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We study thermal transport in porous Si nanowires (SiNWs) by means of approach-

to-equilibrium molecular dynamics simulations. We show that the presence of pores

greatly reduces the thermal conductivity, κ, of the SiNWs as long mean free path

phonons are suppressed. We address explicitly the dependence of κ on different

features of the pore topology –such as the porosity and the pore diameter– and on

the nanowire geometry –diameter and length. We use the results of the molecular

dynamics calculations to tune a an effective model, which is capable of capturing the

dependence of κ on porosity and NW diameter. The model illustrates the failure of

Matthiessen’s rule to describe the coupling between boundary and pore scattering,

which we account for by the inclusion of an additional empirical term.

1

http://dx.doi.org/10.1063/1.4955038
0001292
Cuadro de texto
Published in Applied physics letters, vol. 109, issue 1 (2016), p. 131071-131074. The final ver-sion is available at DOI 10.1063/1.4955038




Thermoelectric materials can convert a thermal gradient into electricity. They represent

one of the most appealing clean energy sources, as they allow transforming heat –normally

regarded as a source of loss– into useful energy that can be easily harvested and stored.

Unfortunately, the low efficiency of these materials have prevented their widespread use,

confining them to niche applications. The thermoelectric efficiency is normally expressed by

the dimensionless figure of merit ZT = S2Tσ/κ where S is the Seebeck coefficient, T is the

temperature, and σ and κ are electrical conductivity and thermal conductivity, respectively.

Therefore, the design of new materials whose lattice thermal conductivity is more largely

affected than the electrical conductivity by some additional structural features is one of the

most active research lines in thermoelectricity.

Semiconducting nanowires1 and nanoporous materials2,3 are both good examples of such

an approach. A suitable distribution of voids, whose typical size is smaller than the mean-

free-path of heat carriers, but still larger than the charge carrier one, results in strong

scattering of the former, with negligible effects on the electrical conductivity4,5. In nanowires,

on the other hand, heat carriers are scattered at the wire surface, while charge carriers are

comparatively much less affected. Accordingly, this effect is stronger in thin nanowires,

with a larger surface-to-volume ratio6, and in presence of rough surfaces7,8 or other kinds of

modulations9.

Naturally, the possibility to bring these two features together, is very appealing. From a

few years on, single crystalline porous silicon nanowires (pSiNWs) can be fabricated10 and

have been proposed for different applications, ranging from lithium ion batteries11 to solar

cells12. However, their use as thermoelectric materials is to date unexplored. The goal of this

paper is filling this gap and quantifying the reduction of the thermal conductivity in pSiNWs,

as well as investigating its dependence on some specific features of the pore distribution –the

overall porosity, the pore mean diameter– and of the nanowires –the diameter, the length.

To this purpose, we first present a simple model describing the leading effects of all these

factors, followed by comparison to molecular dynamics simulations.

A first attempt at capturing both the effects of nanosized pores and the finite NW diam-

eter can be easily constructed by adding a boundary scattering term13,14 to the expression

for the mean free path through Matthiessen’s rule, extending the modification to the Eucken
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model that we had previously proposed for bulk porous silicon (pSi)5:

Λ−1 = Λ−1
anhamonicity + Λ−1

porosity + Λ−1
boundaries =

Λ−1
bulk +

(
1

Λbulk

φ

2
+

3φ

2dp

)
+

1− p

1 + p

α

dNW

, (1)

where Λ is the mean free path of heat carriers accounting for all scattering mechanisms, Λi

is the mean free path due to the i-th scattering mechanism (i ∈ {anharmonicity, porosity,

boundaries}), dp is the pore diameter, Λbulk is the mean free path limited by phonon-phonon

scattering in bulk material, φ is the porosity φ ≡ Vpores/Vsystem, where V is volume, dNW is

the NW diameter and β = α(1− p)/(1 + p) accounts for the shape of the NW cross section

[α = 1 (α = 1.12) for circular (square) cross section]13 and the surface polish (p = 1 for

perfectly reflecting surfaces and p = 0 for ideally rough surfaces).

When Eq. (1) is entered into the kinetic expression for the thermal conductivity κ =

1
3
CeffvgΛeff , and taking into account the modified value of the specific heat capacity C due to

the presence of pores Ceff = (1− φ)Cbulk, we arrive at the model expression

κ

κbulk

=
1− φ

1 + φ
2
+ 3φ

2dp
Λbulk +

β
dNW

Λbulk

. (2)

It is important to remark that the model given in Eq. (1) is addressed to the leading scat-

tering mechanisms, i.e. it is by construction adopting the same treatment of the boundary

scattering as in non-porous NWs, thus assuming the “gray” Matthiessen’s rule15 for phonon

mean free paths to be valid in the presence of anharmonic, pore and boundary scattering.

The failure of Eq. (2) to describe all situations we have studied [see Fig. 3.(b)] prompts us

to relax the assumption of the validity of Matthiessen’s rule, especially in light of previ-

ous works where appreciable coupling between anharmonic and boundary scattering in thin

films16 and anharmonic and surface roughness scattering in ultrascaled SiNWs17 was found.

So, in order to account for the anharmonic–boundary coupling, we choose a simple linear

expression Λbulk = Λbulk,0 (1− γ1φ) , where Λbulk,0 is now the bulk mean free path limited

by phonon-phonon scattering in bulk material, and γ1 encodes the reduction of the average

anharmonic mean free path due to the disturbance in the distribution function because of

the presence of pores. Similarly, in order to account for the pore–boundary coupling we set

β = β0 − γ2φ, where γ2 describes the change in surface polish as porosity increases, and

we introduce an empirical expression to adjust the coupling between porosity and surface

scattering

Λ−1
φ−dNW

= γ3φ/d
α
NW, (3)
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via a parameter γ3 and an exponent α. When all terms are included, the final version of the

model is

κ =
κbulk(1− φ)

1+φ/2
1−γ1φ

+ 3φ
2dp

Λbulk,0 +
β0−γ2φ
dNW

Λbulk,0 + γ3
φ

dαNW
Λbulk,0

. (4)

While there have been some experimental measurements of the thermal conductivity of

pSiNWs18,19, its lack of complete characterization in terms of NW diameter and porosity

renders comparison to our model difficult. Thus, we compare the model in Eq. (2) to the

thermal conductivity from approach-to-equilibrium molecular dynamics (AEMD) simula-

tions20. After equilibrating two roughly equal halves of the system to a hot and a cold

temperature, TH and TC , we study the transient to equilibrium during a microcanonical

run. We then fit the time dependence of ∆T = TH − TC to the analytical solution of the

heat equation, whose only fitting parameter is the thermal diffusivity κ̄. We finally calcu-

late the thermal conductivity as κ = κ̄ρCv, where ρ is the density and Cv is the specific heat

capacity. An extensive description of the method and additional details of the calculations

can be found elsewhere5,20.

Our starting, reference structure is a single crystalline SiNW oriented along the [111]

crystallographic axis, with a diameter of 15 nm and a length of 90 nm. As discussed in the

text, we also consider diameters and lengths of up to 35 and 900 nm, respectively, in some

selected cases. Pores are created by randomly selecting atoms and drawing a sphere around

them whose diameter is sampled from a Gaussian distribution with given mean value and

variance, taken to be 1.5 nm. Atoms inside the sphere are removed, creating a pore; the

probability of creating a pore is adjusted to achieve a target porosity. Further iterations,

where additional small pores are created or small portion of material restored, are then

carried out until the desired porosity is obtained within a certain tolerance. As the AEMD

method requires a uniform thermal conductivity along the transport direction, we apply

the pore generation procedure above described within sequential regions of the sample, in

order to guarantee a uniform porosity along the wire axis. We have considered porosities of

0.05, 0.15, 0.3, and 0.5, with average pore diameters —i.e. the mean value of the Gaussian

distribution— of 2, 3, and 4 nm. A typical structure is shown in Figure 1. Due to the

random nature of pore formation, all the thermal conductivities discussed in this work have

been obtained averaging over 3-4 independently generated configurations with the same

target porosity and pore diameter. While this generation procedure is easily modifiable for

a prescribed distribution of pore shapes and sizes, it still does not account for oxidation at
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the pore surface. On the other hand, we observe an amorphization of the regions closest to

the pore surfaces, which might mimic some characteristics of the native oxide, especially as

the thermal conductivity of amorphous Si is similar to that of amorphous SiO2
21.

After generating the pores, we have minimized metastabilities in the structure by first

performing a structural relaxation followed by a heating/cooling cycle up to 900 K. This cy-

cle was performed with periodic boundary conditions, so that unattached atoms or clusters

eventually collided with the wire. After cooling back to 300 K, further thermostatted ther-

malization proceeded for 200 ps, after which the thermostat was removed and the simulation

continued for 400 ps without appreciable temperature drift, indicating successful thermal-

ization. At this point, the square temperature profile was set up by velocity rescaling for

200 ps for each half, after which the AEMD procedure was allowed to proceed for 1 ns. We

have used the environment dependent interatomic potential (EDIP)22 for the calculation of

the energy and forces, and we have used a timestep of 2 fs throughout all the simulation

protocol23.

In what follows, we compare the AEMD results to our model expressions for the thermal

conductivity κ using the parameters in Table I. The parameters for Eq. (2) were obtained

by a fit to the data in Figs. 2 and 3.(a) only because inclusion of the points in Fig. 3.(b)

in the target dataset brought an insignificant improvement in Fig. 3.(b), while significantly

worsening the adjustment in Figs. 2 and 3.(a). On the other hand, the parameters in Eq. (4)

were chosen taking into account results in Fig. 3.(b) in addition to Figs. 2 and 3.(a).

The main result of our work is displayed in Figure 2, where we plot the thermal conduc-

tivity, κ, of a 15 nm diameter SiNW as a function of the porosity, achieved by randomly

introducing pores of 3 nm diameter, comparing it to the fits through Eqs. (2) and (4). Notice

that the value of Λbulk,0 agrees well with the one fitted in our previous study of bulk pSi,

where we obtained 40 nm < Λbulk < 110 nm5. It is clear that the presence of nanovoids

results in a very strong reduction of the thermal conductivity and a bare 5% of porosity is

enough to decrease it approximately to half of the value of the pristine wire. The sample

variation of κ is a few percent. Notice that boundary scattering alone accounts for a reduc-

tion of a factor of two for the pristine (φ = 0) NW with respect to bulk (κ/κbulk ∼ 0.5 in

Figure 2), but the rather low porosity φ = 0.3 results in an additional reduction of one order

of magnitude (κ/κbulk ∼ 0.05). In the case of the highest porosity considered, φ ∼ 0.5, we

have studied the influence of the pore diameter (inset of Figure 2), comparing 2, 3, and 4 nm
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pores. A trend emerges, indicating that smaller pores results in slightly stronger reduction

of κ. This effect was also observed in bulk pSi, and it is a manifestation that at the nanoscale

the interface density plays a crucial role in the behavior of κ5. Since Eq. (2) provides a good

fit to the data, we see that the “gray” Matthiessen’s rule for the mean free paths is valid

when combining anharmonic and pore scattering mechanisms.

Figure 3 shows the NW diameter dependence of κ for (a) a pristine SiNW, and (b)

a pSiNW with φ = 0.31. The red (blue) lines correspond to the expression in Eq. (2)

[Eq. (4)]. So, the predictive power of the model is clearly established for the case finite

diameter NWs without pores [Figure 3.(a)]. The predictions of the model (2) are much less

satisfactory for the case of the NW with finite porosity [Figure 3.(b)]: while the order of

magnitude of κ is correctly obtained, the model fails to reproduce the almost doubling of the

conductivity as the NW diameter increases from 15 nm to 35 nm. From this, the necessity

to introduce terms in the model not conforming to Matthiessen’s rule is evident. Physically,

the failure of Matthiessen’s rule in ultra-scaled SiNWs in the presence of surface roughness

and anharmonic scattering has been attributed to anharmonic scattering allowing the decay

of high-energy non-propagating (due to roughness) phonons into lower energy propagating

states17. It is conceivable that a similar mechanism might be at work in porous SiNWs, with

the NW surface redistributing the number of propagons, diffusons and locons24 expected to

be present in these systems with impaired translational symmetry due to the presence of

pores.

Finally, heat carriers with a wavelength larger than the simulation cell cannot be de-

scribed, a well-known fact that results in an underestimation of the thermal conductivity25,26.

This is why, to be consistent, the reduction of all the values of κ discussed so far has been

calculated relatively to a cell of bulk Si of the same length. In general, the cell required

to obtain a converged estimate of κ in Si-based systems —where phonons with mean free

paths of up to hundreds of nm can contribute to heat transport27— requires a very signif-

icant computational workload. The common method to circumvent this problem consists

in extrapolating κ−1(L−1
z ) to L−1

z → 028. We have followed this procedure for the pristine

and a porous nanowire with porosity 0.3. As seen in Figure 4, for the pristine nanowire, we

obtain the well-known linear dependence of κ−1(L−1
z ), which allows extrapolating a value of

κ∞ = 26.0 Wm−1K−1. The porous NW, on the other hand, exhibits a very poor dependence

on Lz, indicating that the smallest cell size considered already accounts for the mean free
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paths of all phonons contributing to the thermal conductivity. In this case we simply plot

the mean value of the calculated data points, because of the large uncertainty of the (small)

fitted slope of κ−1(L−1
z ). Notice that this means that the reductions of κ discussed thus

far would be even larger, because we are underestimating the thermal conductivity of the

non-porous wire: we obtained κ0.0
Lz=90 nm/κ

0.3
Lz=90 nm ∼ 10 for the Lz = 90 nm cell, while for

long SiNWs, κ0.0
∞ /κ0.3

∞ ∼ 20.

In summary, we have shown that the presence of pores, the pore interface separation

becoming the new dominant length scale, suppresses the long mean free path phonon con-

tribution to κ, thus causing a significant reduction of the already low thermal conductivity

in SiNWs, which might open new avenues for improved thermoelectrics. We also provide a

model expression extending the Eucken model that accurately predicts thermal conductivi-

ties in porous SiNWs. We find that the Matthiessen’s rule applied to the phonon mean free

paths does not hold due to coupling effects between surface and pore scattering.
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Parameter Eq. (2) Eq. (4)

Λbulk,0 (nm) 65.4 68.5

γ1 — 1.55

β0 0.24 0.22

γ2 — 75.5

γ3 (nmα−1) — 104.0

α — 1.11

TABLE I. Fitted parameter values for Eqs. (2) and (4).
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(d)

(a)

(b) (c)

FIG. 1. (a) Side view of a pSiNW with 0.3 porosity. Dark blue spheres represent Si atoms, while

the atoms that have been removed are displayed as light yellow spheres for visualization purposes.

Panels (b), (c), and (d) show cross-section views at z = Lz/4, Lz/2, and 3Lz/4, respectively.
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FIG. 2. Thermal conductivity as a function of the total porosity for pores of average diameter

of 3 nm in a 15 nm diameter and 90 nm long SiNW. The estimated values of κ are referred to

the thermal conductivity of bulk Si, calculated in a computational cell of the same length and

cross-section. The dashed red (dashed-dot blue) line corresponds to Eq. (2) [Eq. (4)] with the

parameter values in Table I. The symbols in the main panel indicate the thermal conductivity of

each sample. Inset: dependence of κ on the pore diameter in the case of porosity ∼ 0.5.
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FIG. 3. Thermal conductivity as a function of the nanowire diameter, dNW , for a pristine NW

(left) and a porous NW with porosity ∼ 0.31 and pores of average diameter of 3 nm (right). Values

are referred to the thermal conductivity of bulk Si. Lines have the same meaning as in Fig. 2.
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FIG. 4. Inverse of the thermal conductivity as a function of the inverse of the nanowire length

along the transport direction, Lz. for a pristine NW (top) and a porous NW with porosity ∼ 0.3

and pores of average diameter of 3 nm (bottom). A linear fit of the κ−1(L−1
z allows extrapolating

the value of κ∞ for L−1
z → 0 for the pristine wire. In the case of the porous wire in absence of a

clear Lz dependence, we simply plot the mean value of the data points.
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