
Predicting Robustness Against Transient Faults of

MPI Based Programs

Joao Gramacho, Alvaro Wong, Dolores Rexachs, Emilio Luque

Computer Architecture and Operating Systems Department

Universitat Autònoma de Barcelona

Bellaterra (Barcelona), Spain

joao.gramacho@caos.uab.es, alvaro@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— The evaluation of a program’s behavior in the

presence of transient faults is often a very time consuming work.

In order to achieve significant data, thousands of executions are

normally required and each execution will have the significant

overhead of the fault injection environment. Our previously

published methodology reduced significantly the time needed to

evaluate the robustness of a program execution by exhaustively

analyzing its basic blocks trace instead of using fault injection. In

this paper we present an even forward improvement in the

evaluation time of parallel programs robustness against transient

faults by combining our methodology with PAS2P – a method

that strives to describe an application based on its message-

passing activity. The combination of our approach and PAS2P

allowed us to predict the robustness of larger parallel programs,

reducing in some cases in more than 20 times the time needed to

calculate the robustness while obtaining a robustness prediction

error of less than 4%.

Transient faults, robustness, soft errors, reliability, PAS2P

I. INTRODUCTION

Computer chips are using smaller components, having more
transistors, using those transistors with higher density and also
operating at lower voltage. All these trends are increasing the
computer processors die density and are responsible for the
astonishing improvements in processing power of the last
decades. Probably, as a side effect of such a scenario, these
new powerful processors are becoming less robust than ever
against transient faults [1].

Transient faults are those that might occur and may never
happen again the same way in a system lifetime. Transient
faults in computer systems may occur in processors, memory,
internal buses and devices, often resulting in an inversion of a
bit state (i.e. single bit flip) on the faulty location [2]. As
common causes of transient faults in computer systems we can
enumerate: cosmic radiation, high operating temperature and
variations in the power supply subsystem.

There are three possible outcomes of a transient fault during
a program execution: (i) no influence in the program execution
at all; (ii) the application might misbehave (e.g. write into an
invalid memory position; attempt to execute an invalid
instruction); and (iii) an operating system’s fail-stop
mechanisms might be triggered, abruptly interrupting the faulty
program. Nevertheless, an undetected data corruption is the

biggest risk for a program execution. An undetected data
corruption happens when the flipped bit – produced by the
transient fault – generates an incorrect program result that
might never be noticed. The errors that can indeed be noticed
as effects of transient faults are called soft errors.

Usually, a fault injection environment is used to evaluate a
program’s behavior against transient faults. Those transient like
fault injection environments are commonly based on
architecture simulators or dynamic instructions instrumentation
tools. In both cases they increase significantly (thousands of
times in some studied cases) the time needed (wall clock) to
run the program completely.

As we describe in section II.A, using fault injection to
evaluate a program’s robustness against transient faults
requires statistical approximation and therefore thousands of
executions (each execution of the same program with a distinct
injected fault). The requirement of executing such vast amount
of experiments limits the type of evaluated programs. The
common case is to evaluate small benchmarks that need only
fractions of seconds to run on ordinary computer architectures
without simulation or instrumentation.

Section II.B shows the main idea behind our previously
published methodology [3]. Our methodology is based on two
steps: a basic block trace generation of the program during its
execution and an analysis of the basic block trace backwards to
evaluate the robust state of the processor registers on every
single instruction executed by the program. Using this
approach we were able to exhaustively evaluate a program’s
robustness against transient faults for a given processor
architecture (taking into account the whole program execution)
at an average 41% times faster than other methods based in
fault injection and statistical approximation.

In this work we extend our previous approach by
combining the methodology with PAS2P (Parallel Application
Signature for Performance Prediction) [4]. PAS2P allows the
prediction of the time needed to execute a parallel program
based on Message Passing Interface (MPI) by running a small
fraction of the program (its signature) and extrapolating the rest
of the program execution based on a previously made analysis
(briefly described in section III).

This combination allowed us to jump from evaluating
programs that executed in order of hundredths of seconds to

This research has been supported by the MICINN Spain, under contract

TIN2007-64974, the European ITEA2 project H4H, No 09011 and the Avanza

Competitividad I+D+I program under contract TSI-020400-2010-120.

0001292
Cuadro de texto
Post-print of: Gramacho, Joao, et al. “Predicting robustness against transient faults of MPI based programs” in International journal of computational science and engineering (Ed. Inderscience), vol. 12, issue 2/3 (2016), p. 155-165. The final versión is available at DOI 10.1504/IJCSE.2016.076218

evaluating programs in the order of hundreds of seconds or
more. Using this new approach we attained an error of less than
4% in the robustness prediction considering all evaluated
programs. In our best case, this new approach took less than
4% of the time needed to perform a full program robustness
evaluation.

In the section IV we explain the changes needed on both
trace generation tools: the tool that traces the program basic
blocks to compute robustness and the tool that traces the
communication events to generate the PAS2P signature.

All the results obtained in our experimental evaluation are
described in section V. We compare the time (wall clock)
needed to calculate the programs’ robustness and also the
robustness obtained of a set of parallel programs that uses MPI
both using the methodology presented in [3] (without PAS2P)
and the method presented in this work.

Finally, in section VI we present our conclusion and
considerations about this work and our next steps.

II. EVALUATING A PROGRAM ROBUSTNESS

Evaluating a program’s behavior in presence of transient
faults is often a very time-consuming work.

The usual method for transient faults evaluation is running
the program in a fault injection environment thousands of
times, injecting only one fault per execution and observing the
program’s behavior. All this work is done to achieve significant
data in a statistical approximation. The fault injection
environment adds significant overhead to each program
execution by using architecture simulators or dynamic
instrumentation of instructions to inject a fault.

A. Executions in a fault injection environment

At a fault injection environment, the evaluated program is
executed and a fault in a form of a bit flip is injected on its
architectural state (usually a bit in a processor register). At the
end of the program execution, its result is evaluated to check
the effect caused by the injected fault.

Whenever the program finishes correctly; i.e. its result is
the same of a fault-free execution, the fault injected bit is
classified as unACE (unnecessary for an Architecturally
Correct Execution) [5]. If the program didn’t finish correctly,
presenting a result different from the fault-free execution, the
fault injected bit is classified as ACE (necessary for an
Architecturally Correct Execution) [5].

If the evaluated program has some kind of transient fault
detection mechanism the changed bits may trigger the fault
detection mechanism and lead the program to a fail stop
condition, avoiding the propagation of the fault effect in the
execution. In this case, as the execution finished accusing a fail
stop condition, the program architectural bit changed is
classified as DUE (Detected Unrecoverable Error) [5].

Changes in an ACE bit may lead to an abnormal program
behavior and may also produce a different result than the
obtained by a fault-free execution. It is common to classify
those ACE bits as SDC (Silent Data Corruption) [5].

The reliability of a program against transient faults can be
obtained by dividing the amount of unACE or DUE executions
(free of failures) by the total amount of executions. The failure
injection point is randomly chosen to ensure an even
distribution.

The authors of [6] proposed a soft error detection
mechanism based on source code transformation rules. In order
to evaluate a given program with and without their fault
detection mechanism, the authors performed 52,728 fault
injection experiments in their fault injection environment.

In Error Detection by Duplicated Instructions (EDDI) [7],
the authors reduced the amount of SDC cases by injecting
instructions at compilation time. The injection aims to use free
registers for redundancy, later adding verification for errors by
comparing the original and redundant registers.

The authors evaluated their work by using eight
benchmarks, each with 500 fault injection executions. Besides,
four variations were used for each program (without protection
plus three proposed mechanisms), achieving a total of 16,000
individual simulations to accomplish their work.

On Software-Controlled Fault Tolerance [8], the authors
presented a set of software and hybrid (software and hardware)
transient fault detection techniques. Each of the proposed
techniques had a different cost/benefit relation by improving
reliability or performance.

To evaluate the amount of SDC cases of an application with
and without the proposed fault tolerance mechanisms, the
authors executed fault injection experiments in a functional
simulator. Faults were randomly injected and programs were
executed until the end. In a total of ten sets of experiments, the
authors evaluated the robustness of a set of benchmarks by
simulating 5,000 executions with fault injection, except for two
variations that simulated 1,000 executions. In each of the
504,000 simulated executions, a bit of a randomly chosen
integer register of the IA64 architecture was flipped.

Continuing their research in fault tolerance for transient
faults, the same authors of [8] proposed Spot [9], a technique to
dynamically insert redundant instructions to detect errors
generated by transient faults. This dynamic insertion was made
in runtime using instrumentation.

Besides using a different architecture from the previous
work (in [9] they used IA32 and protected only the eight
general purpose 32 bit registers), the authors didn’t use
simulators. All the analysis and fault injections were made
through an instrumentation tool. The authors evaluated 16
benchmarks and executed a total of 1.03 million fault injections
to obtain their results (keeping 5,000 executions with fault
injection per benchmark and configuration evaluated).

It is known that by using a fault injection based evaluation
of robustness, the amount of executions will affect the
robustness precision [8]. Also, simulators or dynamic
instrumentation tools will increase time needed on each
execution in comparison with a time spent by the program
running directly in the architecture without instrumentation.

B. Calculating a program’s robustness against transient

faults

In our previously published work [3] we show that it is
possible to calculate a program’s robustness against transient
faults in a two steps approach:

• In the first step we generate a basic block trace of the
whole program execution shown in Fig. 1 (a). It,
contains all programs basic blocks, the order these
basic blocks are executed and information about the
instructions of each basic block;

• In the second step, shown in Fig. 1 (b), we analyze this
basic block trace and calculate the robustness of the
program execution.

Figure 1. Basic block trace generation (a), trace analysis (b)

 and recognized basic block patterns (c).

In our trace generation tool (implemented as a PIN [10] tool
using dynamic instructions instrumentation to log all basic
blocks executed by the program) we’ve implemented a runtime
compression algorithm.

This compression is based on finding basic block sequences
repetitions, as shown in Fig. 1 (c), and changing the redundant
data by just a small piece of information that will help us
decompress the trace during the analysis, much like a run-
length encoding.

1) Robust state
Robust state (defined in [3]) is a property of a processor

register in a given point of a program execution and is
represented by a vector of logical states (true or false) with as
many states as the amount of bits of the processor register.

When an element of a register robust state vector is true, the
register bit represented by the element is classified as unACE
in the given execution point of the program.

A register bit flagged as true in its robust state means that
any change in this register bit in the execution point of the
program being analyzed won’t be propagated to the rest of the
program execution.

In the same way, when an element of a register robust state
vector is false the register bit represented by the element is
classified as ACE (we don’t know yet if DUE or SDC) in the
given execution point of the program.

A register bit flagged as false in its robust state means that
any change in this register bit in the execution point of the
program being analyzed can be propagated to the rest of the
program execution.

 1 ≤ � < ������	
��
���×��; � = �
������ (1)

 ��������	��, �� = ���������	��, � + 1� ∨ �"#$����, 	���% ∧∼ ��#$����, 	���

The robust state frstate of a given register reg in a given
program execution point n is a function of the robust state of
the same register in the next instruction executed by the
program, operated with the bits that the program instruction i
(at point n) write on register reg, and then operated with the
bits that the program instruction i (at point n) read from register
reg.

The fwbits and frbits are functions that will return, for a given
instruction i and a given register reg, a vector of logical values
with true in the vector elements that represents a register reg bit
written (for fwbits) or read (for frbits) by the instruction.

The function fprog returns a processor architecture
instruction i for a given trace execution point n that is lower
than the amount of instructions nins in the trace generated by
the program prog execution over an architecture A.

As every robust state calculation (except the last of the
program trace) need the next program executed instruction
robust state, the robustness analysis, as show in in Fig. 1 (b), is
performed backwards, starting by the last executed program
instruction (the last instruction of the last traced basic block) to
the very first instruction executed by the program (the first
instruction of the first traced basic block).

The robust state of the last instruction executed by the
program will not be able to use its next instruction robust state
as there is no next program instruction executed.

To solve this problem, we assumed that, at the end of the
program execution, all processor registers bits can be assumed
as robust (any change on them will not affect the program
execution anymore).

 � = ������	
��
���×��; � = �
������ (2)

 ��������	��, �� = ���()������	��� ∨ �"#$����, 	���% ∧∼ ��#$����, 	���

This particular case of the frstate function is only for the last
instruction executed by the program being evaluated. We
defined a function named fendstate that returns a vector with a
robust state of a given register reg with all logical states as true
(all register bits classified as unACE).

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB7

BB3

BB4

BB4

BB4

BB4

BB5

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern A

BB pattern B

BB pattern B

BB pattern B

BB pattern B

T
ra

c
e
 A

n
a
ly

s
is

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB7 rstate0

rstate1

rstate2

rstate3

rstate4

rstate5

rstate6

rstate7

rstate8

rstate9

rstate10

rstate11

rstate12

rstate13

rstate14

rstate15

rstate16

rstate17

rstate18

rstate19

rstate26

rstate27

rstate28

rstate29

BB3

BB4

BB4

BB4

BB4

BB5 rstate20

rstate21

rstate22

rstate23

rstate24

rstate25

P
ro

g
ra

m
 E

x
e
c

u
ti

o
n

/T
ra

c
e
 G

e
n

e
ra

ti
o

n

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB7

BB3

BB4

BB4

BB4

BB4

BB5

a) b) c)

III. PAS2P

PAS2P [4] instruments a MPI program and executes
parallel programs in a base machine, producing a trace log. The
collected data is used to characterize the computation and
communication behavior of the program. In order to obtain a
machine-independent program model, the trace is logged using
a logical global clock according to causality relations between
communication events.

Once PAS2P generates the logical trace, it processes the
trace using a technique that searches for similarity to identify
and extract the most relevant phases and assign them a weight
based on the number of times they occur. The signature will be
defined by a set of phases and weights.

The execution of the signature in different target systems
allows us to measure each phase execution time, and predict
the program execution time in each target machine by
extrapolating each phase’s execution time using the obtained
weights.

It is important to notice that the signature creation and
execution is a two-step process:

• The first step is the analysis of the program, the
building of the model and subsequent extraction of its
phases and weights.

• The second step is the prediction method where PAS2P
executes the signature in a target machine to measure
the phases’ execution time and predict the program
execution time.

A. Parallel application model

To create the signature, first PAS2P build a model
(Machine-Independent Model) of the application and then use
that model to perform the predictions.

By instrumenting the MPI program, PAS2P obtain a
program communication and computation trace that contains
all the communications events between processes and
computation time elapsed between MPI primitives.

In this context, an event will be a message sent or a
message received. With this information we build the program
model and use it to study at what point of the program the most

computing time is spent (relevant phases), and how many times
those phases are repeated (weights).

In the Fig. 2 (a) we show an example of a hypothetic
program trace generated by PAS2P, with the phases recognized
as P0, P1, P2, P3, P4, P5, P6 and P7.

The result of the PAS2P trace analysis is presented on Fig.
2 (b), showing all program phases ordered by its relevancy in
the total program execution time. In this example PAS2P has
detected that only two of the program phases (P1 and P2) are the
most relevant to the execution time prediction.

In the last step of its analysis PAS2P determines a way of
executing the minimum fraction of the program, as shown in
Fig. 2 (c), which allows measuring the time needed to execute
an amount of those phases assumed most relevant. PAS2P will
try to determine the measurement start and finish by leaving
some warming up phases before the measurement. PAS2P will
also try to run a maximum of 100 phase’s repetitions to be able
to calculate a good average time for one phase. These measured
averages will be used with the weights of each phase to predict
the total program execution time.

B. Performance prediction

The executable signature runs the parallel program from the
beginning and measures the time spent from the point a phase
begins until its end. When a phase has been measured, PAS2P
continues the program execution until a new relevant phase is
found.

The signature repeats this method and proceeds to execute
all constituent phases. When the last phase has been measured,
the signature finalizes its execution that is often just a small
fraction of the whole program execution.

The prediction of the program total execution time is a
matter of adding the multiplication of each phase execution
time by its weight as:

 PET = ∑ .ℎ
���$ ×0$
1
$23 (3)

Where PET is the predicted execution time, k is the number
of phases, PhaseTi is the phase i execution time and Wi is the
phase i weight.

Figure 2. PAS2P trace generation (a), analysis (b) and signature execution (c).

………P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6 P1 P1 P1 P1

… ……P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6P1 P1 P1 P1

99.5% of total program running time

a)

b)

…P1 P1 P1 P1 P2 P2 P2

<10% of total program running time

c)

0.5%

Interrupt program execution

Measurement of P1 Measurement of P2

100% of total program running time

P7P0

P0

P0 P7

Figure 3. Basic block trace and PAS2P analysis phase’s example.

Figure 4. Basic block trace of a PAS2P signature execution.

IV. EVALUATING A PAS2P SIGNATURE ROBUSTNESS

In order to combine both the robustness evaluation
methodology and PAS2P methodology we changed the trace
generation tools (the one that generates the basic block
information for the robustness analysis and the one that
generates PAS2P phase’s information) to cooperate during
their execution.

In Fig. 3 we present an example of a basic block trace
activity associated to the phases analyzed by PAS2P during the
hypothetical program execution.

In this example, P0 to P7 are PAS2P recognized phases of
the program and BB0 to BB19 are basic blocks executed by the
program.

The basic blocks trace activity shown in Fig. 3 will have all
basic blocks executed by the complete execution of the
evaluated program.

The analysis of this trace can calculate either the whole
program execution robustness or a per basic block robustness.
In both cases the robustness evaluated will be informed after
analyzing the whole basic block trace file.

Our strategy to combine both methodologies (and tools)
was to make PAS2P inform the basic block tracing tool about
the beginning and the end of each measured phase.

With this interaction between the tools, the trace generated
with basic block information stores two new types of
information:

• A phase start tag in the beginning of every phase being
measured by PAS2P;

• A phase finish tag in the end of every phase being
measured by PAS2P.

In Fig. 4 we present a trace activity of a PAS2P signature
execution. During this evaluation, PAS2P will inform the basic

…

………P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6 P1 P1 P1 P1

100% of total program running time

P7P0

…

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

PAS2P analysis

Basic block trace activity

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB10

…

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB11

BB12 BB13

BB14

BB15

BB16

BB17

BB18 BB19

…

…P1 P1 P1 P1 P2 P2 P2

<10% of total program running time

Interrupt program execution

Measurement of P1 Measurement of P2

P0

BB0

BB1

PAS2P signature execution

Basic block trace activity

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

P1s

P1f

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

P2s

P2f

block tracing tool by shared memory the phase that is starting
or finishing its measurement. The basic block tracing tool, then,
put this information as tags in the trace.

The tool that performs the robustness evaluation based on a
basic block trace had to be changed too. The new version
computes the program robustness the same way as before, but
also presents a summary information of the specific robustness
of each program phase tagged by PAS2P.

With this summary, and multiplying it by each phase
weight informed by the PAS2P analysis, we could predict the
whole program robustness with just a fraction of its real
execution (the execution of the PAS2P signature). The
robustness analysis is performed individually for each process
of the parallel program.

The current version of our methodology treats each parallel
program process as an individual program that starts, runs and
finishes its execution. One basic block trace is generated per
each programs processes executed.

V. EXPERIMENTAL EVALUATION

In order to realize our experimental evaluation we designed
a set of experiments to calculate the robustness against
transient faults of five programs. Our methodology is applied to
both the standard program execution and the PAS2P signature
execution of the program being evaluated.

The selected programs are part of the NAS Parallel
Benchmark in its version 3.3. Because PAS2P required an MPI
based parallel application, we choose to evaluate the MPI
versions of BT, CG, FT, LU and SP benchmarks with their B
class.

In comparison to our previously published work, where we
evaluated the S class of the same five benchmarks, we are
scaling our robustness analysis from programs that executed in
tenths of seconds (0.16 on average) using a single processor to
programs that execute in hundreds of seconds (167.54 on
average) of wall clock time using four parallel computing
nodes with the same processors of the previous work.

All five benchmark programs used in this experimental
work were compiled using GNU C and Fortran in their version
4.4.1, with static linkage of libraries used by the programs and
with maximum code optimization during compilation (O3).
Also, all five benchmarks were compiled to run dividing they
work between four computing nodes.

The four computing nodes used in the experiments have
Linux Ubuntu Server operating system in version 9.10 with 64
bits kernel in version 2.6.31. The version of the OpenMPI
library used was 1.4.3. The hardware of all computing nodes
used have one 2 GHz AMD Athlon 64 X2 processor with 2
gigabytes of memory.

A. PAS2P signature generation

In the first step of our experimental design we’ve generated
all PAS2P signatures of the programs being evaluated. We also
tested the PAS2P prediction tool just to evaluate the prediction
of the execution time of the programs.

Fig. 5 shows the time (wall clock) needed (on average) to
completely execute the programs (without any instrumentation)
and the time needed to execute the PAS2P signature.

Fig. 6 shows the error in the predicted execution time of the
evaluated programs by comparing it with the standard program
execution time.

Fig. 7 shows the trace generation overhead (also in
comparison with the standard program executions) of the
evaluated programs.

The average error of the predicted execution time was
2.88% (1.81% without taking into account the FT benchmark)
and the average overhead in the execution time was 9.84%
(4.12% without taking into account the FT benchmark).

In both figures (6 and 7), the FT benchmark presented a
particular behavior, scoring worse than the other programs
evaluated. The problem with the FT benchmark is that the
workload used to evaluate the program was small enough to
allow the PAS2P prediction tool to find phases with enough
repetitions to have an accurate evaluation.

Figure 5. Execution time.

Figure 6. Error in PAS2P execution time prediction.

2
0

5
.6

5

9
8

.4
2

9
6
.2

2

2
0
6

.3
2

2
3

1
.0

7

1
1

.5
2

2
.8

7

3
1
.0

0

6
.9

5

8
.8

4

 1

 10

 100

 1,000

BT CG FT LU SP

S
e

c
o

n
d

s

Execution Time

Complete Program Execution PAS2P Signature

0.03%

2.68%

7.15%

1.85%

2.69%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

BT CG FT LU SP

E
rr

o
r

PAS2P Exec. Time Prediction Error

Figure 7. PAS2P trace generation overhead.

Figure 8. Trace generation time.

So, PAS2P had to execute proportionally more instructions
of the program and achieved a worse prediction of the FT
benchmark execution time. As we will show in section V.C,
this is not a problem to the robustness prediction.

B. Basic block trace generation and robustness evaluation

The second step of our experimental work consisted of,
once obtained the PAS2P signature, generating the basic block
trace of the complete programs executions and of the PAS2P
signature executions.

Fig. 8 shows that the trace generations of the PAS2P
signatures were considerably faster than the trace generations
of the whole programs execution.

Even spending less time by tracing the PAS2P signatures
than tracing the whole programs, the size of the basic block
traces (in bytes) shown in Fig. 9 presents a reduction of less
than 10% on average.

This occurs because of:

a) Our basic block tracing tool compresses the traced data
based on basic block sequence repetitions on the fly
during the trace generation (not after the trace is
generated);

b) In the experiments for this work, the portion of the
trace file that contains the basic block sequences (more
influenced by PAS2P) represented on average 22.9%
of the whole trace file, meanwhile the portion of the
trace file with the information about the architecture
instructions in the basic blocks (less influenced by
PAS2P) represented 77.1%.

In Fig. 10 we present the time needed to calculate the
robustness of the evaluated programs and its respective PAS2P
signatures.

The LU benchmark achieved the best gain in time saving of
the robustness analysis. It needed only 3.57% of the time spent
by the standard program analysis to complete its work.

Figure 9. Packed basic block trace size.

Figure 10. Trace analysis time.

6.63%

4.51%

32.72%

2.96% 2.36%

0%

5%

10%

15%

20%

25%

30%

35%

40%

BT CG FT LU SP

O
v
e
rh

e
a

d

PAS2P Trace Generation Overhead

7
,4

0
3
.5

8

6
6

2
.3

6

9
6

6
.8

6

5
,2

2
5

.4
7

4
,7

5
5

.5
9

4
4

1
.2

3

1
0
1

.1
7

3
9
9

.0
6

2
0

2
.7

5

2
0
9

.4
1

 1

 10

 100

 1,000

 10,000

BT CG FT LU SP

S
e

c
o

n
d

s

Trace Generation Time

Complete Program Execution PAS2P Signature

5
.5

7
E

+
0

7

9
.9

0
E

+
0
7

4
.8

7
E

+
0

7

5
.3

2
E

+
0

7

5
.7

9
E

+
0

7

5
.1

0
E

+
0

7

9
.4

7
E

+
0

7

4
.3

9
E

+
0

7

4
.9

8
E

+
0
7

5
.2

7
E

+
0
7

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

BT CG FT LU SP

B
y
te

s

Packed Basic Block Trace Size

Complete Program Execution PAS2P Signature

7
6
,3

3
2

.5
6

3
,2

2
8
.5

2

1
0
,6

2
6
.7

7

5
2

,8
6

4
.7

7

4
8
,7

5
8
.4

0

4
,6

1
6
.9

8

7
5

1
.8

8

4
,8

5
2

.4
0

1
,8

7
3
.6

5

2
,1

5
0
.7

0

 1

 10

 100

 1,000

 10,000

 100,000

BT CG FT LU SP

S
e

c
o

n
d

s

Trace Analysis Time

Complete Program Execution PAS2P Signature

Figure 11. Amount of analyzed instructions.

Figure 12. Normalized time spent.

The worst case, as we could foresee, was achieved by the
FT benchmark (45.3%).

On average, the traces analysis of the PAS2P signatures
needed 16.25% of the time required to analyze the whole
programs traces (8.99% without the FT benchmark).

As we previously mentioned, the basic block trace size of
the PAS2P signatures weren’t significantly smaller than the
whole programs basic block traces. However, the amount of
instructions analyzed in each case of robustness analysis for the
PAS2P signatures were significantly smaller (Fig. 11).

The robustness analysis of the PAS2P signatures needed, on
average, 4.07% (1.94% without the FT benchmark) of the
instructions of the whole program analysis to accomplish its
work.

In Fig. 12 we compare the time needed to perform the
whole analysis of the programs’ robustness: with and without
PAS2P.

The PAS2P Signature Analysis time takes into account not
only the robustness trace and the analysis, but also the PAS2P
signature generation time and the PAS2P trace analysis time.

While the whole program robustness analysis needed 216
times the programs execution time (on average), using PAS2P
and evaluating the robustness of the PAS2P signatures needed
23 times the programs execution time (14 without the FT
benchmark).

C. Comparing evaluated and predicted robustness’s

After evaluating the time needed to calculate the
robustness’s we compared the results of the calculated
robustness (Fig. 13) and the robustness prediction of the
PAS2P signatures (Fig. 14).

The results obtained with the prediction of the PAS2P
signatures’ robustness were very accurate in comparison with
the numbers obtained for the complete programs’ executions.

Figure 13. Robustness of the complete program execution.

Figure 14. Robustness of the PAS2P signature execution.

1
.5

6
E

+
1

2

3
.1

9
E

+
1
1

3
.9

4
E

+
1
1

9
.7

1
E

+
1
1

7
.0

3
E

+
1
1

5
.4

7
E

+
1
0

2
.7

0
E

+
0
9

4
.9

7
E

+
1

0

7
.5

7
E

+
0

9

1
.8

5
E

+
1

0

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

BT CG FT LU SP

Amount of Instructions Analyzed

Complete Program Execution PAS2P Signature

4
0

7
.1

8

3
9

.5
3

 1
2

0
.4

9

2
8

1
.5

5

2
3
1

.5
9

2
5

.7
2

9
.7

4

5
6
.2

3

1
1

.1
3

1
1
.2

8

1

10

100

1,000

BT CG FT LU SP

(r
e
la

ti
v
e

 t
o

p

ro
g

ra
m

 e
x

e
c

u
ti

o
n

 t
im

e
)

Normalized Time Spent

Complete Program Execution Analysis PAS2P Signature Analysis

3
3

.8
8

%

7
1

.0
5

%

5
5

.1
1

%

4
1

.1
2

% 5
2

.8
9
%

3
3

.8
8

%

7
1

.0
6

%

5
5

.1
0

%

4
1

.0
9

% 5
2

.8
9
%

3
3

.8
9

%

7
1

.0
6

%

5
5

.1
8
%

4
0

.5
9

% 5
2

.8
9
%

3
4
.0

5
%

7
1

.0
4
%

5
5

.1
7
%

4
0

.7
0
% 5

2
.8

9
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG FT LU SP

Robustness (Complete Program Execution)

nodeA nodeB nodeC nodeD

3
4

.9
9
%

7
1

.8
7
%

5
5

.1
1

%

4
3

.9
0
%

4
9

.0
1

%

3
4
.9

8
%

7
1

.7
8
%

5
5

.1
7

%

4
4
.0

4
%

4
9

.0
0

%

3
4

.9
9
%

7
2

.3
4

%

5
5

.1
1

%

4
4

.0
2

%

4
9

.3
7

%

3
5
.3

1
%

7
2
.1

7
%

5
5

.1
9

%

4
4
.0

2
%

4
9
.0

6
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG FT LU SP

Robustness (PAS2P Signature)

nodeA nodeB nodeC nodeD

Figure 15. Robustness prediction error.

All the PAS2P signatures robustness’s predictions achieved
an error lower than 4% as show in Fig. 15.

As the FT benchmark was the program that needed more
execution than the others when running its PAS2P signature, its
robustness evaluation took into account more real information
and needed less extrapolation, scoring the best robustness
prediction of this set of experiments with an error lower than
0.1%.

VI. CONCLUSION AND FUTURE WORK

Evaluating a program’s behavior in presence of transient
faults by using fault injection environments is often a very time
consuming work.

In this paper we combined our previously proposed
methodology of calculating a program’s robustness against
transient faults with PAS2P, a methodology to estimate a
program execution time based on a small fraction of it (its
signature). This combination allowed us to predict the
robustness against transient faults of parallel programs based
on MPI.

The new proposed method estimated the amount of unACE
bits of all parallel programs processes by analyzing the
execution trace of its signatures. We were able to estimate the
robustness almost 20 times faster on average than our previous
approach and achieving an error less than 4% on average in the
predicted robustness.

PAS2P is more effective the more repetitions the evaluated
program has (needing a smaller signature to the prediction).
This increases the scale of problems that could be tested. The
combination of both methodologies will allow us to study the
robustness of very large parallel programs by only analyzing its
PAS2P signature.

One next step of this work is to improve even more our
robustness calculation tool, making it faster by saving
computing time taking into account the repetition of program
basic blocks during its execution over a given architecture.

As in the current methodology we only classify a program
unACE bits, in the next step of our work we will classify the
ACE bits in two categories: DUE and SDC. We will improve
even more our robustness evaluation by knowing precisely the
amount of DUE bits of a program.

REFERENCES

[1] N. J. Wang, J. Quek, T. M. Rafacz, S. J. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in Proceedings of the 2004 International Conference on Dependable
Systems and Networks, pp. 61—70.

[2] R. Baumann, “Soft errors in advanced computer systems” in Design &
Test of Computers, 2005, vol. 22, pp. 258—266.

[3] J. Gramacho, D. Rexachs, E. Luque. “A Methodology to Calculate a
Program's Robustness against Transient Faults” in Proceedings of the
2011 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), pp. 645—651.

[4] A. Wong, D. Rexachs, E. Luque. “Extraction of Parallel Application
Signatures for Performance Prediction” in Proceedings of 12th IEEE
International Conference on High Performance Computing and
Communications (HPCC), 2010, pp. 223—230.

[5] Shubhendu S. Mukherjee, Joel Emer, Steven K. Reinhardt. “The Soft
Error Problem: An Architectural Perspective,” in Proceedings of the
11th International Symposium on High-Performance Computer
Architecture, Washington, DC, 2005, pp. 243—247.

[6] B. Nicolescu, R. Velazco, “Detecting soft errors by a purely software
approach: method, tools and experimental results,” in Design,
Automation and Test in Europe Conference and Exhibition, 2003, pp.
57—62.

[7] N. Oh, P. Shirvani, E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” in IEEE Transactions on
Reliability, 2002, vol. 51, pp. 63—75.

[8] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, S. S.
Mukherjee, “Software-controlled fault tolerance,” in ACM Transactions
on Architecture and Code Optimization, 2005, vol. 2, pp. 366—396.

[9] G. A. Reis, J. Chang, D. I. August, R. Cohn, S. S. Mukherjee,
“Configurable Transient Fault Detection via Dynamic Binary
Translation,” in Proceedings of the 2nd Workshop on Architectural
Reliability (2006).

[10] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, Kim Hazelwood.
"Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation," Programming Language Design and Implementation
(PLDI), Chicago, IL, June 2005, pp. 190—200.

1
.1

0
%

0
.8

2
%

0
.0

0
%

2
.7

8
%

3
.8

8
%

1
.1

0
%

0
.7

2
%

0
.0

7
%

2
.9

5
%

3
.8

9
%

1
.1

0
%

1
.2

8
%

0
.0

7
%

3
.4

3
%

3
.5

2
%

1
.2

6
%

1
.1

3
%

0
.0

1
%

3
.3

2
% 3

.8
3
%

0%

1%

2%

3%

4%

5%

BT CG FT LU SP

Robustness Prediction Error

nodeA nodeB nodeC nodeD

