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Abstract 
 
Random Telegraph Noise (RTN) is one of the main reliability problems of resistive 

switching-based memories. To understand the physics behind RTN, a complete and 

accurate RTN characterization is required. The standard equipment used to analyse 

RTN has a typical time resolution of ~2ms which prevents evaluating fast phenomena. 

In this work, a new RTN measurement procedure, which increases the measurement 

time resolution to 2µs, is proposed. The experimental set-up, together with the recently 

proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows 

obtaining a more detailed and precise information about the RTN phenomenon. 
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1. INTRODUCTION 
 

 
Resistive Random Access Memories (RRAMs) are one of the most promising 

candidates to replace the current flash memories due to their low power operation, fast 

switching and great scalability [1-8]. In these devices, typically composed of MIM or 
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MIS structures, the resistance of the dielectric can be switched between a low resistance 

state (LRS) and a high resistance state (HRS), by applying suitable voltages at the device 

electrodes. Despite their excellent characteristics, RRAMs present some reliability 

problems, such as the occurrence of current fluctuations in the form of Random 

Telegraph Noise (RTN) [9-13]. RTN can be observed at both resistance states [14], 

although RTN is more relevant in the HRS because of the low current through the 

dielectric [15, 16]. Since RTN has a major contribution to the device current, its spectra 

can be crucial to determine the memory window and the correct memory cell 

performance. Therefore, a precise characterization of the RTN fluctuations in emerging 

RRAM cells becomes necessary. Until now, standard characterization equipment has 

been commonly used to characterize RTN, such as semiconductor parameter analyzers 

(SPAs) with a measuring time resolution of ~2ms. In this work, we propose an 

experimental set-up to measure RTN that provides a higher time resolution than that 

available in standard characterization equipment. This new set-up, in combination with 

the Weighted-Time Lag (W-TL) method [17] for the analysis of the recorded signals, 

allows getting additional and relevant information about the RTN phenomenon, which 

cannot be obtained using standard characterization set-ups. Despite RTN signals can be 

observed in both resistance states (HRS [18] and LRS [19]), this work is focused on the 

analysis at HRS, because RTN is easier to be observed for large dielectric resistance 

values [20] with lower currents through the dielectric. 

 
2. MEASUREMENT PROCEDURE 

  

The studied Ni/HfO2/Si devices were fabricated on (100) n-type CZ silicon wafers with 

resistivity between 0.007Ωcm and 0.013Ωcm [21]. After standard wafer cleaning, a wet 

thermal oxidation process was done at 1100ºC leading to a 200nm-thick SiO2 layer. 



This field oxide was patterned by photolithography and wet etching. Prior to the high-k 

deposition, a cleaning in H2O2/H2SO4 and a dip in HF(5%) were performed. 

Subsequently, 20nm-thick HfO2 layers were grown by atomic layer deposition (ALD) 

using Tetrakis (dimethylamido)-hafnium (TDMAH) and H2O as precursors, and N2 as 

carrier and purge gas. The deposition temperature was 225ºC. The top metal electrode, 

consisting of a 200nm-thick Ni layer, was deposited by magnetron sputtering. The 

resulting structures are square cells of 5x5μm2. A schematic cross-section of the final 

device structure is shown in Fig. 1.  

 

Fig. 1: Cross-section of the devices under test (DUT), where the different materials in the stack 
are indicated. 
 

In order to get a stable CF, the devices were subjected to 30 resistive switching (RS) 

cycles (where the first cycle corresponds to the forming process [6]), changing 

successively the dielectric conductivity between a high and a low resistance state, fixing 

a current limit of 10µA when switching to the LRS. Some RS cycles are shown in Fig 2. 

Set process, i.e. the transition from HRS to LRS (blue curves) and the reset process, i.e. 

the change from LRS to HRS (red curves) are observed. After this initial cycling, with 

the device at HRS, a RTN signal was sought by applying different voltage bias. When 

current fluctuations were detected, RTN measurements were carried out using a SPA 

and the new set-up. Fig. 3 shows a schematic of the experimental set-up developed to 

measure RTN with large temporal resolution. The voltage at which RTN appears, Vapp, 

was applied to one of the terminals of the DUT by the SPA (Agilent 4156C), which also 



allows measuring the current through this terminal. The other terminal of the DUT was 

connected to a logarithmic current-to-voltage converter (Log-IVC), which allows 

measuring currents that can differ in several orders of magnitude. The voltage from the 

current-to-voltage converter is derived to a digital storage oscilloscope (DSO, Tektronix 

TDS220) in order to register data at different time scales. This second DUT terminal is 

also connected to a high impedance buffer, so that a precise value of the voltage drop 

across the DUT can be measured. By changing the time scale of the DSO, the current 

through the DUT can be measured with different time resolutions, so that fast events 

can be captured. Though the oscilloscope can allow time resolutions in the nanosecond 

range, the limitation in the acquisition time would actually come from the circuit 

bandwidth. 
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Fig 2: Initial RS cycling. Transition from HRS to LRS (blue lines) with current limit established 
at 10µA and transition from LRS to HRS (red lines). X axis corresponds to the voltage drop 
across the DUT, so that it does not start at 0. 
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Fig. 3: Schematics of the experimental set-up developed to measure RTN signals with large 
time resolution. Vapp is the voltage applied by the semiconductor parameter analyzer and VDUT 
is the voltage drop across the DUT. 
 

Fig. 4 shows the block diagram of the RTN measurement process. First, RS cycling is 

performed to reach stable resistance states and then the suitable Vapp for RTN detection 

is chosen. After that, the HRS current is measured as a function of time. During the SPA 

measurement, several oscilloscope captures are registered using different time scales. 

When the SPA measurement finishes, the sequence defined in Fig. 4 starts again. In this 

work, about 325 SPA measurements were done and 21 oscilloscope captures were 

obtained for each SPA measurement. 
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Fig. 4: Flux of the RTN measurement process once a RTN signal is detected at a particular 
voltage. RTN signals are simultaneously measured with the SPA and the developed set-up. The 
time scale of the DSO is changed during the measurement. 
 

3. ANALYSIS PROCEDURE 
 



Between the different methods to analyze and characterize RTN [22], Time Lag Plot 

(TLP)-based methods are the most common. A TLP is drawn by plotting the i-th point of 

the RTN signal in the x-axis and the (i+1)-th point in the y-axis for the full RTN trace 

[23]. Across the diagonal of the plot, every populated spot corresponds to one level of 

the RTN, whereas populated spots outside the diagonal correspond to transitions between 

states (Fig. 5).  
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Fig. 5: (a) Simulated RTN signal caused by a single defect. (b) The corresponding time-lag plot: 
two populated spots on the main diagonal indicate the two states. Other clusters of points 
outside the diagonal correspond to transition between states. 
 

TLP is useful when the RTN current jumps are well-defined or when different current 

levels are easy to identify at naked eyed, like in Fig. 5(b). However, when the 

background noise becomes relevant, different spots overlap each other, being difficult to 

separate the RTN current levels. Fig. 6(a) shows an example of a simulated RTN signal 



with large background noise. Applying TLP (Fig. 6(b)) it is not possible to distinguish 

any state or level so that RTN characterization becomes complicated. However, there is a 

new characterization method named Weighted Time Lag (W-TL) [17] which improves 

TLP. The W-TL method minimizes the effect of the background noise in the RTN signal 

allowing a more accurate analysis of the random telegraph parameters. Calculating a 

weighted function, which is based on a normal bivariate distribution of i-th point and 

(i+1)-th point, on each dot in TLP a more accurate RTN analysis can be done. In Fig. 

6(c) W-TLP of the RTN signal shown in Fig. 6(a) is depicted. Two states along the 

diagonal (ΨH, ΨL) are revealed. These states were undetectable in the conventional TLP 

(Fig. 6(b)). 
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Fig. 6: (a) Simulated RTN signal with and without background noise; (b) conventional TLP of 
the RTN; the background noise hides the current levels and transition regions, (c) W-TLP where 
two states are encountered as red spots (ΨH, ΨL). [17] 
 

The W-TL method is not only applicable to 2-levels RTN (Fig. 6) but also to multilevel 

RTN. In Fig 7(a), (b), and (c), an experimental multilevel RTN signal of a pMOS 

transistor, the conventional TLP and the W-TLP are shown respectively. In both Fig 7(b) 

and Fig. 7(c) the diagonal of the plot is identifiable. Regarding current states, with the 



TLP (Fig 7(b)) the states are more difficult to identify being only those located at the 

corners of the different originated squares clearly distinguished. However, there are some 

states that remain unclear due to overlapping or small quantity of dots. On the contrary, 

using W-TLP states that are not visible using conventional RTN characterization 

methods can be detected. Fig 7(c) represents W-TLP of the experimental multilevel RTN 

shown in Fig 7(a). Unlike TLP, this plot reveals up to 6 levels only looking at the plot.   
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Fig. 7: (a) Experimental multilevel RTN in the gate current of a pMOS transistor, (b) 
Conventional TLP of a multilevel RTN signal, (c) W-TLP obtained from the RTN of (b). [17] 
 

The W-TL method presents an additional advantage to find the RTN current states more 

accurately. W-TLP allows obtaining the maximum peaks of the diagonal which 

correspond to the different current levels of the RTN signal. Fig. 8 represents the 

diagonal peaks of the W-TLP shown in Fig 7(c). In the W-TLP, 6 states were identifiable 

but with the plot of the diagonal peaks two additional states (L7 and L8) are encountered. 
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Fig. 8: Peaks of the diagonal of the W-TLP shown in Fig. 7(c). 8 peaks, i.e. 8 current states are 
encountered instead of the 6 states from W-TLP. 
 

In summary, W-TL method allows analyzing RTN signals more accurately than standard 

TLP, being possible to distinguish more RTN current levels. 

 

4. RESULTS 
 

 
As mentioned in the previous section, RTN signals are measured using two different 

systems, one of them based on a standard SPA and the other one based on an 

oscilloscope. In Fig. 9(a) a typical multilevel RTN signal measured by the SPA, with a 

time resolution of 6ms, is shown. At naked eye, 5 different current levels are evidenced. 

By applying the W-TL method to this RTN signal more levels are encountered 

concretely 9 different levels (L1-L9) (Fig. 9(b)). On the other hand, Fig. 10 shows three 

oscilloscope captures using time scales of (a) 40µs, (b) 20µs and (c) 1µs, i.e. different 

time resolution, recorded simultaneously to the SPA measurement in Fig. 9 at different 

time slots. Measurements at higher and lower time scales were done but only those at 

40µs, 20µs and 1µs showed current fluctuations. These fluctuations on the traces 

correspond to some charge trapping and detrapping events in/from traps, responsible for 



the RTN signal and they appear with switching times lower than 6ms. These fast current 

fluctuations cannot be detected with the SPA. Fig. 10 shows some current levels which 

are coincident with those in Fig. 9(b) (L2, L3, L5, L6 and L7). However, in Fig. 10(b) 

and in Fig. 10(c) there is a new level (L10) that does not appear in Fig. 9(a), because of 

the fast transitions between states. Note that the setup allows measuring fast events, but 

that to determine the emission/capture times of the associated traps, a large amount of 

data would be needed, to carry out a statistical study.  
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Fig. 9: (a) Typical multilevel RTN signal measured with a semiconductor parameter analyzer. 
Vapp=1.25V, step time ~6ms and number of measured points 8000. (b) Current levels obtained 
by using the W-TL method 
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Fig. 10: Oscilloscope traces captured in the interval of: (a) 7.26s-9.68s of the SPA measurement 
shown in Fig. 9(a) with 40µs time resolution. (b) 9.68s-12.15s, with a time resolution of 20µs. 
(c) 19.5s-21.93s with a time resolution of 1µs. 
 

To complete the analysis and find more information about the current levels of the RTN 

trace shown in Fig. 9(a), the W-TL method was used. In Fig 11, W-TLP of the SPA 

measurement and of the three oscilloscope captures are obtained. Evaluating the diagonal 

of the plots resulting from the method and finding the maxima of that diagonal, all the 

levels in an RTN signal can be determined, since each of those maxima corresponds to a 

current (trap) level of the RTN. Fig 11(a) shows the W-TL plot of the whole RTN signal 

measured with the SPA presented in Fig. 9(a). A profile of the diagonal is plotted in Fig. 

9(b) where all the detected levels are sequentially numbered. From the analysis of the W-

TL plot diagonal, 9 peaks and therefore 9 current levels (labelled as L1-L9) are obtained. 

Note that the number of current levels as determined by the W-TL method is larger than 

that encountered in the naked-eye analysis. The guide lines plotted in Fig. 9 help to 

observe a good match between the peaks in the diagonal of the W-TL plot and the 

current levels in Fig. 9(a).  



W-TL method was also used to analyze the RTN signals captured by the oscilloscope. 

Fig 11(b), (c) and (d) show the W-TL plots of these three captures and, as in the case of 

Fig 11(a), the existing traps levels are identified. Comparing these figures with Fig 11(a), 

we can recognize levels 2, 3, 5, 6 and 7. But from Fig 11(c) and (d), a new trap level at 

around 200nA, labelled as L10, appears, as mentioned before. Then, the presence of 10 

current levels indicates, according to [23], at least four active traps contributing to the 

RTN fluctuations. This latter state does not appear in the SPA measurement because of 

the equipment resolution. However, the larger time resolution of the developed set-up 

highlights its presence and it can be clearly visualized in the corresponding W-TL plot.  

To study in detail the RTN levels found at different time resolutions the different W-TLP 

in Fig. 11 have been analyzed. Fig. 12(b), (c) and (d) show the diagonal profiles of the 

captures with 40µs, 20µs and 1µs time resolution respectively. SPA diagonal profile is 

also included for comparison in Fig. 12(a). Analyzing Fig. 12(b), (c) and (d) different 

peaks can be found. For a time resolution of 40µs (Fig. 12(b)), three peaks are 

encountered. From the center of the peaks the corresponding current states can be 

identified. In this case, these three peaks correspond to levels L2, L3 and L6. For time 

resolutions of 20µs (Fig. 12(c)) and 1µs (Fig. 12(d)) three different peaks are also 

encountered, and therefore three levels are evidenced. For 20µs time resolution these 

levels are L6, L7 and L10 and for 1 µs L5, L6 and L10. All the peaks (i.e. current levels) 

encountered in these three plots are correlated with those in Fig. 12(a) with the exception 

of L10. The peak corresponding to this level appears at around 200nA in Fig. 12(c) and 

Fig. 12(d). In the diagonal profile of the SPA measurement no peak for current values 

around 200 nA was found. This observation indicates that this current level was not 

possible to be measured with the SPA.  



The analysis performed from the diagonal profiles confirms the results obtained 

previously with W-TLPs. W-TL method can help to identify clearly some peaks that can 

be badly defined or unclear using the conventional TLP method. 
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Fig. 11: W-TL method applied to(a) the RTN measured by the SPA (Fig. 9(a)). The line shows 
the diagonal of the plot, whose maximums correspond to the RTN current levels. 9 trap levels 
are detected; (b) oscilloscope capture with a time resolution of 40μs (Fig. 10b), 3 trap levels 
appear; (c) oscilloscope capture with time resolution of 20μs with 3 trap levels (Fig. 10(c); (d)) 
oscilloscope capture at the larger time resolution (1μs), showing 3 trap levels (Fig. 10(d)). 
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Fig. 12: Profiles of the W-TLP diagonal for (a) SPA measurement, where 9 peaks were 
encountered and for oscilloscope captures with time resolution of (b) 40µs, with peaks 
corresponding to levels 6, 3 and 2, (c) 20µs, with levels 6, 7 and 10 and (d) 1µs, with levels 5, 6 
and 10. 

 

5. CONCLUSIONS 
 

 
A new experimental set-up that provides a large time resolution is presented to analyze 

RTN signals. The results show that RTN fluctuations detected with the new set-up can 

be hidden if standard RTN characterization equipment as semiconductor parameters 

analyzers with lower time resolution is used. Moreover, when these RTN signals are 

analyzed with the W-TL method, the RTN levels can be accurately identified. 

Therefore, using our proposed characterization methodology, which combines high time 

resolution equipment and accurate parameters extraction, complete information about 



RTN can be obtained. This methodology allows a precise characterization of the RTN 

current fluctuations observed in RRAMs. 

 

Acknowledgement 
 

UAB authors acknowledge funding from the Spanish MINECO and ERDF (TEC2013-

45638-C3-1-R) and the Generalitat de Catalunya (2014SGR-384). IMB-CNM authors 

thank the support of the Spanish MINECO under Project No. TEC2011-27292-C02-02. 

 

References 
 

[1] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today vol. 11, 
no. 6, pp. 28-36, 2008. 

[2] R. Waser and M. Aono, “Nanoionics-based resistive switching Memories,” Nature 
Materials, vol. 6, pp. 833-840, 2007.  

[3]  L. Baldi and G. Sandhu, “Emerging memories,” in Proceedings of ESSDERC, pp. 
30-36, 2013. 

[4] H. Y. Lee, Y.-S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. 
H. Tsai, S. S. Sheu, P.-C. Chiang, W. P. Lin, C.-H. Lin, W.-S. Chen, F. T. Chen, C. 
H. Lien, and M. Tsai, “Evidence and solution of over-RESET problem for HfOX 
based resistive memory with sub-ns switching speed and high endurance,” in IEEE 
International Electron Devices Meeting (IEDM),  pp. 19.7.1–19.7.4, 2010. 

[5] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-
nanosecond switching of a tantalum oxide memristor,” Nanotechnology, vol. 22, p. 
485203,  2011. 

[6] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. 
Chen, and M.-J. Tsai, “Metal-Oxide RRAM,” Proceedings of the IEEE, vol. 100, 
no. 6, pp. 1951–1970, Jun. 2012. 

[7] Y. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. S. Kar, D. J. 
Wouters, G. Groeseneken, J. A. Kittl, M. Jurczak, and L. Altimime, “Balancing 
SET/RESET pulse for edurance in 1T1R bipolar RRAM,” IEEE Transactions on 
Electron Devices, vol. 59, no. 12, pp. 3243–3249, Dec. 2012. 



[8] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and D. J. Wouters, 
“Control of filament size and reduction of reset current below 10 μA in NiO 
resistance switching memories,” Solid-State Electronics, vol. 58, no. 1, pp. 42–47, 
Apr. 2011. 

[9] N. Raghavan, R. Degraeve, L. Goux, A. Fantini, D.J. Wouters, G. Groeseneken and 
M. Jurczak, “RTN insight to filamentary instability and disturb immunity in ultra-
low power switching HfOx and AlOx RRAM”, In 2013 Symposium, on VLSI 
technology (VLSIT) , pp. T164-165, 2013. 

[10] N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D. 
Wouters, G. Groeseneken, and M. Jurczak, “Microscopic origin of random telegraph 
noise fluctuations in aggressively scaled rram and its impact on read disturb 
variability,” IEEE International Reliability Physics Symposium (IRPS), pp. 5E.3.1–
5E.3.7, 2013. 

[11] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy and D. 
Ielmini, “Statistical fluctuations in HfOx resistive-switching memory. part II—
random telegraph noise ,” IEEE transactions on Electron Devices, vol. 61, no. 8, pp. 
2920-2927, 2014. 

[12] S. Balatti, S. Ambrogio, A. Cubeta, A. Calderoni, N. Ramaswamy and D. 
Ielmini, “Voltage-dependent random telegraph noise (RTN) in HfOx resistive 
RAM,” IEEE International Reliability Physiscs Symposium, pp. MY.4.1-MY.4.6, 
2014. 

[13] C.Monzio Compagnoni, R. Gusmeroli, A. S. Spinelli and A. Visconti, “RTN Vt 
instability from the stationary trap-filling condition: An analytical spectroscopi 
investigation,” IEEE Transaction Electronic Devices, vol. 55, pp. 655-661, 2008. 

[14] D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. 
Chakrbarti, E. Vogel, D. C. Gilmer and P.D. Kirsch, “Random telegraph noise 
(RTN) in scaled RRAM devices,” International Reliability Physics Symposium 
(IRPS), pp. 101-104, 2013. 

[15] F.M. Puglisi, P. Pavan, A. Padovani and L. Larcher, “A study on HfO2 RRAM 
in HRS Based on I-V and RTN analysis,” Solid- State Electronics, vol. 102, pp. 69-
75, 2014. 

[16] F.M. Puglisi, P. Pavan, A. Padovani, L. Larcher and G. Bersuker, “RTS noise 
characterization of HfOx RRAM in high resistive state,” Solid- State Electronics, 
vol. 84, pp. 160-166, 2012 

[17] J. Martin-Martinez J. Diaz, R. Rodriguez, M- Nafria and X. Aymerich, “New 
weighted time lag method for the analysis of random telegraph signals,” IEEE 
Electron Device Letters, vol. 35, no. 4, pp. 479-481, 2014. 



[18] N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D. 
J. Wouters, G. Groeseneken, and M. Jurczak, “Microscopic origin of random 
telegraph noise fluctuations in aggressively scaled RRAM and its impact on read 
disturb variability,” in IEEE International, Reliability Physics Symposium (IRPS), 
pp. 5E.3.1–5E.3.7, 2013. 

[19] F. M. Puglisi, P. Pavan, L. Larcher, and A. Padovani, “Analysis of RTN and 
cycling variability in HfO2 RRAM devices in LRS,” in Solid State Device Research 
Conference (ESSDERC), pp. 246–249, 2014. 

[20] D. Ielmini, F. Nardi, and C. Cagli, “Resistance-dependent amplitude of random 
telegraph-signal noise in resistive switching memories,” Applied Physics Letters, 
vol. 96, no. 5, pp. 053503_1-053503_3. 2010. 

[21] M.B. Gonzalez, J. Rafi, O. Beldarrain, M. Zabala and F. Campabadal, “Analysis 
of the switching variability in Ni/HfO2- based RRAM devices,” IEEE Transactions 
on Devices and Material Reliability, vol. 14, no. 2, pp. 769-771, 2014. 

[22] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in 
speech recognition”, Proceedings of the IEEE, vol. 77, pp. 257-285, 1989. 

[23] T. Nagumo, K. Takeuchi, S. Yowogawa, K. Imai and Y. Hayashi, “New analysis 
methods for compehensive understanding of random telegraph noise,” IEEE 
International Electron Devices Meeting (IEDM), pp. 1-4, 2009. 

 




