle was considered between two standing
153 biomass measurements and can be based on a calendar year from January to December or from summer
154 to summer, depending on the season when the measurements were taken. Data were recorded for 4-12
155 years of manipulation (Table 1). AP for the controls was the natural local precipitation, whereas AP for
156 the treatments was the amount of water entering the plots after manipulation of the natural rain.
157 Manipulation consisted of blocking a fraction of the natural rain to simulate drought, with varying
158 intensities, timings, and durations depending on the experiment (Table 1). In herbaceous or mixed

159 ecosystems ANPP was estimated from destructive measurements at peak standing biomass (LAH, MAT
160 and STU) or at the end of growing season (RAM). At the woody sites, ANPP was estimated by
161 summing the increase in standing biomass during a 12-month period and the litter produced during the
162 same period.

163 *ANPP modelling*

164 The spatial fit was obtained as a linear model of the average ANPP of the control data from the
165 years when the experiments were running versus the MAP at each site. Linear models for the temporal
166 fit between ANPP and AP and treatment were fitted independently for each site. The procedure started
167 with modeling the interaction between AP and treatment (i.e. control or drought). Next, the interaction
168 was removed from the model because it was not significant for any of the experiments (Table 2.1). For
169 the sites where treatments had no effect, the treatment was then removed and ANPP was modeled with
170 AP only to obtain the temporal slope. In a further step, we bootstrapped the slopes to obtain percentile
171 estimates of their confidence intervals. Analyses were performed with base R and the package:boot for
172 R (Canty and Ripley 2010). Additionally, a multilevel approach by linear mixed modelling is included
173 in the supplementary section.

174 However, changes may have occurred in the middle of the experimental period, and these would
175 be not detected when combining data from before and after such changes. We therefore developed a
176 procedure for the detection of such changes using three different response variables of the effects of the
177 treatment on ANPP: difANPP, ratioANPP and ratioANPPfix. The variable difANPP was obtained, for
178 each year, as the difference in mean ANPP in the control and mean ANPP in the treatment. The variable
179 ratioANPP was obtained similarly, but as the ratio of the two means. The variable ratioANPPfix is the
180 ratio of the ANPP standardized to the meanANPP of the site. This standardization removes the variation
181 in ANPP that can be explained by the ANPP-AP relationship in the control treatment.

182 The standardization follows from the reasoning that the temporal relationship

183
$$\text{ANPP} = a + b * \text{AP} \quad (1)$$

184 can be split into a constant value and a variable value by splitting AP as follows:

185
$$\text{AP} = \text{MAP} + \text{dAP}, \quad (2)$$

186 where dAP is the deviation of AP from MAP. Substituting in the equation for the temporal relationship
187 we obtain the expression

188
$$\text{ANPP} = a + b * (\text{MAP} + \text{dAP}) = a + b * \text{MAP} + b * \text{dAP} \quad (3)$$

189 where $a + b * \text{MAP}$ is a constant value equivalent to the mean ANPP for the site under control
190 conditions, i.e. the fixed or structural component of ANPP which we coin ANPPfix. The remainder of
191 Eq 3, $b * \text{dAP}$, is the non-fixed or variable component representing the plasticity of ANPP in response to
192 weather variability. From Eq. 3, the fixed component of ANPP can then be derived as follows

193
$$\text{ANPPfix} = \text{ANPP} - b * \text{dAP}$$

194 We subsequently estimated ANPPfix for both the control and the dry treatment using the slope,
195 b , of the ANPP-AP relationship of the control. We estimated the response variable ratioANPPfix as the
196 ratio among the ANPPfix value for the treatment and ANPPfix for the control. We have used the
197 standardization of the ratio of ANPP whenever there is an effect of AP on ANPP because it removes the
198 possible differences in the intensity of the treatment derived from natural variation of precipitation, i.e.
199 in a year with low precipitation during the period of treatment the intensity of the treatment will be low
200 irrespective of the precipitation outside this period.

201 In order to test whether difANPP, ratioANPP and ratioANPPfix decreased or increased
202 (monotonically) over time, we conducted the Mann-Kendall non-parametric test for trend detection after
203 ensuring that there was not autocorrelation. We then identified potential step-changes, first searching for
204 the best dummy variable to split the data into an “early” group and a “late” group. We built all the
205 possible dummies starting with the dummy having the two earliest years in the “early” group and the
206 remaining in the “late” group and successively moving the earliest year in the “late” group to the “early”
207 group until only the latest two years remained in the “late” group. The best dummy variable was
208 identified as the one yielding the lowest AIC when modelling the response variable. Finally, we
209 modelled each response variable with time (in years) as the explanatory variable and compared the AIC
210 of this model with the AIC of the model having the best dummy as the explanatory variable. When the
211 latter AIC was lower we concluded that a step-change had occurred. Trend analyses were performed
212 with the package:Kendall for R (McLeod 2011)

213

214 **Results**

215 MAP significantly predicted the mean ANPP across-sites (Fig. 2b) with a value of 0.52 g
216 $\text{biomass} \cdot \text{m}^{-2} \cdot \text{y}^{-1} \cdot \text{mm}^{-1}$ for the coefficient of the spatial slope (Table 2.3). The within-site models
217 including the interaction between AP and the dry treatment were significant in two sites, KIS and LAH,
218 although significance was restricted only to the AP coefficient (Table 2.1). The models without
219 interaction term were significant for three sites, LAH, KIS and WAL (Table 2.2). LAH showed a
220 significant effect of both AP and treatment, whereas treatment but not AP, was significant for WAL

221 (Table 2.2, Fig. 3). At two additional sites, GAR and RAM, the coefficients of the slopes were
222 marginally significant (Table 2.2, Fig. 3). Finally, simple models including only AP yielded lower AIC
223 and were significant in KIS and RAM (KIS, $R^2 = 0.46$, $F(1, 20) = 16.75$, $p < 0.001$; RAM, $R^2 = 0.28$,
224 $F(1, 13) = 5.08$, $p = 0.042$), as well as marginally in GAR ($R^2 = 0.35$, $F(1, 8) = 4.26$, $p = 0.073$), whereas
225 the model including only the dry treatment was better in WAL ($R^2 = 0.26$, $F(1, 22) = 7.71$, $p = 0.011$).
226 The mixed modelling did not clearly unravel any additional control by temperature, vegetation type or
227 intensity of the treatment, most likely because of the limited number of sites (see supplementary
228 material).

229 Irrespective of the response variable tested (difANPP, ratioANPP or ratioANPPfix), KIS and
230 WAL were the only sites where the Mann-Kendall test revealed a significant temporal trend in the
231 response to the dry treatment. The response decreased in KIS (Fig. 4a, b) and increased in WAL (Fig.
232 4g, h), as indicated by the tau values of the Mann-Kendall test (Table 3).

233 The ANPP-AP relationship does not include time as explanatory variable and, although the effect
234 of the step-change is contributing to the significant higher intercept under dry treatment in WAL, the
235 ANPP-AP relationships may hide temporal trends in the effect of the treatment. In KIS the negative
236 trend of the treatment was not strong enough to elicit a significantly lower intercept in the ANPP-AP
237 relationship and was masked by the combination of data from before and after the step change.
238 However, adding time (in years) as explanatory parameter in the modelling of ANPP in KIS
239 ($F(4,17)=6.74$, $pval=0.002$) yielded, besides a clear AP effect, a marginally significant interaction
240 between treatment and year ($t=-1.80$, $p=0.089$).

241 The best dummy variable significantly split response variables into two groups at four sites
242 (Table 3). In KIS, STU and WAL, the dummy variable was significant for the response variable
243 ratioANPPfix, but standardization is meaningless for STU and WAL where AP showed no effects on
244 ANPP, i.e. presented no significant slope (Table 2.2, Fig. 3). In LAH, on the other hand, AP did
245 significantly influence ANPP (Table 2.2) and the dummies for the variable responses difANPP and
246 ratioANPP were significant. Nonetheless, in LAH a step-change lacked the support of the non-
247 significant dummy for the more meaningful variable ratioANPPfix (Table 3), and it also lacked the
248 support of the Mann-Kendall test. In KIS the step-change suggested by the dummy for the response
249 variable ratioANPPfix (Table 3, Fig. 4a, b) was supported by the decreasing trend revealed by the
250 Mann-Kendall test. In WAL the dummies for the response variables difANPP and the simple ratioANPP
251 (Fig. 4g) supported the step-change that agrees with the Mann-Kendall test (Table 3). At both KIS and
252 WAL, the AIC values of the models including the dummy variables were lower compared to the model
253 with time (in years) as explanatory variable (Table 4) supporting the occurrence of a step-change in both
254 experiments.

255

256

257 **Discussion**

258 The data from the experiments presented the expected spatial and temporal patterns. The spatial
 259 model had a slope steeper than the slopes of the temporal fits for several experiments (Fig. 2b, Fig. 3).
 260 The value of $0.52 \text{ g biomass} \cdot \text{m}^{-2} \cdot \text{y}^{-1} \cdot \text{mm}^{-1}$ for the slope of the spatial fit was lower than estimates in
 261 the range 0.60-0.69 obtained with only herbaceous ecosystems (Sala et al. 2012). The slope of the
 262 temporal fit was significantly different from zero only in four of the eleven sites, a situation similar to
 263 that reported by Sala et al. 2012, who found non-significant temporal models in more than half of the
 264 sixteen sites studied.

265 LAH and WAL were the only two experiments where the intercept of the ANPP-AP relationship
 266 differed between dry and control treatments (Table 2.2), but with the intercept of the dry treatment
 267 higher than the control intercept, instead of lower as we hypothesized. In these two experiments,
 268 permanent rainout shelters removed a fixed fraction of every precipitation event. This sort of
 269 manipulation reduces AP but may have little or no effect on the frequency or the length of the dry
 270 periods. This presumably contrasts with inter-annual variability in natural AP in the control, where a
 271 lower AP is more likely associated with fewer rain events and longer and more intense drought periods.
 272 This difference is likely underlying the higher efficiency in water use at the driest LAH site.

273 In LAH, the abundance of biological soil crusts leads to a high spatial heterogeneity and a
 274 horizontal redistribution of fallen water (Eldridge et al. 2000) that accumulates in small soil pockets
 275 within the soil crust. These small soil pockets where annual vegetation develops generally receive
 276 sufficient water to complete the vegetation cycle and replenish the soil seed bank that serves as buffer
 277 against temporal rainfall variability (Harel et al. 2011), resulting in productivity more dependent on the
 278 distribution of precipitation events than on their intensity above a minimum threshold. In wetter sites,
 279 such as WAL, it is more likely that intercepting a fixed fraction of precipitation all year around is
 280 removing water during periods when the soil storage is full. In such periods, the treatment is not
 281 reducing plant available soil water but reduces the water lost by percolation beyond the reach of roots or
 282 as runoff. In that case, the dry treatment has no or a weak impact on ANPP and this is then translated
 283 into higher intercepts. However, this does not explain the 8.4 % higher ANPP in the dry treatment in
 284 WAL, that was instead hypothesized as a consequence of lower nutrient leaching under the dry
 285 treatment leading to the cumulative conservation of base cations for which the control treatment soil
 286 became limited with time (Hanson et al. 2001, Johnson et al. 2008).

287 A temporal trend in the treatment effect appeared only at two sites, KIS and WAL, where the
288 changes of the effects over time were better defined by a step-change than by a continuous trend (Table
289 4, Fig. 4b, c, g, i). The step-change at WAL occurred only three years before the end of the experiment,
290 and it is therefore unknown if the observed effect would be maintained in time or was the result of a
291 transient effect. Still a clear upward trend was present, suggesting a cumulative effect of a lower loss of
292 some mineral elements in the dry treatment (Johnson et al. 2008). The importance of the result in WAL
293 needs to be contextualized within the climate change predictions taking into account the importance of
294 the type of manipulation, i.e. a permanent reduction in the precipitation within each rain event. The
295 virtue of the result in WAL is that it brings to the discussion that an enhancement in productivity may be
296 the consequence of a reduction in the nutrient leaching, an effect of precipitation reduction that may not
297 be discarded in other experiments as well, but that may be easily masked by stronger negative effects of
298 water stress on plant growth.

299 The step-change at KIS is most likely related to a naturally dry early spring in 2007 preceding
300 the dry treatment during May-June: whereas the average April precipitation in the region is 40 mm
301 (Kovacs-Láng *et al.* 2000), in 2007 it reached only 1.4 mm. The response to the treatment since 2007
302 was larger than expected from the temporal fit in the control and indicates a substantial change from
303 which the ecosystem did not recover at least until 2012. The change was most likely caused by increased
304 mortality among dominant plant species, as earlier reported for natural strong drought events in the
305 region (Kovács-Láng *et al.* 2005). The non-reversal of the change might have been reinforced by the
306 repetitive occurrence of naturally dry springs, i.e. monthly precipitation during April was 5.9 mm and
307 4.9 mm in 2009 and 2011, respectively. The characteristics of the soil in KIS, a sandy soil with very low
308 water retention, and the manipulation of precipitation consisting of the complete removal of all rain
309 events during the period of treatment, are factors that most likely facilitated the development of
310 conditions of extreme drought that lead to the observed step change.

311 The three sites where changes in the intercept were found, either during the whole experimental
312 period as in LAH and WAL or only after a few years of treatment, as in KIS, highlight three different
313 aspects of the precipitation-reduction experiments. LAH demonstrates how soil properties interact with
314 the treatment, and how an apparently absent treatment effect was revealed by comparing not the realized
315 ANPP but the ANPP-AP relationship (see also Fig. 4f). The unexpected increase in the intercept in
316 WAL reveals an effect of the dry treatment that cannot be deduced from a spatio-temporal framework,
317 which does not provide evidence for the productivity-enhancing effects of decreasing nutrient leaching.
318 Presumably, such positive effects are typically overshadowed by the negative effects of drought events
319 on ANPP. On the other side, the result observed in KIS fits perfectly with fundamentals of the spatio-
320 temporal framework. Indeed, droughts elicit multiple short-term direct and indirect effects on ANPP,

321 most of which only last from one to a few years (Reichmann et al. 2013). However, droughts that are
322 longer or more intense than ecosystems are adjusted to may generate long-lasting structural and
323 functional impacts, such as higher plant mortality or nutrient leaching, that reduce ANPP more than
324 expected from the temporal fit (see e.g. van der Molen et al. 2011). When such drought episodes become
325 more frequent than the time needed for ecosystem recovery, the ecosystem structure and functioning can
326 change permanently (Fagre et al. 2009, Briske et al. 2006) and the decreased ANPP may become
327 characteristic of the new ecosystem state.

328 Besides KIS, none of the remaining experiments provided evidence of rainfall manipulation
329 driving the ANPP-AP relationship towards the lower intercepts that could arise via mechanisms
330 governing the spatial fit. We were anticipating decreases in the intercepts that could also be detected by
331 decreasing step-changes, if these drought experiments were pushing AP beyond the current range or
332 beyond a certain threshold. This would indicate altered ecosystem function due to the shift of
333 ecosystems towards structures more resistant to drought at the expense of stronger reductions in ANPP.

334 The absence of these shifts at most sites may imply i) that the experiments did not exceed critical
335 drought thresholds beyond which permanent changes in the ANPP-AP relationship occur or, ii) that the
336 experiments were of insufficient duration, and changes had not yet occurred (see for instance Anderegg
337 et al. 2013) either because the mechanisms responsible for structural changes have a lag-time or because
338 they manifest themselves only after cumulative effects of chronic drought which is in agreement with
339 the step changes being found in two of the longest experiments (11 and 12 years for KIS and WAL
340 respectively, Table 1). In most experiments, the lowest AP under the dry treatment was lower than the
341 minimum AP in the site precipitation range (see % min AP in Table 1). We, therefore, expected that the
342 ecosystems would be pushed close to their limits. However, at sites with short precipitation records (see
343 the number in brackets in the MAP column in Table 1), we must consider the possibility that the actual
344 minimum AP in the dry treatment may be higher than the minimum AP in a longer record, especially in
345 the drier sites with a wide range of naturally occurring AP variation (Tielbörger et al. 2014). In such
346 cases treatments would not be expected to cause changes in ecosystem properties. Data from long-term
347 monitoring suggest that the ANPP-AP relationship may change after an extraordinary sequence of wet
348 years (Peters et al. 2012), which reinforces the hypothesis that a certain duration of the experiments is
349 required for the detection of changes in ecosystems.

350 Most current experiments do not yet allow for determining which of the above possibilities is
351 most likely. In order to do so, and at the light of results in KIS, these experiments should be continued to
352 determine the effects of prolonged droughts. At the same time, future experiments should simulate more
353 severe droughts in order to be able to identify thresholds for ecosystem changes (Beier et al. 2012, Bahn
354 et al. 2014). While the spatial model may be useful to validate the average ANPP of a given site, it does

355 not reflect short-term within-site variability. The results for most of the experiments included in the
356 present study do not provide evidence that temporal fits estimated within the ecosystem's current AP
357 range are not appropriate for validation of within-site ANPP variability under a mild to moderately drier
358 climate. Nonetheless, the step-change identified in KIS reveals that downshifts from current
359 relationships may occur beyond certain precipitation thresholds or after key events.

360 Well-defined and standardized benchmarks such as the ANPP-precipitation relationship are
361 required to evaluate the performance of the biogeochemical and vegetation components of global
362 models (Luo et al. 2012). Accurate current temporal fits are a prerequisite to understand the context of
363 variability in which drought-induced changes can unfold, but the demands for a good ANPP-
364 precipitation benchmark also include the identification of AP boundaries within which current temporal
365 fits remain valid, as well as the identification of the key events that can induce step changes. Efforts in
366 these directions are needed for reliably projecting ANPP, given that current state-of-the-art global
367 carbon cycle models are likely to be too sensitive to precipitation variability (Piao et al. 2013).
368 Thresholds for changes in ecosystem structure and function, i.e. boundaries of the AP range for current
369 temporal fits, may or may not exist and will only be revealed by precipitation change studies that are
370 severe enough (Beier et al. 2012, Reichstein et al. 2013, Smith 2011). With this purpose, an ideal
371 experimental design would include the simultaneous application of multiple levels of reduction in AP
372 (e.g. one, one and a half, two times the AP decrease projected by climate models) (Smith et al. 2014).
373 Such efforts aimed at providing the information necessary to properly validate the performance of land-
374 surface models are essential for model improvement and, particularly, for the reliability of ANPP
375 estimation under future climate when droughts are expected to be more intense.

376 Our results suggest that it is not necessary to take into account the higher sensitivity of ANPP to
377 lower precipitation predicted by the spatial fit when precipitation removal treatments are mild to
378 moderate (see Table 1), although we acknowledge that lagged or cumulative effects may not have
379 appeared within the current duration of the eleven experiments included in our analysis. Despite
380 potentially being unrealistic in terms of anticipated climate change, we recommend pushing the
381 ecosystems far beyond the current AP range of the control temporal fit in order to reveal the critical
382 thresholds for long-term higher-than-expected declines in ANPP, but also to disentangle the mechanisms
383 that contribute to fundamental changes in ecosystems. The boundaries of the resistance and/or resilience
384 of ecosystems to dry spells is, after all, the basis for the split between the spatial and the temporal fits.

385 **Acknowledgements**

386 This work emerged from the Carbo-Extreme project funded by the European Community's 7th
387 Framework Programme under grant agreement FP7-ENV-2008-1-226701 and has been supported by the

388 ESF-network CLIMMANI and the COST action 5ES1308. ME, JP and RO were supported by the
389 Spanish Government grants CGL2013-48074-P, the Catalan Government grant SGR 2014-274, and the
390 European Research Council grant ERC-2013-SyG 610028-IMBALANCE-P. SV is a postdoctoral fellow
391 of the Research Foundation - Flanders (FWO). OES acknowledges support from the US National
392 Science Foundation DEB-1235828 and DEB 1354732. PAF acknowledges support from USDA-NIFA
393 (2010-65615-20632). MS and JK were supported by the Israel Ministry of Science and Technology
394 (MOST). Research by KT, MS and JK was part of the GLOWA Jordan River project, funded by the
395 German Ministry of Science and Education (BMBF). GK-D and EL-K were supported by the FP7
396 (INCREASE: 227628) programmes, and by the Hungarian Scientific Research Fund (OTKA K112576
397 and PD 115637). MB and RH were supported by the Austrian Science Fund-FWF grant P22214-B17
398 and the ERA-Net BiodivERsA project REGARDS (FWF-I-1056). PJH was supported by the U.S.
399 Department of Energy, Office of Science, Office of Biological and Environmental Research. We thank
400 Roberto Molowny for his advice on data treatment. AT thanks Joke Westerveld for assistance with the
401 experiment.

402 **Author contributions**

403 ME, SV, JP, and IAJ conceived the paper and analyzed the data. All authors contributed
404 substantially to the discussion and the writing.

405 **Reference List**

406 Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought's legacy:
407 multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased
408 future risk. *Global Change Biology*, **19**, 1188-1196.

409 Anderegg WRL, Schwalm C, Biondi F *et al.* (2015) Pervasive drought legacies in forest ecosystems and
410 their implications for carbon cycle models. *Science*, **349**, 528-532.

411 Bahn M, Reichstein M, Dukes JS, Smith MD, McDowell NG (2014) Climate-biosphere interactions in a
412 more extreme world. *New Phytologist*, **202**, 356-359.

413 Barbata A, Ogaya R, Penuelas J (2013) Dampening effects of long-term experimental drought on growth
414 and mortality rates of a Holm oak forest. *Global Change Biology*, **19**, 3133-3144.

415 Beier C, Emmett BA, Tietema A *et al.* (2012) Precipitation manipulation experiments - challenges and
416 recommendations for the future. *Ecology Letters*, **15**, 899-911.

417 Beier C, Beierkuhnlein C, Wohlgemuth T *et al.* (2009) Carbon and nitrogen balances for six shrublands
418 across Europe. *Global Biogeochemical Cycles*, **23**, GB4008.

419 Bestelmeyer BT, Ellison AM, Fraser WR *et al.* (2011) Analysis of abrupt transitions in ecological
420 systems. *Ecosphere*, **2**, 129.

421 Briske DD, Fuhlendorf SD, Smeins FE (2006) A unified framework for assessment and application of
422 ecological thresholds. *Rangeland Ecology & Management*, **59**, 225-236.

423 Canty A, Ripley B (2010) boot: Bootstrap R (S-Plus) functions. R package version 1.2-42.

424 Del Grosso S, Parton W, Stohlgren T *et al.* (2008) Global potential net primary production predicted
425 from vegetation class, precipitation, and temperature. *Ecology*, **89**, 2117-2126.

426 Eldridge DJ, Zaady E, Shachak M (2000). Infiltration through three contrasting biological soil crusts in
427 patterned landscapes in the Negev, Israel. *Catena*, **40**, 323–336.

428 Fagre DB, Charles CW, Allen CD *et al.* (2009) *Thresholds of climate change in ecosystems. A report by*
429 *the U.S. climate change science program and the subcommittee on global change research.* U.S.
430 Geological Survey, Reston, VA.

431 Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of
432 precipitation variability and warming on tallgrass prairie ecosystem function. *Biogeosciences*, **8**, 3053-
433 3068.

434 Hanson PJ, Todd DE, Amthor JS (2001) A six year study of sapling and large-tree growth and mortality
435 responses to natural and induced variability in precipitation and throughfall. *Tree Physiology*, **21**, 345-
436 358.

437 Harel D, Holzapfel C, Sternberg M (2011) Seed mass and dormancy of annual plant populations and
438 communities decreases with aridity and rainfall predictability. *Basic and Applied Ecology*, **12**, 674-684.

439 Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015) Summer drought alters carbon allocation to
440 roots and root respiration in mountain grassland. *New Phytologist*, **205**, 1117-1127.

441 Huxman TE, Smith MD, Fay PA *et al.* (2004) Convergence across biomes to a common rain-use
442 efficiency. *Nature*, **429**, 651-654.

443 IPCC (2012) *Managing the risks of extreme events and disasters to advance climate change adaptation*
444 (eds Field CB, Barros V, Stocker TF *et al.*). Cambridge University Press, NY.

445 IPCC (2013) *Climate change 2013: the physical science basis*, (eds Stocker TF, Qin D, Plattner G-K *et al.*). Cambridge University Press, Cambridge.

447 Johnson DW, Todd DE, Hanson PJ (2008) Effects of throughfall manipulation on soil nutrient status:
448 results of 12 years of sustained wet and dry treatments. *Global Change Biology*, **14**, 1661-1675.

449 Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary
450 production. *Science*, **291**, 481-484.

451 Kovács-Láng E., Kröel-Dulay G., Kertész M. *et al.* (2000) Changes in the composition of sand
452 grasslands along a climatic gradient in Hungary, and implications for climate change. *Phytocoenologia*,
453 **30**, 385-407.

454 Kovács-Láng E., Kröel-Dulay G., Rédei T. (2005) The effect of climate change on forest-steppe
455 ecosystems. *Magyar Tudomány*, **50**, 812-817. (in Hungarian)

456 Larsen KS, Andresen LC, Beier C *et al.* (2011) Reduced N cycling in response to drought, warming, and
457 elevated CO₂ in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of
458 treatments. *Global Change Biology*, **17**, 1884-1899.

459 Lauenroth WK, Sala OE (1992) Long-term forage production of north-American shortgrass steppe.
460 *Ecological Applications*, **2**, 397-403.

461 Limousin JM, Rambal S, Ourcival J, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term
462 transpiration change with rainfall decline in a Mediterranean *Quercus ilex* forest. *Global Change
463 Biology*, **15**, 2163-2175.

464 Luo YQ, Randerson JT, Abramowitz G (2012) A framework for benchmarking land models.
465 *Biogeosciences*, **9**, 3857-3874.

466 McLeod AI (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version
467 2.2. <http://CRAN.R-project.org/package=Kendall>

468 Ogaya R, Peñuelas J (2007) Tree growth, mortality, and above-ground biomass accumulation in a holm
469 oak forest under a five-year experimental field drought. *Plant Ecology*, **189**, 291-299.

470 Paruelo J, Lauenroth WK, Burke IC, Sala OE (1999) Grassland precipitation-use efficiency varies across
471 a resource gradient. *Ecosystems*, **2**, 64-68.

472 Peters DPC, Yao J, Sala OE, Anderson JP (2012) Directional climate change and potential reversal of
473 desertification in arid and semiarid ecosystems. *Global Change Biology*, **18**, 151-163.

474 Peñuelas J, Prieto P, Beier C *et al.* (2007) Response of plant species richness and primary productivity in
475 shrublands along a north-south gradient in Europe to seven years of experimental warming and drought:
476 reductions in primary productivity in the heat and drought year of 2003. *Global Change Biology*, **13**,
477 2563-2581.

478 Piao S, Sitch S, Ciais P *et al.* (2013) Evaluation of terrestrial carbon cycle models for their response to
479 climate variability and to CO₂ trends. *Global Change Biology*, **19**, 2117-2132.

480 Randerson JT, Hoffman FM, Thornton PE *et al.* (2009) Systematic assessment of terrestrial
481 biogeochemistry in coupled climate-carbon models. *Global Change Biology*, **15**, 2462-2484.

482 Reichmann LG, Sala OE, Peters DPC (2013) Precipitation legacies in desert grassland primary
483 production occur through previous-year tiller density. *Ecology*, **94**, 435-443.

484 Reichstein M, Bahn M, Ciais P *et al.* (2013) Climate extremes and the carbon cycle. *Nature*, **500**, 287-
485 295.

486 Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012) Legacies of precipitation fluctuations
487 on primary production: theory and data synthesis. *Philosophical Transactions of the Royal Society B:
488 Biological Sciences*, **367**, 3135-3144.

489 Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects.
490 *Journal of Ecology*, **99**, 651-655.

491 Smith NG, Rodgers VL, Brzostek *et al.* (2014) Toward a better integration of biological data from
492 precipitation manipulation experiments into Earth system models. *Reviews of Geophysics*, **52**, 412-434.

493 Sternberg M, Holzapfel C, Tielbörger K *et al.* (2011) The use and misuse of climatic gradients for
494 evaluating climate impact on dryland ecosystems - an example for the solution of conceptual problems.
495 In: *Climate Change - Geophysical Foundations and Ecological Effects* (eds Blanco J, Kheradmand, H.
496 (Ed.), InTech

497 Tielborger K, Bilton MC, Metz J *et al.* (2014) Middle-Eastern plant communities tolerate 9 years of
498 drought in a multi-site climate manipulation experiment. *Nature Communications*, **5**, 1-9.

499

500 Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon
501 dioxide emissions. *Proceedings of the National Academy of Sciences of the United States of America*,
502 **106**, 1704-1709.

503 van der Molen MK, Dolman AJ, Ciais P *et al.* (2011) Drought and ecosystem carbon cycling.
504 *Agricultural and Forest Meteorology*, **151**, 765-773.

505 Vicca S, Gilgen AK, Serrano MC *et al.* (2012) Urgent need for a common metric to make precipitation
506 manipulation experiments comparable. *New Phytologist*, **195**, 518-522.

507 Vicca S, Bahn M, Estiarte M *et al.* (2014) Can current moisture responses predict soil CO₂ efflux under
508 altered precipitation regimes? A synthesis of manipulation experiments. *Biogeosciences*, **11**, 2991-3013.

509 Yahdjian L, Sala OE (2006) Vegetation structure constrains primary production response to water
510 availability in the Patagonian steppe. *Ecology*, **87**, 952-962.

511 Table 1. Drying experiments in natural ecosystems with four or more years of data. Vegetation type is simplified to woody or herbaceous or a mixture of
 512 both types of plants (BRA, GAR, KIS, LAH, MAT and OLD are shrublands and PRA, PUE and WAL are forests). Num. years indicates the number of
 513 years with data available, it is the same for both control and drought treatment except for RAM, where the length of the drying experiment was 4 years but
 514 the data available for control temporal fit was 11 years long. MAT, mean annual temperature; MAP, mean annual precipitation; MedAP, median annual
 515 precipitation; AP, annual precipitation. Values in brackets in MAP indicate the number of years with data available for the calculation of MAP, MedAP and
 516 the site AP range. The % reduction in AP indicates the average % of precipitation annually removed by the treatment. % minAP in drying indicates in which
 517 percentage the minimum AP in the drying treatment was lower than the minimum AP of the longest record for the site (actual values are probably higher for
 518 the sites with short records).

experiments	abrev.	num. years	vegetation	MAT	MAP	MedAP	AP site, range	AP control, range	AP drying, range	AP, % reduct.	% minAP in drying	ref. site description
Brandbjerg	BRA	6	woody	8.0	658 (33)	657	458-894	600-1010	543-938	7.3	19	Larsen et al. (2011)
Garraf	GAR	5	woody	15.6	570 (12)	528	403-956	424-822	135-391	58.2	-67	Peñuelas et al. (2007)
Kiskunsag	KIS	11	herb/woody	10.4	571 (13)	545	364-1025	364-678	303-564	21.5	-17	Beier et al. (2009)
Lahav	LAH	9	herb/woody	18.4	235 (9)	235	132-336	135-248	95-175	29	-28	Sternberg et al. (2011)
Matta	MAT	9	herb/woody	17.7	498 (9)	459	348-761	348-584	248-409	29.5	-29	Tielbörger et al. (2014)
Oldebroek	OLD	5	woody	10.1	1014 (13)	1018	820-1233	777-1039	633-808	19.4	-23	Peñuelas et al. (2007)
Prades	PRA	11	woody	11.7	555 (20)	505	332-996	376-926	301-741	19.9	-9	Ogaya and Peñuelas (2007), Barbeta et al.

Puechabon	PUE	10	woody	13.4	916 (30)	910	550-1548	682-1231	498-899	27	-9	(2013) Limousin et al. (2009)
RaMPs	RAM	11 con / 4 dro	herb	13	748 (11)	748	558-875	558-874	488-880	18.1	-13	Fay et al. (2011)
Stubai	STU	5	herb	3.0	1359 (5)	1305	1240-1659	1240-1659	732-1186	34	-41	Hasibeder et al. (2015)
Walker Branch	WAL	12	woody	14.3	1344 (56)	1351	932-1940	932-1674	624-1121	33	-33	Hanson et al. (2001)

519

520

521 Table 2. Summary of the linear models of ANPP versus AP and treatment, with (1) and without (2) interaction, within each site, as well as summary of the
 522 spatial fit obtained modeling the mean ANPP from control data for each site versus the MAP. *r squ*, R squared values of the model; *F*, F values of the model
 523 preceded by the degrees of freedom in brackets; *p val*, p values of the whole model; *t / coef* includes two values, t stands for t values of the coefficients for
 524 the main effects (AP and treatment) and their interaction, and *coef* stands for the estimates of these coefficients. The whole summaries are only included for
 525 the sites where at least one coefficient of the model differed from zero, as indicated by the asterisks after the t values. (*), p< 0.1; *, p <0.05, **, p<0.01.
 526 Sites: BRA- Brandbjerg, GAR-Garraf, KIS-Kiskunsag, LAH-Lahav, MAT-Matta, OLD-Oldebroek, PRA-Prades, PUE – Puechabon, RAM-RaMPs, STU -
 527 Stubai, WAL - Walker Branch.

528

ANPP vs. AP and treatment

site	(1) including interaction					(2) only main effects					
	ANPP= AP+treatment+AP:treatment					ANPP=AP+treatment					
	<i>r squ</i>	<i>F</i>	<i>p val</i>	<i>t / coef, AP</i>	<i>t, treatment</i>	<i>t, AP:treatment</i>	<i>r squ</i>	<i>F</i>	<i>p val</i>	<i>t / coef, AP</i>	<i>t / coef, treatment</i>
BRA				ns	ns	ns				ns	ns
GAR				ns	ns	ns	0.48	(2,7) 3.21	0.102	2.34 / 0.16 (*)	ns
KIS	0.51	(3,18) 6.17	0.005	2.47 / 0.04 *	ns	ns	0.50	(2,19) 9.64	0.001	3.13 / 0.05 **	ns
LAH	0.50	(3,14) 4.69	0.019	2.72 / 0.35 *	ns	ns	0.49	(2,15) 7.24	0.006	3.78 / 0.39 **	2.29 / 30.9 *
MAT				ns	ns	ns				ns	ns
OLD				ns	ns	ns				ns	ns
PRA				ns	ns	ns				ns	ns
PUE				ns	ns	ns				ns	ns
RAM				ns	ns	ns	0.29	(2,12) 2.39	0.133	1.97 / 0.45 (*)	ns
STU				ns	ns	ns				ns	ns
WAL				ns	ns	ns	0.28	(2,21) 4.01	0.033	ns	2.38 / 64.8 *

(3) meanANPPcontrol vs. MAP

	<i>r squ</i>	<i>F</i>	<i>p val</i>	<i>t / coef, MAP</i>
--	--------------	----------	--------------	----------------------

spatial 0.51 (1,9) 9.46 0.013 3.08 / 0.52 *

529

530

531 Table 3. For each individual site and for each explanatory variable (difANPP, ratioANPP and ratioANPPfix), results of 1) Mann-Kendall test for monotonic
 532 trends and of 2) linear models of the explanatory variables versus the best dummy variable for each site. Only significant results are shown. In 1) the
 533 columns headed *tau_pval* indicate the tau value of the Mann-Kendall test and the associated pval (positive tau values indicate an increasing trend and
 534 negative tau values indicate a decreasing trend). In 2) the columns headed *%effect_pval* under the response variables ratioANPP and ratioANPPfix, indicate
 535 the percent increase in the effect of the treatment in the late dummy group as compared to the early dummy group, and columns headed *year* show the last
 536 year in the first dummy group, i.e. the last year before the hypothetical occurrence of a step change

site	1) Mann-Kendall			2) dummy					
	difANPP	ratioANPP	ratioANPPfix	difANPP		ratioANPP		ratioANPPfix	
	tau_pval	tau_pval	tau_pval	pval	year	% effect_pval	year	% effect_pval	year
BRA	--	--	--	--	--	--	--	--	--
GAR	--	--	--	--	--	--	--	--	--
KIS	-0.67**	-0.64**	-0.60*	***	2006	-25.6**	2006	-23.0 **	2006
LAH	--	--	--	(*)	2004	20.3(*)	2004	--	--
MAT	--	--	--	--	--	--	--	--	--
OLD	--	--	--	--	--	--	--	--	--
PRA	--	--	--	--	--	--	--	--	--
PUE	--	--	--	--	--	--	--	--	--
RAM	--	--	--	--	--	--	--	--	--
STU	--	--	--	--	--	--	--	-88.6**	2010
WAL	0.51*	0.51*	0.54*	**	2002	12.6**	2002	12.6**	2002

(*), p< 0.1; *, p <0.05; **, p<0.01; ***,p<0.001

539 Table 4. AIC values of the models of each of the three response variables, difANPP, ratioANPP and
540 ratioANPPfix, versus either the best dummy variable or the time (in years).

541

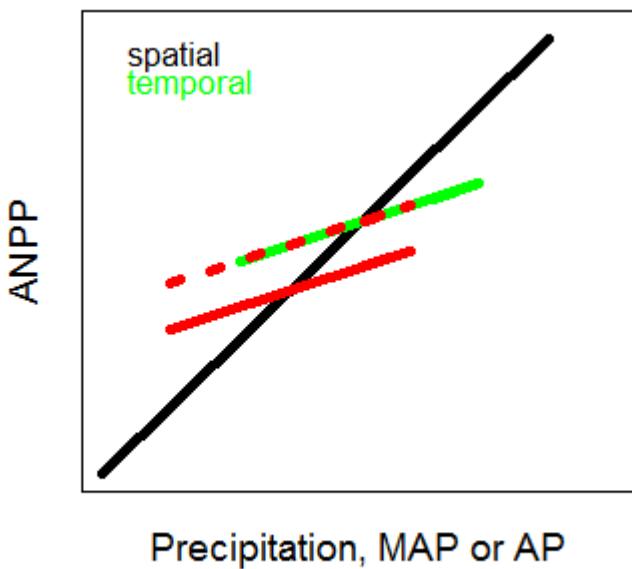
site	difANPP		ratioANPP		ratioANPPfix	
	AIC dummy	AIC time	AIC dummy	AIC time	AIC dummy	AIC time
KIS	71.4	74	-21.5	-17.2	-22.9	-17.2
WAL	116.6	121.1	-36.6	-32.5	-35.5	-31.0

542

543

544 Fig. 1. Schematic overview of the spatial and temporal relationships between ANPP and precipitation.
545 The black line represents the spatial fit, or across-sites relationship between ANPP and MAP. The green
546 line represents the temporal fit of a single ecosystem, i.e. the within-site relationship between ANPP and
547 AP. The red lines represent the ANPP-AP relationship under drier climatic conditions (i.e. with reduced
548 AP). The dotted red line represents the situation of the current temporal fit, i.e. the ANPP-AP
549 relationship obtained for the control treatment, being valid under the new drier AP range. The
550 continuous red line represents the new ANPP-AP relationship under a new ecosystem state when
551 fundamental changes in the ecosystem reduced the intercept as compared to the current temporal fit.

552



553

554

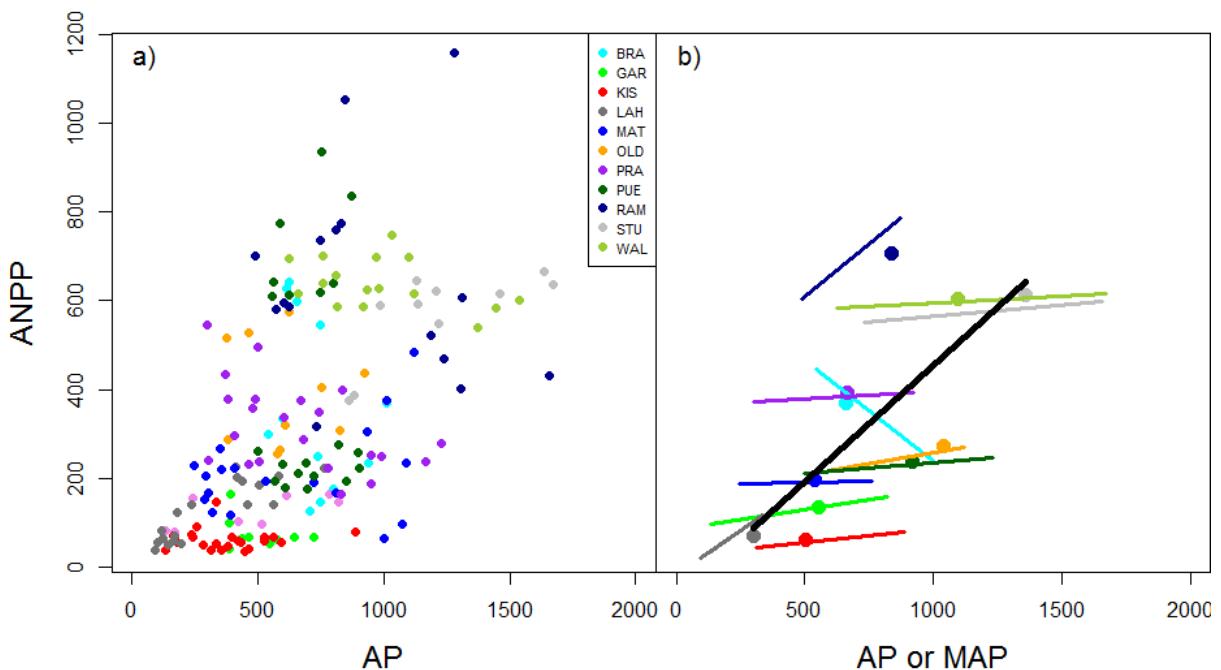
555 Figure 2.

556 a) ANPP versus AP data including dry and control treatments from the eleven experiments
557 are identified by colors in the figure legend: BRA, Brandbjerg; GAR, Garraf; KIS, Kiskunsag; LAH,
558 Lahav; MAT, Matta; OLD, Oldebroek; PRA, Prades; PUE, Puechabon; RAM, RaMPs; STU, Stubai;
559 WAL, Walker Branch.

560 b) Points indicate the mean ANPP in the control plots versus the MAP for each experiment. The thick
561 black line is the spatial fit across the MAP range. The colored lines denote temporal fits with the lines
562 extending across the AP range and each color corresponding to one experiment. Note that LAH and
563 WAL are represented by two lines according to the differences in intercept between dry and control
564 treatments as described in Table 2.2, although the differences are too slight for easy appreciation. The
565 significances of the slopes are presented in Table 2 and Figure 2.

566

567



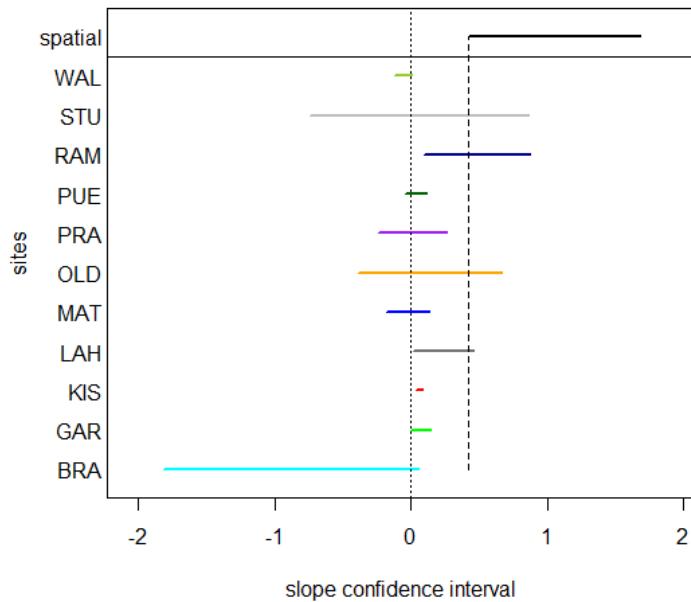
568

569

570

571 Figure 3. Bootstrapped percentile slope estimates of confidence intervals for the temporal fits of the
572 eleven sites and for the spatial fit. Vertical dashed black line indicates the lower limit for the confidence
573 interval of the spatial fit. Confidence intervals of the spatial fit do not overlap with most of the
574 confidence intervals of the temporal fits. Colors as in Fig. 2.

575

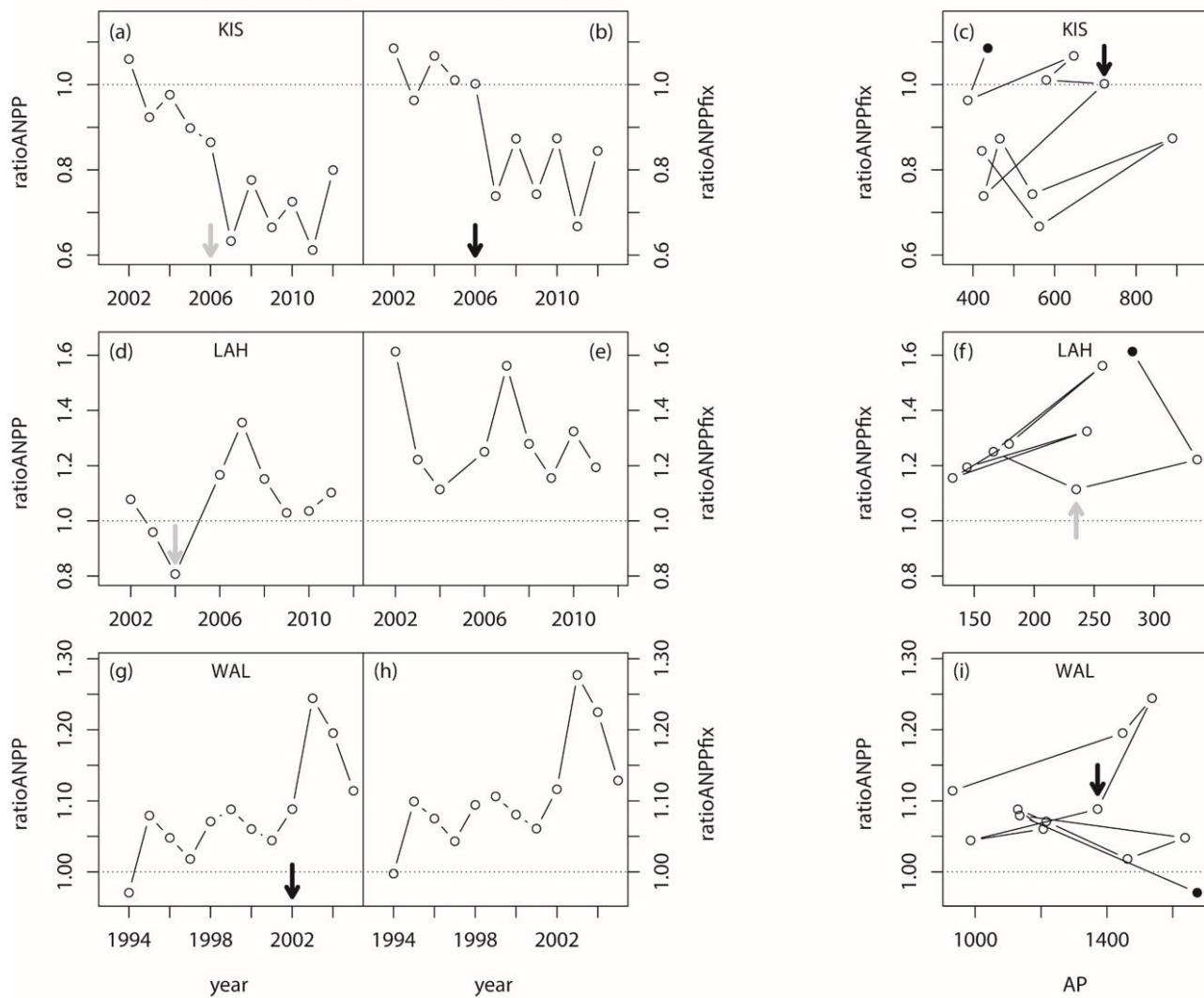


576

577

578

579 Figure 4. Effects of the dry treatment on the response variables ratioANPP and ratioANPPfix at three
 580 selected sites. The response variable difANPP is not included because it was redundant with ratioANPP.
 581 The response variables at the three sites KIS (a, b, c), LAH (d, e, f) and WAL (g, h, i) are plotted against
 582 the year (a, b, d, e, g, h) or the untreated natural AP, i.e. the AP in the control, along the experimental
 583 period (c, f, i). The response variables are ratioANPP (a, d, g, i) and ratioANPPfix (b, c, d, e, f). For
 584 completeness, the two response variables are included but only one variable per site (ratioANPPfix in
 585 KIS and LAH, and ratioANPP in WAL), was chosen as indicative of the convenience of testing for step-
 586 changes (depending on the occurrence of AP effects). Arrows in (a, b, d, g) indicate the last year before
 587 the best dummy variables indicate a change between an early and a late group (Table 3). Arrows in (c, f,
 588 i) indicate for every corresponding site the precipitation during the year when the step change occurred.
 589 Arrows are in black when drawn in the panels of these indicative variables and in grey otherwise. In (c,
 590 f, i) the filled circles indicate the first measurement year and the lines indicate the sequence of the
 591 different experimental years.



592