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Abstract 
 

This paper is a contribution to the study of similarity relations between objects 
represented as attribute-value pairs in Fuzzy Description Logics. For this purpose 
we use concrete domains in the fuzzy description logic IALCE F (D) associated 
either with a left-continuous or with a finite t-norm. We propose to expand this 
fuzzy description logic by adding a Similarity Box (SBox) including axioms ex- 
pressing properties of fuzzy equalities. We also define a global similarity between 
objects from similarities between the values of each object attribute (local sim- 
ilarities) and we prove that the global similarity defined using a t-norm inherits 
the usual properties of the local similarities (reflexivity, symmetry or transitivity). 
We also prove a result relative to global similarities expressing that, in the context 
of the logic MTL∀, similar objects have similar properties, being these properties 
expressed by predicate formulas evaluated in these objects. 
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1. Introduction 
 

Similarity has been a central issue for decades in different disciplines, ranging 
from philosophy (Leibniz’s Principle of the Identity of Indiscernibles [33]) and 
psychology (Tversky’s stimuli judged similarity [62]) to natural sciences (taxon- 
omy [37]) and mathematics (geometric similarity [25, Chapter 4]). 

In artificial intelligence (AI) similarity plays an important role because the 
analogy reasoning is behind some of the early machine learning methods.  For 
instance, case-based reasoning methods (see [38]) are based on the principle that 
‘similar problems have similar solutions”. In clustering [39] objects are grouped 
in clusters according to their similarities.  The key point of these methods is to 
define a similarity metrics to express the similarity between objects.  In AI, do- 
main objects are commonly represented using attribute-value pairs. Metrics used 
to assess the similarity between two objects have to take into account such repre- 
sentation, in order to do that, it is usual to consider the number of similar attribute- 
values. The global similarity between two objects has to be seen as an aggregation 
of the local similarities of the attributes describing them (see [43] for a collection 
of similarity measures; for the item of aggregation operators see [50, 61]). 

In the present paper we study how to deal with similarities when objects are 
represented by sets of attribute-value pairs in Fuzzy Description Logics. Descrip- 
tion Logics (DLs) are knowledge representation languages built on the basis of 
classical logic. DLs allow the creation of knowledge bases and provide ways to 
reason on the contents of these bases.  A full reference manual of the field can 
be found in [4]. Hirsh and Kudenko [42] proposed a way to apply feature-based 
learners to DL learning tasks by presenting a method to compute an attribute vec- 
tor representation of DL instances. Although it is a work oriented to learning, the 
authors deal with the problem of how to represent attribute-value objects in DL, 
and they manage it by expressing each attribute as a concept. 

Fuzzy Description Logics (FDLs) are natural extensions of DLs expressing 
vague concepts commonly present in real applications (see for instance [9, 45, 56, 
57, 59, 60]). Hájek [36] proposed to deal with FDLs taking as basis t-norm based 
fuzzy logics.  His aim was to enrich the expressive possibilities in FDLs and to 
capitalize on recent developments in the field of mathematical fuzzy logic. From 
this perspective, in [34] a family of FDL languages was defined. These languages 
include truth constants for representing truth degrees, thus allowing the definition 
of the axioms of the knowledge bases as sentences of a predicate fuzzy language 
in much the same way as in classical DLs. 

In the fuzzy framework, the notion of similarity was introduced by Zadeh in



3  

 
 
 
 
 

[64] as a generalization of the notion of equivalence relation (see [53] for a his- 
torical overview on the notion of t-norm based similarity). As Zadeh pointed out, 
one of the possible semantics of fuzzy sets is in terms of similarity. Indeed, the 
membership degree of an object to a fuzzy set can be seen as the degree of resem- 
blance between this object and prototypes of the fuzzy set.  Ruspini suggests in 
[54] that the degree of similarity between two objects A and B may be regarded 
as the degree of truth of the vague proposition “A is similar to B”. Thus, similar- 
ity among objects can be seen as a phenomenon essentially fuzzy. Following this 
idea, we want to use the capabilities of languages of FDLS to express similarity 
degrees between objects. 

There are many authors that have focused on a fuzzy notion of similarity. In 
a more general context of predicate fuzzy logics, Hájek studied similarities and 
applied the obtained results to the analysis of fuzzy control [35]. Bĕlohlávek [19] 
presented a general theory of fuzzy relational systems. Model-theoretic proper- 
ties of algebras with fuzzy equalities were studied in [24, 19]. Dubois and Prade 
pointed out in [28] that three main semantics for membership functions existed 
in the literature: similarity, preference and uncertainty. Each semantic underly- 
ing a particular class of applications. Similarity notions, for instance, have been 
exploited in clustering analysis and fuzzy controllers. The authors stated that the 
similarity semantics of fuzzy sets could serve as a basis for the estimation of pref- 
erence and uncertainty. 

In [20] Bĕhounek et al.  studied fuzzy relations in the graded framework of 
Fuzzy Class Theory (FCT) generalizing existing crisp results on fuzzy relations 
to the graded framework. In FCT we can express the fact that a fuzzy relation is 
reflexive, symmetric or transitive up to a certain degree, and similarity is defined 
as a first-order sentence which is the fusion of three sentences corresponding to the 
graded notions of reflexivity, symmetry and transitivity. This allows to speak in a 
natural way of the degree of similarity of a relation. In [3] the relationship between 
global and local similarities in the graded framework of FCT was investigated. 

Another interesting approach is the one taken by Bobillo and Straccia in [11]. 
The authors provide a simple solution to join two formalisms, fuzzy DLs and 
rough DLs, and define a fuzzy rough DL. This logic is more general than other 
related approaches, including tight and loose fuzzy rough approximations and be- 
ing independent of the fuzzy logic operators considered. The key idea in rough 
set theory is the approximation of a vague concept by means of a pair of concepts, 
usually this approximation is based on an equivalence relation between elements 
of the domain. They extend this idea using fuzzy similarity relations instead of 
equivalence relations, giving raise to fuzzy rough sets. Bobillo and Straccia use a
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fixed set of similarities in order to introduce the semantics for the upper and lower 
approximation constructors. A revised and extended version of their work is [12]. 

Redarding the work done on distances defined from t-norms, in [2] Alsina in- 
troduced the idea of constructing distances from a t-norm and its dual. He proved 
that being a copula is a sufficient condition for the t-norm to induce a distance. 
Y. Ouyang in [52] gives an example of a continuous strict Archimedean t-norm 
that is not a copula and that generates a distance. An interesting problem recently 
solved in [1] (for the t-norms with the same zero region as Łuckasiewicz) is the 
characterization of those t-norms that induce distances. The authors give a neces- 
sary and sufficient condition for a pair consisting of a t-norm and a t-conorm (not 
necessarily its dual) to generate a distance. 

Our paper is a contribution to the study of similarity relations between objects 
represented as attribute-value pairs in Fuzzy Description Logics. It is organized as 
follows. In Section 2 we recall the notions and results from predicate fuzzy logics 
necessary to the understanding of the paper. In Sections 3 and 4 we recall the syn- 
tax and semantics of the classical description logic ALC and the fuzzy description 
logic IALCE . In Section 5 we expand the Fuzzy Description Language IALCE 
by introducing a similarity box (SBox) including axioms expressing properties of 
fuzzy equalities, allowing models of the language with a non-geometrical inter- 
pretation of the similarity symbols. In the Similarity Box we express that a role 
is reflexive, symmetric, transitive or that it is a congruence. We also obtain some 
results stating the equivalence of these axioms with certain role inclusion axioms. 
In Section 6 we explain how the attribute-value representation can be captured in 
the framework of the classical description language ALC  and of the fuzzy des- 
cription language IALCE F by means of the so-called concrete domains. In the 
same section we define a global similarity between objects from similarities be- 
tween the values of each object’s attribute (local similarities) and we show that 
the global similarity inherits the usual properties of the local similarities (reflex- 
ivity, symmetry or transitivity). In Section 7 we generalize a result of [35] to the 
logic MTL∀ relative to the global similarity. Finally there is a section devoted to 
concluding remarks and future work. 

 
 

2. Predicate fuzzy logics 
 

A triangular  norm (or t-norm) [41] is a binary operation defined on the real 
interval [0, 1] satisfying the following properties: associative, commutative, non 
decreasing in both arguments, and having 1 as unit element. Given the usual order 
in [0, 1], a left-continuous t-norm ∗ is characterized by the existence of a unique
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operation ⇒∗  satisfying, for all x, y, z ∈ [ 0, 1], the condition 
 

x ∗ z ≤ y    if and only if   z ≤ x ⇒∗  y. 
 

This operation is called the residuum of the t-norm and it satisfies 
 

x ⇒∗  y := max{z : x ∗ z ≤ y}. 
 

A continuous t-norm is a left-continuos t-norm satisfying the so-called divisibility 
condition: for all x, y ∈ [0, 1], min{x, y} = x ∗ (x ⇒∗  y). 

A negation function on [0, 1] is a unary operation n : [0, 1] −→ [0, 1] satisfying 
the following properties: 

 

•  n(0) = 1, 
 

•  n(1) = 0, 
 

•  for all x, y ∈ [ 0, 1], x ≤ y ⇒∗  n(y) ≤ n(x) (antimonotonicity). 
 

We say that n is weak if, for all x ∈ [0, 1], x ≤ n(n(x)); and it is said to be strong 
or involutive if, for all x ∈ [0, 1], n(n(x)) = x. We can also associate to each left- 
continuous t-norm ∗ a negation defined as follows: ¬∗(x) = x⇒∗0. This negation 
is always a weak negation function. If the t-norm ∗ is continuous, ¬∗ is involutive 
if and only if ∗ is the Łukasiewicz t-norm. 

An example of a prominent left-continuous t-norm that is not continuous is 
the Nilpotent Minimum (NM). Table 1 shows the NM t-norm and the main con- 
tinuous t-norms (Minimum, Product and Łukasiewicz) with their residua and the 
corresponding associated negations. The three main continuous t-norms are the 
basic ones since any continuous t-norm can be expressed as an ordinal sum of 
copies of them [51, 44]. In the following proposition we summarize some basic 
properties of left-continuous t-norms and their residua. 

 
Proposition 1. For every x, y ∈ [0, 1], the following conditions hold: 

 

a)  x ∗ y ≤ x    and    x ∗ y ≤ y,                                      (Integrality condition) 
 

b) x ⇒∗  y = 1   if and only if   x ≤ y, 

c) 1 ⇒∗  x = x, 

d) max{x, y} = min{(x ⇒∗  y) ⇒∗  y, (y ⇒∗  x) ⇒∗  x}.
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∗ NM Minimum (Gödel) Product Łukasiewicz 
 
 

x ∗ y 
 
 
 

x →∗  y 
 

 
 

¬∗ 

    
0,                  if y ≤ 1 − x 
min{x, y},    otherwise 

    
1,                          if x ≤ y 
max{1 − x, y},    otherwise 

 
 

1 − x 

 
 

min{x, y} 
 
    

1,   if x ≤ y 
y,   otherwise 

    
1,   if x = 0 
0,   otherwise 

 
 

x · y 
 
    

1,        if x ≤ y 
y/x,    otherwise 

    
1,   if x = 0 
0,   otherwise 

 
 
max{0, x + y − 1} 

 
 
 

min{1, 1 − x + y} 
 
 
 

1 − x 

 
 

Table 1: NM and the three main continuous t-norms. 
 

⊕ NM Maximum Probabilistic sum Łukasiewicz 
 
 

x ⊕ y 

    
1,                   if 1 ≤ x + y 
max{x, y},    otherwise 

 
 

max{x, y) 

 
 

(x + y) − (x · y) 

 
 
min{1, x + y} 

 
 

Table 2: Dual t-conorms with respect to the involutive negation N (x) = 1 − x. 
 
 

A triangular conorm (or t-conorm) is a binary operation defined on [0, 1] that 
is associative, commutative, non decreasing in both arguments, and having 0 as 
unit element. We say that a t-norm ∗ and a t-conorm ⊕ are dual with respect to a 
negation n if, for every x, y ∈ [0, 1], the De Morgan laws hold: 

 

n(x ∗ y) = n(x) ⊕ n(y),    n(x ⊕ y) = n(x) ∗ n(y). 
 

In Table 2 we show the t-conorms dual (with respect to the standard involutive 
negation N (x) := 1 − x) to NM and the three main continuous t-norms. 

The notion of t-norm can be extended to bounded finite chains with 0 and 
1 as first and last element respectively (see [48, 49]).  We will call this kind of 
operations finite t-norms.  They fulfill the same properties as t-norms and since 
they are of finite range all of them have a residuum.  A finite t-norm satisfying 
the divisibility condition is called a divisible finite t-norm. In [23, Corollary 3.7] 
it is shown that finite BL-chains are also ordinal sums of finite Łukasiewicz and 
minimum, and their finite ordinal sums.



7  

 
 
 
 
 

2.1. The predicate fuzzy logics MTL∀ and MTL∼∀ 
In the next we recall the axiomatization of the logic MTL.  This logic, intro- 

duced in [31] by Esteva and Godo, was proved in [40] to be the logic of all the 
ordered algebraic structures defined by left-continuous t-norms and their residua 
over the unit real interval [0, 1]. 

The primitive connectives are strong conjunction &, implication →, weak con- 
junction ∧, and the constant 0̄. Let ϕ, ψ, χ be propositional formulas (schemata) 
in the language defined by connectives in {&, →, ∧, ̄0}.  The propositional logic 
MTL is defined by the following axioms and rule:1 

 
Axioms: 
(MTL1)               (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) 
(MTL2)               ϕ&ψ → ϕ 
(MTL3)               ϕ&ψ → ψ&ϕ 
(MTL4)               ϕ ∧ ψ → ϕ, 
(MTL5)               ϕ ∧ ψ → ψ ∧ ϕ, 
(MTL6)               ϕ&(ϕ  → ψ) → ϕ ∧ ψ. 
(MTL7a)             (ϕ → (ψ → χ)) → (ϕ&ψ → χ) 
(MTL7b)             (ϕ&ψ → χ) → (ϕ → (ψ → χ)) 
(MTL8)               ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ) 
(MTL9)               0̄ → ϕ 
Rule: 
Modus ponens:   ϕ, ϕ → ψ ` ψ 

 
Further connectives are defined as follows: 

 

ϕ ↔ ψ := (ϕ → ψ)&(ψ → ϕ), 
ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ), 

¬ϕ := ϕ → 0̄,   1̄ := ¬0̄ 
 

By adding to the axiomatization of MTL the axiom ϕ ∧ ψ → ϕ&(ϕ  → ψ) we 
obtain the logic BL, studied in [35] and proved in [23] to be the logic of all the 
ordered algebraic structures defined by continuous t-norms and their residua over 
the unit real interval [0, 1]. 

 
 

1 In order to economize parenthesis in formulas, we will consider → the least binding connec- 
tive.
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An MTL-algebra [31] is a prelinear commutative integral bounded residuated 
lattice, that is, an algebra 

 
A = hA, ∨, ∧, ∗, ⇒∗, 0, 1i 

 
with four binary operations and two distinguished elements, satisfying: 

 

1. hA, ∨, ∧, 0, 1i is a bounded lattice with minimum element 0, and maximum 
element 1. 

2. hA, ∗, 1i is a commutative monoid with unit 1. 
3. The operation ∗ is residuated and the operation ⇒∗  is its residuum, i.e., 

for every x, y, z ∈ A, x ∗y ≤ z  if and only if   y ≤ x ⇒∗  z, 

where ≤ is the order associated to the lattice reduct. 
4. For every x, y ∈ A, (x ⇒∗  y) ∨ (y ⇒∗  x) = 1.   (Prelinearity) 

 

A negation operator is defined in any MTL-algebra by ¬x  :=  x  ⇒∗   0.  An 
MTL-chain is a linearly ordered MTL-algebra. When a MTL-algebra (chain) A 
satisfies the equation x ∗ (x ⇒∗  y) = x ∧ y, we say that A is a BL-algebra (chain). 
Given a left-continuous t-norm ∗, the algebraic structure 

 

[0, 1]∗ = h[0, 1], max, min, ∗, ⇒∗, 0, 1i, 
 

where 
 

•  max and min are the binary operators giving the maximum an the minimum 
of two numbers, respectively; 

 

•  ∗ is any left-continuous t-norm; and 
 

•  ⇒∗  is the residuum of ∗. 
 

is called the standard chain relative to the t-norm ∗. It can be seen that an MTL- 
chain is a BL-chain if and only if the t-norm is continuous [15, Corollary 1]. 
Since all chains with n elements are order-isomorphic, we can take as support of 
any finite MTL-chain of n elements the set: 

    1       2   n − 2
Cn = {0, 

n − 1 
, 

n − 1 
, . . . , 

n − 1 
, 1}. 

 

Given a finite t-norm ∗ over Cn , the MTL-chain
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C ∗

 
 
 
 
 

n = hCn , max, min, ∗, ⇒∗, 0, 1i 
 

is called the standard chain relative to the finite t-norm ∗. The canonical n-chains 
corresponding to the finite t-norms of NM, Łukasiewicz and Minimum (Gödel) 
are denoted by NMn , Łn , and Gn , respectively. It is easy to see that a structure 
C n is a BL-chain if and only if the finite t-norm is divisible. 

Now we state without proof some theorems of MTL that we will use later on: 
 

Proposition 2. (Cf. [31]) The following formulas are theorems of MTL: 
 

(1)     ϕ & (ψ & χ) → (ϕ & ψ) & χ, 
(2)     (ϕ & ψ) & χ → ϕ & (ψ & χ), 
(3)     (ϕ1  → ψ1) & (ϕ2  → ψ2 ) → ((ϕ1 & ϕ2) → (ψ1 & ψ2 )), 
(4)     (ϕ ↔ ψ) → ((ϕ → χ) ↔ (ψ → χ)), 
(5)     (ϕ ↔ ψ) → ((χ → ϕ) ↔ (χ → ψ)), 
(6)     (ϕ ↔ ψ) & (ψ ↔ χ) → (ϕ ↔ χ), 
(7)     (ϕ → ψ) ∧ (ϕ → χ) → (ϕ → ψ ∧ χ), 
(8)     ϕ & ψ → ϕ ∧ ψ, 
(9)     ϕ ∧ ψ → ψ ∧ ϕ, 
(10)    ϕ ∧ (ψ ∧ χ) → (ϕ ∧ ψ) ∧ χ, 
(11)    (ϕ ∧ ψ) ∧ χ → ϕ ∧ (ψ ∧ χ), 
(12)    (ϕ → ψ) → (ϕ ∧ χ → ψ), 
(13)    (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)), 
(14)    (ψ → χ) → ((ϕ → ψ) → (ϕ → χ)), 
(15)    (ϕ ↔ ψ) ↔ (ϕ → ψ) ∧ (ψ → ϕ), 
(16)    (ϕ1  → ψ1) ∧ (ϕ1  → ψ1) → (ϕ1  ∧ ϕ2  → ψ1 ∧ ψ2). 

 
We can extend the logic MTL with a involutive negation [30, Section 4.2]. We 

will denote this logic by MTL∼  and it is obtained by adding to any axiomatization 
of MTL the following additional axiom and rule:2 

 

v (∼)      ϕ ↔ ∼ ∼ ϕ 
(OR)   from (ϕ → ψ) ∨ χ derive (∼ ψ → ∼ ϕ) ∨ χ 

 

an MTL∼-chain is an algebraic structure 
 

A = hA, ∨, ∧, ∗, ⇒∗, ∼, 0, 1i 
 
 

2 Recall that the connective ∨ is defined as ϕ ∨ ψ := ((ϕ  → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ).



10  

n 

 
 
 
 
 

such that hA, ∨, ∧, ∗, ⇒∗, 0, 1i is a MTL∼-chain and the following properties hold 
for every x, y, z ∈ A: 

 
−   ∼ ∼ x = x, 
−   if (x ⇒∗  y) ∨ z = 1, then (∼ y ⇒∗  ∼ x) ∨ z = 1. 

 
Given a t-norm ∗, the chain [0, 1]∗ expanded with the standard involutive negation 
N (x) = 1 − x is called the canonical involutive chain relative to ∗. In the same 
way, given a finite t-norm ∗, the chain C ∗  expanded with the standard involutive 
negation is called the canonical finite involutive chain relative to ∗. 

 

The first-order versions of MTL and MTL∼, denoted respectively by MTL∀ 
and MTL∼∀, are obtained by adding to their axiomatizations the following axioms 
and rule (where now ϕ, ψ, χ must be read as predicate formulas): 

 
 

Axioms: 
(∀1)                      (∀x)ϕ(x) → ϕ(v)                           (v substitutable for x in ϕ) 
(∀2)                      (∀x)(ϕ(x) → ψ(x)) → (ϕ(x)  → (∀x)ψ(x)) (x not free in ϕ) 
(∀3)                      (∀x)(ϕ(x) ∨ ψ(x)) → (ϕ(x)  ∨ (∀x)ψ(x))     (x not free in ϕ) 
(∃1)                     ϕ(v) → (∃x)ϕ(x)                           (v substitutable for x in ϕ) 
(∃2)                     (∀x)(ϕ(x) → ψ(x)) → ((∃x)ϕ(x) → ψ(x)) (x not free in ψ) 

 
Rule: 
Generalization:    ϕ ` (∀x)ϕ(x) 

 
In the next proposition we recall two theorems of MTL∀ that we will use later 

on: 
 

Proposition 3. (Cf. [31]) The following formulas are theorems of MTL∀: 
(1)    (∀x)(ϕ → ψ) → ((∀x)ϕ → (∀x)ψ), 
(2)    (∀x)(ϕ → ψ) → ((∃x)ϕ → (∃x)ψ). 

 
Definition 1 (First-order semantics).  Let hP , F i a first-order signature (predi- 
cate symbols and functional symbols). Given a finite or infinite involutive canoni- 
cal MTL∼-chain T ∗, a T ∗-structure for the signature hP , F i is a tuple 

 
M = h M, {P M : P ∈ P }, {f M : f ∈ F } i 

 
where
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M,v kM,v

M,v kM,v , kβ

M,v M,v

M,v

M,v M,v
∗

M,v

M,v

M,v
kM

M,v 

∗

∗

 
 
 
 
 

1)  M is a non-empty set (the universe of the structure);    
P M : M k  −→ [0, 1],    if k ≥ 1,2)  for each k-ary P ∈ P , 

 
3)  for each k-ary f ∈ F , 

P M ∈ [0, 1],                if k = 0;    
f M : M k  −→ M,    if k ≥ 1, 
f M ∈ M,                 if k = 0.

Given an assignation v of the variables in M , the value of a term t in M is defined 
by: �                   

v(x),                      if t = x, � 
MktkM,v =                     a if t is a constant a,

f M(kt1kM,v , . . . , ktk kM,v ),    if t = f (t1 , . . . , tk ). 
Let v be an M-assignation  such that v(x1 ) = b1 , . . . , v(xn ) = bn . The truth value 
over the chain T ∗  of a formula for v is a value in [0, 1] inductively defined as 
follows: 

 

kP (t1, . . . , tk )kM,v   =   P M(kt1kM,v , . . . , ktk kM,v ) 
kα ∨ βk∗

 =  max(kα  ∗
 , kβk M,v )

kα ∧ βk∗
 =  min(kα  ∗

 kM,v )

kα & βk∗
 =  kαk∗

 ∗ kβk∗

kα → βk∗
 =  kαk∗

 ⇒∗  kβkM,v

k ∼ αk∗
 =  1 − kαk∗

k(∀x)α(x, x1, . . . , xn )k∗
 

 
k(∃x)α(x, x1, . . . , xn )k∗ 

=  inf {kα(a, b1, . . . , bn )  
∗

 
 
=   sup{kα(a, b1 , . . . , bn )k∗ 

: a ∈ M } 
 
: a ∈ M }M,v                                                           M 

A formula ϕ is valid in an T ∗-structure M  (denoted as hT ∗, Mi  |= ϕ) if, for
every assignation v, kϕk∗

 = 1.  A theory is a set of first-order formulas.  A
T ∗-structure M is a T ∗-model of a theory Γ if hT ∗, Mi |= ϕ for each ϕ ∈ Γ. 

 

 
3. The classical description logic ALC 

 

In this section we describe the basic DL language ALC  (Attributive Language 
with Complementation) [6], its semantics, and its knowledge bases. The vocab-
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NAME SYNTAX    SEMANTICS 
Top 
Bottom 
Intersection 
Union 
Complementation 
Value restriction 
Existential restriction 

>          ∆I 
⊥         ∅ 

C u D       C I ∩ DI 
C t D       C I ∪ DI 

¬C         ∆I \C I 
∀R.C        {a ∈ ∆I  : {b ∈ ∆I  : ha, bi ∈ RI } ⊆ C I } 
∃R.C        {a ∈ ∆I  : {b ∈ ∆I  : ha, bi ∈ RI } ∩ C I = ∅} 

 
 

Table 3: Concept constructors for ALC . 
 
 

ulary of ALC  consists of individuals, which denote domain objects, concepts, 
which denote sets of objects, and roles, which denote binary relations among ob- 
jects. From atomic concepts and roles and by means of constructors, DL systems 
allow us to build complex descriptions of both concepts and roles.  These com- 
plex descriptions are used to describe a domain through a knowledge base (KB) 
containing the definitions of relevant domain concepts or some hierarchical rela- 
tionships among them (Terminological Box), and a specification of properties of 
the domain instances (Assertional Box). One of the main issues of DLs is the fact 
that the expressions contained in the KB can be identified with formulas in first- 
order logic or an extension of it; therefore we can use reasoning to obtain explicit 
knowledge from the knowledge in the KB. 

Next we recall the definition of the basic language ALC.  We will use the let- 
ters A for atomic concepts, R for atomic roles and both C and D for descriptions 
of concepts. Concept descriptions in classic ALC  can be built using the following 
syntactical rules 

 
C, D     A |> |⊥ |C u D |C t D |¬C |∀R.C |∃R.C 

 

In order to define a formal semantics for the description formulas we consider 
interpretations. An interpretation I is a pair h∆I , (.)I i, where ∆I  is a non-empty 
set (the interpretation domain), and (.)I  is a map, which assigns to every atomic 
concept A a set AI   ⊆ ∆I  and to every atomic role R a binary relation RI   ⊆ 
∆I  × ∆I . Table 3 shows the name, syntax and semantics for each constructor of 
the language ALC. 

Commonly, a knowledge base in classical DLs is formed by a Terminological 
Box (TBox) and an Assertional Box (ABox): 

 

•  In its more general form a TBox is a finite set of (general) concept inclusion
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Female u Male   v  ⊥ 
Man                    ≡   Human u Male 
Woman               ≡   Human u Female 
Mother               ≡   Woman u ∃hasChild.Human 
Father                 ≡   Man u ∃hasChild.Human 
Parent                 ≡   Father t Mother 

 
Figure 1: Example of TBox in ALC . 

 
 
 

axioms, which are expressions of the form C  v D.  An interpretation I 
satisfies the axiom C v D if and only if C I ⊆ DI . In a TBox there are also 
equivalences, that is, expressions of the form C ≡ D meaning that C v D 
and D v C are both contained in the TBox. Obviously, an interpretation I 
satisfies an equivalence C ≡ D when C I = DI . An interpretation I which 
satisfies a TBox T is said to be a model of T . 

 
•  An ABox for ALC  is a finite set of formal expressions of the form C (a) 

(concept assertion axiom) and R(a, b) (role assertion axiom). The seman- 
tics of an ABox is given by extending the interpretation I mapping each 
individual name a to an element aI  ∈ ∆I . The interpretation I satisfies the 
axiom C (a) if and only if aI   ∈ C I , and it satisfies R(a, b) if and only if 
(aI , bI ) ∈ RI . An interpretation I which satisfies an assertion α is said to 
be a model of α. We will say that I satisfies α with respect to a TBox T if 
in addition to being a model of α, it is a model of T . 

 
As an example Fig.1 shows a possible TBox describing objects represented 

using only constructors from ALC.   In this language Human, Female and Male 
are atomic concepts.  Then, Human u Male and Human u Female are concepts 
describing Man and Woman respectively. If we have hasChild as an atomic role, 
we can consider the concept Human u ∃hasChild.Man describing those humans 
having at least a son, or the concept Human u ∀hasChild.Woman, which denotes 
those humans having only daughters. We can also define the concepts Father and 
Mother. 

 
 

4. The Fuzzy Description Logic IALCE 
 

The role played in classical DLs by the basic logic ALC  is played in the fuzzy 
setting by the logic IALCE [8, 22]. As in the classical case, we will use letters A
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for atomic concepts, R for atomic roles, and C and D for description of concepts. 
Concept descriptions in IALCE can be built using the following syntactical rules 

 
C, D     A |⊥ |> |C u D |C t D |C → D | ∼ C |¬C |∀R.C |∃R.C 

 
We will consider only finite alphabets. Notice that so defined, the difference 

between IALCE and ALC  is the presence in the former of two new construc- 
tors: the implication and a new negation (∼). In the classical interpretation, both 
languages are equivalent because implication is definable in terms of other con- 
structors like for instance ¬ and t, and the two negations are semantically the 
same. 

The semantics for concept constructors of IALCE is based on the ordered 
algebraic structures defined on the unit real interval (or on the n elements chain 
Cn = {0,   1    , . . . ,  n−2 , 1}) by a left continuous t-norm (or a finite t-norm) ∗ andn−1 n−1
its residuum ⇒∗, the standard involutive negation function N (x) = 1 − x, and the 
t-conorm ⊕ dual of the t-norm with respect to N . A fuzzy interpretation is a triple 
I = h∆I , (.)I , ∗i, where ∆I  is a crisp non-empty set but, in this case, the map (.)I 

assigns to every atomic concept A, a function AI  : ∆I  → [0, 1], i.e., a fuzzy set on 
∆I ; and it assigns to every atomic role R, a function RI  : ∆I  × ∆I  → [0, 1], i.e., 
a fuzzy binary relation on ∆I . Notice that this definition generalizes the classical 
notion of interpretation to the fuzzy setting.3   For IALCE , the map (.)I  can be 
inductively extended to other concept constructors (cf. [34]) in the following way: 

 

⊥I (a) = 0 
>I (a) = 1 

(C u D)I (a) = C I (a) ∗ DI (a) 
(C t D)I (a) = 1 − [(1 − C I (a)) ∗ (1 − DI (a))] 

(C → D)I (a) = C I (a) ⇒∗  DI (a) 
(∼ C )I (a) = 1 − C I (a) 
(¬C )I (a) = C I (a) ⇒∗  0 

(∀R.C )I (a) = inf {RI (a, b) ⇒∗  C I (b) : b ∈ ∆I } 
(∃R.C )I (a) = sup{RI (a, b) ∗ C I (b) : b ∈ ∆I } 

A fuzzy KB is composed of a fuzzy TBox and a fuzzy ABox.  A fuzzy TBox 
is a finite set of graded concept inclusion axioms. A fuzzy ABox is a finite set of 

 
 

3 A crisp set AI  ⊆ ∆I  (resp. a crisp binary relation RI  ⊆ ∆I  × ∆I ) can be equivalently seen 
as the characteristic function AI  : ∆I  → {0, 1} (resp. RI  : ∆I  × ∆I  → {0, 1}), associated to 
the set AI  (resp. RI ) w.r.t. the universe ∆I  (resp. ∆I  × ∆I ).
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graded concept assertion axioms and graded role assertion axioms. Let C, D be 
concepts, R be an atomic role and a, b be individual names. Let T ∈ {Cn , [0, 1]} 
and let r ∈ T . A graded concept inclusion axiom is an expression of the form: 

 

hC v D, ri. 
 

A graded concept assertion axiom is an expression of the form: 
 

hC (a), ri. 
 

A graded role assertion axiom is an expression of the form: 
 

hR(a, b), ri. 
 

We denote by |= the satisfiability relation. Given a fuzzy interpretation I , the 
semantics for these fuzzy axioms is the following: 

I |= hC v D, ri     iff       inf {C I (x) ⇒∗  DI (x) : x ∈ ∆I } ≥ r, 
I |= hC (a), ri       iff       C I (aI ) ≥ r, 
I |= hR(a, b), ri     iff       RI (aI , bI ) ≥ r. 

For instance, to express that a person p has most of his hair white, we can use 
a formula that says that p has white hair up to some degree: 

 
hHair_White(p), 0.7i 

 
 

5. Similarities in Fuzzy Description Logics 
 

In this section we recall some basic definitions and properties of the notion 
of similarity in Predicate Fuzzy Logics [35] and then we propose the introduc- 
tion of a Similarity Box (SBox) in FDLs and show under which conditions an 
interpretation satisfies the axioms contained in the SBox. In Mathematical Fuzzy 
Logic such notion is formalized by means of equivalence and congruence rela- 
tions.  However, in other domains such as psychology, for instance Tversky’s 
stimuli judged similarity [62], its formalization enjoys different properties and 
two objects may be similar in the context of a notion of similarity that for instance 
it does not suppose transitivity as a necessary condition. In [18] (see also [17]) 
Bouchon-Meunier et al. have developed a very broad notion of comparison com- 
patible with the notions proposed by Tversky in [62] (see Section 8). Our aim is to 
introduce in the language roles interpreted as similarities (possibly with different 
properties, depending of the domain) and to endow DL languages with the appro- 
priate tools to reason with them, the techniques to obtain that will be developed in
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future work. In the current paper we restrict ourselves to the following notion of 
similarity. 

 
Definition 2. Given a t-norm ∗, a ∗-similarity relation (or a fuzzy ∗-equivalence) 
defined on a universe M is a function 

 

s :     M × M → [0, 1] 
hx, yi 7→ s(x, 

y) 
 

such that, for every a, b, c ∈ M , the following hold: 
 

1. s(a, a) = 1,                                                                                 (Reflexivity) 
2. s(a, b) = s(b, a),                                                                          (Symmetry) 
3. s(a, b) ∗ s(b, c) ≤ s(a, c).                                                          (Transitivity) 

 
Definition 3. We say that an n-ary fuzzy relation r is extensional (or congruent) 
with respect to a ∗-similarity s on M when, for every u1, . . . , un , v1 , . . . , vn ∈ M , 

 

s(u1, v1) ∗ · · · ∗ s(un , vn ) ∗ r(u1 , . . . , un ) ≤ r(v1, . . . , vn ). 
 

We say that a k-ary funcion F  is extensional (or congruent) with respect to a 
∗-similarity s on M when, for every u1, . . . , un , v1, . . . , vn ∈ M , 

 

s(u1, v1) ∗ · · · ∗ s(un , vn ) ≤ s(F (u1, . . . , un ), F (v1 , . . . , vn )). 
 

Hájek in [35] studies similarities and congruences in the predicate fuzzy logic 
BL∀ and proposes the following similarity axioms: 

(S1)   (∀x) x ≈ x                                           (Reflexivity) 
(S2)   (∀x, y)(x ≈ y → y ≈ x)                     (Symmetry) 
(S3)   (∀x, y, z)(x ≈ y & y ≈ z → x ≈ z)    (Transitivity) 

and a congruence axiom (or extensionality axiom) for every n-ary predicate P and 
every k-ary functional f in the language: 
(Cong)P       (∀x1, . . . , xn , y1, . . . , yn )(x1≈y1 & · · · &xn ≈yn → 

→ (P x1 , . . . , xn ↔ P y1, . . . , yn )). 
(Cong)f       (∀x1 , . . . , xk , y1, . . . , yk )(x1 ≈y1& · · · &xk ≈yk  → 

→ (f x1, . . . , xk  ≈ f y1, . . . , yk )). 
The following result is proved by Hájek (see [35, Section 5.6]) in the context 

of the logic BL∀. The generalization to the context of MTL∼∀ is straightforward. 
 

Lemma 1. Let T ∗ be a finite or infinite involutive canonical MTL∼-chain.
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a)  If hM, si is a T ∗-model of the axioms of similarity, then the fuzzy relation s 
is a ∗-similarity. 

b) Let M = hM, s, ri be a T ∗-interpretation of the binary predicate ≈ and the 
n-ary predicate P  which is a T ∗-model of the axioms of similarity. Then, 
M is a T ∗-model of (Cong)P   if and only if r is extensional with respect to 
s. 

c) Let M = hM, s, F i be a T ∗-interpretation of the binary predicate ≈ and the 
k-ary functional f which is a T ∗-model of the axioms of similarity. Then, 
M is a T ∗-model of (Cong)f  if and only if F is extensional with respect to 
s. 

 
5.1. Introducing the Similarity Box 

We propose to extend the knowledge bases of IALCE F (D) by adding a Simi- 
larity Box. To do so we must extend the language by allowing abstract roles (only 
in the SBox, not in the other boxes). In the SBox we want to express that a role is 
reflexive, symetric, transitive or that it is a congruence. 

An SBox consists of a finite set of axioms of one of these types, where S is an 
abstract role: 

 

•  reflexive role axioms ref (S), 
 

•  symmetric role axioms sym(S), 
 

•  transitive role axioms trans(S), 
 

•  congruence role axioms cong(S). 
 

Given an interpretation I = h∆I , (·)I , ∗i, the semantics for these axioms is the 
following one: 

 

•  I |= ref (S) if and only if, for every a ∈ ∆I , SI (a, a) = 1, 
 

•  I |= sym(S) if and only if, for every a, b ∈ ∆I , SI (a, b) = SI (b, a), 
 

•  I |= trans(S) if and only if, for every a, b, c ∈ ∆I , 
 

SI (a, c) ∗ SI (c, b) ≤ SI (a, b). 
 

 
•  I |= cong(S) if and only if, for every atomic concept A, atomic role R, and 

u, v, u1 , u2 , v1, v2 ∈ ∆I ,
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ref (S)        h> v ∃S.Self , 1i 
sym(S)     hS−  v S, 1i 
trans(S)    hS ◦ S v S, 1i 

 
 

Table 4:  The axioms of reflexivity, symmetry and transitivity expressed by means of inclusion 
axioms 

 
 

1) SI (u, v) ∗ AI (u) ≤ AI (v), 
2) SI (u1 , v1) ∗ SI (u2, v2) ∗ RI (u1 , u2 ) ≤ RI (v1 , v2). 

 
A fuzzy role inclusion axiom, or fuzzy RIA is an expression of the form 

 
hw v R, ri, 

 
where w = R1  ◦ · · · ◦ Rm   is a role chain (i.e.  a composition of roles).  Given 
an interpretation I = h∆I , (·)I , ∗i, the interpretation of the composition is as 
follows: given a, b ∈ ∆I , 

 
wI (a, b) = sup{RI (a, c1) ∗ · · · ∗ RI (cn−1 , b) : c1, . . . , cn−1 ∈ ∆I }. 1                                      n 

 

Then, the semantics for the fuzzy RIA hw v R, ri is as follows: 
 

I |= w v R if and only if  inf {wI (a, b) ⇒I  R(a, b) : a, b ∈ ∆I } ≥ r. 
 

Given an abstract role S, the inverse role is denoted by S−,  and given an 
interpretation I , we have, for every a, b ∈ ∆I , 

 
(S−)(a, b) = SI (b, a). 

 
Finally, given an abstract role S, we can construct a concept, denoted by ∃S.Self , 
whose semantics is given by the fuzzy set defined as 

 

(∃S.Self )I (a) = SI (a, a). 
 

Observe that with all these resources we can express the axioms ref (S), sym(S), 
and trans(S) by means of inclusion axioms as it is shown in Table 4. We give only 
the justification of the equivalence between trans(S) and hS ◦ S v S, 1i: Firstly, 
we have that I |= hS ◦ S v S, 1i is equivalent to say that the infimum of the set 

 

{(S ◦ S)I (a, b) ⇒∗  SI (a, b) : a, b ∈ ∆I }
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is equal to 1, which is the same to say that (S ◦ S)I (a, b) ⇒∗  SI (a, b) = 1, that is, 
(S ◦ S)I (a, b) ≤ SI (a, b), for every a, b ∈ ∆I . But this is equivalent to say that, 
for every a, b ∈ ∆I , sup{SI (a, c) ∗ SI (c, b) : c ∈ ∆I } ≤ SI (a, b). This is trivially 
equivalent to say that, for every a, b, c ∈ ∆I , SI (a, c) ∗ SI (c, b) ≤ SI (a, b). 

As we have stated before when we have introduced the interpretation of the 
axiom cong(S), in order to express that an abstract role S is interpreted by a sim- 
ilarity which is a congruence, we need to express that the interpretations of every 
atomic concept and every atomic role are congruent with respect to the interpreta- 
tion of S. This can be done by means of a set of general concept inclusions (one 
for every atomic concept) and a set of RIAs (one for every atomic role) as it is 
shown in the following propositions. 

 
Proposition 4. Let A be an atomic concept, S be an abstract role, and I be an 
interpretation. The following conditions are equivalent: 

 

a)  I |= hA v ∀S.A, 1i. 
b) For every a, b ∈ ∆I , SI (a, b) ∗ AI (a) ≤ AI (b). 

 
Proof:  We have: 

for every a, b ∈ ∆I , SI (a, b) ∗ AI (a) ≤ AI (b)    ⇔ 
 

for every a, b ∈ ∆I , AI (a) ≤ SI (a, b) ⇒∗  AI (b)    ⇔ 

for every a ∈ ∆I , AI (a) ≤ inf {SI (a, b) ⇒∗  AI (b) : b ∈ ∆I }  ⇔ 

for every a ∈ ∆I , AI (a) ≤ (∀S.A)I (a)    ⇔ 

for every a ∈ ∆I , AI (a) ⇒∗  (∀S.A)I (a) = 1    ⇔ 
 

inf {AI (a) ⇒∗  (∀S.A)I (a) : a ∈ ∆I } = 1    ⇔ 

I |= hA v ∀S.A, 1i. 
First and fourth equivalences are given by the properties of residuation. The sec- 
ond and fifth ones are given by the properties of infima. The third one is given 
by the interpretation of ∀S.A, and the last one by the interpretation of the axiom 
hA v ∀S.A, 1i.                                                                                                      ✷ 

 
Proposition 5. Let R be an atomic role, S be an abstract role, and I be an inter- 
pretation satisfying the axioms ref (S) and sym(S). The following conditions are 
equivalent:
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a)  I |= {hS ◦ R v R, 1i, hR ◦ S v R, 1i}. 
b) For every a1, a2 , b1 , b2 ∈ ∆I , SI (a1, b1)∗SI (a2 , b2)∗RI (a1, a2 ) ≤ RI (b1, b2). 

 
Proof:    First we show that condition a) is equivalent to the fact that, for every 
a, b, c ∈ ∆I , these two conditions are satisfied: 

 
SI (a, c) ∗ RI (c, b) ≤ RI (a, b),                                    (1) 

 
RI (a, c) ∗ SI (c, b) ≤ RI (a, b).                                    (2)

 

We have: 
 
 

I |= hS ◦ R v R, 1i    ⇔ 

inf {(S ◦ R)I (a, b) ⇒∗  RI (a, b) : a, b ∈ ∆I } = 1    ⇔ 

for every a, b ∈ ∆I , (S ◦ R)I (a, b) ⇒∗  RI (a, b) = 1    ⇔ 

for every a, b ∈ ∆I , (S ◦ R)I (a, b) ≤ RI (a, b)    ⇔
 

for every a, b ∈ ∆I , sup{SI (a, c)} ∗ RI (c, b) ≤ RI (a, b)    ⇔ 
 

for every a, b, c ∈ ∆I , SI (a, c) ∗ RI (c, b) ≤ RI (a, b). 
 

In an analogous way we can show that I |= hS ◦ R v R, 1i is equivalent to con- 
dition (2). Now we prove a) ⇒ b): Let a1, a2, b1, b2  ∈ ∆I . By using conditions 
(1) and (2) we have: 

 
SI (a1 , b1) ∗ SI (a2, b2) ∗ RI (a1, a2 ) = SI (a1, b1) ∗ RI (a1, a2 ) ∗ SI (a2 , b2) ≤ 

 

≤ SI (a1, b1 ) ∗ RI (a1, b2 ) ≤ SI (b1, a1 ) ∗ RI (a1, b2 ) ≤ RI (b1, b2). 
 

To prove b) ⇒ a), we take a1  = c, a2  = b, b1  = a, b2  = b in the inequality in b). 
We have: 

SI (c, a) ∗ SI (b, b) ∗ RI (c, b) ≤ RI (a, b). 

Now, by applying the properties of reflexivity and symmetry of SI , we obtain 
condition (1). Finally, taking a1  = a, a2  = c, b1  = a, b2  = b in the inequality in 
b), we have: 

SI (a, a) ∗ SI (c, b) ∗ RI (a, c) ≤ RI (a, b). 
 

Now, by applying the reflexivity of SI   and the commutativity of ∗, we obtain 
condition (2).                                                                                                        ✷
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Proposition 6. Let S be an abstract role, and I be an interpretation satisfying 
the axioms ref (S) and sym(S). The following conditions are equivalent: 

 

a)  I |= cong(S). 
b) For every atomic concept A, I |= hA  v ∀S.A, 1i, and, for every atomic 

role R , I |= {hS ◦ R v R, 1i, hR ◦ S v R, 1i}. 
 

Proof:  It is an immediate consequence of Propositions 4 and 5.                        ✷ 
 

In an SBox we could also define similarities of two objects with respect to 
their attributes. In the next section we introduce global and local similarities. 

 
 

6. Local and global similarities  in FDLs 
 

Global similarities between objects can be defined as the aggregation of local 
similarities (defined between values of the object’s attributes). As references of 
the subject of aggregation operations see [27, 29, 50, 61]. Important aggregation 
operators are t-norms and t-conorms. Using this kind of operations we can define 
global similarities in a multiplicative way as “fusion” of local similarities, or in an 
additive way as residuated sum of such local similarities. 

An aggregation operator has the property of compensation (also known as 
Pareto property) when the result of the aggregation is lower than the maximum 
element aggregated and higher than the minimum one (see [27]). Some authors 
stress that t-norms (and also t-conorms) lack of a compensation behaviour, what 
is considered crucial in the aggregation process.  In practice, when the property 
of compensation does not hold, this can produce undesirable effects when two 
objects are similar in all the attributes except in one of them. The operators known 
as uninorms [32] are a generalization of t-norms in which the neutral element of 
the operation does not coincide with the maximum.  This characteristic implies 
that this kind of operations admit in general a good compensating behaviour. Since 
our primary focus is on integrating similarities in the context of Fuzzy Description 
Logics, we left for future work the extension of the results obtained in the present 
paper in the more general context of uninorms and other aggregation operators as 
OWA. 

The representation of domain objects using sets of attribute-value pairs, the 
value of an attribute may be qualitative or quantitative (see [63] to clarify the 
classes of data types).   In the next we recall how Description Logics use the 
so-called concrete domains in order to deal with domain objects represented by 
attribute-value pairs, and we present the languages ALC(D) of [47].
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For instance, let us suppose that a person is described by the following at- 
tributes: age, hair, and height. Notice that these attributes are of different nature. 
Both age and height are numerical, however we can consider that the former is 
a natural number whereas the later is a rational number; and hair can take va- 
lues into a finite set (sometimes this is called an enumerated type), for instance 
V  = {blonde, white, red, brown, black}. 

Let us illustrate with an example the difficulties we can encounter to deal with 
attribute-value representations in ALC. 

 
Example 1. Let us suppose that we want to describe that an individual p is 25 
years old, his hair is blonde , and his height is 170 cm. Using ALC we can express 
this attribute’s value including in the TBox axioms like the following ones: 

 
> v Hair_Blonde t Hair_White t Hair_Red t Hair_Brown t Hair_Black, 

 
Hair_Blonde v Human, Hair_White v Human, . . . Hair_Blonde 

u Hair_White v ⊥, Hair_Blonde u Hair_Red v ⊥, Hair_Blonde 

u Hair_Brown v ⊥, . . . 

Thus we use a concept for each one of the values in the set V , and we need 
some axioms involving all these concepts.  Moreover, in the ABox we have to 
include the axiom Hair_Blonde(p), expresing that p is an instance of the concept 
Hair_Blonde. However when we deal with attributes whose values belong to the 
sets of rational or natural numbers, this kind of solution is not possible, because 
these sets are infinite. 

 
Example 2. Let us suppose that a person p is described using an attribute-value 
representation in the following way: 

 
p = h(age, 25), (hair, blonde), (height, 170)i 

 
For simplicity, let us focus on the attribute hair and assume that it is enumerated 
and it takes values in the set V  mentioned before. Using ALC  we can express this 
attribute’s value including in the TBox the axioms: 

 
> v Hair_Blonde t Hair_White t Hair_Red t Hair_Brown t Hair_Black, 

 
Hair_Blonde v Human, Hair_White v Human, . . . 

Hair_Blonde u Hair_White v ⊥, Hair_Blonde u Hair_Red v ⊥,
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Hair_Blonde u Hair_Brown v ⊥, . . . 
 

Thus we use a concept for each one of the values in the set V , and we need 
some axioms involving all these concepts.  Moreover, in the ABox we have to 
include the axiom Hair_Blonde(p). However when we deal with attributes whose 
values belong to the sets of rational or natural numbers, this kind of solution is 
not possible, because these sets are infinite. 

 
6.1. Concrete Domains 

A natural and elegant way to deal in DLs with situations like the one of the 
previous example is by using the so-called concrete domains proposed by Baader 
and Hanschke in [5] (see complete references on the topic in [46, 47]). In the next 
we present the extension of ALC  with concrete domains, denoted by ALC(D). 
For this presentation we follow the one in [7]. 

Formaly, a concrete domain D is a pair h∆D , ΦD i, where ∆D is a set and ΦD is 
a set of predicate names. Each predicate name P ∈ ΦD is associated with an arity 
n and an n-ary predicate P D        ∆n . Prominent examples of concrete domains are D 
the numerical domains N, or Q. We describe Q (the description of N is analogous): 
the set ∆Q is the set of rational numbers Q. The predicates are the following ones: 

 
 

•  binary predicates <, ≤, =, =, ≥, > with the usual interpretation; 
 

•  unary predicates Pq  for every P  ∈ {<, ≤, =, =, ≥, >} and every q ∈ Q, 
interpreted as (Pq )Q  = {q 0  ∈ Q : q 0P q}; 

 

•  a ternary predicate +, with +Q = {hq, q0, q00i ∈ Q3 : q + q0  = q00}. 
 

ALC(D) is obtained from ALC  by extending it with: 
 

•  abstract features that are roles interpreted as partial functions from ∆I  to 
∆I ; such features can be used inside both value and existential restrictions; 

 

•  concrete features that are roles interpreted as partial functions from ∆I  to 
∆D ; such features can not be used inside both value and existential restric- 
tions; 

 

•  a concept constructor ∃u1, . . . , un .P , where P  ∈ ΦD  is a predicate of arity 
n, and every ui is a composition f1 ◦ · · · ◦ fk ◦ g, being f1, . . . , fk abstract
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features, and g a concrete feature4. These composed expressions are called 
concrete paths. This new constructor is interpreted as follows: 
(∃u1, . . . , un .P )I  = {d ∈ ∆I : there exist x1 , . . . , xn ∈ ∆D such that 

1 (d) = x1, . . . , un (d) = xn for 1 ≤ i ≤ n and hx1 , . . . , xn i ∈ P   }.
 

uI                                   I                                             D 
 

Let us consider a pair of examples.  Firstly, let us suppose we want to de- 
fine Young_People as a Human with age between 15 and 30. Using the concrete 
domain D of the natural numbers we can write: 

 
Young_People ≡ Human u ∃(age). ≤30  u ∃(age). ≥15 

 
where age is a concrete feature, a partial function from the domain ∆I  into the 
concrete domain ∆D and ≥15  and ≤30  are predicate names of the concrete domain 
D, interpreted as the set of natural numbers greater or equal than 15 and lower 
or equal than 30, respectively.  As an example involving a predicate of arity 2, 
consider the concept ’human having a salary smaller than the one of his wife’ that 
can be writen: 

 
Human u Male u ∃(salary), (wife ◦ salary). <, 

 
where wife is an abstract feature and salary is a concrete feature. 

 
6.2. Fuzzy concrete domains 

A first fuzzy description logic with fuzzy concrete domais was introduced by 
Straccia in [58]. In this section we recap the fuzzy description logic with concrete 
domains IALCE F (D) defined by Bobillo and Straccia in [10].5 

IALCE F (D)  extends the logic IALCE  with functional roles and concrete 
domains allowing to deal with datatypes such as numbers or strings. In a similar 
way to the classical case, a fuzzy concrete domain D is a pair h∆D , ΦD i, where 
∆D is a set disjoint with ∆I , and ΦD is a set of predicate names. But in the fuzzy 
setting, each predicate name P  ∈ ΦD  is associated with an arity n and an n-ary
fuzzy relation P D : ∆n D −→ [0, 1].

Concrete domains integrated in IALCE F (D) are N, Q and a set of strings. 
These domains work as in the classical case. The presence of the strings set allows, 

 
 

4 In some papers, such as [7, 5], these constructor is denoted by P (u1 , . . . , un ). We prefer the 
notation using ‘∃’ for coherence with the notation used in the following section for the fuzzy case. 

5 The logic defined in [10] was denoted by ALCF (D), but following the notational conventions 
for fuzzy description logics stated in [8] we denote this logic as IALCE F (D).
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Figure 2: General trapezoidal function 
 
 
 

for instance, by using the functional concrete role hasFamilyName, to express the 
concept of people whose family name is “Smith” as 

 
Human u ∃hasFamilyName. =Smith 

 
Moreover, the definition of genuine fuzzy concrete predicates is done by adding 
to the integrated concrete domains the following families of functions defined on 
Q+ ∪ {0}: trapezoidal, triangular, left-shoulder (L-functions), right-shoulder (R- 
functions), all used to specify membership degrees. In Figure 2 we have a generic 
trapezoidal function.  These kind of functions have four parameters a, b, c, d ∈ 
Q+ ∪ {0}, and they are defined as follows: 

�  
0,           if    x ≤ a 

�  
a−b ,       if    a ≤ x ≤ b 

T (x; a, b, c, d) = 
�  

1,           if    b ≤ x ≤ c 
x−d ,       if    c     x     d �  c−d �  0,           if    d ≤ x 

 
When a  < b  < c < d we obtain a genuine trapezoidal function.  In the case 

a  < b  = c < d we obtain triangular  functions.  L-functions arise in the case 
in which 0 = a = b < c < d, and we have R-functions when a < b = c = d.
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These functions allow us to define fuzzy concrete features as compositions of crisp 
concrete features with this kind of functions. Thus, for instance, from the concrete 
feature height we can define the fuzzy concrete feature youth as ∃(height).P , 
where 

�  
0,               if    x ≤ 160

P D (x) = L(x; 160, 190) = 
�

 10x−16 ,       if    160 ≤ x ≤ 190
�  1,               if    190 ≤ x. 

 
The description logic IALCE F (D), as it is presented in [10], also allows fuzzy 

modifiers like very , more or less and slightly . The interpretation of these modi- 
fiers are functions fm : [0, 1] −→ [0, 1] which are applied to fuzzy sets to change 
their membership function. For instance very and slightly can be interpreted, re- 
spectively, by 

very I (x) = x2,        slightly I (x) = 
√

x. 
For further details about the syntax and semantics of IALCE F (D) see [10], 

where a tableau for every knowledge base for that description logic is given. 
 

6.3. Defining global and local similarities 
Let U be a set of objects of the interpretation domain represented by attribute- 

value pairs. Let V1, . . . , Vk  be non-empty sets such that every object u ∈ U is of 
the form u = hu1, . . . , uk i, where ui ∈ Vi  for every i, 1 ≤ i ≤ k. 

For every i,  1  ≤  i  ≤  k, let si  be a binary fuzzy relation defined on Vi . 
Each relation si  induces a relation ri  on U as follows.   For every u, v  ∈ U , 
u = hu1, . . . , uk i and v = hv1, . . . , vk i, we define: 

 

ri (u, v) ≡df  si (ui , vi ). 
 

We call each ri a local relation. From these local relations, and using a t-norm ∗, 
we define a new relation s as follows: 

 

r(u, v) ≡df  r1(u, v) ∗ · · · ∗ rk (u, v). 
 

We say that r is a global relation. 
 

Example 3. Table 5 shows the description of three persons according the degree 
they like three hobbies: trekking, reading, and cinema. In order to compare them 
we have to define a measure of how similar are two of these values. Let us suppose 
that we use the following formula to establish the similarity between two values: 

 

ri (u, v) = 1 − |ui − vi |.
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Name trekking reading cinema 
John 
Mary 
Peter 

0.5 
0.6 
0.9 

0.3 
0.8 
0.5 

0.9 
0.7 
0.4 

 
 

Table 5: Descriptions of three persons using the attributes trekking, reading, and cinema. 
 
 

Now we use this expression to calculate the similarity between all the hobbies. For 
instance, concerning trekking John, Mary and Peter have the following degrees of 
similarity: 

 

rt (John, Mary) = 1 − |0.5 − 0.6| = 0.9 
rr (John, Peter)  = 1 − |0.5 − 0.9| = 0.6 
rc(Mary, Peter)  = 1 − |0.6 − 0.9| = 0.7 

 
Expressed as matrices the relations trekking (rt ), reading (rr ), and cinema (rc) are 
the following:

�   
1     0.9   0.6  

� �   
1     0.5   0.8  

� �   
1     0.8   0.5 

�

rt = �  0.9     1     0.7 �    rr = �  0.5     1     0.7 �    rc = �  0.8     1     0.7 �
0.6   0.7     1 0.8   0.7     1 0.5   0.7     1

The global relation is r(u, v) ≡df  rt (u, v) ∗ rr (u, v) ∗ rc(u, v) and its general term
is given by aij = at ∗ ar ∗ ac  , where at , ar and ac stand for the element (i, j)ij      ij      ij ij    ij           ij
of the matrices rt , rr and rc, respectively. If we consider that ∗ is the minimum 
t-norm we have: �   

1    0.5   0.5  
�

 
rmin = �  0.5    1    0.7  � 

0.5   0.7    1 
 

and, considering that ∗ is the Łukasiewicz t-norm, we have: 
 �   

1    0.2    0   
�

 
rŁ = �  0.2    1    0.1  � 

0    0.1    1 
 

Relations rt , rr and rc are reflexive and symmetric since all the elements in the 
diagonal of the matrices are  1 and the matrices are  all symmetric.  Also, the 
matrices representing the global similarity taking both the minimum t-norm (rmin) 
and the Łukasiewicz t-norm (rŁ) have 1 in the diagonal and are symmetric. The
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relations rt , rr and rc are not transitive if we take the minimum t-norm. To see 
this, we must see that there are some elements x, y, z such that for the relations 
rt , rr , rc, the inequalities R(x, y) ∗ R(y, z) ≤ R(x, z) are not satisfied. Indeed, 

 
•  rt (John, Mary) ∗ rt (Mary, Peter)      rt (John, Peter), 

since min{0.9, 0.7} = 0.7 and rt (John, Peter)  = 0.6, 
 

•  rr (John, Peter) ∗ rr (Peter, Mary)     rr (John, Mary), 
since min{0.8, 0.7} = 0.7 and rr (John, Mary) = 0.5, 

 
•  rc(John, Mary) ∗ rc(Mary, Peter)      rc(John, Peter), 

since min{0.8, 0.7} = 0.7 and rc(John, Peter)  = 0.5. 
 

Taking the Łukasiewicz t-norm, it is not difficult to see that all of them rt , rr  and 
rc are transitive. 

 
In the previous example we have given three local relations that are reflexive 

and symmetric and which also are transitive when we take Łukasiewicz t-norm. 
We also have seen that the aggregation of this three local relations by using the 
t-norm of Łukasiewicz is also reflexive, symmetric and transitive.  In the next 
proposition we prove that this is a general fact. 

 
Lemma 2. Let U be a set of objects represented by attribute-value pairs.   Let 
α1, . . . , αk  be the attributes used to describe the objects in U . Suppose that every 
attribute αi takes values in a set Vi . Let r be the global relation induced by the 
local fuzzy relations s1, . . . , sk  defined on V1 , . . . , Vk , respectively. That is, 

 

r(u, v) = s1(u1, v1 ) ∗ · · · ∗ sk (uk , vk ), 
 

for every objects u, v ∈ U represented by tuples u = hu1 . . . uk i and v = hv1 . . . vk i, 
respectively. Then, the following conditions hold: 

1. If for every i, 1 ≤ i ≤ k, si is reflexive, then r is also reflexive. 
2. If for every i, 1 ≤ i ≤ k, si is symmetric, then r is also symmetric. 
3. If for every i, 1 ≤ i ≤ k, si is transitive, then r is also transitive. 

 

Proof:  Let u, v, w ∈ U be objects represented as tuples hu1, . . . , uk i, hv1, . . . , vk i 
and hw1 , . . . , wk i, respectively. 
1.  Assume that for every i, 1 ≤  i  ≤  k, si is reflexive, that is, si (ui , ui )  = 1 
for every ui  ∈ Vi . Therefore, by definition of s and the fact that 1 is the neutral 
element of ∗, we have r(u, u) = 1. Thus s is also reflexive.
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2. Assume that for every i, 1 ≤ i ≤ k, si is symmetric, that is, for every ui , vi  ∈ 
Vi , si (ui , vi ) = si (vi , ui ). Therefore, by definition of s and basic properties of ∗, 
s(o, u) = s(u, o). Thus s is also symmetric. 
3. Assume that for every i, si is transitive, that is, for every ui , vi , wi  ∈ Vi , 

 

si (ui , vi ) ∗ si (vi , wi ) ≤  si (ui , wi ). 
 

By monotonicity of ∗ and using the facts that s1  and s2  are transitive, we have: 
 

s1(u1, v1 ) ∗ s1(v1, w1 ) ∗ s2(u2, v2) ∗ s2(v2, w2 ) ≤ s1(u1 , w1) ∗ s2(u2, w2 ). 
 

By iteration of this procedure we obtain: 
 

(s1 (u1 , v1) ∗ s1(v1, w1)) ∗ · · · ∗ (sk (uk , vk ) ∗ sk (vk , wk )) ≤ 
 

≤ s1 (u1, w1) ∗ · · · ∗ sk (uk , wk ). 

Finally, using commutativity of ∗, we have: 
 

(s1(u1, v1) ∗ · · · ∗ sk (uk , vk )) ∗ (s1 (v1, w1 ) ∗ · · · ∗ sk (vk , wk )) ≤ 
 

≤ s1 (u1, w1) ∗ · · · ∗ sk (uk , wk ). 
 

But, by definition of s, this is equal to say s(u, v) ∗ s(v, w) ≤ s(u, w) and we can 
conclude that s is transitive.                                                                                 ✷ 

When the global similarity is reflexive, using the integrality property of ∗ it is 
easy to show that the local similarities are also reflexive. Nevertheless, this is not 
true neither for symmetry nor for transitivity, as it is shown in the following two 
examples. 

 
Example 4. Take the universe U = {u, v} and suppose that the objects are de- 
scribed with two attributes being u  = hu1, u2i and v = hv1 , v2i.  Let s be the 
global similarity induced by two local similarities s1  and s2  defined in the sets of 
values of the respective attributes in such a way that 

 
s2 (v2, u2) = s1(u1, v1) = s1(v1, u1) = s2(u2, v2 ). 

 
So defined s1  and s2  are not symmetric. But we have: 

 

s(u, v) = s1(u1, v1 ) ∗ s2(u2, v2) = s2(v2, u2) ∗ s1 (v1, u1) = s(v, u). 
 

Thus, the global relation is symmetric.



30  

 
 
 
 
 

Example 5. Take the universe U = {u, v, w} and suppose that objects are de- 
scribed with two attributes being u = hu1 , u2 i, v = hv1, v2 i, and w = hw1, w2i. 
Assume that ∗ is the minimum t-norm, and let s be the global similarity induced 
by two local similarities s1  and s2  defined in the sets of values of the respective 
attributes in such a way that 

 
s1(u1, v1) = 0.2   s1(v1, w1) = 0.4   s1(u1, w1) = 0.1, 
s2(u2, v2) = 0.5   s2(v2, w2) = 0      s2(u2, w2) = 0.1. 

 
Observe that s1  is not transitive since min(s1(u1, v1), s1(v1, w1)) = 0.2 > 0.1 = 
s1 (u1 , w1). But we have: 

 
s(u, v) ∗ s(v, w) = s1(u1, v1) ∗ s2 (u2 , v2) ∗ s1(v1, w1) ∗ s2 (v2 , w2) = 

 
= 0.2 ∗ 0 = 0 ≤ s(u, w). 

 

Thus, the global relation is transitive. 
 
 

7. A general result on global similarities 
 

 
Hájek in [35, Lemma 5.6.8] proved, in the context of the logic BL∀, that 

similar objects have similar properties, being these properties expressed by first- 
order formulas evaluated in these objects.  In the following we generalize this 
result to the logic MTL∀. To present this result, we extend the notion of syntactic 
degree of a formula in [35, Definition 5.6.7] to the language of MTL∀ in the 
following way: 

 
1. dg(φ) = 1, if φ is atomic, 
2. dg(φ) = 0, if φ is a truth constant, 
3. dg(∀xφ) = dg(∃xφ) = dg(¬φ) = dg(φ), 
4. dg(φ → ψ) = dg(φ & ψ) = dg(φ) + dg(ψ), 
5. dg(φ ∧ ψ) = max{dg(φ), dg(ψ)}. 

 

Notation:  Let x ≈k  y abbreviate (x ≈ y)& · · · &(x ≈ y) (k times). 
 

Theorem  1. Let T be a theory in MTL∀ containing the axioms: 
(S1) (∀x) x ≈ x                                           (Reflexivity) 
(S2) (∀x, y)(x ≈ y → y ≈ x)                      (Symmetry) 
(S3) (∀x, y, z)(x ≈ y & y ≈ z → x ≈ z)    (Transitivity)
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and, for every n-ary predicate P  and every k-ary functional f in the language, 
the congruence axioms: 
(Cong)P       (∀x1, . . . , xn , y1, . . . , yn )(x1≈y1 & · · · &xn ≈yn → 

→ (P x1, . . . , xn ↔ P y1, . . . , yn )). 
(Cong)f       (∀x1 , . . . , xk , y1 , . . . , yk )(x1≈y1& · · · &xk ≈yk  → 

→ (f x1, . . . , xk  ≈ f y1 , . . . , yk )). 
Let φ be a first-order formula of MTL∀ with dg(φ)  = k, and let x1 . . . , xn be 
variables including all free variables of φ in such a way that, for every 1 ≤ i ≤ n, 
yi is substituable for xi in φ. Then, 

 
T ` (x1  ≈k  y1 )& · · · &(xn ≈k  yn ) → (φ(x1 , . . . , xn ) ↔ φ(y1 , . . . , yn )). 

 
Proof:    By induction on the complexity of formulas.  By the congruence and 
similarity axioms, the assertion is true for atomic formulas (and is vacuous for 
truth constants). For the sake of clarity, we will proof the inductive steps (except 
for the ∀ and ∃ steps) only for 2 variables, that is, for x  ≈k   y instead that for 
(x1   ≈k   y1 )& · · · &(xn ≈k   yn ).  The generalization to the n case is trivial. Now 
assume that the property holds for the formulas φ(x) and ψ(x), with dg(φ) = k 
and dg(ψ) = h. 

 
Inductive step φ&ψ. By definition of the syntactic degree, dg(φ&ψ) = k +h. 

By the inductive hypothesis we have: 
 

T ` x ≈k  y → (φ(x) ↔ φ(y)), 
and  

T ` x ≈h  y → (ψ(x) ↔ ψ(y)).

In MTL holds that T ` α and T ` β implies T ` α&β. Thus, we have: 
 

T ` (x ≈k  y → (φ(x) ↔ φ(y)))&(x ≈h  y → (ψ(x) ↔ ψ(y))), 
 

and then, by Proposition 2(3), 
 

T ` x ≈k+h y → (φ(x) ↔ φ(y))&((ψ(x) ↔ ψ(y)). 
 

By definition of ↔, axiom (MTL3) , and Proposition 2(1,2), 
 

T ` x ≈k+h y →
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→ [(φ(x) → φ(y))&(ψ(x)  → ψ(y))]&[(φ(y) → φ(x))&((ψ(y) → ψ(x))], 
 

and, by Proposition 2(3), 
T ` x ≈k+h y → 

→ [(φ(x)&ψ(x))  → (φ(y)&ψ(y))]&[(φ(y)&ψ(y))  → (φ(x)&ψ(x))]. 

Therefore, by definition of ↔, 
 

T ` x ≈k+h y → [(φ(x)&ψ(x))  ↔ (φ(y)&ψ(y))]. 
 

Inductive  step φ → ψ. By definition of syntactic degree, dg(φ&ψ) = k + h. 
By inductive hypothesis we have: 

 
T ` x ≈k  y → (φ(x) ↔ φ(y)), 

and  
T ` x ≈h  y → (ψ(x) ↔ ψ(y)).

 

Proceeding as in the & case, we obtain: 
 

T ` x ≈k+h y → (φ(x) ↔ φ(y))&((ψ(x) ↔ ψ(y)). 
 

By Proposition 2(4), 
 

` (φ(x) ↔ φ(y)) → [(φ(x) → ψ(x)) ↔ (φ(y) → ψ(x))], 
 

and, by Proposition 2(5), 
 

` (ψ(x) ↔ ψ(y)) → [(φ(y) → ψ(x)) ↔ (φ(y) → ψ(y))]. 
 

Thus, by Proposition 2(6), we can conclude that 
 

T ` x ≈k+h y → [(φ(x) → ψ(x)) ↔ (φ(y) → ψ(y))]. 
 

Inductive  step φ ∧ ψ.  By definition of the syntactic degree, dg(φ ∧ ψ)  = 
max(dg(φ), dg(ψ)). Without lost of generality, assume that k ≤ h. By inductive 
hypothesis we have: 

 
 
 

and 

T ` x ≈k  y → (φ(x) ↔ φ(y)), 

T ` x ≈h  y → (ψ(x) ↔ ψ(y)).
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Since k ≤ h, by axiom (MTL2), we have that the formula x ≈h  y → x ≈k  y is a 
theorem of MTL. Then, 

 
 
 

and 

T ` x ≈h  y → (φ(x) ↔ φ(y)), 
 
 
T ` x ≈h  y → (ψ(x) ↔ ψ(y)).

In MTL holds that T ` α and T ` β implies T ` α ∧ β. Thus, we have 
 

T ` (x ≈h  y → (φ(x) ↔ φ(y))) ∧ (x ≈h  y → (ψ(x) ↔ ψ(y))), 
 

and then by Proposition 2(7), 
 

T ` x ≈h  y → [(φ(x) ↔ φ(y)) ∧ (ψ(x) ↔ ψ(y))], 
 

and, by definition of ↔, 
T ` x ≈h  y → 

→ [(φ(x) → φ(y))&(φ(y) → φ(x))] ∧ [(ψ(x) → ψ(y))&((ψ(y)  → ψ(x))].  (3) 

Now, we will use the fact holds in MTL: 

T ` α → (β ∧ γ) and T ` β → δ and T ` γ →   implies T ` α → (δ ∧  ).  (4) 
 

This fact is easily proved by using axiom (MTL1), Proposition 2(7) and Modus 
Ponens. Now, by Proposition 2(8), we have: 

 
` (φ(x) → φ(y))&(φ(y) → φ(x)) → (φ(x) → φ(y)) ∧ (φ(y) → φ(x)),     (5) 

 
and 

 
` (ψ(x) → ψ(y))&(ψ(y) → ψ(x)) → (ψ(x) → ψ(y)) ∧ ((ψ(y) → ψ(x)).   (6) 

Consequently, by aplying the fact (4) to (3), (5) and (6), we obtain: 

T ` x ≈h  y → [(φ(x) → φ(y))∧(φ(y) → φ(x))]∧[(ψ(x) → ψ(y))∧((ψ(y) → ψ(x))], 
 

and, by Proposition 2(9,10,11), we obtain: 
 

T ` x ≈h  y → 
 

→ [(φ(x) → φ(y)) ∧ (ψ(x) → ψ(y))] ∧ [(φ(y) → φ(x)) ∧ ((ψ(y) → ψ(x))].  (7)
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Now consider the first part of the conjunction, that is, 
 

(φ(x) → φ(y)) ∧ (ψ(x) → ψ(y)). 
 

Now, by applying Proposition 2(12), we obtain: 
 

` (φ(x) → φ(y)) → ((φ(x) ∧ ψ(x)) → φ(y)), 
and  

` (ψ(x) → ψ(y)) → ((φ(x) ∧ ψ(x)) → ψ(y)).
 

Then, by applying Proposition 2(16,13), we have: 
 

` [(φ(x) → φ(y)) ∧ (ψ(x) → ψ(y))] → (φ(x) ∧ ψ(x)) → (φ(y) ∧ ψ(y)),   (8) 
 

and proceeding in the same way with the other part of the conjunction in (7), that 
is, with (φ(y) → φ(x)) ∧ ((ψ(y) → ψ(x)), we obtain: 

 

` [(φ(y) → φ(x)) ∧ (ψ(y) → ψ(x))] → (φ(y) ∧ ψ(y)) → (φ(x) ∧ ψ(x)).    (9) 

We can conclude from (7), (8), (9), by using rule (4), that 

T ` x ≈h  y → [(φ(x)∧ψ(x)) → (φ(y)∧ψ(y))]∧[(φ(y)∧ψ(y)) → φ(x)∧ψ(x))], 
 

and, by definition of ↔ and using Proposition 2(15), we have 
 

T ` x ≈h  y → [(φ(x) ∧ ψ(x)) ↔ (φ(y) ∧ ψ(y))]. 
 

Inductive  step ∀xn φ(x1, . . . , xn )). In this step we will use the generalization 
to n variables of the proofs of the previous steps. By definition of the syntactic 
degree, dg(∀xn φ(x1, . . . , xn )) = dg(φ(x1 , . . . , xn )) = k. By inductive hypothesis 
we have 

 

T ` (x1  ≈k  y1)& · · · &(xn ≈k  yn ) → (φ(x1 , . . . , xn ) ↔ φ(y1, . . . , yn )). 
 

Our assumption implies (substituting xn for yn ), 
T ` (x1  ≈k  y1 )& · · · &(xn −1  ≈  y n−1) →

 
→ (φ(x1 , . . . , xn−1 , xn ) ↔ φ(y1 , . . . , yn−1, xn )). 

 

Thus, by the generalization rule, we have 
T ` ∀xn [(x1  ≈k  y1)& · · · &(xn −1  ≈  y n−1 ) →
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→ (φ(x1, . . . , xn−1, xn ) ↔ φ(y1, . . . , yn−1, xn )],

and, since xn is not free in (x1  ≈k  y1 )& · · · &(xn −1  ≈  y 
 
n−1 

 

), we obtain:

T ` (x1  ≈k  y1 )& · · · &(xn −1  ≈  y n−1) →
 

→ ∀xn (φ(x1, . . . , xn−1, xn ) ↔ φ(y1, . . . , yn−1 , xn )), 
 

and then, by Proposition 3(1), 
T ` (x1  ≈k  y1)& · · · &xn −1  ≈  y n−1 →

 
→ (∀xn φ(x1 , . . . , xn ) ↔ ∀xn φ(y1 , . . . , yn−1xn )). 

Inductive  step ∃xn φ(x1, . . . , xn ).  In this step we will use also the general- 
ization to n variables of the proofs of the previous steps.  By definition of the 
syntactic degree, dg(∃xn φ(x1, . . . , xn )) = dg(φ(x1, . . . , xn )) = k. By inductive 
hypothesis we have 

 
T ` (x1  ≈k  y1)& · · · &(xn ≈k  yn ) → (φ(x1 , . . . , xn ) ↔ φ(y1, . . . , yn )). 

 
Our assumption implies that (substituting xn for yn ), 

T ` (x1  ≈k  y1 )& · · · &(xn −1  ≈  y n−1) →
 

→ (φ(x1 , . . . , xn−1 , xn ) ↔ φ(y1 , . . . , yn−1, xn )). 
 

Thus, by the generalization rule, we have 
T ` ∀xn [(x1  ≈k  y1)& · · · &(xn −1  ≈  y n−1 ) →

 
→ (φ(x1, . . . , xn−1, xn ) ↔ φ(y1, . . . , yn−1 , xn )],

and, since xn is not free in (x1  ≈k  y1)& · · · &(xn −1  ≈  y 
 
n−1 

 

), we obtain:

T ` (x1  ≈k  y1)& · · · &(xn −1  ≈  y n−1 ) →
 

→ ∀xn (φ(x1 , . . . , xn−1 , xn ) ↔ φ(y1 , . . . , yn−1, xn )), 
 

and then, by Proposition 3(2), 
T ` (x1  ≈k  y1)& · · · &(xn −1  ≈  y n−1 ) →

 
→ (∃xn φ(x1, . . . , xn ) ↔ ∃xn φ(y1, . . . , yn−1xn )). 

✷
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It is well known that the description logic IALCE can be seen as a fragment 
of a first order fuzzy logic [8, 22, 21]. This logic, parametrized by a t-norm and 
denoted by Λ∗∀, is the first order version of the propositional logic defined by 
evaluations over the structure determined on the real unit interval [0, 1] by a t-norm 
and its residua, extended with the standard involutive negation N (x) = 1−x. This 
logic is an extension of the logic MTL∼∀. Nevertheless, Theorem 1 is not valid 
for MTL∼∀ as the following counterexample shows. On the other hand, for every 
description formula no containing the symbol ∼, the property expressed in the 
previous theorem holds. 

 
Example 6. Take the Gödel algebra on [0, 1] expanded with the standard involu- 
tive negation 1 − x. Observe that the propositional formula p → (q ↔ r) takes 
value 1 under the evaluation e(p) = 0.3, e(q) = 0.5, and e(r) = 0.8. However, 
under the same evaluation, the formula p → (∼ r ↔ ∼ q) takes value 0.2. 

 
 

8. Concluding Remarks and Future  Work 
 

This work is a preliminary contribution on the direction of defining a Simi- 
larity Fuzzy Description Logic. We have introduced an SBox including axioms 
expressing properties of fuzzy equalities, allowing in this way models of the lan- 
guage with a non-geometrical interpretation of the similarity symbols. We have 
shown also that similar objects have similar properties, being these properties ex- 
pressed by fuzzy description formulas evaluated in these objects. However, there 
are several interesting issues that have not been addressed in this paper and that 
will be the focus of our future research. 

This paper is a first step in the study of the relationships between global and 
local similarities via aggregation operations. We begin by taking t-norms as ag- 
gregation operators and we define global similarities from local similarities by 
using t-norms. Since our primary focus is on integrating similarities in the context 
of Fuzzy Description Logics, we left for future work the extension of the results 
obtained in the present paper in the more general context of uninorms and other 
aggregation operators as OWA or some others with good compensator behaviour 
that we can found in the literature (see for instance [61]). 

See also the work of Bobillo and Straccia on aggregation operators for fuzzy 
ontologies in [14]. In their article, they integrate fuzzy ontologies and aggregation 
operators they provide the syntax and semantics of a fuzzy Description Logic with 
fuzzy aggregation operators and a reasoning algorithm for the family of operators
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that are representable using a Mixed Integer Linear Programming optimization 
problem. 

In an enough expressive language like S ROI Q(D)  [12], the axioms of re- 
flexivity, symmetry, transitivity, and congruence can be expressed by using cer- 
tain type of general inclusion axioms which can be included in the TBox, and a 
special kind of axioms called fuzzy role inclusion axioms, or fuzzy RIAs, which 
can be included in the so-called RBox (Role Box). The language S ROI Q(D) in- 
cludes role hierarchies, inverse roles, composition of roles among other features. 
In future work we would explore the possibility to extending the publicly available 
reasoner FUZZY DL (for a reference see [13]) to our logic or some fragments of 
it, as done in [12]. There, the authors build a tableaux using a set of satisfiability 
preserving rules which generate new simpler fuzzy assertion axioms together with 
some inequations over [0,1]-valued variables.  Finally, an optimization problem 
through the set of inequations is solved. However, depending of the DL adopted, 
the logic will become undecidable. One interesting starting point could be to use 
Zadeh semantics. 

The common approach to similarity (or dissimilarity) between objects is to 
define it by means of a distance measure. This implies, however, that objects are 
described geometrically, which is not always the case. In many situations objects 
are described symbolically and, in these cases, Tversky proposes to define simi- 
larity through the comparison of the features that describe these objects. In [62] 
Tversky shows situations in which similarities do not satisfy the usual mathemat- 
ical properties of metrics.  In [18] (see also [17]) Bouchon-Meunier et al.  have 
developed a very broad notion of comparison compatible with the notions pro- 
posed by Tversky in [62]. This notion, called similitude is based on the concept 
of fuzzy measure. The similarity measures based on fuzzy measures are classified 
into three groups: measures of satisfiability, inclusion and resemblance.  In this 
context, the notion of similarity based on a t-norm considered in this paper would 
be a special case of the more general notion of resemblance. As future work we 
will study the treatment of these general types of comparisons and the expression 
of its properties in the context of a SBox adapted to them. 

In [20], Bĕhounek et al.  study fuzzy relations in the graded framework of 
Fuzzy Class Theory (FCT) which generalizes existing crisp results on fuzzy re- 
lations to the graded framework. In [3] the relationship between global and local 
similarities in the graded framework of FCT was investigated.  As a continua- 
tion of this work we plan to analyze the introduction in the SBox of these graded 
notions. 

There are several works that we want to analyze since although they take a
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logical approach different than ours, we think that some of their ideas can be 
included in our framework.  Similarity in DLs has been studied by Borgida et 
al. [16] and D’Amato et al. [26] among others, focusing on similarity measures 
between DL concepts. D’Amato et al. take as starting point the idea that measures 
for estimating concept similarity have to be able to appropriately consider concept 
semantics in order to correctly assess their similarity value. In accordance with 
this goal the authors propose a set of properties that a semantic similarity measure 
should have, analyze different extensional-based and intensional-based similarity 
measures proposed in the literature, and show that these approaches lack some of 
the needed properties. Finally, they define a measure for complex descriptions in 
some DL languages that is compliant with all of these criteria. Part of our future 
work will be devoted to the study of similarity between concepts in the fuzzy 
context following ideas proposed in [16, 26]. 

Sheremet et al. [55] propose an integration of logic-based and similarity-based 
approaches in classical DLs.  They use concept constructors such as “in the r- 
neighborhood” of C’ where r is a positive rational number; or the operator C ⇔ D 
which is interpreted by the set of all points in the similarity space that are closer 
to the instances of C than to the instances of D. For example, it can be used to 
model statements like ‘X resembles C more than D’. 

In our formalism we can also express both, a notion of neighbourhood of a 
concept and a notion of comparative similarity between concepts (as in Sheremet 
et al.  [55]).  Given a concept C , and a similarity role ≈, by using existential 
quantification, we define the concept ∃ ≈  .C interpreted as a fuzzy set in the 
following way: for every d ∈ ∆I , 

 

(∃ ≈ .C )I (d) = sup{(b ≈I  d) ∗ C I (b) : b ∈ ∆I } 
 

Thus, given a rational number r, the r-neighbourhood of concept C is the set of 
all d  ∈ ∆I   such that (∃ ≈  .C )I (d)  > r.  Analogously, let C and D be two 
concepts. By using an implication concept constructor in the language interpreted 
as the residuum of a t-norm (see [36]), we define the concept ∃ ≈ .C → ∃ ≈ .D 
interpreted as a fuzzy set as follows: for every d ∈ ∆I , 

 

(∃ ≈ .C → ∃ ≈ .D)I (d) = (∃ ≈ .C )I (d) →∗  (∃ ≈ .D)I (d) 
 

Now, the elements d ∈ ∆I  which are more similar (or equally similar) to D than 
to C are those for which (∃ ≈ .C → ∃ ≈ .D)I (d) = 1.
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