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Abstract— The evaluation of a program’s behavior in the 

presence of transient faults is often a very time consuming work. 

In order to achieve significant data, thousands of executions are 

normally required and each execution will have the significant 

overhead of the fault injection environment. Our previously 

published methodology reduced significantly the time needed to 

evaluate the robustness of a program execution by exhaustively 

analyzing its basic blocks trace instead of using fault injection. In 

this paper we present an even forward improvement in the 

evaluation time of parallel programs robustness against transient 

faults by combining our methodology with PAS2P – a method 

that strives to describe an application based on its message-

passing activity. The combination of our approach and PAS2P 

allowed us to predict the robustness of larger parallel programs, 

reducing in some cases in more than 20 times the time needed to 

calculate the robustness while obtaining a robustness prediction 

error of less than 4%. 

Transient faults, robustness, soft errors, reliability, PAS2P 

I. INTRODUCTION 

Computer chips are using smaller components, having more 
transistors, using those transistors with higher density and also 
operating at lower voltage. All these trends are increasing the 
computer processors die density and are responsible for the 
astonishing improvements in processing power of the last 
decades. Probably, as a side effect of such a scenario, these 
new powerful processors are becoming less robust than ever 
against transient faults [1]. 

Transient faults are those that might occur and may never 
happen again the same way in a system lifetime. Transient 
faults in computer systems may occur in processors, memory, 
internal buses and devices, often resulting in an inversion of a 
bit state (i.e. single bit flip) on the faulty location [2]. As 
common causes of transient faults in computer systems we can 
enumerate: cosmic radiation, high operating temperature and 
variations in the power supply subsystem. 

There are three possible outcomes of a transient fault during 
a program execution: (i) no influence in the program execution 
at all; (ii) the application might misbehave (e.g. write into an 
invalid memory position; attempt to execute an invalid 
instruction); and (iii) an operating system’s fail-stop 
mechanisms might be triggered, abruptly interrupting the faulty 
program. Nevertheless, an undetected data corruption is the 

biggest risk for a program execution. An undetected data 
corruption happens when the flipped bit – produced by the 
transient fault – generates an incorrect program result that 
might never be noticed. The errors that can indeed be noticed 
as effects of transient faults are called soft errors. 

Usually, a fault injection environment is used to evaluate a 
program’s behavior against transient faults. Those transient like 
fault injection environments are commonly based on 
architecture simulators or dynamic instructions instrumentation 
tools. In both cases they increase significantly (thousands of 
times in some studied cases) the time needed (wall clock) to 
run the program completely. 

As we describe in section II.A, using fault injection to 
evaluate a program’s robustness against transient faults 
requires statistical approximation and therefore thousands of 
executions (each execution of the same program with a distinct 
injected fault). The requirement of executing such vast amount 
of experiments limits the type of evaluated programs. The 
common case is to evaluate small benchmarks that need only 
fractions of seconds to run on ordinary computer architectures 
without simulation or instrumentation. 

Section II.B shows the main idea behind our previously 
published methodology [3]. Our methodology is based on two 
steps: a basic block trace generation of the program during its 
execution and an analysis of the basic block trace backwards to 
evaluate the robust state of the processor registers on every 
single instruction executed by the program. Using this 
approach we were able to exhaustively evaluate a program’s 
robustness against transient faults for a given processor 
architecture (taking into account the whole program execution) 
at an average 41% times faster than other methods based in 
fault injection and statistical approximation.  

In this work we extend our previous approach by 
combining the methodology with PAS2P (Parallel Application 
Signature for Performance Prediction) [4]. PAS2P allows the 
prediction of the time needed to execute a parallel program 
based on Message Passing Interface (MPI) by running a small 
fraction of the program (its signature) and extrapolating the rest 
of the program execution based on a previously made analysis 
(briefly described in section III). 

This combination allowed us to jump from evaluating 
programs that executed in order of hundredths of seconds to 
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evaluating programs in the order of hundreds of seconds or 
more. Using this new approach we attained an error of less than 
4% in the robustness prediction considering all evaluated 
programs. In our best case, this new approach took less than 
4% of the time needed to perform a full program robustness 
evaluation. 

In the section IV we explain the changes needed on both 
trace generation tools: the tool that traces the program basic 
blocks to compute robustness and the tool that traces the 
communication events to generate the PAS2P signature. 

All the results obtained in our experimental evaluation are 
described in section V. We compare the time (wall clock) 
needed to calculate the programs’ robustness and also the 
robustness obtained of a set of parallel programs that uses MPI 
both using the methodology presented in [3] (without PAS2P) 
and the method presented in this work. 

Finally, in section VI we present our conclusion and 
considerations about this work and our next steps. 

II. EVALUATING A PROGRAM ROBUSTNESS 

Evaluating a program’s behavior in presence of transient 
faults is often a very time-consuming work. 

The usual method for transient faults evaluation is running 
the program in a fault injection environment thousands of 
times, injecting only one fault per execution and observing the 
program’s behavior. All this work is done to achieve significant 
data in a statistical approximation. The fault injection 
environment adds significant overhead to each program 
execution by using architecture simulators or dynamic 
instrumentation of instructions to inject a fault. 

A. Executions in a fault injection environment 

At a fault injection environment, the evaluated program is 
executed and a fault in a form of a bit flip is injected on its 
architectural state (usually a bit in a processor register). At the 
end of the program execution, its result is evaluated to check 
the effect caused by the injected fault. 

Whenever the program finishes correctly; i.e. its result is 
the same of a fault-free execution, the fault injected bit is 
classified as unACE (unnecessary for an Architecturally 
Correct Execution) [5]. If the program didn’t finish correctly, 
presenting a result different from the fault-free execution, the 
fault injected bit is classified as ACE (necessary for an 
Architecturally Correct Execution) [5]. 

If the evaluated program has some kind of transient fault 
detection mechanism the changed bits may trigger the fault 
detection mechanism and lead the program to a fail stop 
condition, avoiding the propagation of the fault effect in the 
execution. In this case, as the execution finished accusing a fail 
stop condition, the program architectural bit changed is 
classified as DUE (Detected Unrecoverable Error) [5]. 

Changes in an ACE bit may lead to an abnormal program 
behavior and may also produce a different result than the 
obtained by a fault-free execution. It is common to classify 
those ACE bits as SDC (Silent Data Corruption) [5]. 

The reliability of a program against transient faults can be 
obtained by dividing the amount of unACE or DUE executions 
(free of failures) by the total amount of executions. The failure 
injection point is randomly chosen to ensure an even 
distribution. 

The authors of [6] proposed a soft error detection 
mechanism based on source code transformation rules. In order 
to evaluate a given program with and without their fault 
detection mechanism, the authors performed 52,728 fault 
injection experiments in their fault injection environment. 

In Error Detection by Duplicated Instructions (EDDI) [7], 
the authors reduced the amount of SDC cases by injecting 
instructions at compilation time. The injection aims to use free 
registers for redundancy, later adding verification for errors by 
comparing the original and redundant registers. 

The authors evaluated their work by using eight 
benchmarks, each with 500 fault injection executions. Besides, 
four variations were used for each program (without protection 
plus three proposed mechanisms), achieving a total of 16,000 
individual simulations to accomplish their work. 

On Software-Controlled Fault Tolerance [8], the authors 
presented a set of software and hybrid (software and hardware) 
transient fault detection techniques. Each of the proposed 
techniques had a different cost/benefit relation by improving 
reliability or performance. 

To evaluate the amount of SDC cases of an application with 
and without the proposed fault tolerance mechanisms, the 
authors executed fault injection experiments in a functional 
simulator. Faults were randomly injected and programs were 
executed until the end. In a total of ten sets of experiments, the 
authors evaluated the robustness of a set of benchmarks by 
simulating 5,000 executions with fault injection, except for two 
variations that simulated 1,000 executions. In each of the 
504,000 simulated executions, a bit of a randomly chosen 
integer register of the IA64 architecture was flipped. 

Continuing their research in fault tolerance for transient 
faults, the same authors of [8] proposed Spot [9], a technique to 
dynamically insert redundant instructions to detect errors 
generated by transient faults. This dynamic insertion was made 
in runtime using instrumentation. 

Besides using a different architecture from the previous 
work (in [9] they used IA32 and protected only the eight 
general purpose 32 bit registers), the authors didn’t use 
simulators. All the analysis and fault injections were made 
through an instrumentation tool. The authors evaluated 16 
benchmarks and executed a total of 1.03 million fault injections 
to obtain their results (keeping 5,000 executions with fault 
injection per benchmark and configuration evaluated). 

It is known that by using a fault injection based evaluation 
of robustness, the amount of executions will affect the 
robustness precision [8]. Also, simulators or dynamic 
instrumentation tools will increase time needed on each 
execution in comparison with a time spent by the program 
running directly in the architecture without instrumentation. 



B. Calculating a program’s robustness against transient 

faults 

In our previously published work [3] we show that it is 
possible to calculate a program’s robustness against transient 
faults in a two steps approach: 

• In the first step we generate a basic block trace of the 
whole program execution shown in Fig. 1 (a). It, 
contains all programs basic blocks, the order these 
basic blocks are executed and information about the 
instructions of each basic block; 

• In the second step, shown in Fig. 1 (b), we analyze this 
basic block trace and calculate the robustness of the 
program execution. 

 

Figure 1.   Basic block trace generation (a), trace analysis (b) 

 and recognized basic block patterns (c). 

In our trace generation tool (implemented as a PIN [10] tool 
using dynamic instructions instrumentation to log all basic 
blocks executed by the program) we’ve implemented a runtime 
compression algorithm. 

This compression is based on finding basic block sequences 
repetitions, as shown in Fig. 1 (c), and changing the redundant 
data by just a small piece of information that will help us 
decompress the trace during the analysis, much like a run-
length encoding. 

1) Robust state 
Robust state (defined in [3]) is a property of a processor 

register in a given point of a program execution and is 
represented by a vector of logical states (true or false) with as 
many states as the amount of bits of the processor register. 

When an element of a register robust state vector is true, the 
register bit represented by the element is classified as unACE 
in the given execution point of the program. 

A register bit flagged as true in its robust state means that 
any change in this register bit in the execution point of the 
program being analyzed won’t be propagated to the rest of the 
program execution. 

In the same way, when an element of a register robust state 
vector is false the register bit represented by the element is 
classified as ACE (we don’t know yet if DUE or SDC) in the 
given execution point of the program. 

A register bit flagged as false in its robust state means that 
any change in this register bit in the execution point of the 
program being analyzed can be propagated to the rest of the 
program execution. 

 1 ≤ � < ������	
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 ��������	��, �� = ���������	��, � + 1� ∨ �"#$����, 	���% ∧∼ ��#$����, 	���  

The robust state frstate of a given register reg in a given 
program execution point n is a function of the robust state of 
the same register in the next instruction executed by the 
program, operated with the bits that the program instruction i 
(at point n) write on register reg, and then operated with the 
bits that the program instruction i (at point n) read from register 
reg. 

The fwbits and frbits are functions that will return, for a given 
instruction i and a given register reg, a vector of logical values 
with true in the vector elements that represents a register reg bit 
written (for fwbits) or read (for frbits) by the instruction. 

The function fprog returns a processor architecture 
instruction i for a given trace execution point n that is lower 
than the amount of instructions nins in the trace generated by 
the program prog execution over an architecture A. 

As every robust state calculation (except the last of the 
program trace) need the next program executed instruction 
robust state, the robustness analysis, as show in in Fig. 1 (b), is 
performed backwards, starting by the last executed program 
instruction (the last instruction of the last traced basic block) to 
the very first instruction executed by the program (the first 
instruction of the first traced basic block). 

The robust state of the last instruction executed by the 
program will not be able to use its next instruction robust state 
as there is no next program instruction executed. 

To solve this problem, we assumed that, at the end of the 
program execution, all processor registers bits can be assumed 
as robust (any change on them will not affect the program 
execution anymore). 

 � = ������	
��
���×��; � = �
������ (2) 

 ��������	��, �� = ���()������	��� ∨ �"#$����, 	���% ∧∼ ��#$����, 	���  

This particular case of the frstate function is only for the last 
instruction executed by the program being evaluated. We 
defined a function named fendstate that returns a vector with a 
robust state of a given register reg with all logical states as true 
(all register bits classified as unACE). 
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III. PAS2P 

PAS2P [4] instruments a MPI program and executes 
parallel programs in a base machine, producing a trace log. The 
collected data is used to characterize the computation and 
communication behavior of the program. In order to obtain a 
machine-independent program model, the trace is logged using 
a logical global clock according to causality relations between 
communication events. 

Once PAS2P generates the logical trace, it processes the 
trace using a technique that searches for similarity to identify 
and extract the most relevant phases and assign them a weight 
based on the number of times they occur. The signature will be 
defined by a set of phases and weights. 

The execution of the signature in different target systems 
allows us to measure each phase execution time, and predict 
the program execution time in each target machine by 
extrapolating each phase’s execution time using the obtained 
weights. 

It is important to notice that the signature creation and 
execution is a two-step process: 

• The first step is the analysis of the program, the 
building of the model and subsequent extraction of its 
phases and weights. 

• The second step is the prediction method where PAS2P 
executes the signature in a target machine to measure 
the phases’ execution time and predict the program 
execution time. 

A. Parallel application model 

To create the signature, first PAS2P build a model 
(Machine-Independent Model) of the application and then use 
that model to perform the predictions. 

By instrumenting the MPI program, PAS2P obtain a 
program communication and computation trace that contains 
all the communications events between processes and 
computation time elapsed between MPI primitives. 

In this context, an event will be a message sent or a 
message received. With this information we build the program 
model and use it to study at what point of the program the most 

computing time is spent (relevant phases), and how many times 
those phases are repeated (weights). 

In the Fig. 2 (a) we show an example of a hypothetic 
program trace generated by PAS2P, with the phases recognized 
as P0, P1, P2, P3, P4, P5, P6 and P7. 

The result of the PAS2P trace analysis is presented on Fig. 
2 (b), showing all program phases ordered by its relevancy in 
the total program execution time. In this example PAS2P has 
detected that only two of the program phases (P1 and P2) are the 
most relevant to the execution time prediction. 

In the last step of its analysis PAS2P determines a way of 
executing the minimum fraction of the program, as shown in 
Fig. 2 (c), which allows measuring the time needed to execute 
an amount of those phases assumed most relevant. PAS2P will 
try to determine the measurement start and finish by leaving 
some warming up phases before the measurement. PAS2P will 
also try to run a maximum of 100 phase’s repetitions to be able 
to calculate a good average time for one phase. These measured 
averages will be used with the weights of each phase to predict 
the total program execution time. 

B. Performance prediction 

The executable signature runs the parallel program from the 
beginning and measures the time spent from the point a phase 
begins until its end. When a phase has been measured, PAS2P 
continues the program execution until a new relevant phase is 
found. 

The signature repeats this method and proceeds to execute 
all constituent phases. When the last phase has been measured, 
the signature finalizes its execution that is often just a small 
fraction of the whole program execution. 

The prediction of the program total execution time is a 
matter of adding the multiplication of each phase execution 
time by its weight as: 

 PET = ∑ .ℎ
���$ ×0$
1
$23  (3) 

Where PET is the predicted execution time, k is the number 
of phases, PhaseTi is the phase i execution time and Wi is the 
phase i weight. 

 

Figure 2.   PAS2P trace generation (a), analysis (b) and signature execution (c). 
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Figure 3.   Basic block trace and PAS2P analysis phase’s example. 

 

Figure 4.   Basic block trace of a PAS2P signature execution. 

IV. EVALUATING A PAS2P SIGNATURE ROBUSTNESS 

In order to combine both the robustness evaluation 
methodology and PAS2P methodology we changed the trace 
generation tools (the one that generates the basic block 
information for the robustness analysis and the one that 
generates PAS2P phase’s information) to cooperate during 
their execution. 

In Fig. 3 we present an example of a basic block trace 
activity associated to the phases analyzed by PAS2P during the 
hypothetical program execution. 

In this example, P0 to P7 are PAS2P recognized phases of 
the program and BB0 to BB19 are basic blocks executed by the 
program. 

The basic blocks trace activity shown in Fig. 3 will have all 
basic blocks executed by the complete execution of the 
evaluated program. 

The analysis of this trace can calculate either the whole 
program execution robustness or a per basic block robustness. 
In both cases the robustness evaluated will be informed after 
analyzing the whole basic block trace file. 

Our strategy to combine both methodologies (and tools) 
was to make PAS2P inform the basic block tracing tool about 
the beginning and the end of each measured phase. 

With this interaction between the tools, the trace generated 
with basic block information stores two new types of 
information: 

• A phase start tag in the beginning of every phase being 
measured by PAS2P; 

• A phase finish tag in the end of every phase being 
measured by PAS2P. 

In Fig. 4 we present a trace activity of a PAS2P signature 
execution. During this evaluation, PAS2P will inform the basic 
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block tracing tool by shared memory the phase that is starting 
or finishing its measurement. The basic block tracing tool, then, 
put this information as tags in the trace. 

The tool that performs the robustness evaluation based on a 
basic block trace had to be changed too. The new version 
computes the program robustness the same way as before, but 
also presents a summary information of the specific robustness 
of each program phase tagged by PAS2P. 

With this summary, and multiplying it by each phase 
weight informed by the PAS2P analysis, we could predict the 
whole program robustness with just a fraction of its real 
execution (the execution of the PAS2P signature). The 
robustness analysis is performed individually for each process 
of the parallel program. 

The current version of our methodology treats each parallel 
program process as an individual program that starts, runs and 
finishes its execution. One basic block trace is generated per 
each programs processes executed. 

V. EXPERIMENTAL EVALUATION 

In order to realize our experimental evaluation we designed 
a set of experiments to calculate the robustness against 
transient faults of five programs. Our methodology is applied to 
both the standard program execution and the PAS2P signature 
execution of the program being evaluated. 

The selected programs are part of the NAS Parallel 
Benchmark in its version 3.3. Because PAS2P required an MPI 
based parallel application, we choose to evaluate the MPI 
versions of BT, CG, FT, LU and SP benchmarks with their B 
class. 

In comparison to our previously published work, where we 
evaluated the S class of the same five benchmarks, we are 
scaling our robustness analysis from programs that executed in 
tenths of seconds (0.16 on average) using a single processor to 
programs that execute in hundreds of seconds (167.54 on 
average) of wall clock time using four parallel computing 
nodes with the same processors of the previous work. 

All five benchmark programs used in this experimental 
work were compiled using GNU C and Fortran in their version 
4.4.1, with static linkage of libraries used by the programs and 
with maximum code optimization during compilation (O3). 
Also, all five benchmarks were compiled to run dividing they 
work between four computing nodes. 

The four computing nodes used in the experiments have 
Linux Ubuntu Server operating system in version 9.10 with 64 
bits kernel in version 2.6.31. The version of the OpenMPI 
library used was 1.4.3. The hardware of all computing nodes 
used have one 2 GHz AMD Athlon 64 X2 processor with 2 
gigabytes of memory. 

A. PAS2P signature generation 

In the first step of our experimental design we’ve generated 
all PAS2P signatures of the programs being evaluated. We also 
tested the PAS2P prediction tool just to evaluate the prediction 
of the execution time of the programs. 

Fig. 5 shows the time (wall clock) needed (on average) to 
completely execute the programs (without any instrumentation) 
and the time needed to execute the PAS2P signature. 

Fig. 6 shows the error in the predicted execution time of the 
evaluated programs by comparing it with the standard program 
execution time. 

Fig. 7 shows the trace generation overhead (also in 
comparison with the standard program executions) of the 
evaluated programs. 

The average error of the predicted execution time was 
2.88% (1.81% without taking into account the FT benchmark) 
and the average overhead in the execution time was 9.84% 
(4.12% without taking into account the FT benchmark). 

In both figures (6 and 7), the FT benchmark presented a 
particular behavior, scoring worse than the other programs 
evaluated. The problem with the FT benchmark is that the 
workload used to evaluate the program was small enough to 
allow the PAS2P prediction tool to find phases with enough 
repetitions to have an accurate evaluation. 

 

Figure 5.   Execution time. 

 

Figure 6.  Error in PAS2P execution time prediction. 
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Figure 7.   PAS2P trace generation overhead. 

 

Figure 8.   Trace generation time. 

So, PAS2P had to execute proportionally more instructions 
of the program and achieved a worse prediction of the FT 
benchmark execution time. As we will show in section V.C, 
this is not a problem to the robustness prediction. 

B. Basic block trace generation and robustness evaluation 

The second step of our experimental work consisted of, 
once obtained the PAS2P signature, generating the basic block 
trace of the complete programs executions and of the PAS2P 
signature executions. 

Fig. 8 shows that the trace generations of the PAS2P 
signatures were considerably faster than the trace generations 
of the whole programs execution. 

Even spending less time by tracing the PAS2P signatures 
than tracing the whole programs, the size of the basic block 
traces (in bytes) shown in Fig. 9 presents a reduction of less 
than 10% on average. 

This occurs because of: 

a) Our basic block tracing tool compresses the traced data 
based on basic block sequence repetitions on the fly 
during the trace generation (not after the trace is 
generated); 

b) In the experiments for this work, the portion of the 
trace file that contains the basic block sequences (more 
influenced by PAS2P) represented on average 22.9% 
of the whole trace file, meanwhile the portion of the 
trace file with the information about the architecture 
instructions in the basic blocks (less influenced by 
PAS2P) represented 77.1%. 

In Fig. 10 we present the time needed to calculate the 
robustness of the evaluated programs and its respective PAS2P 
signatures. 

The LU benchmark achieved the best gain in time saving of 
the robustness analysis. It needed only 3.57% of the time spent 
by the standard program analysis to complete its work.  

 

Figure 9.   Packed basic block trace size. 

 

Figure 10.   Trace analysis time. 
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Figure 11.   Amount of analyzed instructions. 

 

Figure 12.   Normalized time spent. 

The worst case, as we could foresee, was achieved by the 
FT benchmark (45.3%). 

On average, the traces analysis of the PAS2P signatures 
needed 16.25% of the time required to analyze the whole 
programs traces (8.99% without the FT benchmark). 

As we previously mentioned, the basic block trace size of 
the PAS2P signatures weren’t significantly smaller than the 
whole programs basic block traces. However, the amount of 
instructions analyzed in each case of robustness analysis for the 
PAS2P signatures were significantly smaller (Fig. 11). 

The robustness analysis of the PAS2P signatures needed, on 
average, 4.07% (1.94% without the FT benchmark) of the 
instructions of the whole program analysis to accomplish its 
work. 

In Fig. 12 we compare the time needed to perform the 
whole analysis of the programs’ robustness: with and without 
PAS2P. 

The PAS2P Signature Analysis time takes into account not 
only the robustness trace and the analysis, but also the PAS2P 
signature generation time and the PAS2P trace analysis time. 

While the whole program robustness analysis needed 216 
times the programs execution time (on average), using PAS2P 
and evaluating the robustness of the PAS2P signatures needed 
23 times the programs execution time (14 without the FT 
benchmark). 

C. Comparing evaluated and predicted robustness’s 

After evaluating the time needed to calculate the 
robustness’s we compared the results of the calculated 
robustness (Fig. 13) and the robustness prediction of the 
PAS2P signatures (Fig. 14). 

The results obtained with the prediction of the PAS2P 
signatures’ robustness were very accurate in comparison with 
the numbers obtained for the complete programs’ executions. 

 

Figure 13.   Robustness of the complete program execution. 

 

Figure 14.   Robustness of the PAS2P signature execution. 
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Figure 15.   Robustness prediction error. 

All the PAS2P signatures robustness’s predictions achieved 
an error lower than 4% as show in Fig. 15. 

As the FT benchmark was the program that needed more 
execution than the others when running its PAS2P signature, its 
robustness evaluation took into account more real information 
and needed less extrapolation, scoring the best robustness 
prediction of this set of experiments with an error lower than 
0.1%. 

VI. CONCLUSION AND FUTURE WORK 

Evaluating a program’s behavior in presence of transient 
faults by using fault injection environments is often a very time 
consuming work. 

In this paper we combined our previously proposed 
methodology of calculating a program’s robustness against 
transient faults with PAS2P, a methodology to estimate a 
program execution time based on a small fraction of it (its 
signature). This combination allowed us to predict the 
robustness against transient faults of parallel programs based 
on MPI. 

The new proposed method estimated the amount of unACE 
bits of all parallel programs processes by analyzing the 
execution trace of its signatures. We were able to estimate the 
robustness almost 20 times faster on average than our previous 
approach and achieving an error less than 4% on average in the 
predicted robustness. 

PAS2P is more effective the more repetitions the evaluated 
program has (needing a smaller signature to the prediction). 
This increases the scale of problems that could be tested. The 
combination of both methodologies will allow us to study the 
robustness of very large parallel programs by only analyzing its 
PAS2P signature. 

One next step of this work is to improve even more our 
robustness calculation tool, making it faster by saving 
computing time taking into account the repetition of program 
basic blocks during its execution over a given architecture. 

As in the current methodology we only classify a program 
unACE bits, in the next step of our work we will classify the 
ACE bits in two categories: DUE and SDC. We will improve 
even more our robustness evaluation by knowing precisely the 
amount of DUE bits of a program. 
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