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Supplementary Information 1 

 2 

S1. GIMMS LAI3g 3 

The Global Inventory Modeling and Mapping Studies (GIMMS) LAI was 4 

generated by an Artificial Neural Network (ANN) model and the third generation 5 

AVHRR GIMMS NDVI data set1, 2. The ANN model was first trained with overlapping 6 

AVHRR GIMMS NDVI3g data set and best-quality MODIS LAI, and then generate the 7 

full temporal coverage GIMMS LAI3g data set using AVHRR GIMMS NDVI3g. The 8 

quality and research applicability of GIMMS LAI3g data set were evaluated through 9 

direct comparisons with field data and indirectly through inter-comparisons with 10 

similar satellite-data products and statistical analysis with climatic variables and 11 

ENSO/AO indices1. The GIMMS LAI3g data set, that provides LAI observations at 15-12 

day temporal resolution and 1/12 degree spatial resolution for the global vegetation 13 

from July 1981 to December 2014, has been widely used in various research purposes3, 14 

4, 5, 6. We first composited the 15-day GIMMS LAI3g data to monthly temporal 15 

resolution by averaging the two composites in the same month, and then resampled the 16 

GIMMS LAI3g data to 0.5° spatial resolution using the bicubic method. 17 

S2. GLASS LAI  18 

The Global Land Surface Satellite (GLASS) LAI data set was derived from 19 

AVHRR, MODIS and CYCLOPES reflectance and LAI products using general 20 

regression neural networks7. The GLASS LAI provides global LAI products at 8-day 21 

temporal resolution and 1km spatial resolution from 1981 to 2012 in the Integer zed 22 

Sinusoidal projection (http://www.bnu-datacenter.com/). The validation against 23 

CYCLOPES and MODIS LAI products, as well as field measurements confirms the 24 

applicability of GLASS LAI product in long-term study of global vegetation dynamics. 25 

We first composited the 8-day GIMMS LAI3g data to monthly temporal resolution by 26 

averaging the composites in the same month. Before the averaging process, we 27 

weighted each composite by the number of days that the composites fall in the given 28 

month. Then, we resampled the GLASS LAI3g data to 0.5° spatial resolution using the 29 

http://www.bnu-datacenter.com/
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bicubic method.  1 

S3. GLOBMAP LAI 2 

The Global Mapping LAI product was generated by quantitative fusion of MODIS 3 

and historical AVHRR data8. The pixel-level relationship between AVHRR and MODIS 4 

LAI was first established for the overlapping period 2000-2006 and then used to 5 

construct AVHRR LAI back to 1981. The constructed AVHRR LAI and MODIS LAI 6 

were combined, which provide a global LAI data set at 15-day temporal resolution and 7 

8km spatial resolution for the period 1981 to 2009 8 

(http://www.globalmapping.org/globalLAI/). We preprocessed the GLOBMAP LAI 9 

using the same method as we used to preprocess the GIMMS LAI3g data set.  10 

S4. MEaSUREs FT-ESDR 11 

The Freeze/Thaw Earth System Data Record (FT-ESDR) is a NASA Making Earth 12 

System Data Records for Use in Research Environments (MEaSUREs) funded effort to 13 

provide a consistent daily global data record of land surface freeze/thaw (FT) state 14 

dynamics for all vegetated regions that extends 34 years (1979 to 2012)9, 10. The FT-15 

ESDR data set was derived from overlapping daily radiometric brightness temperature 16 

measurements at 37 GHz frequency from the Scanning Multichannel Microwave 17 

Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) sensor series and the 18 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E).  19 

S5. Growing season integrated leaf area index 20 

The growing season integrated leaf area index (hereafter refer to LAI) has been 21 

found to be a good proxy of vegetation primary production11. The growing season 22 

duration is evaluated in each vegetated pixel as follows. The Savitzky-Golay filter is 23 

first used to smooth the LAI3g data because it maintains the distinctive vegetation time 24 

series trajectories and minimizes various atmospheric effects12, 13. The smoothed 15-25 

day LAI3g time series is interpolated to daily LAI3g time series using linear 26 

interpolation. From the daily LAI3g time series, the LAI-based growing season is 27 

determined as: (a) the “start day” is the day when the LAI value is greater than 0.1 and 28 
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has increased by 15% of the amplitude of the growing season; (b) the “end day” is the 1 

day when the LAI value is greater than 0.1 and has decreased by 15% of the amplitude 2 

of the growing season; (c) the length of growing season is the duration between start 3 

day and end day of the growing season. This threshold-based growing season requires 4 

refinement in the northern latitudes because the vegetation may remain green during 5 

the dormant season due to sub-optimal temperatures and low sunlight levels. The period 6 

when the vegetation is actually photosynthetically active is determined by the 7 

freeze/thaw state of the ground14, which can be assessed from satellite measurements 8 

of passive microwave brightness temperatures10. Fig. S1 shows the global spatial 9 

distributions of average start date and duration of growing season for the period 1982 10 

to 2009. A comparison of LAI3g integrated over the growing season thus defined with 11 

up-scaled flux tower measurements of gross primary production (GPP) showed good 12 

correspondence (Fig. S2). This correspondence gives confidence in treating LAI as a 13 

proxy for GPP. 14 

S6. Uncertainties in satellite observed LAI 15 

GIMMS LAI3g, GLASS LAI and GLOBMAP LAI are 3 widely used long-term 16 

LAI products that provide global LAI records start from the middle of 1981. These 3 17 

LAI data were derived from the legacy AVHRR and MODIS data using different 18 

methodologies15. All 3 LAI products have been extensively validated against field 19 

measurements and other satellite products, which warrant their suitability of long-term 20 

vegetation research. However, we should also pay attention to uncertainties in the 3 21 

LAI products. Although all the 3 LAI products consistently show the dominant greening 22 

trends over global vegetated area, the spatial distribution and magnitudes of LAI trends 23 

are somewhat different (Fig. 1). There are several reasons that may account for the 24 

discrepancies and uncertainties in the 3 LAI products. First, the 3 LAI products were 25 

generated using different strategies and different AVHRR products1, 7, 8 . Second, the 26 

AVHRR sensors lack of on-board calibration and have orbital loss problem, which 27 

caused biases that are difficult to be quantified2, 16. Third, although GLASS LAI and 28 

GLOBMAP LAI proposed their own methods to merge LAI derived from AVHRR 29 
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sensors and MODIS, it is still difficult to create a consistent LAI time series because 1 

AVHRR and MODIS sensors have different spectral characteristics16, 17. These 2 

problems are supposed to be solved by generating accurate and consistent LAI time 3 

series data in the future. Nevertheless, at present, the 3 LAI products have irreplaceable 4 

value to study long-term vegetation research. The 3 LAI data sets were used for 5 

detection and attribution of trends in LAI during 1982 to 2009. Specifically, GIMMS 6 

LAI3g, the longest remotely sensed LAI data we have, were used to illustrate a 7 

continued greening (up to 2014) of global vegetation. 8 

S7. Process-based ecosystem models 9 

Global monthly LAI for the period 1982 to 2009 simulated by 10 ecosystem 10 

models were used in this analysis (Table S1). Seven of the models were coordinated by 11 

the project “Trends and drivers of the regional scale sources and sinks of carbon dioxide” 12 

(TRENDY, http://dgvm.ceh.ac.uk/node/9)18. Simulations of other 3 models (CLM4, 13 

CABLE and VEGAS) were performed under the similar protocol but for the period 14 

1982 to 2009. We analyzed data for the period 1982-2009 for which we had access to 15 

both satellite observation and outputs from model simulations. All the model outputs 16 

were resampled to a common spatial resolution (0.5°) using the nearest neighbor 17 

method. 18 

The global ecosystem models were forced with historical changes in atmospheric 19 

CO2 concentration, climate, nitrogen deposition (in 5 models, Table S1) and land cover 20 

change (in 7 models, Table S1). Generally, most ecosystem models that used in our 21 

study represented photosynthesis based on Farquhar model. The Farquhar model is a 22 

well-established biochemical model that estimates the enzyme kinetics of Rubisco, the 23 

main enzyme limiting photosynthesis, based on availability of light, temperature and 24 

CO2 concentration in leaf. Although the ecosystem models used similar photosynthesis 25 

model, they differ a lot in subcomponents. For example, stomatal conductance model 26 

varies between the global ecosystem models. The global ecosystem models represent 27 

phenology through the growing degree day (GDD) concept that controlled by 28 

http://dgvm.ceh.ac.uk/node/9
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temperature and soil moisture. However, the parameterizations of their phenology 1 

module can differ greatly and affect growing season integrated leaf are index. The Plant 2 

Function Type (PFT) is a key concept that allowing for the reduction of thousands of 3 

species to a small set of functional groups defined by their phenology type, 4 

physiognomy, photosynthetic pathway, and climate zone. PFTs that used by global 5 

ecosystem models are sometimes different19. For example, ORCHIDEE defined 12 6 

PFTs and used a PFT map that generated by combining simplified Olson biomes with 7 

IGBP GLCC data20, while LPJ defined 10 PFTs21. Fig. S4 shows the Taylor diagrams 8 

that compare the ten available ecosystem models to the satellite observation from 1982 9 

to 2009 at the global scales and continental scales. Fig. S5 shows trends in global 10 

averaged LAI derived from individual model simulations driven by rising CO2, climate 11 

change, nitrogen deposition and land cover change using Mann-Kendal test. Fig. S6 12 

shows the spatial pattern of trends in LAI simulated by individual models under the 13 

same scenario S2 (varying CO2 and climate). Both of these figures indicate that there 14 

are obvious differences in modeling LAI among the ecosystem models used in our study. 15 

All the 7 global ecosystem models in TRENDY group represent deforestation, 16 

afforestation and to some extent regrowth (Table S2) 18. These processes are the most 17 

important component of land cover change. The global ecosystem models used a 18 

consistent land cover change data22. This land cover change data set not only provides 19 

annual fractional data on primary vegetation and secondary vegetation at 0.5 degree 20 

spatial resolution, but also underlines transitions between land cover states. Typically, 21 

the models only used the information about changes in agricultural areas although the 22 

land cover change data also provides the information about changes in the non-23 

agricultural areas. The models generally implement this processes differently. For 24 

example, an increased cropland fraction in a grid cell can either be at the expense of 25 

grassland, or forest (i.e. deforestation)18.  26 

All models performed simulations S1 and S2 using global atmospheric CO2 27 

concentration23 and historical climate fields from CRU-NCEP data set24. In simulation 28 

S1, models were forced with changing atmospheric CO2 concentration, while climate 29 
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was held constant (recycling climate mean and variability from 1901 to 1920). Both 1 

atmospheric CO2 concentration and climate were varied in simulation S2. Two models 2 

(CLM4 and CABLE) performed an additional simulation (S3) that atmospheric CO2 3 

concentration, climate, and nitrogen deposition were all varied. The average difference 4 

of S3 and S2 of CLM4 and CABLE was used to assess the relative contribution of 5 

nitrogen deposition. The 7 TRENDY models performed an additional scenario that CO2 6 

concentration, climate and land-cover were all varied (S4). The difference of S4 and S2 7 

were used to evaluate the response of vegetation growth to land use and land cover 8 

change. Table S3 lists the responses of LAI that simulated by each individual model to 9 

CO2, climate change, nitrogen deposition and land cover change. 10 

S8. Changes in observed maximum LAI (LAImax)  11 

We performed similar trend analyses for the observed LAImax. The results show 12 

that LAImax from 3 long-term satellite LAI data sets also consistently show positive 13 

trends over a large portion of the global vegetated area during the study period (Figure 14 

S7). The patterns of trends in LAImax are similar to that of the trends in growing season 15 

LAI. The global greening trend in LAImax estimated from the three data sets is 16 

0.012±0.005 m2m-2yr-1. The regions with the largest LAImax greening trends, consistent 17 

across the 3 data sets, are in Northern Amazon, Europe, Central Africa and Southeast 18 

Asia. The GLASS LAImax data shows the most extensive statistically significant 19 

increases (Mann-Kendal test, p<0.05) over 58.6% of vegetated lands, followed by 20 

GLOBMAP LAImax (43.5%) and GIMMS LAI3gmax (29.3%). All 3 LAI data sets also 21 

consistently show a decreasing LAImax trend over less than 3% of global vegetated land. 22 

S9. Trends in biosphere parameters that may affect LAI trends 23 

Five of the TRENDY2 models (CLM4.5, LPX-Bern, LPJ, LPJ-GUESS and VISIT) 24 

provided outputs of gross primary productivity (GPP), net primary productivity (NPP), 25 

autotrophic respiration (RA) and carbon emissions due to fires (Cfire). With these 26 

outputs, we were able to explore which of these variables exhibit trends related to those 27 

of LAI (Fig. S8). According to model simulations, we found that GPP, NPP and RA all 28 
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show statistically significant (p<0.05) increasing trends, while Cfire show statistically 1 

significant decreasing trend. The model simulations suggest that increasing GPP, 2 

although partly neutralized by increasing RA, and decreasing Cfire are responsible for 3 

the increasing LAI during 1982 to 2009. 4 

According to model simulations, increases in GPP, NPP and RA and decreases in 5 

Cfire due to direct and indirect effects of increasing atmospheric CO2 concentration are 6 

all statistically significant (p<0.05). The models also show that increasing atmospheric 7 

CO2 concentration contributes the most to increases in GPP, NPP and RA, while LCC 8 

effects were the major factor that caused the decrease in Cfire. Climate change 9 

statistically significantly stimulated GPP of global vegetation during our study period. 10 

However, RA change caused by climate change also statistically significantly increased. 11 

These trends almost compensate each other, making the climate-induced change of NPP 12 

statistically not significant. The magnitude of Cfire trends is much smaller than trends 13 

in GPP, NPP or RA during 1982 to 2009, which suggests that decreasing fires loss was 14 

not a major cause of LAI increase. Satellite-based burned area data show that the ratio 15 

of global annual burned area to global vegetated area is about 3% and trend in global 16 

burned area is about -1% per year 25. Such a small fraction combined with its small 17 

trends also suggest the limited role of Satellite-observed burned area data also 18 

confirmed the limited role of Cfire in affecting global vegetation. 19 

S10. Differences between the spatial pattern of trends in modeled LAI and observed 20 

LAI 21 

We noticed that the inconsistencies between observations and models are mainly 22 

in the Southwestern United States, Southern South American countries, and Mongolia 23 

(Fig. 3a and b). In these regions, MMEM suggests that LAI has strongly decreased for 24 

the period 1982 to 2009, whereas observation suggests little decreasing or even slightly 25 

increasing trends. To investigate the possible reason that caused the differences, we first 26 

checked the model fractional simulations. We found that these negative trends were 27 

mainly caused by climate change (Fig. S11b). We further investigated which climatic 28 
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factor is most responsible for the negative trends using an additional simulation 1 

experiment with ORCHIDEE (Section S13). ORCHIDEE simulation driven by climate 2 

change only generally captured the strong negative trends as shown in Fig. S9a. The 3 

fractional simulations of ORCHIDEE suggest that trends in precipitation are the 4 

dominant driving factor that account for the strong decreasing trends in model-5 

simulated LAI (Fig. S9b). We also investigated the global pattern of annual total 6 

precipitation using observed precipitation data (CRU). The results show that the (red) 7 

regions where simulated LAI decreased in MMEM model simulations match well with 8 

the regions where annual total precipitation significantly decreased (Fig. S9c). 9 

Such pronounced negative trends were not captured by any of the three satellite 10 

products. Our analysis indicated that models may be over-sensitive to trends in 11 

precipitation as soil water holding capacities maybe under-estimated in models, and 12 

deep rooting, ecosystem composition changes (e.g. shrubification) are not modeled, 13 

which is consistent with previous studies26. 14 

S11. Optimal Fingerprints Analysis 15 

We used an optimal fingerprint method to detect the relative contribution of each 16 

external driving factor to the observed change in vegetation activity27, 28. The optimal 17 

fingerprint expresses the observation (Y ) as a linear combination of scaled (𝛽𝑖 ) 18 

responses to external driving factors (𝑥𝑖 ), which were estimated using ecosystem 19 

models, and internal variability (𝜀): 20 

Y =∑𝛽𝑖𝑥𝑖 + 𝜀

𝑛

𝑖=1

 21 

In this study, the LAI simulated by ecosystem models was used to estimate the 22 

vegetation change response to external forcing, i.e. CO2 fertilization, climate change, 23 

nitrogen deposition and land cover change. Specifically, we used 3 satellite data to 24 

calculate the mean LAI. And 10, 10, 2 and 7 simulations (Table S1) were used to 25 

calculate the ensemble mean LAI signals driven by CO2 fertilization, climate change, 26 

nitrogen deposition and land cover change, respectively. Satellite observed LAI and 27 
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multi-model ensemble mean LAI driven by each external forcing were first aggregated 1 

onto global or continental scale and then averaged over 2-year window. The internal 2 

variability of changes in vegetation growth was estimated using CMIP5 model control 3 

run simulations (Table S4) and preprocessed similar to the signals of external forcings. 4 

All the satellite observed LAI and model simulated LAI are centered by subtracting 5 

their mean value. We regressed the satellite observed change in LAI onto the multi-6 

model ensemble mean LAI driven by CO2 fertilization, climate change, nitrogen 7 

deposition and land cover change and estimated their scaling factors using the total least 8 

square method28. We also performed similar analysis for the simulated LAI under 9 

scenarios S1, S2, S3 and S4. The 95% confidence interval of the estimated scaling 10 

factor lies above zero indicates that the signal of the corresponding driving factor is 11 

detected. And the corresponding signal is suitable for attribution if the 95% confidence 12 

interval contains 1. 13 

S12. Analysis of CO2 fertilization effects based on simple concept model 14 

The water-use efficiency of photosynthesis is defined as the ratio of the rates of 15 

assimilation (A) and transpiration (E) per unit of leaf area29: 16 

 W =
𝐴

𝐸
=

𝐶𝑎

1.6𝑣
(1 −

𝐶𝑖

𝐶𝑎
) (1) 17 

where v, Ci and Ca are the leaf-to-air water vapor-pressure deficit and the intercellular 18 

and atmospheric CO2 concentrations, respectively. The relative effect of a change in Ca 19 

on W is given by: 20 

 
𝑑𝑊

𝑊
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𝑑𝐴

𝐴
−

𝑑𝐸

𝐸
=

𝑑𝐶𝑎

𝐶𝑎
−

𝑑𝑣

𝑣
+

𝑑(1−
𝐶𝑖
𝐶𝑎
)

(1−
𝐶𝑖
𝐶𝑎
)

 (2) 21 

The quantity (1 − 𝐶𝑖 𝐶𝑎⁄ ) has been modeled and observed as being proportional to the 22 

square root of the vapor-pressure deficit (√𝑣)30, 31,32. Thus: 23 

 
𝑑𝑊

𝑊
=

𝑑𝐴

𝐴
−

𝑑𝐸

𝐸
=

𝑑𝐶𝑎

𝐶𝑎
−

1

2

𝑑𝑣

𝑣
 (3) 24 

E can be written as: 25 
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 E = 1.6𝑔𝑠𝑣 (4) 1 

The relative effects of changes in gs and v can be expressed as: 2 

 
𝑑𝐸

𝐸
=

𝑑𝑔𝑠

𝑔𝑠
+

𝑑𝑣

𝑣
 (5) 3 

Equation 3 can thus be written as: 4 
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−

𝑑𝑣
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=

𝑑𝐶𝑎
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−

1

2

𝑑𝑣

𝑣
 (6) 5 

and 6 

 
𝑑𝐴

𝐴
=

𝑑𝐶𝑎

𝐶𝑎
+

1

2

𝑑𝑣

𝑣
+

𝑑𝑔𝑠

𝑔𝑠
 (7) 7 

Atmospheric CO2 concentrations (Ca) increased from 341 to 387 ppm (~46 ppm) 8 

during 1982-200933, i.e. 𝑑𝐶𝑎 𝐶𝑎⁄  was 13.5%. We also calculated monthly vapor-9 

pressure deficits for the study period using the CRU time-series data 34. The vapor-10 

pressure deficit was calculated from the difference between saturated vapor pressure, 11 

which was calculated using monthly mean temperature, and the monthly mean vapor-12 

pressure data provided by the CRU time series. The results suggested that the relative 13 

change of annual mean vapor-pressure deficit over vegetated areas globally (𝑑𝑣 𝑣⁄ ) was 14 

about 2.3% for 1982-2009. The experimentally measured response of stomatal 15 

conductance to elevated Ca suggested that an increase in Ca of 46 ppm would cause a 16 

relative change in stomatal conductance (𝑑𝑔𝑠 𝑔𝑠⁄ ) of -5.0 to -3.0%35, 36. We estimated 17 

from equation (7) a relative change of A of about 9.7-11.7% (or 21.1-25.4% per 100 18 

ppm). We also estimated from equation (6) a relative change of W of about 12.3%. The 19 

results indicated that the direct (𝑑𝐶𝑎 𝐶𝑎⁄ ) and indirect (𝑑𝑔𝑠 𝑔𝑠⁄ ) effects of an increase 20 

in Ca were the major factors that affected the change in A during 1982-2009 (8.5-10.5%, 21 

or 18.5-22.8% per 100 ppm).  22 

We also estimated the relative change of global GPP using the 7 TRENDY2 23 

models. The TRENDY2 models suggested that the relative change of GPP during the 24 

study period was 5.2-8.3% (11.3-18.0% per 100 ppm), which is comparable to the 25 

relative change of GPP estimated by the above simple conceptual leaf-scale model. The 26 
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simulated modeled results were also comparable to the relative changes inferred from 1 

the Free-Air CO2 Enrichment (FACE) experiments. The increase in Ca during 1982-2 

2009 from the FACE experiment37 led to an increase in NPP of 6.1-9.4% (or 9.5-20.4% 3 

per 100 ppm) and an increase in LAI of 0.3-11.1% (or 0.6-24.1% per 100 ppm), and the 4 

TRENDY2 models estimated relative increases in global NPP and LAI of 5.2-9.0% (or 5 

11.3-19.6% per 100 ppm) and 4.7-9.5% (or 10.2-20.7% per 100 ppm), respectively. Our 6 

study, however, referenced few FACE experimental sites, which were mainly in 7 

forested regions and thus did not represent the heterogeneity of the CO2 fertilization 8 

effects across all representative vegetation types (or model PFTs). 9 

The generally comparable relative changes of global vegetation growth estimated 10 

from the simple conceptual models, the ecosystem models, and the FACE experiments 11 

lend credibility to our estimates of the response of global vegetation to elevated Ca 12 

during 1982-2009. Various complex mechanisms control the responses of vegetation 13 

growth to Ca, which are (to some extent) represented in our models. Analyzing all these 14 

mechanisms from model simulations under predefined scenarios, however, is difficult. 15 

The simple conceptual model identified some major mechanisms that control the 16 

responses of vegetation to Ca. The theoretical method, however, assumes the absence 17 

of other factors such as nutrient limitations or disturbances. Further research on the 18 

interactive mechanisms between the CO2 fertilization effects and other factors is needed. 19 

S13. Partitioning climate change effects  20 

To further understand the response of vegetation trend to climate change, we 21 

designed an additional set of scenarios for ORCHIDEE: (ORC_S1) varying 22 

atmospheric CO2 concentration and varying climate; (ORC_S2) varying CO2, 23 

precipitation and radiation; (ORC_S3) varying CO2, temperature and radiation; 24 

(ORC_S4) varying CO2, temperature and precipitation. We accessed the effects of 25 

temperature, precipitation and radiation by subtracting ORC_S2, ORC_S3 and 26 

ORC_S4 from ORC_S1, respectively. 27 

Given that there were large differences in model-simulated responses to changing 28 
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environmental factors, we implemented a two-step analysis to decompose the dominant 1 

role of climate change in driving LAI trends. First, we used MMEM to determine the 2 

dominant factor that accounts for increasing/decreasing trend in LAI for each vegetated 3 

pixel (Fig. 3c). From this analysis, we can determine the pixels where trends (increasing 4 

or decreasing) in LAI were dominated by ‘climate change’. Then, we further 5 

decomposed ‘climate change’ into climate variables (temperature, precipitation and 6 

radiation) in pixels that were dominated by ‘climate change’ using additional specific 7 

simulations from ORCHIDEE (Fig. S13). This analysis helped determine the dominant 8 

climate variables in the pixels where climate change is the dominant factor as suggested 9 

by the MMEM simulations. 10 
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Table S1. List of multi-model simulations used in this study.  1 

Models Source S1 S2 S3 S4 
Carbon-nitrogen 

interactions 
Reference 

CLM4.5 

TRENDY 

yes yes no yes yes 38 

LPJ yes yes no yes no 18, 21 

LPJ-GUESS yes yes no yes no 18, 39 

LPX-Bern yes yes no yes yes 40 

OCN yes yes no yes yes 41 

ORCHIDEE yes yes no yes no 42 

VISIT yes yes no yes no 43 

CLM4 

-- 

yes yes yes no yes 44 

CALBE yes yes yes no yes 45 

VEGAS yes yes no no no 46 

 2 

  3 
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Table S2. Processes included in the land cover change representation of the TRENDY2 1 

models18.  2 

 3 

 
CLM4.5 LPJ 

LPJ-

GUESS 

LPX-

Bern 
OCN ORCHIDEE VISIT 

Deforestation, 

afforestation, 

forest 

regrowth after 

abandonment 

of agriculture 

√ √ √ √ √ √ √ 

Wood harvest 

and forest 

degradation 

√      √ 

Shifting 

cultivation 
√      √ 

Cropland 

harvest 
√  √ √ √ √ √ 

Peat fires √       

Fire 

simulation 

and/or 

suppression 

√ √ √ √   √ 

 4 

  5 



23 
 

Table S3. Responses of LAI (m2m-2yr-1) simulated by individual models to elevated 1 

atmospheric CO2 concentration (CO2), climate change (CLI), nitrogen deposition (NDE) 2 

and land cover change (LCC). S1, S2, S3 and S4 represent four scenarios of model 3 

simulations that driven by varying CO2, varying CO2 and CLI, varying CO2, CLI and 4 

NDE, and varying CO2, CLI and LCC, respectively. The last row shows the responses 5 

of LAI estimated from multi-model ensemble mean (MMEM) to the driving factors. 6 

 7 

 
S1 S2 S3 S4 CO2 CLI NDE LUC 

CLM4.

5 
0.054** 0.050** -- 0.057** 0.054** -0.004 -- 0.007** 

LPX-

Bern 
0.044** 0.047** -- 0.056** 0.044** 0.003 -- 0.009 

OCN 0.040** 0.057** -- 0.052** 0.040** 0.016** -- 
-

0.004** 

LPJ 0.069** 0.067** -- 0.059** 0.069** -0.002 -- -0.008 

LPJ-

GUES

S 

0.047** 0.036** -- 0.041** 0.047** 
-

0.010** 
-- 0.005 

ORCH

IDEE 
0.036** 0.030** -- 0.022** 0.036** -0.006 -- 

-

0.008** 

VISIT 0.089** 0.115** -- 0.133** 0.089** 0.026** -- 0.018** 

CLM4 0.034** 0.059** 0.070** -- 0.034** 0.025** 0.011** -- 

CABL

E 
0.053** 0.047** 0.048** -- 0.053** 

-

0.006** 
0.001** -- 

VEGA

S 
0.013** 0.026** -- -- 0.013** 0.013** -- -- 

MME

M 

0.048**±

0.020 

0.053**±

0.025 

0.059**±

0.016 

0.060**±

0.035 

0.048**±

0.020 

0.006±

0.014 

0.006**±

0.008 

0.002±

0.010 

 8 

 9 

 10 

 11 
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Table S4. List of control-run simulations from CMIP5 used in this study.  1 

 2 

Models 
CTL 

years (chunks) 

ACCESS1-0 500(17) 

ACCESS1-3 500(17) 

bcc-csm1-1 500(17) 

bcc-csm1-1-m 400(14) 

CCSM4 1051(37) 

CESM1-BGC 500(17) 

CESM1-CAM5 319(11) 

CESM-FASTCHEM 222(7) 

CESM1-WACCM 200(7) 

GFDL-CM3 500(17) 

GFDL-ESM2G 500(17) 

GFDL-ESM2M 500(17) 

HadGEM2-CC 240(8) 

HadGEM2-ES 577(20) 

inmcm4 500(17) 

MPI-ESM-LR 1000(35) 

MPI-ESM-MR 1000(35) 

MPI-ESM-P 1156(41) 

 3 

  4 
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Figure S1. 28-year (1982 to 2009) average start day and duration of the growing season. 1 

The growing season was first determined by GIMMS LAI3g data set using Savitzky-2 

Golay filter and then refined by excluding the ground-freeze period identified by the 3 

Freeze/Thaw Earth System Data Record. In particular, the growing season of evergreen 4 

broadleaf forests was set to 12 months and starts in January.  5 

a 

 

b 

 

 6 
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Figure S2. Comparison between 28-year averaged growing season integrated leaf area 1 

index (LAI) and GPP product from Beer et al. 47for 83 terrestrial eco-regions of the 2 

world 48. LAI data for the period 1998 to 2005 were averaged at the pixel level to match 3 

the study period of Beer’s GPP map. Pixels were weighted by their area in the averaging 4 

process at eco-region level to eliminate geometric errors.  5 

 6 

 7 
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Figure S3. The spatial distribution pattern of trend in growing season integrated LAI 1 

derived from GIMMS LAI3g for the period 1982-2014. Regions labeled by black dots 2 

indicating those trends are statistically significant (Mann-Kendal test, p<0.05). 35% 3 

(4%) of the global vegetated area show statistically significant increasing (decreasing) 4 

trends. Trend in global LAI derived from GIMMS LAI3g for the period 1982-2014 is 5 

0.032 m2m-2yr-1. 6 
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Figure S4. Taylor diagrams compare the ten available Dynamic Global Vegetation 1 

Models to the satellite observation from 1982 to 2009 at the global scale (a) and in (b) 2 

Africa, (c) Asia, (d) Europe, (e) Oceania, (f) South America, and (g) North America. 3 

The standard deviation shows the interannual variability of the observed LAI and the 4 

modeled LAI. The dash green lines show centered root mean square difference between 5 

model simulations and satellite observation49.  6 
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Figure S5. Trend in global averaged LAI derived from individual model simulations 1 

driven by rising CO2, climate change (CLI), nitrogen deposition (NDE) and land cover 2 

change (LCC) using Mann-Kendal test. Error bars show the standard deviation of trends 3 

derived from satellite data and model simulations. Two asterisks indicate that the trend 4 

is statistically significant (p<0.05).  5 

 6 

 7 
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Figure S6. Spatial pattern of trends in LAI simulated by individual models under the 1 

same scenario S2 (varying CO2 and climate). 2 
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Figure S7. The spatial pattern of trends in maximum LAI of the year (LAImax) derived 1 

from three remote sensing data (a) GIMMS LAI3g, (b) GLOBMAP LAI and (c) 2 

GLASS LAI. All data sets cover the period 1982 to 2009. Regions labeled by black 3 

dots indicate trends that are statistically significant (Mann-Kendal test, p<0.05). (d) 4 

Probability density function of LAImax trends for GIMMS LAI3g, GLASS LAI, 5 

GLOBMAP LAI and the average of the three remote sensing data sets (AVG OBS). 6 

 7 

 8 
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Figure S8. Responses of gross primary productivity (GPP), net primary productivity 1 

(NPP), autotrophic respiration (RA) and carbon loss due to fires (Cfire) according to 2 

simulations from 5 TRENDY2 models (CLM4.5, LPX-Bern, LPJ, LPJ-GUESS and 3 

VISIT). Two asterisks indicate that the trend is statistically significant (p<0.05). 4 

 5 

 6 

 7 

 8 

 9 
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Figure S9. Consistency between satellite observation and model simulations. (a) Trend 1 

in LAI due to climate change estimated by ORCHIDEE simulation that account for 2 

climate change only; (b) Trend in LAI due to precipitation simulated by ORCHIDEE 3 

model; (c) Trend in observed annual total precipitation during 1982 to 2009. 4 

  
(a) (b) 

 

 
 
 

(c)  
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Figure S10. The first column shows interannual changes in continental anomalies of 1 

growing season integrated leaf area index (LAI) estimated by multi-model ensemble 2 

mean (MMEM) with all drivers considered and average of 3 remote sensing data.  3 

Subfigures (a), (c), (e), (g), (i), (k) shows the results in Africa, Asia, Europe, Oceania, 4 

South America and North America, respectively. The shaded area shows the intensity 5 

of EI Niño-Southern Oscillation (ENSO) as defined by the multivariate ENSO Index. 6 

The black dash lines label the sensors changing time of AVHRR satellite series. Two 7 

volcanic eruptions (El Chichón eruption and Pinatubo eruption) were labeled in brown 8 

dash lines. The second column shows trend in continental averaged LAI derived from 9 

satellite observation (OBS) and modeled trends driven by rising CO2, climate change 10 

(CLI), nitrogen deposition (NDE) and land cover change (LCC) using Mann-Kendal 11 

test. Subfigures (b), (d), (f), (h), (j), (l) shows the results in Africa, Asia, Europe, 12 

Oceania, South America and North America, respectively. Error bars show the standard 13 

deviation of trends derived from satellite data and model simulations. Two asterisks 14 

indicate that the trend is statistically significant (p<0.05).  15 
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Figure S11. The spatial distribution pattern of trend in growing season integrated LAI. 1 

(a) LAI derived from Multi-Model Ensemble Mean (MMEM) S1; (b) LAI derived from 2 

the difference of MMEM S2 and S1; (c) LAI derived from the difference of MMEM 3 

S3 and simulation S2. (d) LAI derived from the difference of MMEM S4 and S2. 4 

Regions labeled by black dots indicating those trends are statistically significant 5 

(p<0.05). 6 
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Figure S12. Spatial pattern of relative change of LAI due to CO2 fertilization during 1 

1982 to 2009. The relative change of LAI in each pixel is derived from the ratio of the 2 

increment of LAI driven by elevated atmospheric CO2 to the 28-year average value of 3 

LAI simulated by model ensemble mean under scenario S1.  4 

 5 
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Figure S13. The spatial distribution pattern of primary driving climate factors of trend 1 

in growing season integrated LAI for the period 1982 to 2009. The dominant driving 2 

climate factor is defined as the climate factor that contribute the most to the increase 3 

(or decrease) in LAI in each vegetated grid-cell that dominated by climate change (-4 

CLI and +CLI) defined in Fig. 3c. The driving climate factors include temperature (T), 5 

precipitation (P), and radiation (R). Prefixed ‘+’ of driving factors indicate their positive 6 

effect on LAI trends, while ‘-’ indicate negative effect. Vegetated pixels that dominated 7 

by factors other than climate change in Fig. 3c are shown in gray. Land pixels that have 8 

no vegetation are shown in white. 9 
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