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 18 

Abstract  19 

Weather and its lagged effects have been associated with interannual variability and 20 

synchrony of fruit production for several tree species. Such relationships are used often in 21 

hypotheses relating interannual variability in fruit production with tree resources or favourable 22 

pollinating conditions and with synchrony in fruit production among sites through the Moran 23 

effect (the synchronisation of biological processes among populations driven by meteorological 24 

variability) or the local availability of pollen. Climatic teleconnections, such as the North Atlantic 25 

Oscillation (NAO), representing weather packages, however, have rarely been correlated with 26 

fruit production, despite often being better predictors of ecological processes than is local 27 

weather. The aim of this study was to test the utility of seasonal NAO indices for predicting 28 

interannual variability and synchrony in fruit production using data from 76 forests of Abies 29 

alba, Fagus sylvatica, Picea abies, Pseudotsuga menziesii, Quercus petraea, and Q. robur 30 

distributed across central Europe. Interannual variability in fruit production for all species was 31 

significantly correlated with seasonal NAO indices, which were more prominently important 32 

predictors than local meteorological variables. The relationships identified by these analyses 33 

indicated that proximal causes were mostly responsible for the interannual variability in fruit 34 

production, supporting the premise that local tree resources and favourable pollinating 35 

conditions are needed to produce large fruit crops. Synchrony in fruit production between 36 

forests was mainly associated with weather and geographical distance among sites. Also, fruit 37 

production for a given year was less variable among sites during warm and dry springs 38 

(negative spring NAO phases). Our results identify the Moran effect as the most likely 39 

mechanism for synchronisation of fruit production at large geographical scales and the 40 

possibility that pollen availability plays a role in synchronising fruit production at local scales. 41 

Our results highlight the influence of the NAO on the patterns of fruit production across 42 

western Europe. 43 

Keywords: synchrony, seeds, weather lagged effects, tree reproduction44 
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 45 

1. Introduction  46 

Production of fruit and seeds is an essential step in the life cycle of plants that allows 47 

individuals to transmit their genes to the next generation and to colonise new territories. 48 

Reproduction, however, has important implications beyond the plant itself, especially if it 49 

concerns the key species of a community: production of fruit can alter entire ecosystems by 50 

producing cascading effects throughout food webs (Elkinton et al. 1996, Ostfeld and Keesing 51 

2000), even affecting the transmission of diseases such as Lyme disease to humans (Ostfeld 52 

1997). Different patterns of fruit production can thus have a range of different consequences 53 

for ecosystems.  54 

Two of the most studied hypotheses attempting to account for interannual variability in fruit 55 

production are the resource matching and the pollination efficiency hypotheses. The 56 

mechanistic resource matching hypothesis (Norton and Kelly 1988, Sork et al. 1993, Kelly and 57 

Sork 2002) suggests that plants produce fruit as a direct response to the available resources 58 

(Table 1). The pollination efficiency hypothesis (Norton and Kelly 1988, Smith et al. 1990, 59 

Koenig and Ashley 2003), however, states that synchronised and intermittent flowering 60 

increases the success of pollination in wind-pollinated species because it ensures a high rate 61 

of successful pollination during years of extensive flowering (Table 1). Both hypotheses can be 62 

indirectly related to meteorological variability, because weather can influence both the 63 

acquisition of tree resources (e.g. by increased photosynthesis) and environmental conditions 64 

associated with effective pollination.  65 

Similarly to interannual variability, synchrony in fruit production has also mostly been explained 66 

by two hypotheses. Moran’s theory (Moran 1953, Ranta et al. 1997) states that synchrony in 67 

fruit production is controlled by synchrony in meteorological conditions, which prompt trees to 68 

divert resources into reproduction or, mechanistically, to producing more fruit when weather is 69 

favourable for acquiring more resources (Table 1). Because meteorological conditions can also 70 

be spatially synchronous (Koenig 2002), the Moran effect has also been hypothesised to 71 

synchronise of fruit production over large geographical areas (Koenig and Knops 2013). The 72 

pollen coupling hypothesis (Satake and Iwasa 2002), however, suggests that the available 73 

pollen from neighbouring trees can generate synchrony in fruit production among individuals 74 
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by interacting with the resources available to the trees (Table 1, i.e., extensive maturation of 75 

female flowers after a massive pollinating event (when enough pollen is available) would 76 

deplete the resources of all trees at the same time, increasing synchronisation of fruit 77 

production within the population among years in the long run).  78 

Most studies that have tested these hypotheses have based their conclusions on the 79 

relationship between meteorological conditions and interannual variability and synchrony in 80 

fruit production, due to the importance of meteorological variability to plant productivity (Sork et 81 

al. 1993, Fernández-Martínez et al. 2012, Koenig and Knops 2013). Recent studies have 82 

highlighted the possible role of temperature as a meteorological cue (Kelly et al. 2013, Kon 83 

and Saito 2015), although another study has suggested that temperature likely acts mainly as 84 

a proximal cause for the prediction of fruit crop size (Pearse et al. 2014). In any case, 85 

temperature variability would also explain synchrony in fruit production, because changes in 86 

temperature occur at wide geographical scales (Koenig 2002). Other meteorological variables 87 

(e.g., precipitation or water stress), however, could also be used as meteorological predictors 88 

of interannual variability and synchrony in fruit production (Sork et al. 1993, García-Mozo et al. 89 

2007, Espelta et al. 2008, Fernández-Martínez et al. 2012). 90 

Weather at continental scales is mostly driven by general patterns of atmospheric circulation. 91 

Climatic teleconnections can influence weather strongly over very large areas. The El 92 

Niño/Southern Oscillation affects the weather of the entire planet (Grove 1998, NOAA 2012), 93 

and the North Atlantic Oscillation (NAO, the dipole connecting the Icelandic low with the 94 

Azores high) strongly affects the Atlantic basins of Europe and North America (Hurrell et al. 95 

2002, 2003). Ecosystems may accordingly also be affected by teleconnections (Straile 2002, 96 

Menzel et al. 2005, Martínez-Jauregui et al. 2009, Hódar et al. 2011), and some studies have 97 

suggested that teleconnection indices often predict ecological processes better than local 98 

weather (Ottersen et al. 2001, Stenseth et al. 2003, Hallett et al. 2004) because they 99 

aggregate meteorological conditions over large spatial scales. The NAO index may thus be an 100 

excellent meteorological cue. Nonetheless, the role of such climatic teleconnections, has rarely 101 

been explored in studies focused on fruit production (but see Wright et al. (1999)). Additionally, 102 

most of the published literature exploring the effects of the NAO on ecosystems has focused 103 

on the values of the index in winter (Ottersen et al. 2001), which can limit usefulness of the 104 



 

5 
 

approach, because different biological processes might be influenced by weather in different 105 

seasons.  106 

Fruit production in some species has been strongly correlated with weather in warm seasons 107 

(Sork et al. 1993, Fernández-Martínez et al. 2012, 2015, Kelly et al. 2013, Pearse et al. 2014), 108 

for which the winter NAO (NAOw) may have little influence. Tree species with contrasting leaf 109 

habits (evergreen and deciduous) may be sensitive to meteorological conditions during 110 

different seasons. Winter-deciduous species must accumulate enough resources prior to 111 

winter for spring leaf unfolding and flowering, so autumn weather likely has some influence on 112 

next year’s productivity. Winter meteorological variability, however, may play a role in 113 

determining plant productivity during the next year, because evergreen species preserve their 114 

leaves during the winter. Exploring the effects of the NAO index for other seasons may also 115 

provide interesting results and even improve the prediction capacity of the models.  116 

We tested the ability of seasonal NAO indices to predict interannual variability in fruit 117 

production by constructing statistical models, including local meteorological (temperature and 118 

precipitation) variables and NAO indices for the previous autumn, winter, spring, and summer 119 

seasons, using data from 76 forests of Abies alba, Fagus sylvatica, Picea abies, Pseudotsuga 120 

menziesii, Quercus petraea, and Q. robur distributed across Europe. We also identified the 121 

environmental variables that could account for synchrony in fruit production among forests 122 

within species. Finally, we discuss the plausibility of various hypotheses addressing 123 

interannual variability and synchrony in fruit production based on our statistical results.  124 

2. Materials and methods 125 

2.1. Data collection 126 

2.1.1. Data for litterfall and foliar nutrient concentration  127 

We downloaded litterfall data from the ICP Forests database (International Co-operative 128 

Programme on Assessment and Monitoring of Air Pollution Effects on Forest, operated under 129 

the UNECE Convention on Long-range Transboundary Air Pollution, http://icp-forests.net/). 130 

The dataset contained information about fruit-production for several forest tree species in 131 

Europe for 2002–2010. Fruit litterfall was totalled per plot and year. Because the original data 132 

for litterfall was available in units of g of dry weight m-2 y-1, we used fruit carbon (C) content 133 
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data (provided by the same database) to calculate litterfall in units of g C m-2 y-1 (as fruit net 134 

primary production [NPP]). Although data from 210 forests were available in the database we 135 

used only data from 76 single-species forests with time series records of five or more years to 136 

ensure that we had reliable records of single-species fruit production suitable for analysis of 137 

interannual variation.  These selected forests consisted of A. alba, F. sylvatica, P. abies, Ps. 138 

menziesii, Q. petraea, and Q. robur and were distributed over France, Germany, and 139 

Luxemburg (Figure 1).   140 

2.1.2. Meteorological data 141 

We extracted meteorological time series for our forests from the interpolated meteorological 142 

data of the MARS unit AGRI4CAST/JRC (http://agri4cast.jrc.ec.europa.eu/), with a resolution 143 

of 0.25 × 0.25 degrees (latitude, longitude). This database provided monthly mean 144 

temperatures and total precipitation for 2001 to 2010. We also downloaded the NAO index 145 

time series for daily data, covering the period from 1 January 1950 to 31 December 2014, from 146 

the Climate Prediction Center of the National Weather Service (NOAA, 147 

http://www.cpc.ncep.noaa.gov/). We then calculated the seasonal NAO indices, temperatures, 148 

and precipitation for winter, spring, summer, and autumn. We calculated the winter values as 149 

the average (for temperature and NAO) or the sum (for precipitation) of January, February, and 150 

March; spring comprised the months of April, May, and June; summer comprised the months 151 

of July, August, and September, and autumn comprised the months of October, November, 152 

and December. The seasonal NAO indices were standardised ( ) for the period 153 

1950–2014. 154 

2.2. Data analyses 155 

2.2.1. Interannual variability of fruit production 156 

Table 2 summarizes the analyses performed in this study. We evaluated the influence of the 157 

seasonal NAO indices on local seasonal weather (temperature and precipitation) by fitting 158 

generalised linear mixed models (GLMMs) with the nlme R package (Pinheiro et al. 2013), 159 

using restricted maximum likelihood (REML) and a Gaussian distribution, where the site was 160 

the random factor and the seasonal NAO indices were related to seasonal temperature and 161 

precipitation.  162 
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We assessed the correlations between the seasonal NAO indices and fruit production using 163 

Spearman correlations for each site between the seasonal NAO indices and fruit-production 164 

time series. We then calculated the average correlations between fruit production and the 165 

seasonal NAO indices per species. We next fitted the GLMMs using REML and a Gaussian 166 

distribution, where the site was the random factor. We accounted for the effect of the previous 167 

fruit crop by also including in the models an autoregressive term for lag 1 (ARMA [1,0], crop 168 

year i ~ crop year i-1). Saturated models (models including all possible predictors) predicting 169 

interannual variability in fruit production included temperature, precipitation, and the NAO 170 

indices for the autumn, winter, spring, and summer previous to fruit ripening (e.g. fruit crop 171 

year i ~ autumn temperature year i-1 + winter temperature year i +…). The variables for each 172 

model were selected using the dredge function in the MuMin R package (Barton 2015) using 173 

the best subset model selection and using the Bayesian Information Criterion (BIC) as the 174 

measure of model adjustment (the best model had the lowest BIC). We also calculated the 175 

variance explained by the fixed factors (marginal variance, R2
m) and by the entire model 176 

(conditional variance, R2
c) for the final models using the methodology proposed by Nakagawa 177 

& Schielzeth (2013), also implemented in the MuMIn R package (Barton 2015) by the function 178 

r.squaredGLMM. The difference between the marginal and conditional variances explained 179 

was the variance explained by the random factors. We assessed the importance of the 180 

predictors within the models by calculating their ΔBICs as the difference between the BIC of 181 

the final model and the BIC of the model without the predictor of interest. The higher the ΔBIC, 182 

the larger the importance of the predictor within the model. Fruit NPP was log-transformed to 183 

meet the assumptions of normality and heteroscedasticity in the model residuals. We also 184 

used mixed models with random slopes to test the effect of the seasonal NAO indices on 185 

temperature and precipitation, using site as the random factor.  186 

Relationships between fruit production and meteorological variables that can be associated 187 

either with successful pollination (supporting the pollination efficiency hypothesis) or higher 188 

tree productivity (indirectly supporting the resource matching hypothesis) would indicate an 189 

effect of weather on fruit production by proximal causes. If the relationship between weather 190 

and fruit production cannot be correlated with well-established physiological responses (e.g., 191 

warm and wet conditions normally increase tree productivity [Fernández-Martínez et al. 2014]), 192 

the results may be supporting the role of weather as a cue for fruit production.  193 



 

8 
 

2.2.2. Synchrony of fruit production among forests 194 

We first tested whether higher variability in meteorological conditions among sites was 195 

associated with higher variability in fruit production for a given year. We calculated the annual 196 

coefficient of variation (CV = standard deviation · mean-1) amongst sites of seasonal (winter, 197 

spring, summer, and autumn) temperature and precipitation and of annual fruit production for 198 

each species for each of the years with records for more than five forests per species. We then 199 

used GLMMs with species as the random factor to determine the significance of the 200 

association between the CVs for annual fruit production and weather among sites and the 201 

seasonal NAO indices. Positive associations between the CVs for annual fruit production and 202 

weather would further support the Moran-effect hypothesis, and no association would indicate 203 

that other mechanisms, such as pollen coupling, might be involved in synchronising fruit 204 

production.  205 

We then calculated the degree of synchrony in fruit production among all sites using 206 

Spearman’s correlations (ρ) for all sites with data for at least the same five years, and 207 

calculated the mean correlation of fruit production per species and among species. We then 208 

identified the main controls of synchrony in fruit production among forests within species by 209 

first calculating the synchrony (ρ) for weather (seasonal temperatures and precipitation) among 210 

forests of the same species, and used linear models to identify the relationships of synchrony 211 

in weather and synchrony in fruit production with geographical distance. The Moran effect 212 

would be supported if the slope between distance and synchrony in seasonal temperature or 213 

precipitation among sites was as high as or higher than the slope between distance and 214 

synchrony in fruit production among sites (similar slopes using a t-test, P>0.05). If the slopes 215 

differed or fruit production was not spatially synchronous among forests, the results would 216 

indicate that the synchrony was at more local scales and thus provide indirect evidence 217 

supporting the pollen coupling hypothesis(Table 1). 218 

We constructed linear models in which the response variable was the synchrony (ρ) of fruit 219 

production between two forests and the predictor variables were the geographical distance 220 

between sites and the correlation between winter, spring, summer, and autumn temperatures 221 

and precipitation for the two forests. We next selected the model using the dredge function in 222 

the MuMin R package (Barton 2015) using the best subset model selection and using BIC as 223 

the measure of model adjustment. The best model was then assumed to have the lowest BIC 224 
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with all variables significant at the 0.05 level and with no negative coefficients for the 225 

meteorological variables (because negative associations between synchrony in fruit production 226 

and in meteorological variables would be nonsensical). The percentage of variance explained 227 

by the predictors was assessed using the proportional marginal variance decomposition metric 228 

pmvd from the relaimpo R package (Grömping 2007).  229 

Similar to the results for interannual variability, significant relationships between synchrony in 230 

fruit production and synchrony in meteorological variables from periods potentially associated 231 

with tree productivity would indicate the Moran effect as a result of proximal causes of weather 232 

on fruit production. If meteorological variables associated with synchrony in fruit production 233 

were also be associated with spring conditions, during pollination, the pollen coupling 234 

hypothesis would be supported (Table 1). If meteorological predictors of fruit synchrony could 235 

not be associated with the pollinating period nor with higher tree productivity, the results would 236 

support the Moran effect with weather acting as a cue for the trees. 237 

We used the visreg R package (Breheny and Burchett 2015) to visualise the regression 238 

models using partial plots. All data treatments and analyses were conducted using R (R Core 239 

Team 2015). 240 

3. Results 241 

3.1. Effects of seasonal NAO on local weather 242 

The seasonal NAO indices were correlated with the weather at our sites (Figure 2). Positive 243 

NAOw phases were correlated with warm and wet winters, and positive spring NAO (NAOsp) 244 

phases were correlated with warm and dry weather. Positive summer and autumn NAOs 245 

(NAOsm and NAOa, respectively) were correlated with cold and dry weather. The seasonal 246 

NAO indices, however, were not significantly correlated, either during the study period (2002–247 

2010) or for a longer period (1950–2014). The correlations among seasonal NAO phases were 248 

generally small and not significant.  249 

3.2. Interannual variability of fruit production 250 

Both changes in weather and the seasonal NAO indices were individually correlated with fruit 251 

production for all tree species (Table 3). Fruit crop size in both Quercus species and A. alba 252 
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was negatively associated with the NAO phase of the autumn prior to fruit ripening, whereas 253 

fruit production and NAOw were strongly positively correlated for the three coniferous species. 254 

Fruit crop size was positively associated with NAOsp in A. alba, F. sylvatica, and Q. robur and 255 

with NAOsm in P. abies and F. sylvatica.  256 

GLMM models predicting fruit crop size using local seasonal weather and the seasonal NAO 257 

indices also identified a relevant role of the NAO phases in predicting interannual variability in 258 

fruit production (Table 4). In addition, the seasonal NAO variables were usually the most 259 

important variables identified by ΔBIC. The univariate analysis correlated fruit crop size in A. 260 

alba negatively with NAOw and positively with NAOsp. The model also identified a significant 261 

negative relationship between winter precipitation and fruit production. Based on ΔBIC, both 262 

NAO variables were similarly important for predicting variability in fruit production and were 263 

clearly more important than winter precipitation. Large fruit crops in P. abies were associated 264 

with rainy winters, dry springs, and dry (NAOsm
+, in positive phase) warm summers, with NAOsp 265 

and winter precipitation the most important variables. Fruit crop size for P. menziesii was 266 

positively correlated with cold and dry autumns (NAOa
+), warm and wet winters (NAOw

–, in 267 

negative phase), and warm springs, being NAOa the most important variable in the model 268 

according to ΔBIC. Fruit production in F. sylvatica, as for P. abies, was positively correlated 269 

with cold and dry autumns (NAOa
+ and temperature) but also with dry and warm springs 270 

(NAOsp) and dry summers. Conversely, Q. petraea and Q. robur produced larger fruit crops 271 

after warm and wet autumns. Fruit production in Q. robur was also positively correlated with 272 

wet summers and cold winters. The best model predicting interannual variability for Q. robur 273 

did not identify NAO as a significant predictor, but the next model (differing only by 0.76 BIC 274 

units from the best model in Table 4) included NAOa instead of winter temperature. Seasonal 275 

NAO indices were thus able to predict the interannual variability of fruit production moderately 276 

well for all tree species.   277 

3.3. Patterns of intra- and interspecific synchrony in fruit production 278 

NAOsp was the most highly correlated variable explaining the variability in the CVs for annual 279 

fruit production among species (Figure 3). The CV for annual fruit production was negatively 280 

correlated with NAOsp for all species except P. menziesii, and the relationship was statistically 281 

significant for F. sylvatica, Q. robur, and P. abies (P=0.005, 0.012, and 0.041, respectively). 282 
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F. sylvatica was the most synchronised species producing fruit, with a mean synchrony among 283 

sites of 0.60 ± 0.02. In contrast, synchrony in fruit production among sites was not statistically 284 

significant for P. menziesii (Table 5, a). A. alba, P. abies, Q. petraea, and Q. robur also had 285 

important synchronies in fruit production. Synchrony in fruit production, however, was 286 

significantly lower than synchrony in most of the seasonal meteorological variables 287 

(temperature and precipitation) for most of the species (Table 5, a). Fruit production in all 288 

species (except P. menziesii) showed strong spatial correlations with meteorological 289 

synchrony (Table 5, b), but the synchrony of fruit production was not strongly spatially 290 

dependent using univariate regressions. The slope between synchrony in fruit production and 291 

distance between plots was statistically significant only for Q. robur, and the slope coefficients 292 

were very close to zero for some species such as F. sylvatica and Q. petraea (Table 5, b) and 293 

were significantly different from most of the distance × weather correlation slopes (t-tests, 294 

P<0.05). The slopes between fruit production and distance for A. alba, P. abies, P. menziesii, 295 

and Q. robur did not differ significantly (t-tests, P>0.05) from those for most of the weather × 296 

distance relationships. 297 

Amongst species, synchrony in fruit production decreased considerably compared to within-298 

species synchrony, and some combinations were even significantly negatively correlated, such 299 

as F. sylvatica versus P. menziesii and Q. petraea (Table 6). Synchrony of fruit production 300 

amongst sites was generally similar between leaf types (Table 6; t-test, P>0.05).  301 

Our models correlating synchrony in fruit production with synchrony in meteorological variables 302 

indicated that seasonal weather had a limited impact on intraspecific synchrony amongst sites 303 

(Table 7). Synchrony of meteorological conditions between sites was only a significant driver 304 

of synchrony in fruit production for A. alba (autumn temperature), F. sylvatica (winter 305 

precipitation), and Q. petraea (summer precipitation). The only significant relationship for 306 

synchrony in fruit production for Q. robur was a negative relationship with distance between 307 

sites, similar to the results of the univariate analyses (Table 5). Synchrony in fruit production 308 

for P. abies was not significantly correlated with synchrony in meteorological conditions. 309 

4. Discussion 310 

4.1. Teleconnection indices as biological predictors 311 
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Our results fully support the hypothesis that teleconnection indices are better correlated with 312 

biological processes than local weather (Ottersen et al. 2001, Hallett et al. 2004). Fruit 313 

production of all species that we considered had statistically significant relationships with 314 

seasonal NAO indices (Figure 3, Tables 3 and 4), highlighting the importance of the NAO as 315 

a driver of ecological processes through effects on meteorological conditions at large spatial 316 

scales (Figure 2). These results are thought to emerge because organisms do not respond to 317 

single environmental variables but to a combination of variables. The NAO indices are thus 318 

good predictors of weather packages (i.e. temperature, precipitation, humidity, wind, radiation, 319 

or pressure), reducing spatiotemporal variability in meteorological conditions into a single index 320 

(Stenseth et al. 2003) influencing weather over continental scales. The utility of the NAO (and 321 

other teleconnection indices) for characterizing weather packages influencing very large 322 

geographical scales make them suitable candidate variables for testing the Moran effect.  323 

4.2. Controls of interannual variability of fruit production 324 

Our results highlighted a contrasting effect of seasonal NAO indices on fruit production for 325 

coniferous and broadleaved species: cone crops in coniferous species were mainly negatively 326 

correlated with NAOw (i.e., associated to dry and cool winters), but fruit production in 327 

broadleaved species was positively correlated with NAOsp (associated with warm and dry 328 

springs) and negatively correlated with NAOa (associated with warm and wet autumns) 329 

(Tables 3 and 4). Nonetheless, these relationships could be altered by local weather (e.g., the 330 

positive correlation between winter precipitation and fruit production for P. abies in Table 4). 331 

These differences, in part, reflect differences in the effect of leaf characteristics on when 332 

weather influences fruit production. Coniferous species in our study were all evergreen (main 333 

effect during winter) and the broadleaved species were all deciduous (main effect during 334 

spring).  335 

Cold winters may delay the growing season for evergreen species and thus the onset of 336 

flowering (Frenguelli and Bricchi 1998, García-Mozo et al. 2002, Stöckli and Vidale 2004). 337 

Delays in pollinating periods due to cold meteorological conditions have been previously 338 

reported to positively affect fruit production in the evergreen Q. ilex (Fernández-Martínez et al. 339 

2012). Additionally, cold winter weather may meet the chilling requirements for conifers to 340 

reach complete dormancy (Clancy et al. 1995), as is needed to survive unfavourable 341 

environmental conditions. In contrast, higher winter temperatures might entail higher metabolic 342 
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costs for trees, reducing the amount of reserves available to invest in reproduction. This 343 

reasoning is in line with the resource matching hypothesis, i.e., trees would produce fruit as a 344 

response to the available resources (Table 1).  345 

Dry and warm spring weather (during pollination), however, can facilitate pollen dispersal, 346 

because pollen release to the atmosphere increases with temperature and precipitation 347 

removes the pollen (García-mozo et al. 2006, Fernández-Martínez et al. 2012, Kasprzyk et al. 348 

2014). We thus suggest that fruit production in deciduous broadleaved species (and A. alba, 349 

see Tables 3 and 4) was positively associated with the NAOsp phase because dry and warm 350 

weather facilitates pollen release and therefore the fertilisation of female flowers, supporting 351 

the pollination efficiency hypothesis (Table 1).  352 

Fruit crop size for Q. petraea, (and also Q. robur and A. alba, see Table 3) was correlated with 353 

warm and wet autumns. Leaf senescence and the start of dormancy is delayed during warm 354 

and wet autumns (NAOa
–) because of the strong control that temperature exerts on them 355 

(Vitasse et al. 2009, Estiarte and Peñuelas 2015). Delayed leaf senescence extends the 356 

growing period, which allows trees to accumulate resources immediately after most of the fruit 357 

is matured. This additional acquisition of resources (Euskirchen et al. 2006) and tree growth at 358 

the end of the growing season could be spent during the next spring to enable more intense 359 

flowering (Fernández-Martínez et al. 2015). This mechanism would be in line with the resource 360 

matching hypothesis (Table 1).  361 

Dry and cool summer weather (NAOsm
+) increased fruit crop size in P. abies and F. sylvatica 362 

(Table 3). Because species characteristic of colder and wetter environments are generally 363 

more sensitive to changes in temperature than in water availability (Fernández-Martínez et al. 364 

2014), high summer temperatures may lead to photoinhibition and stomatal closure and 365 

thereby reduce photosynthetic capacity, constraining resources available to allocate to ripening 366 

fruit. This reasoning mechanism potentially driven by effects of the NAOsm on fruit production 367 

provide further indirect evidence supporting the resource matching hypothesis for P. abies and 368 

F. sylvatica (Table 1).  369 

In short, our results generally indicated proximal causes (weather correlated with increased 370 

productivity or better pollinating conditions), likely driven by the NAO, as amongst the most 371 

plausible mechanisms explaining interannual variability in fruit production. They also indirectly 372 
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suggest that the resource matching and pollination efficiency hypotheses may actually function 373 

together (Table 1), especially for the broadleaved species studied here, as potential drivers of 374 

interannual variability in fruit production in European forests. The different mechanisms 375 

proposed by each of these two hypotheses are likely required to a certain degree to explain 376 

the large interannual variability in fruit crops and its synchrony. The relative importance of each 377 

mechanism will surely depend on the species under study and on the site characteristics 378 

(Fernández-Martínez et al. 2012). In addition, the considerable variance explained by the 379 

models accounting for interannual variability in fruit production suggests that meteorological 380 

variability should be one of the most important factors driving interannual variability and 381 

synchrony in fruit production (Fernández-Martínez et al. 2015) 382 

4.3. Controls of synchrony of fruit production 383 

Whether synchrony in fruit production is due to the Moran effect or pollen coupling is usually 384 

hard to determine, because both hypotheses generate similar patterns of spatial synchrony 385 

and are not mutually exclusive (Liebhold et al. 2004, Koenig and Knops 2013). Some 386 

predictions of both hypotheses, however, can help to distinguish between them. Synchrony in 387 

fruit production due to pollen coupling should not extend more than a few hundred kilometres 388 

at most, and the Moran effect can easily reach hundreds and even thousands of kilometres 389 

(Koenig and Knops 2013). According to this prediction, our results suggest that the Moran 390 

effect is responsible for the synchrony in fruit production among European forests, some 391 

separated by hundreds of kilometres. This inference, however, cannot completley dismiss the 392 

pollen coupling hypothesis, because our database consisted of forests and not individual trees, 393 

so pollen coupling could still be acting to amplify synchrony at the local scale.  394 

The anti-synchrony in fruit production between F. sylvatica and Q. petraea (Table 6), two 395 

potentially co-existing species, suggests a strategy for avoiding large fruit crops in the same 396 

years. Although such a strategy would be contrary to the predation satiation hypothesis 397 

(Silvertown 1980, Espelta et al. 2008) but could reduce interspecific interference in pollination, 398 

because most of the pollen reaching female flowers would be from the same species in years 399 

of high intraspecifically synchronous reproduction. This hypothetical mechanism would tend to 400 

support the hypothesis that fruit production is synchronized by pollen coupling. Nonetheless, 401 

synchrony between non-hybridising species cannot occur by pollen coupling, and we found 402 

significant synchrony amongst species that do not hybridise (Table 6). This result further 403 
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supports the synchronization of reproduction through the Moran effect, especially when 404 

combined with the results from our models suggesting that the seasonal NAO indices are 405 

common drivers of interannual variability. 406 

The Moran effect also predicts that distance between sites will be similarly related to both 407 

synchrony in fruit production and meteorological variables (Koenig and Knops 2013). Our 408 

results corroborate with this prediction for A. alba, P. abies, P. menziesii, and Q. robur, thus 409 

further supporting the Moran effect as an underlying cause of the patterns we have identified. 410 

Our findings for F. sylvatica and Q. petraea, however, do not support this prediction, because 411 

synchrony in fruit production for these species and meteorological variables were differently 412 

related to distance (Table 5). Interannual variability in fruit production for F. sylvatica was also 413 

linked to dry and warm spring weather, favouring pollen dispersal, so pollen coupling likely also 414 

plays a role synchronising fruit production in these forests and possibly also in Q. petraea 415 

forests given the similar relation of synchrony in fruit production and meteorological variables 416 

with distance (Table 1). Weather also likely plays a role in synchronising fruit crop sizes 417 

amongst sites because synchrony in meteorological conditions was correlated with synchrony 418 

in fruit production for A. alba, F. sylvatica, and Q. petraea. Our results must be interpreted with 419 

care, however, because none of the variables involved in predicting synchrony in fruit 420 

production also predicted interannual variability in fruit production and because the synchrony 421 

models explained only a small amount of the variance. Nonetheless, the NAO is clearly 422 

partially responsible for interannual variability in meteorological conditions over western 423 

Europe, and so we infer that 1) the NAO acts as a synchronising agent among sites and 2) the 424 

Moran effect is probably the main factor synchronising the fruit production of forests in western 425 

Europe (Table 1).  426 

Both the Moran effect and the pollen coupling hypotheses may thus play a role in 427 

synchronising fruit production, but at different levels. Whereas the Moran effect is apparent at 428 

continental scales, pollen coupling may be restricted to local or nearby regional environments. 429 

Moreover, according to our results, evidence for the Moran effect seems to apply to more 430 

systems than does evidence for pollen coupling.  431 

Our results generally highlight that weather packages, such as the NAO index, can improve 432 

prediction of ecological processes at wide geographical scales, which is particularly useful for 433 

testing the explanatory power of the Moran effect in particular situations. Since weather is 434 
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likely to affect tree resources and enable favourable meteorological conditions for pollination, 435 

we suggest that the synchronising effect of weather was more likely to be due to proximal 436 

causes driving interannual variability rather than the effect of weather as a cue for tree 437 

reproduction.  438 

439 
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 545 

Figure captions 546 

Figure 1: Map showing the sites used in this study. The sites were located throughout France, 547 

Germany, and Luxembourg. 548 

Figure 2: Relationships between the seasonal North Atlantic Oscillation (NAO) indices and 549 

weather for 2002–2010. Positive (+) and negative (-) symbols after NAO indicate positive and 550 

negative phases of the index. Values are β weights calculated using generalised linear mixed 551 

models with random slopes. All coefficients were significant at the 0.001 level. 552 

Figure 3: a) Relationships between the CV of annual fruit production and the spring NAO 553 

index for the six species. Thick lines indicate significant relationships at the 0.05 level. b) 554 

Partial residuals plot showing the average relationship between the annual CV of fruit 555 

production and the spring NAO index amongst species using generalised linear mixed models.  556 

557 
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Table 1: Summary of the hypotheses discussed in this study for interannual variability and synchrony in fruit production. Our 569 

analysis was focused on weather relationships with interannual variability and synchrony in fruit production, so only indirect 570 

evidence of the weather relationships supporting or rejecting the hypotheses are presented.  571 

Hypothesis Summary 

Indirect evidence 

Supports Rejects 

a) Interannual variability    

Resource matching 

 

Plants produce fruit as a direct 

response to the available resources. 

 

Favourable weather for tree 

productivity is positively correlated 

with fruit production. 

No correlation with weather, or 

weather cannot be associated with 

higher tree productivity. 
 

    

Efficiency of pollination  

 

Synchronised and intermittent 

flowering increases successful 

pollination in wind-pollinated 

species. 

Favourable weather for pollination 

(e.g. warm and dry springs) is 

positively correlated with fruit 

production. 

Favourable weather for pollination is 

negatively or not correlated with fruit 

production. 
 

   

    

b) Synchrony    

The Moran effect 

 

Synchrony in fruit production is 

driven by synchrony in 

meteorological conditions.  

 

 

 

Fruit production amongst sites is 

correlated with the same 

meteorological conditions. Non-

hybridising species are also 

synchronised.  

 

 

Fruit production amongst sites is 

correlated with different 

meteorological conditions, or no 

significant synchrony in fruit 

production is found amongst sites. 

 

 

 

 

 

 

 

Pollen coupling 

 

Pollen availability from neighbouring 

trees can generate synchrony in fruit 

production amongst individuals by 

interacting with available resources.  

 

Favourable weather for pollination is 

positively correlated with fruit 

production. Synchrony occurs within 

species at the local scale. 

 

 

Unfavourable weather for pollination 

is correlated with fruit production. 

Non-hybridising species are 

synchronised.  
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Table 2: Summary of the specific aims of the study and the statistical tests performed.  572 

Questions Analyses 

a) Meteorological variability  

Do seasonal NAO indices correlate with 

seasonal weather at our sites? 

 

Generalised linear mixed models (with site as random factor) 

correlating seasonal temperature and precipitation with seasonal 

NAO indices.  

b) Interannual variability in fruit production 

Do seasonal NAO indices correlate with 

fruit production? 

Spearman correlations between fruit production and seasonal 

NAO indices per site. 

Is fruit production best predicted by local 

meteorological variability or by seasonal 

NAO indices? 

Generalised linear mixed models per species (with site as random 

factor) correlating annual fruit production with seasonal 

temperatures, precipitation, and NAO indices. 

  
c) Synchrony in fruit production  

For a given year, is variability in fruit 

production amongst sites associated with 

variability in meteorological conditions or 

to seasonal NAO indices? 

Generalised linear mixed models per species (with site as random 

factor) correlating annual CV of fruit production amongst sites with 

annual CV of seasonal temperatures and precipitation and with 

seasonal NAO indices. 

  
Is fruit production (and weather) 

synchronised across sites within and 

amongst species? 

Temporal synchrony of fruit production, temperature, and 

precipitation amongst sites is calculated using Spearman 

correlations (i.e. correlation of time series A vs. time series B).  

Is synchrony of fruit production and 

weather between sites spatially 

dependent? 

Linear models correlating synchrony of fruit production and 

seasonal temperatures and precipitation between sites with 

geographical distance. 

Does synchrony in fruit production 

between sites depend on synchrony in 

meteorological conditions and 

geographical distance? 

Linear models correlating synchrony of fruit production with 

synchrony of seasonal temperatures and precipitation and 

geographical distance between sites. 
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Table 3: Spearman’s correlations between seasonal (autumn, winter, spring, and summer seasons prior to fruit production) 573 

NAO indices and fruit production (ρ ± standard error) per species and leaf type. The P values indicate whether average 574 

correlation coefficients differ from 0 (t-test). N indicates the number of forests per species. Only forests with five or more years 575 

of data were used in these analyses. The seasons are indicated by subscripts: w, sp, sm, and a indicate winter, spring, 576 

summer, and autumn, respectively. 577 

 
NAOa 

 
P 

 
NAOw 

 
P 

 
NAOsp 

 
P 

 
NAOsm 

 
P 

 
N 

a) Species                    

Abies alba -0.34 ± 0.10 ab 0.0031 ** -0.42 ± 0.11 b 0.0007 *** 0.45 ± 0.09 ab 0.0003 *** -0.07 ± 0.07 b 0.5433 
 

10 

Picea abies -0.22 ± 0.06 ab 0.0520 . -0.42 ± 0.07 b 0.0007 *** 0.13 ± 0.15 bc 0.2694 
 

0.27 ± 0.12 ab 0.0141 * 10 

Pseudotsuga menziesii 0.18 ± 0.25 a 0.2163 
 

-0.48 ± 0.12 b 0.0026 ** -0.12 ± 0.20 c 0.4400 
 

0.00 ± 0.22 ab 0.9772 
 

6 

Fagus sylvatica 0.06 ± 0.07 a 0.4089 
 

0.03 ± 0.08 a 0.7266 
 

0.61 ± 0.06 a 0.0000 *** 0.36 ± 0.07 a 0.0000 *** 21 

Quercus petraea -0.39 ± 0.08 b 0.0000 *** 0.09 ± 0.10 a 0.2810 
 

0.04 ± 0.10 bc 0.6014 
 

-0.06 ± 0.06 b 0.4676 
 

20 

Quercus robur -0.48 ± 0.11 b 0.0001 *** -0.14 ± 0.11 ab 0.2786 
 

0.34 ± 0.11 abc 0.0092 ** -0.04 ± 0.15 b 0.7297 
 

9 

                  

b) Leaf type 
                 Conifers -0.18 ± 0.08 a 0.0341 * -0.43 ± 0.06 b 0.0000 *** 0.20 ± 0.09 a 0.0253 * 0.08 ± 0.08 a 0.2900 

 
26 

Broadleaves -0.21 ± 0.06 a 0.0005 *** 0.02 ± 0.06 a 0.6490 
 

0.33 ± 0.06 a 0.0000 *** 0.12 ± 0.05 a 0.0250 * 50 
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Table 4: Summary of the models predicting fruit production per species. Standardised 578 

coefficients are shown as model estimates (β ± standard error (SE)). ΔBIC indicates the 579 

variable importance of the predictors and is calculated as the difference of BIC between the 580 

entire model and the model without the predictor of interest. Variance explained by the fixed 581 

factors (R2
m) and by the entire model (R2

c) is also shown. All coefficients were significant at the 582 

0.05 level. The seasons are indicated by subscripts: w, sp, sm, and a indicate winter, spring, 583 

summer, and autumn, respectively. 584 

 
β ± SE ΔBIC R2

m R2
c 

Abies alba 
     NAOw -0.40 ± 0.10 10.81 

  NAOsp 0.42 ± 0.09 13.59 
  Pw -0.29 ± 0.11 0.90 
  Model 

   
0.39 0.47 

      Picea abies 
    NAOsm 0.31 ± 0.07 11.51 

  Psp -0.32 ± 0.12 2.62 
  Pw 0.49 ± 0.12 11.41 
  Tsm 0.38 ± 0.18 0.52 
  Model 

   
0.26 0.79 

      Pseudotsuga menziesii 
    NAOa 0.39 ± 0.10 10.63 

  NAOw -0.29 ± 0.11 3.78 
  Tsp 0.57 ± 0.14 4.33 
  Model 

   
0.52 0.52 

      Fagus sylvatica 
    NAOa 0.48 ± 0.07 34.37 

  NAOsp 0.85 ± 0.07 88.22 
  Psm -0.22 ± 0.08 3.95 
  Ta -0.16 ± 0.07 0.14 
  Model 

   
0.51 0.55 

      Quercus petraea 
    NAOa -0.20 ± 0.08 0.90 

  Ta 0.35 ± 0.08 11.89 
  Model 

   
0.21 0.21 

      Quercus robur 
    Psm 0.30 ± 0.12 1.42 

  Ta 0.72 ± 0.16 14.34 
  Tw -0.38 ± 0.15 2.45 
  Model 

   
0.26 0.28 

 585 

586 
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 587 

Table 5: a) Average synchrony (average Spearman’s correlation of fruit production between 588 

sites: ρ ± standard error) in annual fruit production (NPP), seasonal temperature (T), and 589 

precipitation (P) between sites within species. b) Standardised slopes between synchrony and 590 

geographical distance (β ± standard error). Bold coefficients indicate values that differ from 591 

zero at the 0.05 level (t-test). N indicates the number of pairwise comparisons. The seasons 592 

are indicated by subscripts: w, sp, sm, and a indicate winter, spring, summer, and autumn, 593 

respectively. 594 

 
A. alba P. abies P. menziesii F. sylvatica Q. petraea Q. robur 

a) Synchrony (ρ)    
  

 
 Fruit NPP 0.36 ± 0.07 0.31 ± 0.08 0.19 ± 0.20 0.60 ± 0.02 0.20 ± 0.04 0.29 ± 0.07 

Tw 0.90 ± 0.01 0.89 ± 0.02 0.82 ± 0.02 0.89 ± 0.01 0.96 ± 0.01 0.94 ± 0.01 

Tsp 0.73 ± 0.03 0.70 ± 0.05 0.72 ± 0.07 0.74 ± 0.02 0.85 ± 0.01 0.78 ± 0.03 

Tsm 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.94 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 

Ta 0.81 ± 0.02 0.82 ± 0.03 0.73 ± 0.06 0.69 ± 0.02 0.79 ± 0.01 0.85 ± 0.02 

Pw 0.71 ± 0.04 0.80 ± 0.03 0.34 ± 0.15 0.44 ± 0.03 0.68 ± 0.02 0.38 ± 0.08 

Psp 0.62 ± 0.04 0.56 ± 0.07 0.62 ± 0.08 0.53 ± 0.03 0.58 ± 0.03 0.67 ± 0.03 

Psm 0.56 ± 0.04 0.61 ± 0.07 0.39 ± 0.14 0.42 ± 0.03 0.77 ± 0.01 0.65 ± 0.05 

Pa 0.61 ± 0.05 0.74 ± 0.03 0.57 ± 0.13 0.49 ± 0.03 0.68 ± 0.02 0.59 ± 0.04 

    
  

     

b) β with distance 
   

  
  

Fruit NPP -0.20 ± 0.16 -0.35 ± 0.21 -0.39 ± 0.38 -0.06 ± 0.08 -0.01 ± 0.09 -0.71 ± 0.13 

Tw -0.65 ± 0.13 -0.69 ± 0.16 -0.29 ± 0.39 -0.54 ± 0.07 -0.33 ± 0.08 -0.79 ± 0.12 

Tsp -0.62 ± 0.13 -0.44 ± 0.20 -0.75 ± 0.27 -0.67 ± 0.06 -0.70 ± 0.06 -0.82 ± 0.11 

Tsm -0.52 ± 0.14 -0.22 ± 0.22 -0.06 ± 0.41 -0.41 ± 0.07 -0.07 ± 0.09 -0.65 ± 0.14 

Tfall -0.51 ± 0.14 -0.56 ± 0.19 -0.02 ± 0.41 -0.44 ± 0.07 -0.32 ± 0.08 -0.50 ± 0.16 

Pw -0.86 ± 0.08 -0.45 ± 0.20 -0.75 ± 0.27 -0.58 ± 0.06 -0.21 ± 0.08 -0.68 ± 0.14 

Psp -0.75 ± 0.11 -0.31 ± 0.21 -0.03 ± 0.41 -0.35 ± 0.07 -0.37 ± 0.08 -0.04 ± 0.19 

Psm -0.41 ± 0.15 -0.67 ± 0.17 -0.54 ± 0.34 -0.36 ± 0.07 -0.47 ± 0.08 -0.61 ± 0.15 

Pfall -0.79 ± 0.10 -0.64 ± 0.17 -0.30 ± 0.39 -0.58 ± 0.06 -0.60 ± 0.07 -0.79 ± 0.12 

N 38 22 8 163 135 30 

 595 
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Table 6: Average synchrony (Spearman’s ρ ± standard error) between sites within and amongst species. Comparisons 596 

amongst leaf types and all sites are also shown. Bold coefficients indicate values that differ from zero at the 0.05 level (t-test). 597 

The number of comparisons is shown in brackets below each coefficient. Only comparisons with five or more years of shared 598 

data were used.  599 

 
Abies alba 

 
Picea abies Pseudotsuga menziesii Fagus sylvatica Quercus petraea Quercus robur 

Abies alba 
0.36 ± 0.07  

(38) 
 

0.07 ± 0.07 
(53) 

0.10 ± 0.06 
(23) 

0.20 ± 0.03 
(161) 

0.12 ± 0.03 
(116) 

0.26 ± 0.03 
(81) 

Picea abies 
0.07 ± 0.07  

(53)  
0.31 ± 0.08 

(22) 
0.02 ± 0.06 

(24) 
0.08 ± 0.04 

(130) 
0.09 ± 0.04 

(113) 
0.04 ± 0.04 

(46) 

Pseudotsuga menziesii 
0.10 ± 0.06  

(23) 
 

0.02 ± 0.06 
(24) 

0.19 ± 0.20 
(8) 

-0.10 ± 0.05 
(65) 

-0.07 ± 0.05 
(86) 

-0.13 ± 0.10 
(19) 

Fagus sylvatica 
0.20 ± 0.03  

(161)  
0.08 ± 0.04 

(130) 
-0.10 ± 0.05 

(65) 
0.60 ± 0.02 

(163) 
-0.12 ± 0.03 

(279 
0.10 ± 0.04 

(141) 

Quercus petraea 
0.12 ± 0.03  

(116) 
 

0.09 ± 0.04 
(113) 

-0.07 ± 0.05 
(86) 

-0.12 ± 0.03 
(279) 

0.20 ± 0.04 
(135) 

0.28 ± 0.04 
(97) 

Quercus robur 
0.26 ± 0.03  

(81) 
 

0.04 ± 0.04 
(46) 

-0.13 ± 0.10 
(19) 

0.10 ± 0.04 
(141) 

0.28 ± 0.04 
(97) 

0.29 ± 0.07 
(30) 

Comparisons amongst leaf types   

 

  

Broadleaves 
0.17 ± 0.02 

(845) 
   

 
  

Conifers 
0.17 ± 0.03 

(168) 
   

 

  

All species 
0.12 ± 0.01 

(1830) 
   

 

  

600 



 

31 
 

 601 



 

32 
 

Table 7: Summary of the models correlating synchrony (ρ) of fruit production between sites 602 

with synchrony in meteorological conditions. Coefficients are β weights ± standard error. R2 603 

indicates the total variance explained by the model. All coefficients were statistically significant 604 

at the 0.05 level. Only comparisons with five or more years of shared data were used in the 605 

models. The variables of seasonal temperature and precipitation are indicated by T and P, 606 

respectively. The seasons are indicated by subscripts: w, sp, sm, and a indicate winter, spring, 607 

summer, and autumn, respectively. 608 

 
A. alba P. abies F. sylvatica Q. petraea Q. robur 

     
Distance 

  
 

 
-0.71 ± 0.13 

Ta 0.45 ± 0.15 
 

 
  

Pw   0.20 ± 0.08 
  

Psm 
 

  0.20 ± 0.09 
 

R2 0.20 - 0.04 0.04 0.50 

Comparisons 38 22 163 135 30 

 609 


