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Abstract 

Soil respiration (SR) is a major component of the global carbon cycle and plays a 

fundamental role in ecosystem feedback to climate change. Empirical modelling is an 

essential tool for predicting ecosystem responses to environmental change, and also provides 

important data for calibrating and corroborating process-based models. In this study, we 

evaluated the performance of three empirical temperature–SR response functions 

(exponential, Lloyd–Taylor and Gaussian) at seven shrublands located within three climatic 

regions (Atlantic, Mediterranean and Continental) across Europe. We investigated the 

performance of SR models by including interaction between soil moisture and soil 

temperature. We found that the best fit for the temperature functions depended on the site 

specific climatic conditions. Including soil moisture, we identified thresholds in the three 

different response functions that improved the model fit in all cases. The direct soil moisture 

effect on SR, however, was weak at the annual time scale. We conclude that the exponential 

soil temperature function may only be a good predictor for SR in a narrow temperature range, 

and that extrapolating predictions for future climate based on this function should be treated 

with caution as modelled outputs may underestimate SR. The addition of soil moisture 

thresholds improved the model fit at all sites, but had a far greater ecological significance in 

the wet Atlantic shrubland where a fundamental change in the soil CO2 efflux would likely 

have an impact on the whole carbon budget. 

 

Keywords: annual soil respiration, empirical soil respiration models, soil moisture threshold, 

shrubland, temperature dependence, temperature sensitivity 

 

 

Introduction 

Soil respiration (SR) is a dominant component of the terrestrial carbon cycle and has a 

significant influence on global radiative forcing (IPCC 2013). In terrestrial ecosystems, 

atmospheric CO2 is assimilated during photosynthesis, and then released either via 

autotrophic respiration or through heterotrophic decomposition of carbon compounds 

differing in recalcitrance and sensitivity to temperature (Davidson & Janssens, 2006). Both 

soil moisture availability and temperature may alter with a changing climate, and this will 

affect decomposition processes and root activity, potentially changing rates of CO2 efflux 

from soils. However, it is poorly understood how altered temperature and soil moisture 

availability will affect soil CO2 efflux across multiple ecosystems. In fact, because of the 

interaction of multiple environmental processes often occurring simultaneously it is hard to 

make predictions beyond empirical data bounds (Vicca and others, 2014). SR response 

functions derived from empirical data collected at different temporal and spatial scales could 

be useful for improving the predicted impact of future climate on ecosystem processes 

(Kirschbaum, 2004; Vicca and others, 2014). 

 Temperature is often a predominant factor controlling biological metabolic processes 

and a broad spectrum of relationships between temperature and SR has been tested (Subke & 

Bahn, 2010; Wu and others, 2011; Shen and others, 2013). Most commonly, the exponential 

function has been used to model the temperature–respiration relationship (Davidson & 

Janssens, 2006; Beier and others, 2009; Vicca and others, 2014). In these cases, however, 

exponential models were usually applied in a relatively narrow temperature range not 

exceeding 30°C. In situ SR studies covering a wide range of temperature and moisture 

conditions are rare and the limited availability of such data affects the ability of modellers to 

fit SR functions to empirical data (Vicca and others, 2014). Consequently, to study SR on a 

wide range of ecosystems and climatic conditions, the Arrhenius, Lloyd–Taylor, Gaussian, 

and Quadratic functions have been used (Lloyd & Taylor, 1994; Tuomi and others, 2008; 

Reichstein & Beer, 2008; Lellei-Kovács and others, 2011; González-Ubierna and others, 

2014). 
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 Occasionally, to improve on the fit of a simple exponential model, a wider 

environmental range has been incorporated by fitting separate functions to subranges of 

temperature (Murthy and others, 2003, Bradford and others, 2008) and soil depth (Pavelka 

and others, 2007) or to Mediterranean wet versus dry seasons (de Dato and others, 2010).  

Other studies have used additional parameters to account for factors other than temperature 

like soil moisture content (Suseela and others, 2012; Kopittke and others, 2013; Wang and 

others, 2014), soil physical and chemical properties (Wang and others, 2003; Balogh and 

others, 2011; Kotroczó and others, 2014), different substrate availability (Davidson and 

others, 2006), or different SOM content and quality (Curiel Yuste and others, 2010). Other 

studies have also attempted to provide mechanistic explanations for the temperature 

dependence of SR (Davidson and others, 2006; von Lützow & Kögel-Knabner, 2009). In a 

review, Billings & Ballantyne (2013) examined the mechanisms that are linked to SR, and 

reported that temperature-induced changes in microbial community structure, microbial 

metabolic rates and catalytic rate of exo-enzymes may lead to a decline of SR as a response to 

an increase in the soil temperature. 

 The relationship between soil moisture and SR has been modelled using many 

different functions that include linear (Leirós and others, 1999), exponential (Rodrigo and 

others, 1997), second-order exponential, that is, Gaussian (Howard & Howard, 1993; 

Mielnick & Dugas, 2000; Vicca and others, 2014) and reverse exponential (Zhou and others, 

2007) relationships. Limitation of SR by soil moisture has been observed when substrate 

diffusion is limited by low soil water availability (Howard & Howard, 1993), but also when 

the diffusion of O2 is restricted by high soil water content (Skopp and others, 1990). 

Mechanistic studies of the relationship between soil moisture and SR conducted by Davidson 

and others (2006) revealed that not only CO2 efflux is influenced by moisture-induced 

changes in soil physical properties, but also autotrophic root respiration and heterotrophic 

microbial decomposition are directly impacted by changes in soil moisture. Evaluation of the 

impact of soil moisture is more difficult than that of temperature because the efficiency of 

water uptake is influenced by various soil physical properties and also by physiological 

processes of the organisms. At any given soil moisture content, water uptake may differ for 

numerous reasons such as soil texture (sand or clay), plant water use efficiency, stress 

tolerance and soil microbial composition (for example, fungal to bacterial ratio) (Moyano and 

others, 2013). 

 The approaches to study the combined impact of temperature and moisture on SR 

modelling differ in two fundamental ways: (1) additive versus interactive (Mielnick & Dugas, 

2000; Reichstein and others, 2002; Qi and others, 2002; Xu and others, 2004; Zhou and 

others, 2006); (2) continuous versus threshold (Davidson and others, 1998; Reichstein and 

others, 2002; Rey and others, 2002; Fernandez and others, 2006; Yan and others, 2011). 

Moisture thresholds that alter SR activities significantly may be very important in modelling 

carbon fluxes, not only in arid and semiarid, but also in mesic ecosystems (Suseela and 

others, 2012). 

In a coordinated network of climate change experiments (EU projects CLIMOOR, 

VULCAN and INCREASE), along a natural temperature and precipitation gradient across 

European shrublands, whole ecosystem manipulations of warming and summer drought 

conditions were conducted. The experiments resulted in a trend of increased SR in response to 

the warming treatments and significant reduction in SR in response to the drought treatments 

(Emmett and others, 2004; Koppitke and others, 2014). However, some of the ecosystems 

also had an individual response to warming and drought that makes general conclusions 

difficult to draw. In the longer term, repeated summer drought resulted in an increased SR in 

the hydric ericaceous shrubland in Wales. Sowerby and others (2008) suggested that the year-

round reduction in soil moisture content of the organic-rich podzol soil resulted in a year-

round stimulation of SR. Lellei-Kovács and others (2008) found that in the semiarid 

Hungarian shrubland, warming and drought reduced the rate of SR. In the Italian 
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Mediterranean shrubland, de Dato and others (2010) observed a temporary decrease in SR as 

a short-term response to the warming and drought treatments. 

In a previous study, we investigated the mechanisms that control SR in the semiarid 

Hungarian shrubland with extreme temperature and soil moisture regimes, by empirical 

modelling SR as a response function of temperature and moisture (Lellei-Kovács and others, 

2011). Applying the same approaches, here we expand this work by modelling SR using 2- or 

3-years of empirical data collected from seven different shrubland ecosystems across Europe 

with markedly different natural temperature and moisture regimes. We compared the 

performance of three empirical SR models, the exponential, the Lloyd–Taylor and the 

Gaussian functions, and integrated moisture into the models using additive and interactive 

approaches. The aims were to (i) investigate the effect of soil temperature and soil moisture 

content on SR in the different soils, and (ii) improve model predictions of SR under future 

climate change scenarios. We hypothesised, that (i) the exponential model performs 

appropriately only in a relative narrow temperature range, (ii) the Gaussian temperature 

dependence function would be the best predictive SR model in ecosystems exposed to a 

relatively large temperature range, and (iii) inclusion of soil moisture thresholds would 

improve the predictive power of the models at sites where moisture is an obvious controlling 

factor (for example, xeric or hydric ecosystems), whilst in mesic ecosystems the inclusion of 

moisture would have a smaller impact. 

 

 

Materials and Methods 

 

Characteristics of the Studied Shrubland Ecosystems 

The study was conducted along natural temperature and precipitation gradients across Europe 

(Beier and others, 2009), in seven different shrubland ecosystems (see Table 1, 2), that 

included four Atlantic heathlands at two sites in Denmark (Mols, DK-M, and Brandbjerg, 

DK-B), one site in the Netherlands (Oldebroek, NL), and one site in the United Kingdom 

(Clocaenog, UK) (Sowerby and others, 2008), two Mediterranean garrigues, one in Spain 

(Garraf, ES) (Sardans and others, 2008) and one in Italy (Capo Caccia, IT) (de Dato and 

others, 2010), and one shrubland in the Pannonian sandy forest steppe region in Hungary 

(Kiskunság, HU) (Lellei-Kovács and others, 2011). Meteorological data between 2001 and 

2012 (except ES between 2002 and 2003 and DK-B between 2006 and 2012) were recorded 

either directly at the sites, or at standard meteorological stations located nearby (Table 1). 

Mean annual temperature ranges from 8.0 at the DK-B site to 16.8 at the IT site. Mean annual 

precipitation varies between 549 mm in IT and 1345 mm at the UK site. The variability of 

climate among sites could be expressed by the modified Gaussen-index (mean annual 

precipitation/2x mean annual temperature, Peñuelas and others, 2007) with higher aridity at 

its lower values (Table 1). 

 

Field Experiments and Measurements 

Plot-sized climate manipulation experiments were established in the seven shrubland 

ecosystems (see above). The experimental plots were subjected to either year-round passive 

night-time warming by insulating reflective curtains, extended drought periods by rain-

activated transparent polyethylene roofs or an un-treated control since 1999 (ES, UK, NL, 

DK-M), since 2001 (HU, IT) or since 2005 (DK-B) (for detailed description of the 

experimental design and the effects on soil temperature and moisture, see at Beier and others, 

2004; Lellei-Kovács and others, 2008; Mikkelsen and others, 2008; de Dato and others, 

2010). In this study, we used data from different treatments together with data from control 

plots, that is, a response surface approach, where treatments are seen as a widening of the 

natural range of environmental variables (see also Lellei-Kovács and others, 2011, and Table 

S1 for data of the treatment effects on soil temperature, soil moisture and SR). 
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Two or three years of SR measurements were conducted biweekly or monthly in the 

experimental plots, with exception of periods with snow cover and when the soil surface was 

frozen. Measurements were done between 2010 and 2012, but in ES between 2002 and 2003. 

SR data presented are the sum of autotrophic (root respiration) and heterotrophic (microbial 

respiration) soil processes. SR rates were measured by infrared gas exchange systems 

equipped with SR chambers: LI-6400XT with LI-6400-09 chamber (LICOR Biosciences, 

Lincoln, NE USA) in the NL and DK sites; LI-8100 with 8100-102 chamber (LICOR 

Biosciences, Lincoln, NE USA) in the UK and IT sites; EGM-3 (PP Systems, Hertfordshire, 

UK) in manual mode to analyse air samples from a closed-type, custom-built PVC chamber in 

ES; ADC Leaf Chamber Analyzer 4 with PLC & 2250 Soil hood (ADC BioScientific, 

Hoddesdon, UK) in HU. Three permanent subplots were used within each plot to capture 

within-plot heterogeneity, and plot means were used in the subsequent analyses. (For further 

details see: Beier and others, 2009; de Dato and others, 2010; Lellei-Kovács and others, 

2011; Kopittke and others, 2013.) Micrometeorological variables were recorded in every plot 

continuously by automated instruments (Table 3): soil temperature at 5 cm below the soil 

surface, and volumetric soil moisture content at the defined soil depths (Table 2). 

Soil properties including soil texture (mechanical and Pipet Method), soil organic 

matter content (Tyurin method or dry combustion) and soil pH (by potentiometer with glass 

electrode) were measured at each site at the given soil depths (Table 2) before starting the 

treatments. Wilting point and field capacity were determined from the soil moisture retention 

curve (pF curve) using soil samples from the sites (Table 5) at the defined soil depths (Table 

2). An exception was IT, where soil texture data were used to determine wilting point and 

field capacity (Saxton & Rawls, 2006). 

 

Empirical Model of the Temperature and Moisture Sensitivity of SR 

For statistical evaluation, we followed the methodology used by Lellei-Kovács and others 

(2011) and treated the datasets of the seven sites independently. Separate analyses for each 

site were necessary to account for differences in biota, organic matter content, texture and 

moisture content (Tables 2, 3). 

 We first fit three different temperature dependence models (see equations 1–3). Each 

of the three response functions represents a possible relationship between increasing soil 

temperature and SR. Specifically: (i) the exponential function assumes that the logarithm of 

respiration is a linear function of temperature, thus the Q10 temperature coefficient is constant 

(equation 1); (ii) the Lloyd–Taylor function assumes that the influence of temperature change 

is higher at lower than at higher temperatures, thus the logarithm of respiration is a saturating 

function of temperature, and Q10 decreases with increasing temperature and its asymptote is 

one (that is, at extremely high temperature there is no further change in respiration) (equation 

2); and (iii) the Gaussian function presumes that there is an optimal temperature for SR. 

Above this optimum, an increase in temperature causes a decline in SR. In this case Q10 is 

also a decreasing function of temperature, but it can fall below one (equation 3). 

  

Equations (1)-(3). The models used to fit soil temperature and SR field data, where SR = soil 

respiration; T = soil temperature in Kelvin; a, b and c are parameters of the models: 

 

 Exponential:  SR = exp (a + bT) ;   (1) 

Lloyd–Taylor:  SR = exp (a + b / (T – c)) ;  (2) 

 Gaussian:  SR = exp (a + bT + cT2) .  (3) 

 

After a log transformation of SR data, the exponential and the Gaussian functions (equations 

1, 3) could be fit using linear regression. The Lloyd–Taylor function (equation 2) was fit by 

non-linear least squares regression also using log-transformed SR as a dependent variable to 

make the models statistically comparable, as discussed further below. To initialize the 

parameters of non-linear fit, parameter c was set to zero, whereas starting values of a and b 
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were calculated by linear regression using 1/T as an independent variable. 

In some cases, to preserve the expected shape of the fit curve, we had to apply 

constraints on the parameters of equations (1)–(3). These constraints for the functions were 

 

  Exponential:  b ≥ 0 ; 

  Gaussian:  c ≤ 0 ; 

  Lloyd–Taylor:  b ≤ 0, c ≥ 0 . 

 

The potential effect of soil moisture content on SR was analysed comparing three different 

soil moisture inclusion methods in the temperature dependence models: 

1. There is no inclusion of soil moisture content, 

2. The effects of soil moisture content and soil temperature are additive (that is, only 

parameter a depends on soil moisture content), 

3. The effects of soil moisture content and soil temperature are interactive. 

Combining the three temperature dependence functions and the three soil moisture effects 

resulted in nine models for each site. We treated the soil moisture effect as a categorical 

variable as we did not have any a priori knowledge of its functional form. Additive effect 

means that soil moisture influences only the parameter a, thus, within one model, temperature 

dependence curves of logSR are parallel at different moisture levels, whereas interaction 

means that soil moisture influences parameters b and c too resulting non-parallel temperature 

dependence curves of logSR. 

In many cases, arbitrarily chosen cut-off points are used for transforming continuous 

variables into categories that introduces subjectivity into the modelling process. To avoid this 

problem, our categorizations were created by fitting decision tree models using a conditional 

inference framework that resulted in different soil moisture cut-off points depending on the 

applied temperature functions. When testing for additive effects, the residuals of the 

temperature functions were the dependent functions of the conditional inference trees 

(Hothorn and others, 2006) that searches for homogeneous groups of residuals (and thus 

parameter a) according to moisture values. We applied model-based recursive partitioning 

(Zeileis and others, 2005) to search for categories in soil moisture that were homogeneous in 

the parameters of temperature dependence. Because model-based partitioning can handle 

linear models only, we assumed that the parameter c of the Lloyd–Taylor function was 

independent of soil moisture, and equal to the value estimated in the first approach (no soil 

moisture effect). Based on this assumption, we fit the Lloyd–Taylor function by linear 

regression using 1/(T – c) as independent variable. 

To compare the performance of SR models with different number of parameters, we 

used corrected Akaike Information Criteria (AICc) that combines fit and complexity of 

models; its smaller value indicates a better model (Johnson & Omland, 2004). Because log-

transformed SR values were used as dependent variables in all models, AICc values 

calculated for different models were comparable (Burnham & Anderson, 2002). For statistical 

comparison of the models, we calculated the Akaike weights (Johnson & Omland, 2004) of 

the models in two ways: (i) models that considered only soil temperature; (ii) all the nine 

models of the three temperature functions combined with the three ways of soil moisture 

inclusions. Akaike weights were calculated for each site and in each of aforementioned 

methods separately (see in Table 4). As the sum of Akaike weights calculated in one inter-

comparison is 1, the model with an Akaike weight above 0.9 was considered unequivocally 

the best, and all the others were not interpreted. In case of more models having Akaike 

weights above 0.1, all these models were accepted with approximately a similar level of 

support in the data (Johnson & Omland, 2004). 

All statistical analyses were conducted in R statistical environment (R Development 

Core Team, 2008), tree models were fit using the party package (Hothorn and others, 2006). 
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Calculations of Annual SR Rates by the Empirical Models of SR 

Based on the soil temperature and moisture models of SR demonstrated above, we calculated 

the annual SR using the daily measured soil temperature and soil moisture meteorological 

data for years 2010, 2011 and 2012 in the control plots at all but the ES site. For the ES site 

year-round daily soil moisture data were not available for the calculations. We estimated the 

median and the 90% confidence interval of the estimated annual SR using the Monte Carlo 

simulation: predicted values were calculated with parameters randomly chosen from a 

multivariate normal distribution with means and co-variances estimated by fitting 10,000 

times. Because of the collinearity of partial derivatives with respect to the parameter b and c 

in the Lloyd–Taylor model, these parameters were associated with large values in the 

variance–covariance matrix, leading to extremely wide confidence intervals. Because the 

wide confidence intervals were an artefact of the non-linear regression, in the case of the 

Lloyd–Taylor model, we decided to use only the predicted values. 

 

 

Results 

 

Variability of Environmental Factors and SR During the Study 

Soil texture varied among sites, with high sand content at HU, NL, DK-M and DK-B, high silt 

content at ES and UK, and relatively high clay content at the Mediterranean ES and IT sites. 

Soil pH was alkaline at HU, ES and IT, whereas it was acidic at the Atlantic UK, NL, DK-M 

and DK-B sites. Soil organic carbon content, the main substrate for SR, was highly variable 

among sites (Table 2). 

Soil temperature, moisture and SR all differed markedly among the different sites and 

over the studied period (Table 3). Soil temperature at 5 cm depth showed the largest range in 

HU between 0.4°C in early spring and 40.5°C in summer, whereas the lowest range was 

recorded in the UK between 0.6°C in winter and 14.3°C in summer. Volumetric soil moisture 

content was always higher than the wilting point at the UK, DK-B, DK-M, and the NL sites, 

but could approach the wilting point at the ES, IT and HU sites (Table 5). The lower soil 

moisture content in ES and IT than the wilting point is due to the offset caused by the stone 

fraction (>2 mm) of these soils, which is not included in the determination of the wilting point 

and field capacity. 

SR varied among sites during the measurement periods (Table 3). Overall mean of 

observed SR rates ranged from 0.84 μmol CO2 m
-2 s-1 at the HU site to 3.71 μmol CO2 m

-2 s-1 

at the DK-M site. 

 

Temperature Control on SR 

The best model fit based on Akaike’s Information Criteria (AICc) value, varied among sites 

(Table 4a; Figure 1). Refer to Table S2 for parameter estimates of the models. 

 In four of the seven study sites, the exponential soil temperature–respiration model 

was not supported by the empirical data (that is, Akaike weights were lower than 0.1). At the 

Mediterranean ES site, and the Continental HU site, with relatively wide soil temperature 

ranges (Table 3), we found the Gaussian temperature dependence function to be 

unequivocally the best model (Table 4b), whereas at the Atlantic heathland of the DK-M site, 

the Lloyd–Taylor and the Gaussian temperature dependence functions also achieved a low 

AICc value, that is, high Akaike weight. At the Atlantic heathland of DK-B, the Lloyd–Taylor 

model showed the lowest AICc value and was accepted with approximately a level of support 

in the data similar to that of the Gaussian model (see Akaike weights in Table 4b). 

In the other three sites, including the Capo Caccia (IT) with Mediterranean climate, 

and the Atlantic heathlands of Oldebroek (NL) and Clocaenog (UK), the exponential model 

showed the lowest AICc value, whereas the other two models were also supported by the data 
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(Table 4a,b). However, at the NL and UK sites, the Gaussian model had a c parameter of 0, 

which corresponds to the exponential model (see Table S2). 

 

Additive and Interactive Soil Temperature and Soil Moisture Control on SR 

Inclusion of soil moisture improved model performance in all cases. Table 5 shows the effects 

of soil moisture characteristics identified by conditional inference trees for the three 

temperature response functions of SR. We identified separate soil moisture intervals for every 

study site. Number of intervals ranges from 1 (DK-B, DK-M, NL) to 5 (HU, ES) (Table S2), 

suggesting the existence of thresholds in the soil moisture effect on SR. Thresholds identified 

at individual sites were very consistent across the three different models (Table S2). In 

additive models, functions fit for different soil moisture intervals differed in parameter a, 

which increased with increasing soil moisture, thus at the same temperature higher moisture 

resulted in higher SR. 

Assuming interactions between soil moisture content and temperature, we found 

several soil moisture intervals that were homogeneous in the parameters of temperature 

dependence (Table S2). At most sites, we could not find any trend in the parameter values of 

temperature dependence functions fit with changes in soil moisture intervals, resulting in 

crossing curves in the plotted functions (Figure 2), suggesting that optimal soil temperature 

for SR depended also on moisture. 

 We found that in most cases (except the IT and the DK-B sites), only the models with 

an interactive soil moisture effect were supported by the empirical data. At the Mediterranean 

IT site, the exponential temperature model with both additive and interactive moisture models 

were supported, as well as the Gaussian and the Lloyd–Taylor temperature functions with an 

interactive moisture effect (Table 4). (The Gaussian model with additive soil moisture model 

had a c parameter of 0, which corresponds to the exponential model (see Table S2)). The 

other exception was the Atlantic DK-B site where models with an additive soil moisture effect 

performed better, and the three temperature models were almost equally supported (Table 

4a,c). At the Atlantic DK-M site, the exponential function had unequivocally the best fit, 

whilst at the Atlantic NL and UK sites, the exponential and the Lloyd–Taylor temperature 

functions, each with interactive moisture effect, were supported by the data (all these models 

had an Akaike weight above 0.1). At the Mediterranean ES and the Continental HU sites, the 

Gaussian temperature model had the highest Akaike weight; at the HU site, this model could 

be found being unequivocally better than any others, whereas at the ES site also the Lloyd–

Taylor temperature model proved to be supported, all with interactive soil moisture 

integration (Table 4a, c). 

 

Thresholds in Soil Moisture Influencing Soil Temperature Dependence of SR 

The applied method revealed significant soil moisture thresholds in the temperature 

dependence functions showing how the temperature sensitivity was altered at different soil 

moisture levels. Some thresholds identified by the best model fits were close to the field 

capacity or wilting points of the studied ecosystems (Table 5), others may reflect 

characteristic temperature and moisture relations of a given season, see below. 

 The Continental HU and the Mediterranean ES sites had the most thresholds: these 

were at the zone of limited water availability approaching the wilting point, and near field 

capacity (Table 5; Figure 2A, B). At the ES site, the curve that represented the highest soil 

moisture threshold (at 22.2 vol%, only found with the Lloyd–Taylor model) showed a 

decrease in SR under the highest soil moisture conditions, indicating lower microbial 

response to soil moisture during the colder days between November and March, when these 

higher soil moisture values occurred (Figure 2B). At the other Mediterranean site in IT, one 

threshold point was also found above the wilting point, and a second threshold (only found 

with the additive moisture model) between the wet (winter and spring) and the dry (summer 

and early autumn) periods (Table 5; Figure 2C). Similar to the curve of the Lloyd–Taylor 
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model at the ES site, at the IT site the curve above this second threshold of the additive 

exponential model represents the wet season (highest soil moisture above 17.7 vol% and 

lowest soil temperature below 15°C) (Figure 2C). At the mesic DK-M, the only threshold for 

SR was found above the wilting point, but far below the field capacity value (Table 5; Figure 

2D). The similar DK-B site also presented this threshold (Table 5; Figure 2E). At the mesic 

Atlantic NL site, the first threshold was found between wilting point and field capacity, 

whereas the next threshold was found near the field capacity, close to the third threshold. At 

the NL site, the lowest SR rates were measured at soil moisture contents between 23.7 and 

28.2 vol%, coinciding with the winter inactive period between October and March, whereas 

higher soil moisture occurred often in July and August. At soil moisture contents below 23.7 

and above 28.2 vol%, the SR rates increased with increasing soil moisture (Table 5; Figure 

2F). At the hydric Atlantic UK site, two thresholds for SR were found near field capacity and 

also far above field capacity. In this wet ecosystem, SR rates decreased with higher soil 

moisture content (Table 5; Figure 2G), because of anaerobic soil conditions. 

 

Annual SR 

To compare the performances of the SR models, we calculated annual SR using the 

parameterized models (see model parameters in Table S2) and the daily meteorological data 

from the sites. The results for the six sites, HU, IT, DK-M, DK-B, NL and UK (Table 6) 

demonstrate that the annual SR estimated by the significant exponential models are in most 

cases higher than those estimated by the significant (DK-B) and non-significant (DK-M, NL) 

Gaussian models, however, the differences are mostly under 3%. Only at NL were the 

differences 7–25%. Also, for HU, the non-significant exponential model overestimated SR 

relative to the significant Gaussian model. Only at the IT and UK sites did the exponential 

models not predict higher annual SR than the other models. At the IT site, the models 

produced similar estimates. At the UK site, depending on year, the estimates were either not 

significantly different or the Gaussian model predicted 20% higher annual SR than the 

exponential and Lloyd–Taylor models. Relative to models without moisture effects, models 

that included soil moisture resulted in 8, 2 and 14% higher estimates of annual SR for the 

mesic sites DK-M, DK-B and NL, respectively. For the semiarid HU and the arid IT sites, 

models without moisture effects underestimated annual SR when it was humid in 2010, but 

overestimated annual SR in drier years. For the hydric UK site, this tendency was reversed, 

annual SR was overestimated by the models without moisture effects in the more humid years 

but underestimated annual SR in 2010 when precipitation was lowest (see Table 6). Soil 

organic matter content, used as a proxy for soil microbial activity, varied highly among the 

study sites (Table 2). Apart from the UK site, a significant relationship between annual SR 

and the soil organic matter content was found (Figure 3 ; r2 = 0.961). However, at the UK site 

with considerably higher soil organic matter content, estimated annual SR was near the mean 

rate at the other sites (Figure 3), which is likely the result of anaerobic limitation of 

decomposition and the associated accumulation of organic matter at this site (Table 2). 

 

 

Discussion 

 

Temperature Control on SR 

To accurately predict SR from ecosystems in future climates, it has become necessary to 

parameterise models with a wider range of temperatures than currently used. In this study, we 

examined the temperature response functions of SR at seven European shrubland sites of 

different climatic conditions from Atlantic heathlands through Mediterranean macchias to 

Continental poplar shrubland, thus extending the temperature and moisture range of our 

previous SR investigations (Lellei-Kovács and others, 2011). In most previous field studies, 

the temperature–SR function used was fit to a relatively narrow range of soil temperatures, 
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usually below 30°C. Typically, the exponential temperature function fits respiration data well 

in a relatively narrow temperature range below 30°C, whereas the relationship is weaker at 

higher temperatures. Thus, our approach increases the predictive power when forecasting the 

response to a warming future climate, if temperatures are expected to be higher than 30°C 

(Mielnick & Dugas, 2000). When SR is studied under a wider range of temperatures, it is 

possible that the interaction of additional soil processes, such as substrate and water 

availability could alter respiration rates, resulting in lower respiration at higher soil 

temperatures (Ågren and others, 1991; Tuomi and others, 2008; Reichstein & Beer, 2008; 

Lellei-Kovács and others, 2011; González-Ubierna and others, 2014). 

In the present study, at the Atlantic sites, we could not find a model that unequivocally 

explained one of the temperature–SR relationships, that is, the exponential function fit was as 

good as the Gaussian and Lloyd–Taylor functions (Table 4b; Figure 1). This was probably 

due to the narrow temperature range, always under the optimum temperature, making it 

impossible to detect differences in the shape of the three models. Despite our efforts to obtain 

data that spanned a large temperature range by including climate change treatments (Table 

S1), the measurements taken at the Atlantic sites biased the data to a narrower range than 

anticipated, with the soil temperature rarely exceeding 20°C. At the Mediterranean IT site, 

where the exponential SR models performed the best, soil temperature remained within the 

bounds of 7–29°C. In this case, the relatively high winter soil temperature range was probably 

due to the strong moderating effect from the Mediterranean Sea that causes mild winter 

temperatures, in most cases above 10°C. It is therefore likely that at this site we were not able 

to detect either the lower or the upper temperature limitation on SR (Table 4b; Figure 1). 

At the ES and HU sites, the Gaussian function was found to be the best performing 

temperature–SR function. The Gaussian function assumes that there is an optimal temperature 

for SR, which can be detected only when field measurements are performed in a sufficiently 

broad range of temperatures (Ågren and others, 1991; Lellei-Kovács and others, 2011; 

González-Ubierna and others, 2014). The wide range of soil temperatures at the HU and ES 

sites (~40oC) may explain why the Gaussian function proved to be the best. 

 

The Influence of Soil Moisture on the Temperature Sensitivity of SR 

Our modelling approach integrated both soil moisture and temperature to examine the SR 

relationship. We revealed clear soil moisture thresholds in the temperature dependence of SR. 

This indicated that low soil moisture content was an important limiting factor of SR at both 

the seasonally dry Mediterranean and semiarid Continental sites, and also at the mesic 

Atlantic sites, whilst high soil moisture content imposing anaerobic conditions proved to limit 

SR at the hydric Atlantic site in the UK. In some cases, soil moisture thresholds could be 

connected to the wilting point or the field capacity (Table 5), but other thresholds might be 

related to more complex physiochemical or biological conditions (Robinson and others, 

2016), such as the effect of soil moisture content on the availability of various soluble 

substrates or the effect of specific microbial enzymes with characteristic kinetic properties 

(Davidson and others, 2006). Kopittke and others (2014) reported that integration of soil 

moisture at the mesic Atlantic NL site did not improve the model fit of the temperature 

dependence of SR for control treatments, whereas it significantly improved the model fit for 

drought treatments. The lack of a moisture effect in control plots but appearance of an effect 

in the drought plots found by Kopittke and others (2014) support our analytical approach of 

using all treatment data together in order to cover a wider environmental range within the 

same model. Under Mediterranean climate at the IT site, de Dato and others (2010) showed a 

significant difference between temperature sensitivity of the wet vegetative season and the dry 

non-vegetative season between 2002 and 2004. At this site, we also found that the best fit of 

the exponential temperature function to the dataset between 2010 and 2011 was separated by 

soil moisture thresholds (Figure 2C). These two approaches gave similar results in ecosystems 

where vegetation periods are determined by water availability. 
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Similar to our results, soil moisture content has been shown to enhance the response of 

SR to temperature in a continental arid desert (Zhang and others, 2010), in a semiarid steppe 

of Inner Mongolia (Chen and others, 2009) and in an old-field climate change experiment 

(Suseela and others, 2012). In the latter study, Suseela and others (2012) observed that both 

an upper and a lower soil moisture threshold related to SR activity existed, and that changes 

in soil structural properties during drought resulted in a hysteresis effect. Soil moisture 

thresholds were also found to change SR responses to temperature in other studies. Rey and 

others (2002) and Guidolotti and others (2013) found a soil moisture threshold in 

Mediterranean forests, below which there was no correlation between SR and soil 

temperature. In a study of temperate forest ecosystems, Wang and others (2006) found that 

increased temperature sensitivity (Q10) was related to increasing soil moisture content, but 

that Q10 declined after reaching a soil moisture threshold. Vicca and others (2014) also 

emphasized the importance of integrating soil moisture in the predictive models of SR, 

especially considering an altered moisture regime in the future. However, in the modelling 

approach of Vicca and others (2014) soil temperature is integrated as a simple exponential 

function, which may weaken the extensibility of the models. For comparison, for the dataset 

of the ES site, the exponential temperature and Gaussian moisture dependence (model 4 of 

Vicca and others, 2014) achieved an AIC of 271.63. If both temperature and moisture 

dependence were modelled with the Gaussian function and their effect was additive, then an 

AIC of 201.75 was achieved. However, for the same dataset, our model with a Gaussian 

temperature function and interactive moisture thresholds achieved an AIC of 152.99, 

indicating a better performance of the model. 

Our results showed that the SR relationship with soil moisture, the latter depending 

mostly on precipitation, is non-monotonic, which is congruent with the findings of Vicca and 

others (2014). In addition, at the plot scale this relationship can also be described as non-

linear, with soil moisture thresholds being observed. We expect that the mechanisms that may 

explain our results are mediated by changes in the belowground community structure that are 

dependent on temperature and moisture (Ågren & Wetterstedt, 2007). 

Soil moisture impacts SR directly by changing soil microbial activity and altering soil 

structure and porosity, and also indirectly by affecting substrate availability (Davidson and 

others, 2006). Under semiarid and arid conditions, there is a strong edaphic water limitation 

coupled with strong pulse dynamics of resources linked to changes in microclimate (Collins 

and others, 2008; Maestre and others, 2013). The close connection between substrate 

availability and soil processes is also demonstrated by the relationship between annual SR and 

soil organic carbon content at the studied sites (Figure 3). Similarly, Fernandez and others 

(2006) demonstrated the impact of soil organic carbon and nitrogen on SR through soil 

texture and soil moisture availability in a cold desert ecosystem. They found that when soil 

moisture and temperature are both favourable, soil organic carbon and nitrogen cannot be 

used to predict SR. A limitation of soil substrate availability for microbes may explain why 

the Gaussian-type soil temperature–SR model proved to be the best at the HU and ES sites 

(Table 5), where not only the temperature ranges were the largest (Table 3), but the soil 

organic matter content was also the lowest (Table 2). 

 

Annual Scale Impacts on SR 

The upscaled annual rates of SR showed profound differences among both years and models. 

As previously demonstrated at the HU site, annual SR rates calculated by the exponential 

function were systematically higher than those based on the Lloyd–Taylor and Gaussian 

functions (Lellei-Kovács and others, 2011). In this modelling experiment, we also 

demonstrated that when excluding soil moisture from the models, modelled soil carbon fluxes 

may be overestimated especially for warm and dry years, which may be more frequent in the 

future. In the present study, annual SR values were also calculated from modelled data at six 

study sites (HU, IT, NL, DK-B, DK-M, UK), see Table 6. We found that the rate of annual 
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SR in NL was very similar to the amount calculated by a different methodology by Koppitke 

and others (2013, 2014) for the same period, which may validate these methods. Annual SR 

was also calculated in the work of de Dato and others (2010) for three study years between 

2002 and 2004, the values calculated were between 927 and 1145 g C m-2 y-1, which are also 

similar to the values between 890 and 963 g C m-2 y-1 calculated by the method demonstrated 

here, for data between 2010 and 2011. At the UK site, annual SR decreased since 2000 

because of a natural drought period that triggered an irreversible reduction in soil moisture 

and erosion of organic matter (Robinson and others, 2016). In the period between 2010 and 

2012, annual SR was around 400 g C m-2 y-1 (Domínguez and others, 2015), which is also 

consistent with our results suggesting annual SR between 323 and 345 g C m-2 y-1. 

At every site, the models that included soil moisture, always improved the model fit 

compared to those that excluded soil moisture. Furthermore, at three of the four Atlantic sites, 

including soil moisture resulted in higher estimated annual SR, independently of the applied 

temperature dependence function. At the IT and the HU sites, the direction of the alteration 

was dependent on the year: including soil moisture effect decreased the calculated annual SR 

in a drier year, and increased in a more humid year. The results are congruent with our 

previously published work, where excluding soil moisture resulted in an overestimation of 

rates of annual SR during a dry and hot year, but an underestimation of annual SR in a wet 

and cold year (Lellei-Kovács and others, 2011). In the present study, which considered the 

period 2010 to 2012, variation in soil moisture resulted in a difference of 1 to 25% in the 

outputs from the nine different models we considered. This variation in output warrants 

further investigation into the uncertainty of model estimations and highlights the importance 

of appropriate model choice in the prediction of the future impacts of climate change on SR of 

different ecosystems. 

 

Conclusions 

In this study of European shrubland ecosystems under Atlantic, Mediterranean or Continental 

climate, we demonstrated that the temperature dependence function that best explains SR 

depended strongly on the temperature range where the study was conducted. We also showed 

that in these ecosystems when soil temperature range was above 30°C, the Gaussian function 

with optimum temperature provided a better fit to the data, than the exponential temperature 

function. Furthermore, we found that soil moisture strongly affected SR, not only in arid and 

semiarid, but also in mesic and hydric ecosystems, and the parameters of the temperature 

dependence functions changed significantly at distinctive soil moisture thresholds. These 

moisture thresholds may be connected to soil and ecosystem-specific variables, such as 

wilting point of the plants or field capacity of the soil. In years with high precipitation and in 

mesic and hydric ecosystems, the models that integrate moisture may estimate a higher level 

of annually respired carbon. These results highlight the importance of the choice from among 

the temperature dependence functions and the inclusion of soil moisture data when modelling 

SR, especially when predicting SR responses in a wide range of climatic conditions or in a 

changing climate. 
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Figures 

 

 

 

 
 

Figure 1. Empirical temperature dependence functions of soil respiration (exponential as 

solid line, Lloyd–Taylor as dotted line and Gaussian as dashed line) fit to the data of the 

experimental sites with different climatic conditions. See Table S2 for parameter estimates of 

the functions. 
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Figure 2. Empirical temperature dependence models with moisture integration best fit to the 

site data; every box represents one of the nine models in one site, whereas each curve within 

a box is an individual soil moisture category of the models (see also Table 5); A) Kiskunság, 

HU; B) Garraf, ES; C) Capo Caccia, IT; D) Mols, DK-M; E) Brandbjerg, DK-B; F) 

Oldebroek, NL; G) Clocaenog, UK. Lines are black during the temperature intervals within 

which defined intervals of volumetric soil moisture contents occured in the field. Grey line 

segments mean extrapolated fittings outside the measured temperature range. 
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Figure 3. Relationship between the average annual soil respiration values (g C m-2 year-1) 

calculated by the significant models and the soil organic carbon contents of six study sites: 

Kiskunság, Hungary (HU); Oldebroek, the Netherlands (NL); Brandbjerg, Denmark (DK-B); 

Mols, Denmark (DK-M); Capo Caccia, Italy (IT); Clocaenog, United Kingdom (UK). The 

ranges between the lowest and the highest annual soil respiration values calculated by all the 

presented models are shown to demonstrate the low interannual variability and the low 

variability of the model estimations compared to the high intersite variability. Apart from the 

UK site, a significant relationship between annual SR and the soil organic matter content is 

demonstrated. 
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Tables 

 

 

Table 1. Characterization of the study sites. 

MAT (mean annual temperature) and MAP (mean annual precipitation) between 2001 and 

2012, except for ES between 2002 and 2003 and DK-B between 2006 and 2012. Gaussen-

index of aridity, as modified by Peñuelas and others (2007) related to annual climatic data of 

the study sites, highlighting the climatic differences between them. 

 

Country Site Location Altitude MAT (Jan.;July) MAP
Gaussen-index 

(MAP / 2MAT)

m °C mm

HU Kiskunság 46°52'N, 19°25'E 108 10.9 (-0.1;22.0) 569 26.1

ES Garraf 41°18'N 01°49'E 210 15.9 (8.6;24.2) 568 17.9

IT Capo Caccia 40°36'N 08°09'E 35 16.4 (9.5;23.6) 549 16.7

DK Mols 56°23'N 10°57'E 58 8.7 (1.1;17.9) 644 37.0

DK Brandbjerg 55°53'N 11°58'E 2 8.0 (1.6;19.4) 613 38.3

NL Oldebroek 52°24'N 05°55'E 25 10.5 (3.8;18.2) 1004 47.8

UK Clocaenog 53°03'N 03°28'W 490 8.2 (3.2;13.7) 1345 82.0
 

 

 

 

 

Table 2. Soil characteristics of the study sites. 

Soil depth stands for the sampling depth for soil moisture and other measurements, 

representing the most active soil layers. Parenthetical numbers represents the thickness of the 

organic soil layers; pH was measured in H2O; SOC stands for the soil organic carbon 

content. 

 

Country Site Soil type Soil depth Sand Silt Clay pH SOC

cm %

HU Kiskunság Calcaric Arenosol    0 – 20 97.5 1.8 0.7 8.0 0.3

ES Garraf Petric Calcisol    0 – 12 42.9 38.7 18.4 8.1 1.3

IT Capo Caccia Chromic Luvisols    0 – 20 75.4 11.2 13.4 7.7 4.6

DK Mols Haplic Podzol    0 – 20  (3 ) 91.4 2.9 5.7 3.8 4.5

DK Brandbjerg Haplic Podzol    0 – 32  (2 ) 91.7 5.9 2.4 3.9 2.7

NL Oldebroek Haplic Podzol    0 – 16  (4 ) 93.5 6.0 0.5 3.8 1.9

UK Clocaenog Humo-ferric Podzol    0 – 17  (6 ) 40.2 50.0 9.8 3.8 33.8

Soil texture %
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Table 3. Measurement periods and ranges of soil temperature at 5 cm soil depth, soil 

moisture measured in the soil depths presented in Table 2., and soil respiration during the 

measurements. Overall average values are in bold within brackets. 

 

Country Site
Measurement 

periods
Soil temperature Soil moisture Soil respiration

yyyy.mm °C Vol% μmol m
-2 

s
-1

HU Kiskunság 2010.04 - 2012.11 0.40 - 40.50 (21.97) 2.0 - 8.1 (4.1) 0.11 - 2.48 (0.84)

ES Garraf 2002.04 - 2003.12 4.35 - 44.25 (19.04) 5.6 - 31.6 (19.0) 0.27 - 2.60 (1.16)

IT Capo Caccia 2010.02 - 2011.11 7.73 - 28.85 (17.59) 3.2 - 27.6 (14.8) 0.98 - 5.38 (2.65)

DK Mols 2011.05 - 2012.09 2.32 - 22.30 (12.82) 5.8 - 18.3 (12.3) 0.65 - 17.66 (3.71)

DK Brandbjerg 2011.03 - 2012.12 -0.25 - 18.48 (9.93) 5,4 - 30.2 (16.3) 0.02 - 8.48 (1.59)

NL Oldebroek 2010.07 - 2012.06 2.49 - 18.89 (10.46) 7.4 - 39.9 (24.7) 0.26 - 3.05 (0.98)

UK Clocaenog 2010.01 - 2012.12 0.60 - 14.29 (7.91) 8.7 - 71.4 (41.7) 0.13 - 4.00 (1.15)
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Table 4. Results of the model intercomparisons: a) Corrected Akaike Information Criterion 

(AICc) values of all temperature dependence models (equations 1-3); best AICc values by 

moisture considerations are in bold; b) Akaike weights of the models without considering soil 

moisture; c) Akaike weights of all models compared. Values of supported models (>0.1) are 

in bold and italic. In case of only one supported model, Akaike weight is highlighted in bold. 

 

a) 

Site, Country Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

Kiskunság, HU 413.34 371.27 326.48 356.75 296.00 263.50 282.98 304.67 246.62

Garraf, ES 364.00 297.03 285.46 191.32 185.53 186.78 169.95 154.55 153.58

Capo Caccia, IT 125.22 127.01 127.14 85.96 106.56 87.96 86.13 87.92 88.26

Mols, DK 142.24 136.66 135.13 142.24 136.66 135.13 131.24 136.66 135.13

Brandjberg, DK 879.75 874.19 874.82 864.36 864.66 866.01 879.75 874.19 874.82

Oldebroek, NL 107.07 109.72 109.13 107.07 109.72 109.13 67.36 69.83 91.94

Clocaenog, UK 610.37 613.28 612.39 595.29 598.32 597.33 565.46 567.32 573.72

Soil moisture is not considered Additive effect between temperature and moisture Interaction between temperature and moisture

 
b) 

Akaike-weights

Site, Country Exponential Lloyd-Taylor Gaussian

Kiskunság, HU <0.01 <0.01 1.0000

Garraf, ES <0.01 <0.01 0.9969

Capo Caccia, IT 0.5679 0.2231 0.2090

Mols, DK 0.0191 0.3115 0.6694

Brandjberg, DK 0.0346 0.5581 0.4073

Oldebroek, NL 0.6156 0.1641 0.2203

Clocaenog, UK 0.6266 0.1458 0.2276

Soil moisture is not considered

 
c) 
Akaike-weights

Site, Country Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

Kiskunság, HU <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.9998

Garraf, ES <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.3809 0.6190

Capo Caccia, IT <0.01 <0.01 <0.01 0.3437 <0.01 0.1182 0.3157 0.1206 0.1018

Mols, DK <0.01 0.0406 0.0873 <0.01 0.0406 0.0873 0.6114 0.0406 0.0873
Brandjberg, DK <0.01 <0.01 <0.01 0.4301 0.3701 0.1885 <0.01 <0.01 <0.01
Oldebroek, NL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7747 0.2253 <0.01
Clocaenog, UK <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7087 0.2799 0.0114

Soil moisture is not considered Additive effect between temperature and moisture Interaction between temperature and moisture
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Table 5. The best fit soil temperature–soil respiration models according to the AIC, and the 

thresholds in soil moisture of the best models (p<0.05), ranked by the splitting up points of 

the decision trees; thresholds in moisture at p<0.01 significance level are highlighted. When 

a threshold is not supported by all the significant models, it is marked with the abbreviation 

of the concerned models. The field capacity at pF=2.1 (-0.02 MPa) and wilting point at 

pF=4.2 (-1.58 MPa) for every site are also included to help the comparison of the thresholds. 

 

Country Site

Wilting 

point 

(Vol%)

Field 

capacity 

(Vol%)

The BEST temp. 

models with 

moist. integration

Threshold moisture values (Vol%) of 

the BEST models (p<0.05).

HU Kiskunság 1.0 8.0 Gaussian 2.5 ; 3.8 ; 4.3 ; 5.6

ES Garraf 8.0 26.0 Lloyd-Taylor,
Gaussian 6.7 ; 9.2

L ; 9.3
G ; 17.6L ; 22.2

L

IT Capo Caccia 7.8 28.0
Exponential,
Lloyd-Taylor,

Gaussian
10.8 ; 17.7

Additive

DK Mols 4.0 18.0 Exponential 9.6

DK Brandbjerg 2.5 38.0
Exponential,
Lloyd-Taylor,

Gaussian
8.8E ; 9.9E,G ; 16.4L

NL Oldebroek 4.5 34.5 Exponential,
Lloyd-Taylor 16.8 ; 23.7 ; 28.2

UK Clocaenog 7.0 39.0 Exponential,
Lloyd-Taylor 33.3 ; 38.2 ; 57.9
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Table 6. Annual soil respiration values (g C m-2 year-1) from six study sites, median and, for 

the exponential and the Gaussian models only, the boundaries of the 90% confidence interval 

in brackets. Calculations by the 9 models were based on the site meteorological data in the 

control plots of each site. (Confidence intervals would be extremely wide for the Lloyd–Taylor 

model because of the collinearity between its parameters.) Annual values by the overall best 

fit models are highlighted. 

 

a) 

Country Year

Exponential Lloyd-Taylor Gaussian

2010 216.7 (201.9 , 232.3) 188.4 198.9 (189.2 , 209.1)

2011 220.2 (205.9 , 236.2) 192.8 206.3 (196.5 , 216.7)

2012 225.0 (211.2 , 240.5) 198.1 208.7 (199.1 , 219.2)

2010 931.2 (889.2 , 976.7) 928.9 930.5 (887.7 , 975.5)

2011 939.1 (895.9 , 984.6) 935.5 938.1 (894.1 , 983.9)

2011 914.5 (858.0 , 974.4) 944.3 959.3 (896.1 , 1027.1)

2012 866.2 (809.8 , 924.5) 899.3 914.9 (853.2 , 980.1)

2011 499.8 (481.9 , 518.2) 492.2 492.7 (474.7 , 511.4)

2012 456.6 (441.3 , 472.1) 455.0 455.4 (440.3 , 471.4)

2011 350.4 (337.7 , 363.8) 348.8 350.4 (337.7 , 363.8)

2012 340.9 (328.6 , 353.3) 339.5 340.9 (328.6 , 353.3)

2010 338.5 (326.7 , 350.8) 337.4 338.5 (326.7 , 350.8)

2011 362.7 (349.9 , 375.9) 362.4 362.7 (349.9 , 375.9)

2012 346.3 (334.3 , 358.7) 345.7 346.3 (334.3 , 358.7)

HU

IT

DK-M

DK-B

NL

No soil moisture effect

UK
 

b) 
Country Year

Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

2010 217.0 (204.4 , 230.5) 212.0 218.2 (206.6 , 230.7) 232.4 (219.1 , 247.2) 194.4 225.3 (210.8 , 241.3)

2011 224.6 (211.8 , 238.2) 199.9 209.0 (200.0 , 218.6) 207.3 (196.4 , 218.6) 180.3 201.9 (192.0 , 212.6)

2012 222.9 (210.4 , 235.9 201.4 208.4 (199.7 , 217.5) 206.2 (195.6 , 217.4) 197.5 199.7 (190.2 , 210.0)

2010 939.0 (897.7 , 982.2) 910.3 939.0 (897.7 , 982.2) 957.8 (917.1 , 1000.6) 957.9 963.3 (926.1 , 1002.4)

2011 889.3 (852.6 , 927.9) 880.5 889.3 (852.6 , 927.9) 903.1 (864.3 , 943.4) 901.2 901.6 (873.8 , 931.3)

2011 914.5 (858.0 , 974.4) 944.3 959.3 (896.1 , 1027.1) 985.2 (919.6 , 1055.2) 944.3 959.3 (896.1 , 1027.1)

2012 866.2 (809.8 , 924.5) 899.3 914.9 (853.2 , 980.1) 923.6 (862.2 , 987.2) 899.3 914.9 (853.2 , 980.1)

2011 511.9 (492.9 , 531.5) 512.3 504.6 (494.3 , 515.6) 499.8 (481.9 , 518.2) 492.2 492.7 (474.7 , 511.4)

2012 461.0 (445.8 , 477.0) 456.0 458.3 (453.7 , 463.3) 456.6 (441.3 , 472.1) 455.0 455.4 (440.3 , 471.4)

2011 350.4 (337.7 , 363.8) 348.8 350.4 (337.7 , 363.8) 393.1 (369.7 , 418.0) 391.4 364.2 (298.0 , 451.2)

2012 340.9 (328.6 , 353.3) 339.5 340.9 (328.6 , 353.3) 393.5 (369.5 , 420.1) 392.8 296.4 (266.2 ,327.0)

2010 335.5 (323.8 , 347.4) 335.9 335.5 (323.8 , 347.4) 342.9 (330.0 , 356.3) 340.9 340.0 (328.8 , 351.0)

2011 354.8 (342.3 , 367.8) 356.2 354.8 (342.3 , 367.8) 345.1 (331.1 , 359.9) 345.2 348.8 (336.5 , 361.7)

2012 329.7 (317.1 , 343.3) 330.8 329.7 (317.1 , 343.3) 323.4 (310.6 , 336.6) 322.8 388.9 (384.0 , 395.5)

DK-B

NL

UK

Additive soil moisture effect Interactive soil moisture effect

HU

IT

DK-M
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Electronic Supplementary Material 

 

Table S1. Measurement periods and ranges of soil temperature, soil moisture, and soil 

respiration of the seven sites in the control, drought and warming treatments during the 

measurements. 

 

Table S2. Model parameters of the nine temperature dependence models of the seven sites. 

 




