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Abstract: Plants buffer increasing atmospheric CO, concentrations through enhanced growth,
but the question whether nitrogen availability constrains the magnitude of this ecosystem service
remains unresolved. Synthesizing experiments from around the world, we show that CO,
fertilization is best explained by a simple interaction between nitrogen availability and
mycorrhizal association. Plant species that associate with ectomycorrhizal fungi show a strong
biomass increase (30 £ 3%, P<0.001) in response to elevated CO, regardless of nitrogen
availability, whereas low nitrogen availability limits CO, fertilization (0 + 5%, P=0.946) in
plants that associate with arbuscular mycorrhizal fungi. The incorporation of mycorrhizae in
global carbon cycle models is feasible, and crucial if we are to accurately project ecosystem
responses and feedbacks to climate change.

One Sentence Summary: Only plants that associate with ectomycorrhizal fungi can overcome
nitrogen limitation, and thus take full advantage of the CO; fertilization effect.

Main Text: Terrestrial ecosystems sequester annually about a quarter of anthropogenic CO,
emissions (1), slowing climate change. Will this effect persist? Two contradictory hypotheses
have been offered: the first is that CO, will continue to enhance plant growth, partially mitigating
anthropogenic CO, emissions (1, 2), while the second is that nitrogen (N) availability will limit
the CO, fertilization effect (3, 4), reducing future CO, uptake by the terrestrial biosphere (5-7).
Plants experimentally exposed to elevated levels of CO, (eCO;) show a range of responses in
biomass, from large and persistent (8, 9) to transient (6), to non-existent (10), leaving the
question of CO; fertilization open. Differences might be driven by different levels of plant N
availability across experiments (11), but N availability alone cannot explain contrasting results
based on available evidence (7, 12). For instance, among two of the most studied free-air CO,



enrichment (FACE) experiments with trees, eCO, enhanced biomass production only during the
first few years at ORNL-FACE (6), whereas trees in the Duke FACE experiment showed a
sustained enhancement during the course of the experiment (8), despite N limitation. In addition
to N limitation, other factors have been suggested as potential drivers of the response of plant
biomass to eCO,: age of the vegetation (13), water limitation (14), temperature (15), type of
vegetation (12), or even the eCO, fumigation technology used (11). Although these factors may
explain some observations, none has been found to be general, explaining the range of
observations globally.

About 94% of plant species form associations with mycorrhizal fungi, an ancient mutualism
thought to have facilitated the colonization of land by early plants (16). In this mutualism, the
fungus transfers nutrients and water to the plant in exchange for carbohydrates, necessary for
fungal growth. Mycorrhizal fungi are critical for terrestrial C cycling (17), are known to
influence plant growth (18), nutrient cycling (19, 20), and soil carbon storage (21), and respond
strongly to elevated CO, (22, 23). Yet, their impact on the N-dependence of the CO, fertilization
effect has not been tested, despite the increasing evidence that N limitation constrains the CO,
fertilization effect (5). Arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) are, by far,
the most widespread types of mycorrhizae (24): AM-plants predominate in deserts, grasslands,
shrublands and tropical forest ecosystems, whereas ECM-fungi predominate in boreal and many
temperate forests (e.g., those dominated by Pinus). ECM can transfer N to the host plant under
eCO, to sustain CO, fertilization (25), whereas the symbiotic effects of AM fungi in N-limited
systems can range from beneficial to parasitic (19). Hence, the association of Liquidambar
styraciflua with AM-fungi at ORNL, and Pinus taeda with ECM-fungi at Duke, might explain
why only trees in the latter could increase N-uptake and take advantage of eCO, to grow faster
for a sustained period (20, 25). Here, we tested the hypothesis that the differences in the nutrient
economies of ECM and AM fungi influence global patterns of the magnitude of plant biomass
responses to elevated CO,.

We synthesized data (overview in Table S1) on total plant biomass (g m?) from 83 eCO,
experiments (Fig. S1), separating responses into aboveground biomass (n=83, Fig. S2) and
belowground biomass (n=82, Fig. S3) in a mixed effects meta-analysis. As potential drivers of
the plant biomass response, we considered the increase in atmospheric CO, concentration
(ACQOy), mean annual precipitation (MAP), mean annual temperature (MAT), age of the
vegetation at the start of the experiment, vegetation type (e.g. grassland, forest), CO, fumigation
technology (e.g. FACE, growth chamber), length of the study (years), dominant mycorrhizal type
(AM or ECM), and N-status (high or low N availability, considering soil characteristics and
occasional fertilizer treatments, following the approach by Vicca et al. (17) and assigning all
experiments with indications for some degree of N limitation to the “low N class and
experiments that were unlikely N limited to the “high N class; Materials and Methods, Table
S2).

Model selection analysis, based on corrected Akaike Information Criterion (AlCc), showed that
the most parsimonious model within 2 AICc units included N-status, mycorrhizal type and ACO,
(P<0.001). The relative importance of the predictors (Fig. 1) supported the removal of climate
variables, length of the experiment, age of the vegetation, fumigation technology and system
type. Some predictors reduced the CO, effect on biomass (e.g. age of the vegetation), whereas
others were associated with an increased CO; effect (e.g. ECM, ACO,, high N availability) (Fig.
S4).



The response of total biomass to an increase of CO, from 400 to 650 umol mol ™" was larger
(P<0.001) in ECM (30 £ 3%, P<0.001) than in AM-dominated (7 £ 4%, P=0.089) ecosystems
(mean + SE, mixed effects meta-regression). The overall response of total biomass was 20 + 3%
(P<0.001), similar to previous meta-analyses (e.g., 15), with a larger effect under high (27 £ 4%,
P<0.001) than low N availability (15 + 4%, P<0.001), as expected (5, 7, 11). Furthermore, we
found a strong interaction between mycorrhizal type and N-status (P<0.001): under low N
availability, eCO; had no effect on total biomass of AM-dominated species (0 + 5%, P=0.946)
but increased biomass by 28 + 5% in ECM-dominated species (P<0.001) (Fig. 2A). Under high
N availability, the CO; effect on total biomass in both AM- and ECM-dominated species was
significant: 20 + 6% (P=0.002) for AM and 33 + 4% (P<0.001) for ECM (Fig. 2A), with no
significant differences between the two groups (P=0.139). Hence, high N availability
significantly increased the CO, effect in AM (Post-hoc, Tukey’s HSD: adj-P=0.038) but not in
ECM-associated species (adj-P=0.999).

The patterns observed for total biomass were reflected in both aboveground and belowground
biomass. Under low N availability, eCO, stimulated aboveground biomass significantly in ECM
plants (P<0.001), with no effect in AM plants (P=0.584) (Fig. 2B). Similarly, eCO, enhanced
belowground biomass in ECM plants at low N (P=0.003), but not in AM plants (P=0.907) (Fig.
2C).

We conducted a sensitivity analysis to ensure the findings were robust. First, we added an
intermediate level of N availability (Table S2) by assigning some ecosystems that were initially
classified as “low” to a “medium” class (e.g. Duke, Aspen, ORNL) (Figure S5). This enabled
testing whether the large CO, stimulation in ECM plants was driven by experiments with
intermediate N availability. Second, we weighted individual experiments by the inverse of the
mixed-model variance (Figure S6), to ensure that the weights of the meta-analysis did not affect
the outcome. Third, we ran a separate meta-analysis with the subset of experiments with trees
only (Figure S7). Previous meta-analysis have reported that trees are more responsive to eCO,
than grasslands (12); as such, our findings could reflect differences of plant growth form rather
than mycorrhizal association per se. Since trees are the only type of vegetation that can associate
with ECM and AM (or both), an analysis of tree responses to eCO; can thus be used to isolate
the influence of mycorrhizal type from that of vegetation growth form. These three sensitivity
analyses confirmed that the CO, stimulation of total and aboveground plant biomass was
significant and large in ECM plants regardless of N availability, whereas the effect was not
significant in AM plants under low N availability. The trend was consistent for belowground
biomass in ECM plants, although with high variance and low sample size, the effect was not
significant (P=0.244) under low N when the “medium” class was included.

Plant N uptake can be enhanced through mycorrhizal associations, or through associations with
N fixing microbes. Some of the CO, experiments in our study contained N-fixing species, which
might have increased N availability (Table S3). eCO, stimulated aboveground biomass in AM
species under low N by 8 + 3% (P=0.019) in this subgroup of experiments that included N-fixing
species, whereas the remaining AM experiments under low N availability showed no biomass
response to eCO; (1 £ 10%, P=0.893). But even with the additional N input from N fixation, the
8% biomass increase in AM plants under low N was considerably smaller than the 28 + 5%
increase found for ECM plants.

Most CO, experiments have been carried out in the Northern Hemisphere (Fig. S8, where N,
rather than phosphorus (P), is limiting. AM fungi transfer large quantities of P to the plant, and



hence are more likely mutualistic in P-limited ecosystems (19). Tropical forests are typically
associated with P limitations and dominated by AM-fungi, and could potentially show enhanced
biomass under eCO,. The role of nutrients on the CO, fertilization effect in these P-limited
forests has yet to be explored (26).

Responses of plants to rising CO, are thus well explained by a simple interaction between
nitrogen (N) and microbial mutualists: when N availability is limited, only plant species that
associate with ECM-fungi show an overall biomass increase due to eCO,. Several mechanisms
could explain these responses. First, ECM-associated plants typically allocate more C to support
mycorrhizae than AM plants, particularly under eCO, (23). Moreover, because ECM fungi,
unlike AM fungi, produce extracellular enzymes that degrade organic N compounds (27),
increased allocation to ECM fungi under eCO, may supply host plants with the N needed to
sustain their growth response to eCO,. This may explain why eCO, often stimulates priming
effects in ECM-dominated ecosystems (28, 29). Second, differences in litter quality between
ECM and AM plants may influence how much N is available to be primed or decomposed.
Several studies have reported that AM plants produce litters that decompose faster than ECM
plants (20, 30). Given emerging evidence that fast decomposing litters promote the formation of
stable mineral-associated organic matter (31, 32), much of the organic N in AM-dominated
ecosystems may be inaccessible to AM plants or their associated mycorrhizae (20). And while
slow-degrading ECM litters may reduce N availability in the short-term, most of the N exists in
particulate forms, which should be accessible to most microbes (including ECM fungi).
Therefore, AM fungi are equipped with less specialized enzymes for N acquisition than ECM
and occur in soils were N is more tightly protected. Both factors would presumably limit the
enhancement of AM plant growth in response to eCO,.

Mycorrhizal symbioses are not accounted for in most global vegetation models (but see ref. 24).
Thus, the projected CO, fertilization effect by “carbon-only models” (1) is likely overestimated
for AM-dominated ecosystems, which cover ~65% of the global vegetated area (24), albeit only
when N limited. On the other hand, global models that consider N limitation to constrain the CO,
fertilization effect (4) likely underestimate responses of ECM plants to eCO,, an area that
encompasses ~35% of the vegetated area of the earth (24), most of which is considered N limited
by these models. Our framework reconciles the apparent discrepancy between widespread N
limitation (3) assumed to limit C sequestration on land (4), and the observed increase over time
of the terrestrial C sink (1, 2), thought to be driven primarily by CO, fertilization (33). These
results may also partly explain past findings that forests (commonly ECM) show stronger
responses to eCO, compared to grasslands (AM) (12). We propose that the CO; fertilization
effect be quantified based on mycorrhizal type and soil nitrogen status, and that large-scale
ecosystem models incorporate mycorrhizal types to account for the differences in biomass
enhancement by eCO,. Mycorrhizae are ubiquitous, and sort predictably with plant functional
type (24, 34), making feasible their inclusion in models to capture this microbial influence on
global biogeochemistry. Accounting for the influence of mycorrhizae will improve
representation of the CO, fertilization effect in vegetation models, critical for projecting
ecosystem responses and feedbacks to climate change.
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Fig. 1. Model-averaged importance of the predictors of the CO, fertilization effect on total
biomass. The importance is based on the sum of Akaike weights derived from model selection
using AICc (Akaike’s Information Criteria corrected for small samples). Cutoff set at 0.8
(dashed line) to differentiate among the most important predictors.

Fig. 2. Overall effects of CO; on plant biomass. Effects on (A) total, (B) aboveground, and (C)
belowground biomass for two types of mycorrhizal plants species (AM: arbuscular mycorrhizae
and ECM: ectomycorrhizae) in N limited experiments (low N) or experiments that are unlikely N
limited (high N). Overall means and 95% confidence intervals are given; we interpret CO,
effects when the zero line is not crossed.
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