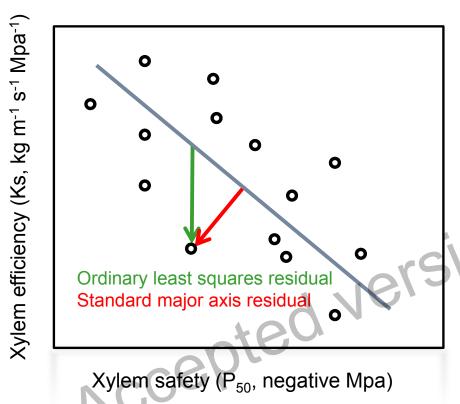
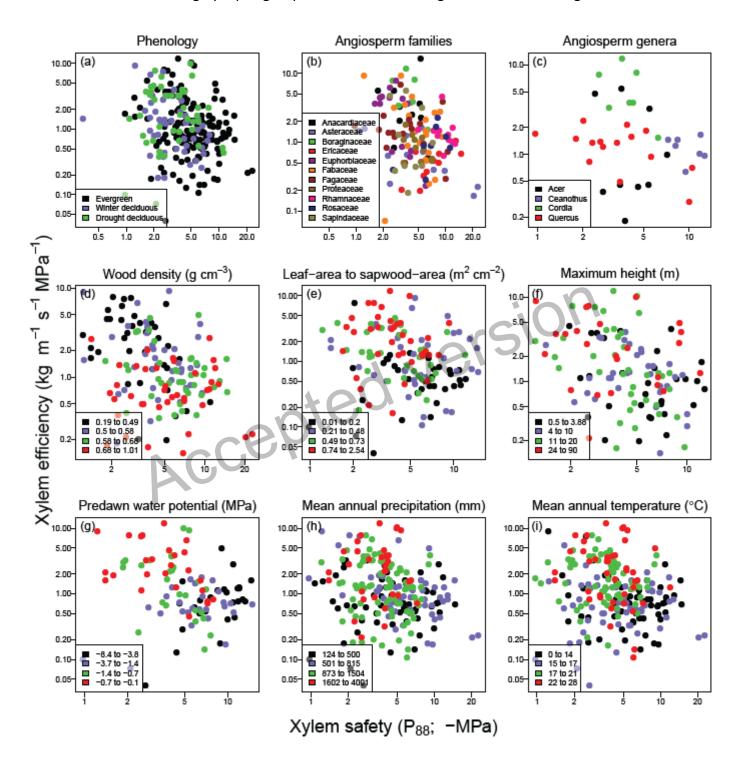
New Phytologist Supporting Information

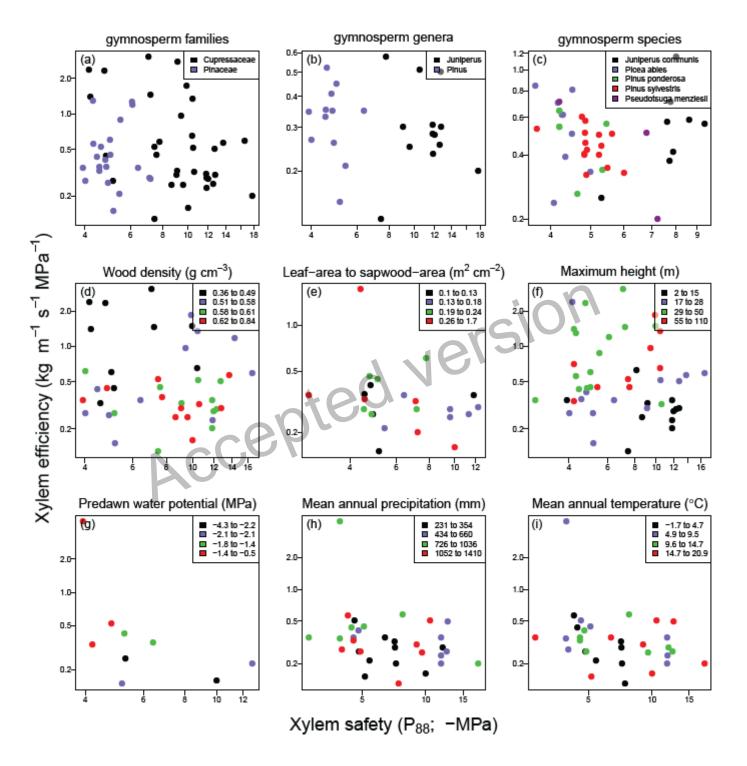
Article title: Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species

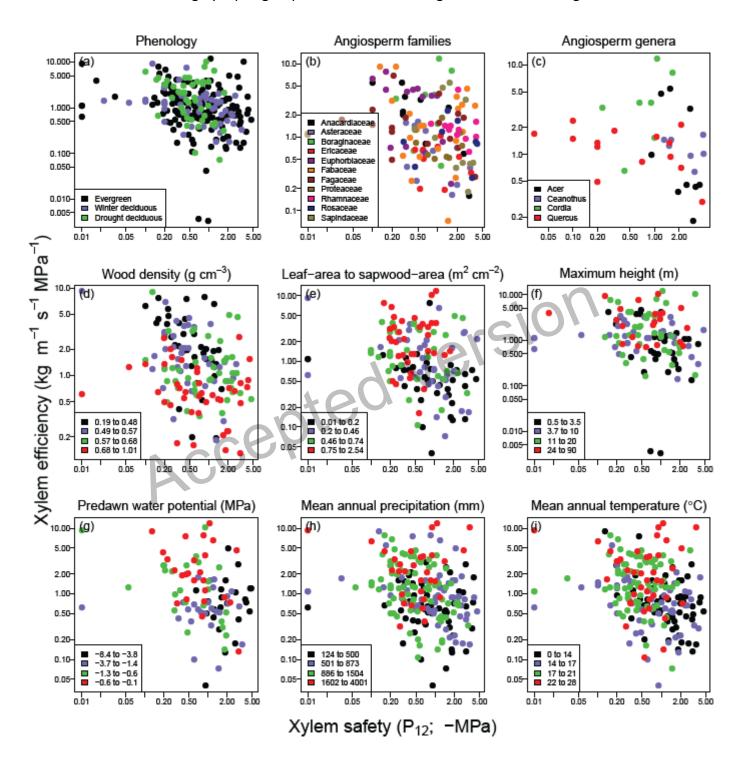

Authors: Sean M. Gleason, Mark Westoby, Steven Jansen, Brendan Choat, Uwe G. Hacke, Robert B. Pratt, Radika Bhaskar, Tim J. Brodribb, Sandra J. Bucci, Kun-Fang Cao, Hervé Cochard, Sylvain Delzon, Jean-Christophe Domec, Ze-Xin Fan, Taylor S. Feild, Anna L. Jacobsen, Dan M. Johnson, Frederic Lens, Hafiz Maherali, Jordi Martínez-Vilalta, Stefan Mayr, Katherine A. McCulloh, Maurizio Mencuccini, Patrick J. Mitchell, Hugh Morris, Andrea Nardini, Jarmila Pittermann, Lenka Plavcová, Stefan G. Schreiber, John S. Sperry, Ian J. Wright, Amy E. Zanne

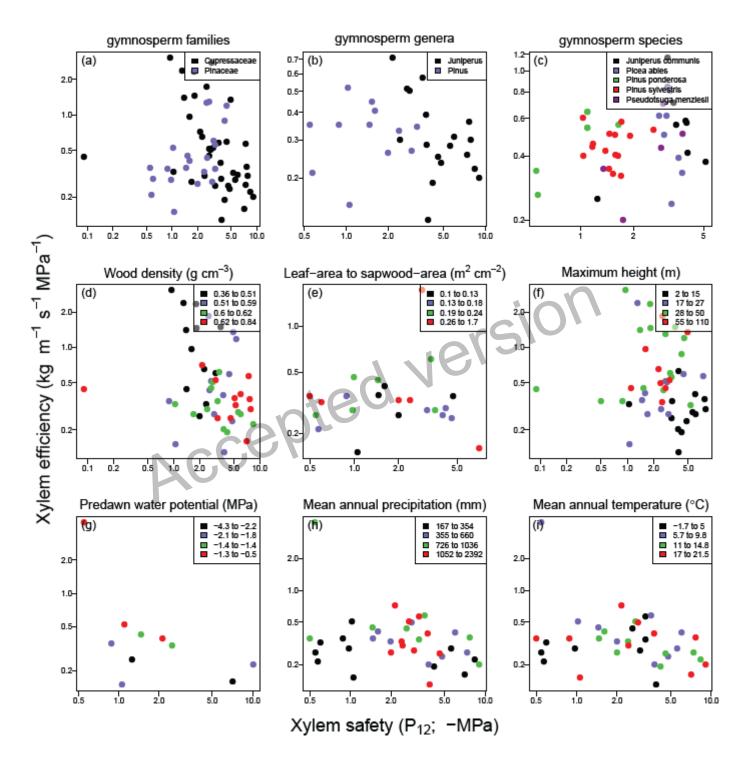
Article acceptance date: Click here to enter a date.


The following Supporting Information is available for this article:

- Fig. S1 Schematic describing the calculation of standard major axis residuals (SMA).
- Fig. S2 Hydraulic efficiency-safety (P₈₈) plots for angiosperm species.
- Fig. S3 Hydraulic efficiency-safety (P₈₈) plots for gymnosperm species.
- Fig. S4 Hydraulic efficiency-safety (P₁₂) plots for angiosperm species.
- **Fig. S5** Hydraulic efficiency-safety (P_{12}) plots for gymnosperm species.
- Fig. S6 Comparison of 'curve shapes' exhibited by fitted bivariate models (i.e., P₅₀ curve).
- Fig. S7 Comparison of methods used for generating P₅₀ data.
- **Table S1** Standard major axis (SMA) comparisons in the safety-efficiency relationship when safety is considered as P_{88} .
- **Table S2** Fit statistics for linear multiple regression models when safety is considered as P₈₈.
- **Table S3** Standard major axis (SMA) comparisons in the safety-efficiency relationship when safety is considered as P_{12} .
- **Table S4** Fit statistics for linear multiple regression models when safety is considered as P_{12} .
- **Table S5** Standard major axis (SMA) comparisons after omitting "r-shaped" vulnerability curves.
- **Table S6** Fit statistics for linear multiple regression models after omitting "r-shaped" vulnerability curves.


Fig. S1 Standard major axis residuals (SMA) vs. ordinary least squares (OLS) residuals. Note that SMA residuals include variation on both the x and y axes, whereas OLS residuals include only variation on the y axis. As such, OLS residuals reflect variation orthogonal to x, whereas SMA residuals reflect variation orthogonal to the y~x fit. By plotting the third variable against the efficiency~safety SMA residuals, the degree to which the third variable modifies the efficiency~safety relationship can be assessed.


Fig. S2 Hydraulic efficiency-safety (P_{88}) plots for angiosperm species. Axes have been log10 scaled. Different colours represent different leaf habits (panel a), taxonomic groups (panels b, c), plant structural traits (panels d, e, f), and site factors (g, h, i). Continuous variables were binned in roughly equal groups of four with bin ranges denoted in the legends.


Fig. S3 Hydraulic efficiency-safety (P_{88}) plots for gymnosperm species. Axes have been log10 scaled. Different colours represent different taxonomic groups (panels a, b, c), plant structural traits (panels d, e, f), and site factors (g, h, i). Continuous variables were binned in roughly equal groups of four with bin ranges denoted in the legends.

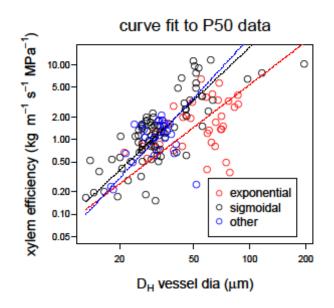

Fig. S4 Hydraulic efficiency-safety (P_{12}) plots for angiosperm species. Axes have been log10 scaled. Different colours represent different leaf habits (panel a), taxonomic groups (panels b, c), plant structural traits (panels d, e, f), and site factors (g, h, i). Continuous variables were binned in roughly equal groups of four with bin ranges denoted in the legends.

Fig. S5 Hydraulic efficiency-safety (P_{12}) plots for gymnosperm species. Axes have been log10 scaled. Different colours represent different taxonomic groups (panels a, b, c), plant structural traits (panels d, e, f), and site factors (g, h, i). Continuous variables were binned in roughly equal groups of four with bin ranges denoted in the legends.

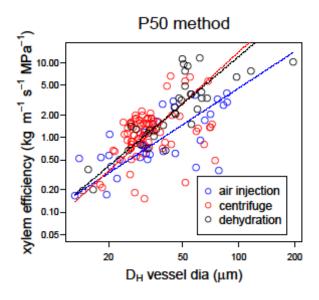
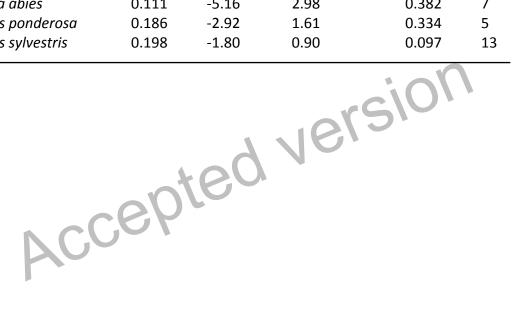


Fig. S6 Comparison of 'curve shapes' exhibited by fitted bivariate models (i.e., P₅₀ curve) for angiosperm species in the database. Trendlines with significantly higher elevation coefficients indicate greater efficiency at a given hydraulically weighted vessel diameter, and therefore, suggests a methodological artifact. However, although exponential curves are thought to be associated with "open" vessels (i.e., less resistance), samples fit with exponential curves tended to have *lower* efficiency, not higher.

\$	20	50 10	00 20	0	
	D _H ve	essel dia (μm)		*C
Group	slo	ope in	itercept	r ²	6/
exponential	1.9	90 -3	3.07	0.13	0.026
sigmoidal	2.3	36 -3	3.48	0.60	<0.001
other	2.0	69 -4	1.02	0.11	0.081
slope compa	are				0.318
intercept co	mpare				<0.001

Fig. S7 Comparison of methods used for generating P_{50} data. Trendlines exhibiting significantly higher elevation indicates greater efficiency at a given hydraulically weighted vessel diameter and therefore suggests a methodological artifact. Only methods which reported both efficiency and hydraulically weighted vessel diameter are included here. 'Air injection' includes the double-ended method only. 'Centrifuge' does not include data collected using the Cavitron method (Cochard, 2002).

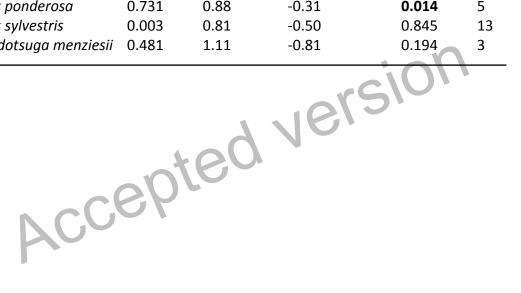


Group	slope	intercept	r ²	p
air injection	1.63	-2.60	0.46	<0.001
centrifuge	2.28	-3.41	0.13	0.001
dehydration	2.10	-3.12	0.70	<0.001
slope compare				0.143
intercept compare				0.013

Table S1. Standard major axis (SMA) efficiency~safety models fit to individual angiosperm and gymnosperm groups. Safety is defined as the xylem water potential at which maximal conductivity declines by 88%. Statistically significant P values (α =0.05) are denoted with bold text.

Angiosperms	r ²	slope	intercept	Р	df
All angiosperm species	0.048	-1.67	1.09	<0.001	239
Phenology					
evergreen	0.053	-1.81	1.27	0.004	149
winter deciduous	0.122	-1.59	0.80	0.019	43
drought deciduous	0.005	1.90	-0.75	0.643	43
Families					
Anacardiaceae	0.025	-2.32	1.76	0.662	8
Asteraceae	0.500	-0.82	0.31	0.010	10
Boraginaceae	0.310	-2.38	2.07	0.194	5
Ericaceae	0.526	1.20	-1.35	0.018	8
Euphorbiaceae	0.485	-2.92	1.64	0.006	12
Fabaceae	0.074	-2.39	1.75	0.222	20
Fagaceae	0.058	-1.14	0.77	0.335	16
Proteaceae	0.229	-1.62	1.03	0.136	9
Rhamnaceae	0.054	-1.78	1.84	0.493	9
Rosaceae	0.336	1.53	-1.34	0.132	6
Sapindaceae	0.017	-3.41	2.01	0.717	8
Genera					
Acer	0.012	-3.54	2.12	0.776	7
Ceanothus	0.056	-1.51	1.55	0.609	5
Cordia	0.310	-2.38	2.07	0.194	5
Quercus	0.311	-0.89	0.53	0.031	13

r^2	slope	intercept	Р	df
0.004	-1.73	1.14	0.624	57
0.184	-2.37	1.99	0.013	31
0.000	3.38	-2.75	0.935	19
0.003	-1.75	1.30	0.859	11
0.027	-2.60	1.27	0.609	10
0.378	2.75	-2.72	0.104	6
0.111	-5.16	2.98	0.382	7
0.186	-2.92	1.61	0.334	5
0.198	-1.80	0.90	0.097	13
	0.004 0.184 0.000 0.003 0.027 0.378 0.111 0.186	0.004 -1.73 0.184 -2.37 0.000 3.38 0.003 -1.75 0.027 -2.60 0.378 2.75 0.111 -5.16 0.186 -2.92	0.004 -1.73 1.14 0.184 -2.37 1.99 0.000 3.38 -2.75 0.003 -1.75 1.30 0.027 -2.60 1.27 0.378 2.75 -2.72 0.111 -5.16 2.98 0.186 -2.92 1.61	0.004 -1.73 1.14 0.624 0.184 -2.37 1.99 0.013 0.000 3.38 -2.75 0.935 0.003 -1.75 1.30 0.859 0.027 -2.60 1.27 0.609 0.378 2.75 -2.72 0.104 0.111 -5.16 2.98 0.382 0.186 -2.92 1.61 0.334


Table S2. Fit statistics for linear multiple regression models, with efficiency and safety as predictor variables and various structural and climatological traits as the dependent third variable. Safety is defined as the xylem water potential at which maximal conductivity declines by 88%. Coefficient of determination values represent the proportion of total variation in the third variable explained by hydraulic safety (r^2_{P88}) and hydraulic efficiency (r^2_{KS}). The percent residual variation in the safety~efficiency fit (orthogonal variation, i.e., standard major axis residuals) that is explained by the third variable (r^2_{resid}) is also reported and indicates whether the third variable is a meaningful predictor of where species are located away from the safety~efficiency trend-line. Asterisks indicate levels of significance (* = 0.05, ** = 0.01, *** = 0.001).

	r ² _{P88}	r^2_{Ks}	$r^2_{\rm resid}$	df
Angiosperms				
Wood density	0.068*	0.194***	0.018	152
Leaf-area to sapwood-area	0.021	0.184***	0.042*	142
Maximum height	0.044	0.101**	0.007	120
Pre-dawn water potential	0.297***	0.173***	0.009	101
Mean annual precipitation	0.004	0.142***	0.035**	228
Mean annual temperature	0.026	0.172***	0.034**	229
Number of freezing days	0.002	0.115***	0.077***	182
Gymnosperms	nte	d'		
Wood density	0.153**	0.220***	0.003	40
Leaf-area to sapwood-area	0.019	0.268*	0.082	20
Maximum height	0.048	0.286***	0.051	44
Pre-dawn water potential	0.263	0.640**	0.060	6
Mean annual precipitation	0.037	0.028	0.004	29
Mean annual temperature	0.063	0.003	0.041	29
Number of freezing days	0.020	0.028	0.004	29

Table S3. Standard major axis (SMA) efficiency~safety models fit to individual angiosperm and gymnosperm groups. Safety is defined as the xylem water potential at which maximal conductivity declines by 12%. Statistically significant P values (α =0.05) are denoted with bold text.

Angiosperms	r^2	slope	intercept	Ρ	df
All angiosperm species	0.075	-1.03	-0.20	<0.001	240
Phenology					
evergreen	0.051	-1.00	-0.22	0.005	150
winter deciduous	0.174	-0.76	-0.15	0.004	44
drought deciduous	0.126	-1.64	-0.29	0.018	42
Families					
Anacardiaceae	0.659	-1.02	-0.01	0.004	8
Asteraceae	0.268	-1.03	-0.32	0.085	10
Boraginaceae	0.037	1.85	0.62	0.650	6
Ericaceae	0.023	-0.87	-0.33	0.699	7
Euphorbiaceae	0.250	-1.30	-0.15	0.069	12
Fabaceae	0.023	-1.17	0.02	0.514	19
Fagaceae	0.088	-0.53	-0.01	0.248	15
Proteaceae	0.087	-0.22	-0.15	0.380	9
Rhamnaceae	0.062	-1.00	0.44	0.462	9
Rosaceae	0.000	0.70	-0.19	0.983	6
Sapindaceae	0.178	-1.78	0.43	0.225	8
Genera					
Acer	0.286	-2.66	0.81	0.138	7
Ceanothus	0.135	-0.69	0.32	0.418	5
Cordia	0.229	1.48	0.73	0.277	5
Quercus	0.196	-0.41	-0.08	0.113	12

Gymnosperms	r ²	slope	intercept	Р	df
All gymnosperm species	0.012	-0.91	0.02	0.394	62
Families					
Cupressaceae	0.175	-1.00	0.18	0.009	36
Pinaceae	0.357	0.88	-0.58	0.004	23
Genera					
Juniperus	0.262	-0.96	0.12	0.030	16
Pinus	0.013	0.58	-0.58	0.725	10
Species					
Juniperus communis	0.149	1.07	-0.84	0.346	6
Picea abies	0.312	-4.48	1.98	0.118	7
Pinus ponderosa	0.731	0.88	-0.31	0.014	5
Pinus sylvestris	0.003	0.81	-0.50	0.845	13
Pseudotsuga menziesii	0.481	1.11	-0.81	0.194	3

Table S4. Fit statistics for linear multiple regression models, with efficiency and safety as predictor variables and various structural and climatological traits as the dependent third variable. Safety is defined as the xylem water potential at which maximal conductivity declines by **12**%. Coefficient of determination values represent the proportion of total variation in the third variable explained by hydraulic safety (r^2_{P12}) and hydraulic efficiency (r^2_{Ks}) . The percent residual variation in the safety~efficiency fit (orthogonal variation, i.e., standard major axis residuals) that is explained by the third variable (r^2_{resid}) is also reported and indicates whether the third variable is a meaningful predictor of where species are located away from the safety~efficiency trend-line. Asterisks indicate levels of significance (*=0.05, **=0.01, ***=0.001).

	r^2_{P12}	r^2_{Ks}	$r^2_{\rm resid}$	df
Angiosperms				
Wood density	0.008	0.255***	0.116***	160
Leaf-area to sapwood-area	0.020	0.215***	0.059**	141
Maximum height	0.006	0.182***	0.065**	119
Pre-dawn water potential	0.122**	0.150***	0.001	95
Mean annual precipitation	0.024	0.171***	0.024*	221
Mean annual temperature	0.064**	0.153***	0.011	222
Number of freezing days	0.014	0.118***	0.026*	174
Gymnosperms ^a	nte	O,	J	
Wood density	0.131*	0.191**	0.003	45
Maximum height	0.061	0.292***	0.060	46
Pre-dawn water potential	0.220	0.643**	0.006	7
Mean annual precipitation	0.028	0.104*	0.102	34
Mean annual temperature	0.118*	0.007	0.084	34
Number of freezing days	0.003	0.001	0.000	34

^a The safety-efficiency relationship for gymnosperm leaf-area to sapwood-area exhibited a positive slope and was omitted from the analysis.

Table S5 Standard major axis (SMA) models fit to individual angiosperm and gymnosperm groups after omitting "r-shaped" vulnerability curves. Safety is defined as the xylem water potential at which maximal conductivity declines by **50**%. Statistically significant P values (α =0.05) are denoted with bold text.

Angiosperms	r ²	slope	intercept	Р	df
All angiosperm species	0.081	-1.74	0.80	<0.001	269
Phenology					
evergreen	0.054	-1.70	0.82	0.003	160
winter deciduous	0.065	-1.89	0.83	0.025	76
drought deciduous	0.016	-1.85	0.71	0.494	29
Families					
Anacardiaceae	0.259	-3.32	1.51	0.162	7
Asteraceae	0.050	-0.93	0.20	0.593	6
Boraginaceae	0.056	-2.79	1.44	0.539	7
Ericaceae	0.473	2.07	-1.45 ^{bc}	0.028	8
Euphorbiaceae	0.404	-1.80	0.55 ^c	0.006	15
Fabaceae	0.007	-2.52	1.35	0.756	14
Fagaceae	0.628	-1.91	1.17 ^b	0.004	9
Proteaceae	0.132	-1.38	0.52	0.271	9
Rhamnaceae	0.045	-2.40	2.01	0.554	8
Rosaceae	0.241	-2.29	1.86 ^a	0.033	17
Sapindaceae	0.208	-3.22	1.50	0.159	9
Genera					
Acer	0.243	-3.59	1.73	0.148	8
Ceanothus	0.032	-1.41	1.21	0.701	5
Cordia	0.010	2.46	-0.23	0.812	6
Quercus	0.875	-2.37	1.48	0.002	5

Table S6 Models fit after omitting exponential vulnerability curves. Fit statistics for linear multiple regression models, with efficiency and safety as predictor variables and various structural and climatological traits as the dependent third variable. Safety is defined as the xylem water potential at which maximal conductivity declines by 50%. Coefficient of determination values represent the proportion of total variation in the third variable explained by hydraulic safety (r^2_{PSO}) and hydraulic efficiency (r^2_{Ks}). The percent residual variation in the efficiency~safety fit (orthogonal variation, i.e., standard major axis residuals) that is explained by the third variable (r^2_{resid}) is also reported and indicates whether the third variable is a meaningful predictor of where species are located away from the efficiency~safety trend-line. Asterisks indicate levels of significance (* = 0.05, ** = 0.01, *** = 0.001).

	r^2_{P50}	r^2_{Ks}	r^2_{resid}	df
Angiosperms				
Wood density	0.108***	0.166***	0.004	152
Leaf-area to sapwood-area	0.136***	0.175***	0.001	143
Maximum height	0.024	0.151***	0.031	115
Pre-dawn water potential	0.282***	0.183***	0.006	102
Mean annual precipitation	0.128***	0.116***	0.000	249
Mean annual temperature	0.075***	0.028*	0.006	249
Number of freezing days	0.058**	0.046*	0.003	168
ACCE	Sbr			

Literature cited

Cochard H. 2002. A technique for measuring xylem hydraulic conductance under high negative pressures. *Plant, Cell & Environment* **25**: 815-819.

This is the accepted version of the following article: Gleason, Sean M. et al. "Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. Supporting information" in New phytologist (Ed. Wiley), vol. 209, issue 1 (Jan. 2016), p. 123-136, which has been published in final form at DOI 10.1111/nph.13646. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving