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Abstract: A series of lipase-catalysed transesterification experiments were carried out to study the 
effect of the presence of free fatty acids on synthesis reaction rate and the stability of the biocatalyst, 
and also to elucidate the underlying mechanism, which remains a subject of debate. Based on the 
results, the reaction rate and biocatalyst stability increased with increasing content in free fatty acids 
of the reaction mixture. Also, tests carried out with a mixture of triolein and linoleic acid revealed that 
the transesterification mechanism is a combination of direct alcoholysis of triacylglycerols and a two-
step reaction involving hydrolysis of acylglycerols and further esterification of previously released free 
fatty acids. The time course of triacylglycerols and diacylglycerols revealed that the enzyme is similarly 
selective for both types of substrate. 
 
Response to Reviewers: Reviewers' comments: 
 
Reviewer #1: This work describes through a clear and convincing approach the effect of free fatty acids 
on reactions of transesterification. A few changes would help in improving the manuscript: 
 
1)Methods: page 6. It is not clear how the final volume of the reaction is reached. This is relevant to 
understand the experimental setting. Did authors just mix fatty acids, oil and methanol in the required 
ratios? In this case, the final volume would be different in different reactions with some implication for 
the interpretation of results. The other possibility is that they keep the volume constant. But this would 
require adding water what is very relevant in their experiments that compare hydrolysis with 
alcoholysis. Please clarify in Materials and Methods and, if necessary, also in the description of the 
results 
The densities of triolein (or olive oil) and oleic acid are quite similar (0.91 g/ml and 0.89, respectively), 
so keeping the same final weight (8 gr) then the final volume reached for different combinations of 
triolein and oleic acid  will be always the same, supposing that these two compounds behave as ideal 
liquids so the final volume is the sum of the volume of each liquid. 
A sentence has been included in “Materials and Methods – Transesterification” reactions for better 
understanding  
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2)State how many times experiments have been performed and report deviation bars in graphics 
 
After checking that experimental error in our initial experiments is small (Canet et al 2014) and taking 
into account that the used lipase is not a commercial product, since it is a recombinant lipase obtained 
by fermentation in our laboratory with a limited production and economical limitations to produce it, 
the experiments in this paper have been carried out once.  
Even though, we consider that the actual trend of the synthesis reactions provides itself data 
consistency. On the other hand, RSD for FAMEs and oleic acid analysis have been included in materials 
and methods, section “Sample preparation and determination of methyl esters, free fatty acids and 
acylglycerols”. Moreover in the same section a mass balance of the compounds – triolein, diolein, 
monoolein- was carried out, with an error below 8% included in section, which confirms the data 
consistence. 
Deviation bars are not included in the figures in order to make them graphically clear; otherwise it 
would be not easy to make figures easy reading.  
 
3)Figure 2 is hardly understandable since symbols superimpose and dotted lines are difficult to see 
It has been changed in order to improve its comprehension. The size of the symbols are now somewhat 
smaller and the ones corresponding to free acid are in black. Solid and dotted line are maintained, 
otherwise it is not easy to distinguish properly esters from free acids.  
 
 
 
 
Reviewer #2: This manuscript focuses on to study the effect of the presence of free fatty acids on 
synthesis reaction rate and the stability of the lipase from Rhizopus oryzae, and also to elucidate the 
processes that occur in transesterification reactions. The results obtained are interesting and are 
appropriately presented. I feel that it is suitable for publication in Biomass and Bioenergy. However, 
the paper needs some clear improvements before it can be considered further: 
 
Main point 
 
In line 49 and throughout the text the authors state that "enzyme-based transesterification has been 
explained in the light of two different mechanisms". But, the kinetics mechanism for the reactions 
catalyzed by lipases has been represented by Ping-Pong Bi-Bi model, and this mechanism occurs 
regardless to the substrate. The same mechanism occurs for alcoholysis, hydrolysis and esterification 
reactions (see Simas ABC, da Silva AAT, Cunha AG, Assumpção RS, Hoelz LVB, Neves BC, et al. Kinetic 
resolution of (±)-1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol by lipases: An experimental and 
theoretical study on the reaction of a key precursor of chiral inositols. J Mol Catal B Enzym 2011; 
70:32-40). In fact, if the second substrate of reaction is the water, it will be produced fatty acids and 
not fatty acid esters. Thus, these fatty acids can be subsequently esterified to produce the fatty acid 
esters. For that, some authors claim that there is a first hydrolysis followed by 
an ester synthesis. But it is not a mechanism of reaction, but other reactions that can happen in the 
reaction medium. 
You are right. Stricly mechanism is what you said although sometimes this word is not used properly in 
the literarture. What we did want to explain was that transesterification can be a one-step reaction or a 
two-step one (combyining hydrolysis and esterification).  
It has been changed throughout the full text (also in the title). When talking about the two ways 
transesterification occurs, it is now refered as one or two-step reaction or process. A sentence in the 
Introduction has been included, mentinoning that the mechanism of the reactions catalised by lipases 
are represented by Ping-Pong model. The paper you mentioned is now included in the text.   
 



 
Minor points 
Line 33: Please, correct the sentence "…to those of conventional diesel, which make…"  
Senteced corrected 
Lines 58 and 81: Pichia pastoris is not in italic. 
Changed to italic 
Line 145: In my opinion the topic "Transesterification experiments" would be better before the topic 
"Sample preparation and determination of methyl esters, free fatty acids and acylglycerols" 
“Transesterification experiments” section moved 
Line 200: The papers below also report the effects of free fatty acids in transesterification reactions. It 
would be good to mention them. 
 
Li, S., Fan, Y., Hu, R., Wu, W. Pseudomonas cepacia lipase immobilized onto the electrospun PAN 
nanofibrous membranes for biodiesel production from soybean oil. Journal of Molecular Catalysis B: 
Enzymatic. v. 72, p. 40-45, 2011. 
 
 
Watanabe, Y., Shimada, Y., Baba, T., Ohyagi, N., Moriyama, S., Terai, T., Tominaga, Y., Sugihara, A. Methyl 
esterification of waste fatty acids with imobilized Candida antarctica lipase.  Journal of Oleo Science. v. 
51, p. 655-661, 2002. 
 
Du, W., Wang, L., Liu, D. Improved methanol tolerance during Novozyme 435-mediated methanolysis of 
SODD for biodiesel production. Green Chemistry. v. 9, p. 173-176, 2007. 
 
These three articles are now included in the Introduction. Also, their are also now included in The 
results section “Influence of free fatty acids on transesterification”, to give a better explanation of our 
results and their explanation.  
 
 
 
 
 
Reviewer #3: This is a very interesting, clear and well panned work in which it is studied the direct 
transesterification of triacylglycerols with methanol by using lipases as catalysts. The paper 
demonstrates the positive influence of the presence of free fatty acids in the reaction mixture on the 
transesterification process and how the stability of the lipases also increases with the increasing 
content in free fatty acids. As consequence of the well planned experimental plan, the proposed 
transesterification reaction mechanism, on which there is always discussion, seems quite suitable. 
The only recommendation to authors is that they should consider the possibility to redo Figures 8 and 
9. In each there are 9 lines; five for the experiment performed in presence of free oleic acid and 4 for 
the same experiment of triolein transesterification with no fatty acids in the reaction mixture. The 
reading of the paper could be facilitated if each figure could be divided in two,  in such a way that it 
could see clearly the importance of free fatty acids to slowing down the enzyme inactivation due to the 
presence of methanol.  
I would recommend the paper for publication by improving, if possible, figures 8 and 9 which are 
difficult to discern visually.  
 
As you recommended, we divided the figures, and now there is a sole figure for each experiment 
(figure 8, 9, 10 and 11, instead of 8 and 9). We decided not to divide each figure into two subfigures, 
because then subfigures are too small and there are too many compounds to distinguish.  
Changes in text have been done to include the name of the new figures.  
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School of Engineering, King’s College, Aberdeen, UK 

 

 

Dear Sir, 

 

I have just submitted the manuscript entitled “Lipase-catalysed transesterification: 

mechanism and influence of free fatty acids” by A. Canet, K. Bonet-Ragel, M.D. 

Benaiges and F. Valero for its submission to Biomass and Bioenergy.  

 

The present original work has been made in the Department of Chemical Engineering at 

the Universitat Autònoma de Barcelona (UAB) (Barcelona, Spain). All the authors are 

agreeing to submit, for the first time, to Biomass and Bioenergy.  

 

The work is a study on the effect of free fatty acids in enzymatic transesterification rate 

and also in enzyme inactivation. Moreover, it provides strong results that lipase 

transesterification is a combination of two mechanisms: a one-step reaction consisting 

in a direct acylglycerols alcoholysis and a two-step reaction, involving a first 

acylglycerols hydrolysis and secondly an esterification.  

 

 

Looking forward to your news, I remain yours sincerely 

 

      Dr. Francisco Valero 

Departament d’Enginyeria Química 

Universitat Autònoma de Barcelona 

08193-Bellaterra (Barcelona) Spain 

Fax 34-935812013 

e-mail: francisco.valero@uab.es 
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Reviewers' comments: 

 

Reviewer #1: This work describes through a clear and convincing approach the effect of 

free fatty acids on reactions of transesterification. A few changes would help in 

improving the manuscript: 

 

1)Methods: page 6. It is not clear how the final volume of the reaction is reached. This 

is relevant to understand the experimental setting. Did authors just mix fatty acids, oil 

and methanol in the required ratios? In this case, the final volume would be different in 

different reactions with some implication for the interpretation of results. The other 

possibility is that they keep the volume constant. But this would require adding water 

what is very relevant in their experiments that compare hydrolysis with alcoholysis. 

Please clarify in Materials and Methods and, if necessary, also in the description of the 

results 

The densities of triolein (or olive oil) and oleic acid are quite similar (0.91 g/ml and 

0.89, respectively), so keeping the same final weight (8 gr) then the final volume 

reached for different combinations of triolein and oleic acid  will be always the same, 

supposing that these two compounds behave as ideal liquids so the final volume is the 

sum of the volume of each liquid. 

A sentence has been included in “Materials and Methods – Transesterification” 

reactions for better understanding  

 

 

2)State how many times experiments have been performed and report deviation bars in 

graphics 

 

After checking that experimental error in our initial experiments is small (Canet et al 

2014) and taking into account that the used lipase is not a commercial product, since it 

is a recombinant lipase obtained by fermentation in our laboratory with a limited 

production and economical limitations to produce it, the experiments in this paper have 

been carried out once.  

Even though, we consider that the actual trend of the synthesis reactions provides itself 

data consistency. On the other hand, RSD for FAMEs and oleic acid analysis have been 

included in materials and methods, section “Sample preparation and determination of 

methyl esters, free fatty acids and acylglycerols”. Moreover in the same section a mass 

balance of the compounds – triolein, diolein, monoolein- was carried out, with an error 

below 8% included in section, which confirms the data consistence. 

Deviation bars are not included in the figures in order to make them graphically clear; 

otherwise it would be not easy to make figures easy reading.  

 

3)Figure 2 is hardly understandable since symbols superimpose and dotted lines are 

difficult to see 

It has been changed in order to improve its comprehension. The size of the symbols are 

now somewhat smaller and the ones corresponding to free acid are in black. Solid and 

dotted line are maintained, otherwise it is not easy to distinguish properly esters from 
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free acids.  

 

 

 

Reviewer #2: This manuscript focuses on to study the effect of the presence of free fatty 

acids on synthesis reaction rate and the stability of the lipase from Rhizopus oryzae, and 

also to elucidate the processes that occur in transesterification reactions. The results 

obtained are interesting and are appropriately presented. I feel that it is suitable for 

publication in Biomass and Bioenergy. However, the paper needs some clear 

improvements before it can be considered further: 

 

Main point 

 

In line 49 and throughout the text the authors state that "enzyme-based 

transesterification has been explained in the light of two different mechanisms". But, the 

kinetics mechanism for the reactions catalyzed by lipases has been represented by Ping-

Pong Bi-Bi model, and this mechanism occurs regardless to the substrate. The same 

mechanism occurs for alcoholysis, hydrolysis and esterification reactions (see Simas 

ABC, da Silva AAT, Cunha AG, Assumpção RS, Hoelz LVB, Neves BC, et al. Kinetic 

resolution of (±)-1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol by lipases: An 

experimental and theoretical study on the reaction of a key precursor of chiral inositols. 

J Mol Catal B Enzym 2011; 70:32-40). In fact, if the second substrate of reaction is the 

water, it will be produced fatty acids and not fatty acid esters. Thus, these fatty acids 

can be subsequently esterified to produce the fatty acid esters. For that, some authors 

claim that there is a first hydrolysis followed by 

an ester synthesis. But it is not a mechanism of reaction, but other reactions that can 

happen in the reaction medium. 

You are right. Stricly mechanism is what you said although sometimes this word is not 

used properly in the literarture. What we did want to explain was that transesterification 

can be a one-step reaction or a two-step one (combyining hydrolysis and esterification).  

It has been changed throughout the full text (also in the title). When talking about the 

two ways transesterification occurs, it is now refered as one or two-step reaction or 

process. A sentence in the Introduction has been included, mentinoning that the 

mechanism of the reactions catalised by lipases are represented by Ping-Pong model. 

The paper you mentioned is now included in the text.   

 

 

Minor points 

Line 33: Please, correct the sentence "…to those of conventional diesel, which 

make…"  

Senteced corrected 

Lines 58 and 81: Pichia pastoris is not in italic. 



Changed to italic 

Line 145: In my opinion the topic "Transesterification experiments" would be better 

before the topic "Sample preparation and determination of methyl esters, free fatty acids 

and acylglycerols" 

“Transesterification experiments” section moved 

Line 200: The papers below also report the effects of free fatty acids in 

transesterification reactions. It would be good to mention them. 

 

Li, S., Fan, Y., Hu, R., Wu, W. Pseudomonas cepacia lipase immobilized onto the 

electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. 

Journal of Molecular Catalysis B: Enzymatic. v. 72, p. 40-45, 2011. 

 

 

Watanabe, Y., Shimada, Y., Baba, T., Ohyagi, N., Moriyama, S., Terai, T., Tominaga, 

Y., Sugihara, A. Methyl esterification of waste fatty acids with imobilized Candida 

antarctica lipase.  Journal of Oleo Science. v. 51, p. 655-661, 2002. 

 

Du, W., Wang, L., Liu, D. Improved methanol tolerance during Novozyme 435-

mediated methanolysis of SODD for biodiesel production. Green Chemistry. v. 9, p. 

173-176, 2007. 

 

These three articles are now included in the Introduction. Also, their are also now 

included in The results section “Influence of free fatty acids on transesterification”, to 

give a better explanation of our results and their explanation.  

 

 

 

 

 

Reviewer #3: This is a very interesting, clear and well panned work in which it is 

studied the direct transesterification of triacylglycerols with methanol by using lipases 

as catalysts. The paper demonstrates the positive influence of the presence of free fatty 

acids in the reaction mixture on the transesterification process and how the stability of 

the lipases also increases with the increasing content in free fatty acids. As consequence 

of the well planned experimental plan, the proposed transesterification reaction 

mechanism, on which there is always discussion, seems quite suitable. 

The only recommendation to authors is that they should consider the possibility to redo 

Figures 8 and 9. In each there are 9 lines; five for the experiment performed in presence 

of free oleic acid and 4 for the same experiment of triolein transesterification with no 

fatty acids in the reaction mixture. The reading of the paper could be facilitated if each 

figure could be divided in two,  in such a way that it could see clearly the importance of 

free fatty acids to slowing down the enzyme inactivation due to the presence of 



methanol.  

I would recommend the paper for publication by improving, if possible, figures 8 and 9 

which are difficult to discern visually.  

 

As you recommended, we divided the figures, and now there is a sole figure for each 

experiment (figure 8, 9, 10 and 11, instead of 8 and 9). We decided not to divide each 

figure into two subfigures, because then subfigures are too small and there are too many 

compounds to distinguish.  

Changes in text have been done to include the name of the new figures.  



Highlights 

 

Free fatty acids increase lipase stability 

Elucidated mechanisms transesterification  

Free fatty acids increase biodiesel reaction rate 
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 16 

Abstract 17 

A series of lipase-catalysed transesterification experiments were carried out to study the 18 

effect of the presence of free fatty acids on synthesis reaction rate and the stability of the 19 

biocatalyst, and also to elucidate the underlying process, which remains a subject of 20 

debate. Based on the results, the reaction rate and biocatalyst stability increased with 21 

increasing content in free fatty acids of the reaction mixture. Also, tests carried out with 22 

a mixture of triolein and linoleic acid revealed that the transesterification is a 23 

combination of direct alcoholysis of triacylglycerols and a two-step reaction involving 24 

hydrolysis of acylglycerols and further esterification of previously released free fatty 25 

*Manuscript
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2 

 

acids. The time course of triacylglycerols and diacylglycerols revealed that the enzyme 26 

is similarly selective for both types of substrate.  27 

 28 

Keywords: biodiesel; lipase; transesterification mechanism; free fatty acids; lipase 29 

inactivation; Rhizopus oryzae 30 

  31 

Introduction 32 

Biodiesel is a mixture of monoalkyl esters of long chain fatty acids (FAME) with 33 

chemical and physical properties similar to those of conventional diesel, which make it 34 

a promising alternative to diesel fuel [1]. Biodiesel is obtained by transesterification of 35 

triacylglycerols — mainly vegetal fats— with short-chain alcohols such as methanol, 36 

most often in alkaly catalysis [1]. However, catalysed transesterification in a basic 37 

medium requires large amounts of energy and water for purification [1,2]. Also, the 38 

formation of soaps from substrates containing more than 0.5 wt% free fatty acids has an 39 

adverse impact on yield [2]. This makes the alkaline process unsuitable for substrates 40 

such as waste cooking oil [1]. On the other hand, acid catalysis allows oil to be treated 41 

with large amounts of free fatty acids but occurs at a much lower rate than alkaline 42 

catalysis [3].  43 

In recent years, lipase-catalysed transesterification has become an effective 44 

alternative to basic and acid catalysis for biodiesel production. Enzyme-based 45 

transesterification uses less energy than chemically catalysed processes; also, unlike 46 

basic catalysis, it can be used with substrates containing free fatty acids [4].  47 

Although lipases are widely known to carry out transesterification in the 48 

presence of free fatty acids [1,2,4], their effect on transesterification has scarcely been 49 

studied to date [5,6,7]. The mechanism for the reactions catalysed by lipases has been 50 

represetend by Ping-Pong models [8,9] but in the case of  enzyme-based 51 

transesterification it has been explained in the light of two different viewpoints [10]. In 52 

one, lipase synthetizes esters by direct alcoholysis of triacylglycerols in a single step [8] 53 

[11,12]. The other involves hydrolysis of triacylglycerols and subsequent esterification 54 

of the resulting fatty acids [10,13,14,15].  55 



3 

 

In this work, we examined the effects of free fatty acids on the rate of the 56 

transesterification reaction and the stability of the biocatalyst. To this end, we 57 

performed series of experiments intended to elucidate whether the transesterification 58 

process involves a single step or two.  59 

The enzyme used was recombinant lipase from Rhizopus oryzae obtained by 60 

culturing Pichia pastoris [16]. This lipase, which is a1,3-positional selective, was 61 

previously used in immobilized form on a support that was immersed in a solvent-free 62 

medium to develop an environmentally friendly process. The enzyme has also been 63 

used for transesterification in a solvent-free system [17]. 64 

 65 

Materials and Methods 66 

Materials 67 

High-grade methanol and heptane were purchased from Panreac (Barcelona, Spain). 68 

The oil used was virgin-grade olive oil for household use. The substrate triolein was 69 

purchased from TCI Europe N.V. (Zwijndrecht, Belgium). The other substrates (methyl 70 

oleate and methyl linoleate) were obtained from Sigma–Aldrich (St Louis, MO, USA), 71 

and so was the derivatizing reagent (MSTFA). High-grade standards of linoleic acid, 72 

stearic acid, oleic acid, linoleic acid, methyl palmitate, methyl stearate, methyl oleate, 73 

methyl linoleate, methyl linolenate, monoolein (DL-α-monoolein) and diolein (1,3-74 

diolein) used for calibration were also supplied by Sigma–Aldrich. High-grade triolein 75 

was purchased from Acros Organics (Geel, Belgium). 76 

The support for lipase immobilization, Relizyme OD403/S, was obtained from 77 

Resindion S.r.l. (Binasco, Italy), and the lipase colorimetric kit used to assess enzyme 78 

activity (ref. 11821792) from Roche (Mannheim, Germany). 79 

 80 

Lipase 81 

Recombinant Rhizopus oryzae lipase was produced by the Bioprocess Engineering and 82 

Applied Biocatalysis group of the Universitat Autònoma de Barcelona (UAB). The 83 

enzyme was obtained by fed-batch cultivation of a recombinant Pichia pastoris strain 84 
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using methanol as inductor [16]. The culture broth was centrifuged and micro-filtered to 85 

remove biomass, after which the supernatant was concentrated by ultrafiltration on a 86 

Centrasette® system from Pall Filtron (New York, USA) furnished with an Omega 87 

membrane of 10-kDa cut-off, and subsequently dialysed against 10 mM Tris-HCl buffer 88 

at pH 7.5 and thereafter lyophilized [18].  89 

 90 

Determination of lipase activity and total protein  91 

Lipase activity was determined in 200 mM Tris-HCl buffer at pH 7.25 at 30 °C, using 92 

the Roche lipase colorimetric kit on a Varian 300 spectrophotometer from Cary (Palo 93 

Alto, CA, USA) [19]. Total protein was determined by using the Bradford method with 94 

bovine albumin as standard [20]. Both enzyme activity and total protein were 95 

determined in triplicate. 96 

 97 

Lipase immobilization 98 

A volume of 100 ml of 5 mM phosphate buffer at pH 7 containing about 5000–6000 99 

UA lipase/ml was used to dissolve lyophilized rROL under magnetic stirring at 4 °C for 100 

1 h. The solution was then centrifuged and the supernatant mixed with 1000 mg of pre-101 

treated support at 4 °C for immobilization under slow stirring with a roller for 7 h. 102 

Then, the solution was vacuum-filtered and the biocatalyst washed with 300 ml of the 103 

same initial phosphate buffer. Finally, the biocatalyst was dried to constant weight in a 104 

desiccator containing silica gel and stored at –20 °C until use.  105 

The support was pre-treated by mixing 1000 mg of Relizyme OD403/S with 100 106 

ml of water–acetone solution for 30 min. Then, the solution was vacuum-filtered and 107 

washed several times with water to completely remove the acetone.  108 

 109 

Transesterification experiments  110 
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All transesterification reactions were carried out in 10 ml vials at 30 °C under 111 

continuous stirring in an incubator (20 mm orbital diameter, IKA KS 400 ic, Staufen, 112 

Germany). All reaction media contained 32 000 UA of biocatalyst.  113 

The reactions used to study free fatty acids were carried out by mixing specific 114 

amounts of olive oil and oleic acid with a final weight of 8 g and adding 160 µl of 115 

methanol. For catalyst stability tests, the biocatalyst was allowed to settle at the end of 116 

the reaction and the medium removed. The vials containing the biocatalyst were stored 117 

at 4 °C until reuse.  118 

Transesterification process was studied by using 8 g of two different mixtures of 119 

triolein and linoleic acid with 160 µl of methanol. 120 

The time course of acylglycerols was studied by using 8 g of two different 121 

mixtures of triolein and oleic acid to which methanol was added stepwise at 30 or 60 122 

min intervals. Seven methanol additions of 160 µl each were carried out in each 123 

experiment.  124 

The densities of triolein, olive oil and oleic acid are very close so the final 125 

volume reached is the same for all the experiments described above.   126 

 127 

Sample preparation and determination of methyl esters, free fatty acids and 128 

acylglycerols 129 

Samples of the reaction mixture were withdrawn at preset intervals and passed through 130 

a PVDF filter of 0.45 µm pore size from Millipore (Billerica, MA, USA) to remove all 131 

biocatalyst. This was followed by storage at –20 °C until analysis for methyl esters, free 132 

fatty acids and acylglycerols. Analyses involved centrifuging the samples at 10 000 rpm 133 

for 3 min, withdrawing an aliquot of 10 µl from each with a micropipette, weighing on 134 

analytical balance and dilution with heptane. Weighing was required because the high 135 

viscosity of acylglycerols and also, to lesser extent, methyl esters, precluded accurate 136 

withdrawal of a given volume with a micropipette [17]. The average standard errors for 137 

the compound concentrations in each sample was 2.57%.  138 
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Methyl esters (viz., methyl palmitate, stearate, oleate, linoleate and linolenate) 139 

and free fatty acids (viz., palmitic, stearic, oleic and linoleic) were analysed on a 7890A 140 

gas chromatograph from Agilent Technologies (Santa Clara, CA, USA) equipped with a 141 

G4513A auto-sampler and a 19095N-123 INNOWAX (30 m x 0.53 mm x 1 µm), both 142 

from Agilent Technologies. The software used was Agilent ChemSation from Agilent 143 

Technologies. The initial oven temperature, 130 °C, was raised to 240 °C at 16 °C/min 144 

and held at that level this for 24 min. The temperatures of the injector and flame 145 

ionization detector were 250 and 280 °C, respectively. Helium at a constant flow rate of 146 

3.699 ml/min was used as carrier gas. All samples were centrifuged at 10 000 rpm for 3 147 

min prior to analysis. No further sample preparation was needed.  148 

Mono-, di- and triolein were analysed with the same gas chromatograph and 149 

auto-sampler as the methyl esters and free fatty acids. A capillary column BD-EN14105 150 

(10 m x 0.32 mm x 0.1 µm, Part number 123-BD01 from Agilent Technologies) was 151 

used tied to an on-column inlet with a high-temperature retention gap. The initial oven 152 

temperature, 50 °C, was held for 1 min, raised to 180 °C at 15 °C/min, then to 230 °C at 153 

7 °C/min and 370 °C at 10 °C/min, and held for 5 min. The flame ionization detector 154 

was kept at 380 °C. Helium at a constant flow rate of 3 ml/min was used as carrier gas. 155 

Samples were prepared somewhat in accordance with European standard EN14105. 100 156 

ml of centrifuged and diluted sample in heptane (as previously described) were 157 

derivatized with 10 µl of MSTFA at room temperature mixing for 3 min. This was 158 

followed by addition of 0.8 ml of heptane after 30 min. It should be noted that 159 

chromatographic peaks for acylglycerols are somewhat difficult to integrate because the 160 

different fatty acids combine into similar acylglycerol structures that are difficult to 161 

separate [21]. This led us to estimate a molar balance for each sample —the combined 162 

amount of triolein, diolein and monoolein should be constant in all experiments— the 163 

average error in which was estimated to be 7.27%.  164 

 165 

Results and discussion 166 

Figure 1.1 depicts the alcoholysis of triacylglycerols in a single step. As can be seen, an 167 

acyl donor —usually methanol— breaks the ester bond in the triacylglycerol skeleton 168 
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and causes the formation of an ester bond between the acyl donor and a hydroxyl group 169 

in the glyceride structure.  170 

The two-step reaction (Fig. 1.2) involves hydrolysis of the triacylglycerol 171 

molecule to release a free fatty acid, followed by esterification of the fatty acid by an 172 

acyl donor. This is a cyclical process because water released in the esterification 173 

reaction hydrolyses a fatty acid moiety in a glyceride. The fact that, as stated above, 174 

lipase-catalysed transesterification can occur in the presence of free fatty acids, led us to 175 

examine their influence on methyl esters and the two-step reaction proposed for the 176 

process.  177 

 178 

Influence of free fatty acids on transesterification  179 

The effect of free fatty acids on transesterification was examined by using different 180 

mixtures of olive oil with variable concentrations of free oleic acid over the range 0–181 

20%. Figure 2 shows the time course of FAME. Increasing the free fatty acid 182 

concentration increased the initial FAME production rate, albeit not proportionally; 183 

thus, the rate increased from 1.8·10
–4

 mol/min in the absence of added acid to 2.6·10
–4

 184 

and 3.6·10
–4

 mol/min in the presence of 5 and 20% added acid, respectively. Similar 185 

results were obtained by Li S. et al and Du W. et al [5] [7]. The fact that the FAME 186 

production rate increased with increasing amount of free fatty acids suggests that the 187 

transesterification reaction is a two-step process. However, the concentration of free 188 

fatty acids remained virtually constant except when no acid was added (Fig. 2). The 189 

increase in transesterification rate can be ascribed to a decrease in viscosity as more free 190 

oleic acid was added to the reaction mixture. With no acid added, the oleic acid 191 

concentration increased slightly as a result of the water initially contained in the 192 

biocatalyst facilitating hydrolysis of triacylglycerols by lipase.  193 

Figure 3 illustrates the effect of the initial presence of free fatty acids on 194 

biocatalyst stability. As can be seen, stability increased with increasing initial 195 

concentration of free fatty acids. Above 10%, the biocatalyst was reusable over up to 10 196 

cycles with a loss of activity of only about 10%; in absence the FFA, however, the 197 

catalyst lost 50% of its activity after 7 cycles and was almost inactivated after 10. The 198 

same behavior was observed by Du W. et al [5]. Loss of activity is widely attributed to 199 
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methanol inactivation, due to the contact of insoluble methanol with the enzyme [6,17]. 200 

Adding FFA to the reaction increases the polarity of the medium and therefore methanol 201 

becomes more soluble in the medium [6], reducing enzyme inactivation. A similar 202 

explanation is found in the literature [5], stating that the lower the value of logP, the 203 

higher lipase tolerance to methanol.  204 

 205 

Elucidation of the transesterification process 206 

As stated before, the concentration of free oleic acid remained constant throughout the 207 

transesterification reaction (Fig. 2). Therefore, the reaction must have occurred by direct 208 

alcoholysis of triacylglycerols (Fig. 1.1) or new oleic acid molecules coming from 209 

triacylglycerols hydrolysis, meaning that the real transesterification process is the two-210 

step reaction (Fig. 1.2).  211 

The fate of free fatty acids (FFA) was traced in an experiment using triolein and 212 

free linoleic acid in order to check whether FFA came from the hydrolysis of 213 

triacylglycerols since the hydrolysis of triolein would have given oleic acid as the sole 214 

fatty acid. Linoleic acid was chosen because it has the same carbon chain length as oleic 215 

acid plus an additional double bond, and also because both the ester and acid forms of 216 

the two acids can be quantified separately by gas chromatography. In addition, we 217 

assessed lipase selectivity towards oleic and linoleic acid by using an equimolar mixture 218 

of the two acids. As can be seen from Figure 4, rROL was identically selective for both 219 

acids. This result is consistent with previous reports [17]. 220 

Two different experiments using two different initial linoleic acid concentrations 221 

(10 and 20%) were performed. Figures 5 and 6 show the variation of the concentrations 222 

of oleic and linoleic acids, and their corresponding FAME, at an initial linoleic acid 223 

concentration of 10% and 20%. As can be seen, the total acid concentration remained 224 

virtually constant in both experiments. This suggests that the water molecule released 225 

when a linoleic acid molecule was esterified was rapidly used by lipase to hydrolyse 226 

triolein to a free oleic acid molecule. Also, the hydrolysis reaction was faster than the 227 

esterification reaction —otherwise, the amount of free oleic acid formed moles appeared 228 

would not have been the same as that of linoleic acid consumed and the total 229 

concentration of acid would not have remained unchanged as a result. Therefore, it can 230 
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be clearly concluded that the transesterification reaction occurs at least by the so-called 231 

two-step process (Fig. 1.2) by which water released by esterification of a free fatty acid 232 

is rapidly used to hydrolyse a triacylglycerol and produce another molecule of free fatty 233 

acid, after which the process is restarted. If this assumption is correct, the initial reaction 234 

mixture should only contain free linoleic acid and the initially formed esters should be 235 

linoleate esters mainly since virtually no free oleic acid would have yet been released. 236 

In the presence of 10% linoleic acid, however, the amount of methyl oleate at the 237 

beginning of the bioprocess exceeded that of methyl linoleate. Also, the initial reaction 238 

rate should have increased with increasing free fatty acid concentration, but the initial 239 

rate of methyl oleate formation rate was virtually the same in both experiments. 240 

Therefore, the transesterification reaction also involves direct alcoholysis of 241 

triacylglycerols. 242 

In conclusion, lipase-catalysed transesterification is a combination of two 243 

processes, namely: direct alcoholysis of triacylglycerols in a one-step reaction and a 244 

two-step hydrolysis of triacylglycerols followed by an esterification.  245 

One other major inference from the results with 10 and 20% linoleic acid (Figs. 246 

5 and 6, respectively) is that the mole balance for this acid differed between the two 247 

experiments. The total initial amount of free linoleic acid should have been the 248 

combination of the final amount of free linoleic acid and that of linoleate ester. This was 249 

not the case, however, because some free linoleic acid was incorporated by the enzyme 250 

into the diacylglycerols or monoacylglycerols formed by transesterification (Fig. 7). As 251 

can be seen from Figure 6, although transesterification stopped within 30 min owing to 252 

the depletion of methanol, linoleic acid continued to be consumed and oleic acid 253 

formed. 254 

 255 

Evolution of acylglycerols  256 

Lipase-catalysed transesterification involves a number of compounds including 257 

triacylglycerols that are converted into diacylglycerols and then into monoacylglycerols 258 

with formation of esters. Also, the activity of lipase is known to be closely linked to the 259 

polarity of the substrate and the reaction rate to depend on its structure [22]. As a result, 260 

lipase selectivity towards acylglycerols during transesterification may change not only 261 
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because acylglycerol structure changes by effect of the conversion of triacylglycerols 262 

into mono- and dioacylglycerols, but also because these substrates differ in polarity.  263 

This led us to examine the evolution of all species involved in the 264 

transesterification reaction including acylglycerols. The analysis of acylglycerols was 265 

complicated by the large number of chromatographic peaks given by the large variety of 266 

long-chain fatty acids present in oil. An experiment was thus performed with triolein as 267 

the sole substrate that yielded triolein, diolein and monoolein alone. The experiment 268 

was carried out in the presence and absence of free oleic acid in order to assess its 269 

potential effects on lipase selectivity towards acylglycerols. Seven different methanol 270 

additions were done corresponding to the stoichiometric molar relationship to triolein. 271 

This stepwise addition procedure was repeated at 30 and 60 min intervals to assess 272 

lipase inactivation by methanol throughout the transesterification reaction.  273 

Figures 8 and 9 show the results obtained with methanol additions every 30 min, 274 

with 20 and 0% of initial free oleic acid, respectively. Adding methanol at 30 min 275 

intervals to a medium containing triolein but no free fatty acids (Fig. 9) led to gradual 276 

accumulation of excess alcohol not used in the reaction and to complete inactivation of 277 

the enzyme after the second addition. This was not the case in the presence of 20% of 278 

free oleic acid (Fig. 8) because the reaction was faster, so methanol accumulated to a 279 

lesser extent between additions; also, as noted earlier, the presence of oleic acid reduced 280 

the inactivation effect of methanol. 281 

Figures 10 and 11 show the results obtained with methanol additions at 60 min 282 

intervals, with 20 and 0% of initial free oleic acid, respectively. With 20% of free oleic 283 

acid (Fig. 10), the addition interval had virtually no effect on the reaction and the 284 

FAME formation profile was independent of the rate of methanol addition, comparing it 285 

to the case of adding methanol every 30 min (Fig. 8). In the absence of free fatty acids 286 

(Fig. 11), however, adding methanol every hour prevented inactivation of the enzyme 287 

—which occurred with methanol additions at half-hour intervals (Fig. 9)— and the 288 

reaction yield was higher as a result.  289 

As previously found, the concentration of free oleic acid remained virtually 290 

constant throughout the reaction (Fig. 2). This was also the case with these experiments 291 

(Figs. 8-11), but only between the first and second methanol addition. After that, the 292 
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concentration of free oleic acid decreased as the reaction developed. As stated above, 293 

free fatty acids reduce lipase inactivation by effect of the high polarity of methanol; 294 

therefore, a decrease in free fatty acid concentration can lead to inactivation of the 295 

enzyme. This was not the case, however, probably because diacylglycerols, 296 

monoacylglycerols and esters present in the reaction medium were more polar than 297 

triacylglycerols and hence similar to free fatty acids in their effect. It can thus be 298 

concluded that lipase stability against methanol was not specifically improved by free 299 

fatty acids, but rather by polar enough substances to buffer the high polarity of the 300 

alcohol.  301 

No significant differences in lipase selectivity towards triacylglycerols and 302 

diacylglycerols were observed (Figs. 8-11). If rROL had been more selective for 303 

triacylglycerols than diacylglycerols, diolein and triolein would have accumulated to 304 

some extent rather than being thoroughly consumed from the reaction medium. In fact, 305 

the amount of diolein decreased even in the presence of substantial amounts of triolein. 306 

 307 

Conclusions 308 

One of the main advantages of lipase-catalysed over basic-catalysed transesterification 309 

is that the former process can be carried out in the presence of free fatty acids. Also, as 310 

shown here, free fatty acids increase the reaction rate and the stability of the biocatalyst. 311 

In fact, free fatty acids protect the enzyme by effect of their polarity buffering the high 312 

polarity of methanol. This also seems to be the case with other transesterification 313 

substrates such as mono- and diacylglycerols.  314 

This study also demonstrates that transesterification is a combination of two 315 

processes, namely: direct alcoholysis of triacylglycerols and a two-step reaction 316 

involving hydrolysis of triacylglycerols followed by esterification of previously released 317 

free fatty acids.  318 

Also, rROL is similarly selective towards tri- and diacylglycerols, so no 319 

diacylglycerol accumulation occurs during the reaction —if it does at any time, the 320 

amount of methanol to be added should be altered to avoid it and prevent inactivation of 321 

the enzyme. 322 
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Figure Captions 397 

Fig. 1 – Proposed transesterification processes found in literature. Subfigure 1 398 

corresponds to one-step reaction direct triacylglycerol alcoholysis. Subfigure 2 399 

corresponds to two-steps reaction involving a first hydrolysis and a second 400 

esterification. 401 

 402 

Fig. 2 – Methyl esters formation and free fatty acids evolution for substrates with 403 

different amounts of free oleic acid. Dot lines and black symbols correspond to free 404 

fatty acids and solid lines to methyl esters. ◊: 20% free oleic acid, ∆: 10 % free oleic 405 

acid, □: 5 % free oleic acid, x: 2.5% free oleic acid and ○: 0% free oleic acid.   406 

 407 

Fig. 3 – Residual yield for substrates with different amounts of free oleic acid. The yield 408 

is normalized to the first one. Empty bar: 0% free oleic acid, Solid bar: 2.5% free oleic 409 

acid, Striped bar: 5% free oleic acid, Dot bar: 10% free fatty acid and Grey bar: 20% 410 

free oleic acid. 411 

 412 

Fig. 4 – Methyl esters formation and free fatty acids evolution. The reaction was carried 413 

out using an equimolar mixture of linoleic and oleic acid. Dot line corresponds to free 414 

fatty acids and solid line to methyl esters. ∆: linoleic and ○: oleic. 415 

 416 

Fig. 5 – Methyl esters formation and free fatty acids evolution. The reaction was carried 417 

out using a mixture of 90% triolein and 10% free linoleic acid (in weight). Dot line 418 

corresponds to free fatty acids and solid line to methyl esters. ∆: linoleic and ○: oleic. 419 

 420 

Fig. 6 – Methyl esters formation and free fatty acids evolution. The reaction was carried 421 

out using a mixture of 80% triolein and 20% free linoleic acid (in weight). Dot line 422 

corresponds to free fatty acids and solid line to methyl esters. ∆: linoleic and ○: oleic. 423 
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 424 

Fig. 7 – Incorporation of free fatty acids to acylglycerols. 425 

 426 

Fig. 8 – Evolution for all the species involved in transesterification reaction. Methanol 427 

was added every half hour and the reaction medium contained initially 20% of free oleic 428 

acid. x: triolein, ◊: diolein, □: monolein, ∆: free oleic acid and ○: methyl oleate.  429 

 430 

Fig. 9 – Evolution for all the species involved in transesterification reaction. Methanol 431 

was added every half hour and the reaction medium contained initially 0% of free oleic 432 

acid. x: triolein, ◊: diolein, □: monolein, ∆: free oleic acid and ○: methyl oleate.  433 

 434 

Fig. 10 – Evolution for all the species involved in transesterification reaction. Methanol 435 

was added every hour and the reaction medium contained initially 20% of free oleic 436 

acid. x: triolein, ◊: diolein, □: monolein, ∆: free oleic acid and ○: methyl oleate.  437 

 438 

Fig. 11 – Evolution for all the species involved in transesterification reaction. Methanol 439 

was added every hour and the reaction medium contained initially 0% of free oleic acid. 440 

x: triolein, ◊: diolein, □: monolein, ∆: free oleic acid and ○: methyl oleate.  441 

 442 

 443 

 444 
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