

1 [Article accepted in Brain, Behaviour and Evolution]

2

3 **Relative brain size and its relation with the associative pallium**
4 **in birds**

5

6

7 Ferran Sayol¹, Louis Lefebvre^{1,2} and Daniel Sol^{1,3}

8

¹*CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain, e-mail: dsolrueda@gmail.com*

9 ²*McGill University, Department of Biology, McGill University, 1205, Avenue Docteur
10 Penfield, Montréal, Québec H3A 1B1 Canada*

11 ³*CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain*

12

13

14 **Running title:** Brain size and pallium areas

15

16 **Tables:** 1

17 **Figures:** 5

18

19 **Corresponding authors:**

20 Ferran Sayol (f.sayol@creaf.uab.cat); tel. +34935813420

21 Address: *CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain*

22

23 Louis Lefebvre (louis.lefebvre@mcgill.ca); tel. +15143986457

24 Adress: Department of Biology, McGill University, Montréal, Québec, Canada H3A 1B1

25

26 **Key words:** Encephalization, Brain size, Cognition, Pallium, Mosaic evolution, Concerted
27 evolution.

28 **Abstract**

29 Despite growing interest in the evolution of enlarged brains, the biological significance of
30 brain size variation remains controversial. Much of the controversy is over the extent to
31 which brain structures have evolved independently of each other (mosaic evolution) or in a
32 coordinated way (concerted evolution). If larger brains have evolved by the increase of
33 different brain regions in different species, it follows that comparisons of the whole brain
34 might be biologically meaningless. Such an argument has been used to criticize
35 comparative attempts to explain existing variation in whole brain size among species. Here,
36 we show that pallium areas associated with domain-general cognition represent a large
37 fraction of the entire brain, are disproportionately larger in large-brained birds and
38 accurately predict variation in the whole brain when allometric effects are appropriately
39 accounted for. While this does not question the importance of mosaic evolution, it suggests
40 that examining specialized, small areas of the brain is not very helpful for understanding
41 why some birds have evolved such large brains. Instead, the size of the whole brain reflects
42 consistent variation in associative pallium areas and hence is functionally meaningful for
43 comparative analyses.

44

45 **Introduction**

46 The phylogenetic-based comparative approach has become a major tool in investigating the
47 evolution of the vertebrate neural architecture. Much of past effort has been devoted to
48 assess whether existing variation in brain size among species predicts differences in
49 cognitively-demanding behaviours. This has yielded ample evidence that larger brains are
50 associated with enhanced domain-general cognition [Benson-Amram, Dantzer, Stricker,
51 Swanson, & Holekamp, 2016; Lefebvre, Whittle, & Lascaris, 1997; Reader, Hager, &
52 Laland, 2011; Reader & Laland, 2002] and function to facilitate behavioural adjustments to
53 socio-environmental changes [Reader & Laland, 2002; Schuck-Paim, Alonso, & Ottoni,
54 2008; Sol, Duncan, Blackburn, Cassey, & Lefebvre, 2005; Sol, Székely, Liker, & Lefebvre,
55 2007; Sol, 2009]. Despite the progress, the biological significance of brain size variation
56 across species is not exempt of criticisms [Healy & Rowe, 2007]. A main argument has
57 been that because brains are divided into functionally distinct areas, the analyses should
58 focus on the areas to which a particular function could be ascribed [Healy & Rowe, 2007].

59 In fact, the validity of the above criticism depends on the classic, unresolved debate
60 over the extent to which brain areas evolve independently of each other in a mosaic fashion
61 [Barrett & Kurzban, 2006; Barton & Harvey, 2000; Iwaniuk & Hurd, 2005] or in a
62 concerted way as a result of conserved developmental programs [Anderson & Finlay, 2013;
63 Charvet, Striedter, & Finlay, 2011]. If information processing in the brain is massively
64 modular [Barrett & Kurzban, 2006], then larger brains can evolve by the increase of
65 different brain regions in different species, making comparisons of whole brain size
66 biologically meaningless [Harvey & Krebs, 1990; Healy & Rowe, 2007]. However, if only
67 some areas evolve in a concerted way, but together occupy a large part of the brain, then a
68 disproportionate increase in these brain areas would be reflected in a larger brain regardless
69 of the fact that smaller, more specialized, brain regions might evolve independently. This
70 could be the case of brain areas like the avian mesopallium and nidopallium (which
71 together form the associative pallium, AP) and the mammalian isocortex [Rehkämper,
72 Frahm, & Zilles, 1991]. If the most important part of whole brain size variation is driven by
73 these large, concertedly evolving areas, then focusing on the whole brain in comparative
74 studies would be a good proxy for variation in these areas. Comparative evidence suggests
75 that taxonomic variation in the size of the primate isocortex and avian AP is associated with
76 variation in a suite of correlated, domain-general cognitive abilities [Lefebvre, Reader, &
77 Sol, 2004; Reader et al., 2011] that include feeding innovation and tool use [Lefebvre,
78 Nicolakakis, & Boire, 2002; Mehlhorn, Hunt, Gray, Rehkämper, & Güntürkün, 2010;
79 Reader & Laland, 2002; Timmermans, Lefebvre, Boire, & Basu, 2000]. Enhanced demands
80 on domain-general cognition could thus be reflected in an enlarged cortex and AP, as well
81 as an enlarged brain.

82 The debate over models of brain size evolution has not yet been settled in part due
83 to disagreements on how brain size should be best quantified. In primates, as many as 26
84 different metrics have been used in large scale studies exploring ecological, life history and
85 cognitive correlates of encephalization (reviewed in Lefebvre [2012]). The comparative
86 literature on birds is similarly based on a variety of metrics, which go from residuals to
87 fractions and proportions of the whole or of parts of the brain (see table 1). The different
88 ways in which the data are combined in the analyses adds additional uncertainties about
89 what the size of the whole brain really means [Healy and Rowe, 2007].

90 In this paper, we use the most complete dataset on avian brain regions currently
91 available [Iwaniuk and Hurd, 2005] to ask what really means the variation in brain size in
92 terms of underlying structures. We use phylogenetically controlled analyses based on the
93 current Bird Tree project [Jetz, Thomas, Joy, Hartmann, & Mooers, 2012] to examine inter-
94 relationships between brain size, body size and the volume of six major brain parts, and
95 assess the validity of several data transformation metrics used to control for allometry. We
96 predict that a bigger brain should mainly correspond to an increase in AP, and hence that
97 variation in these areas would strongly predict variation in the whole brain when using
98 appropriate methods to remove allometric effects.

99

100 **Methods**

101 *Data sources and phylogenetic hypotheses*

102 Data on the whole brain and on volume of six brain parts were taken from Iwaniuk and
103 Hurd [2005]. Three regions part of the telencephalon which are the nidopallium - which
104 includes also all of the nidopallial subregions (but see [Iwaniuk & Hurd, 2005] for more
105 details)-, the mesopallium and the hyperpallium. Three other non-telencephalic regions
106 include the cerebellum, the diencephalon and the brainstem – which is the sum of the
107 mesencephalon and the myelencephalon.. The six areas together form between 70 and 87 %
108 of avian brain volume. Body mass data (g) were obtained from Dunning [2007]. The
109 phylogenetic hypotheses we used were taken from the Bird Tree project [Jetz et al., 2012],
110 where randomly sampled trees were taken from 2 different backbone coming from two
111 independent studies [Ericson, 2012; Hackett et al., 2008]. We removed one species (*Pavo*
112 *meleagris*) from the Iwaniuk and Hurd database, as in this set of phylogenetic trees it is
113 considered the same species as *Meleagris gallopavo*, already present in the database (See
114 supplementary fig. S1 for an example of one of the phylogenetic hypothesis used).

115

116 *Statistical analyses*

117 We first calculated a correlation matrix between the six brain areas. We used the “phyl.vcv”
118 function in R [R, 2013] with optimization of the parameter Lambda using maximum
119 likelihood criteria [Revell, 2012] to account for phylogenetic non-independence of the data.

120 We then compared different ways of removing allometric effects for each brain part, using
121 either body mass, volume of the entire brain or of a basal part, the brainstem. For a given
122 brain part, for example the nidopallium, we tested the following measures: (1) absolute
123 nidopallium volume; (2) residuals of nidopallium volume from a log-log regression against
124 body mass or (3) brainstem volume; (4) nidopallium volume divided by brainstem volume,
125 similar to the executive brain ratio used for primates; (5) nidopallium volume divided by
126 the volume of the rest of the brain (fraction); or (6) by the volume of the entire brain
127 (proportion). Measures 2 and 3 are thus residuals of log-log regressions and measures 4, 5
128 and 6 can be calculated using untransformed or log transformed volumes. We thus had nine
129 different measures that we compared and tested for potential remaining effects of body size
130 using phylogenetically corrected least-squares regressions (PGLS) using the R package
131 "caper" [Orme et al., 2013]. This method, compared to a non-corrected regression, controls
132 for the non-independence of data due to shared ancestry. Contrary to independent contrasts,
133 however, it first determines the strength of the phylogenetic signal in the data (parameter
134 lambda, which varies between 0 and 1 and is calculated using Maximum Likelihood; Pagel,
135 1999) and controls it accordingly, without assuming, as do contrasts, that lambda is 1. To
136 this purpose, we used a set of 20 phylogenetic trees and calculated means over the 20
137 models.

138 For all further analyses, we used residuals only, as other metrics do not eliminate
139 the effect of body mass (see Results). We next analyzed the extent to which each brain
140 region is associated with body size using PGLS models with log-transformed variables. To
141 see which brain part best predicts whole brain variation, we took the residuals of whole
142 brain volume against body mass and examined their relationship with the residuals of each
143 brain part regressed against body mass. To illustrate these relationships, we plotted positive
144 and negative whole brain residuals in different shades (black for positive and white for
145 negative) and graphed them against brain part residuals. A brain part that predicts whole
146 brain size well will yield clearly separated clouds of white and black points; in contrast, a
147 brain part that does not predict whole brain size well will yield overlapping black and white
148 data points. The extent to which positive and negative whole brain residuals are well
149 separated in each graph can then be expressed by a histogram illustrating overlaps. We also
150 used a set of PGLS models to determine which allometrically corrected brain part best

151 explains variation in allometrically corrected whole brain size. A possible problem in the
152 last two analyses is that we are correlating two variables that are residuals from the same
153 predictor (body size), which might lead to some circularity. However, when using
154 brainstem to remove allometry in the brain regions and body size to remove allometry in
155 the whole brain, we obtained exactly the same results in terms of which parts explain most
156 variation in the whole brain.

157 Finally, we conducted a phylogenetic reconstruction of whole brain residuals and
158 associative pallium residuals - all corrected for body mass by taking phylogenetic residuals-
159 on a sample tree using the contMap function of the “phytools” R package [Revell, 2012].
160 This technique combines data on phylogeny and trait variation between clades to estimate
161 evolutionary increases or decreases in different lineages.

162

163 **Results**

164 In terms of absolute size, all brain areas are positively associated with each other in
165 phylogenetically corrected analyses (fig. 1a, table S1). Much of this trend is due to body
166 size allometry, however, so we next examined the way different transformations of the
167 original data affect the body size confound. Of all the metrics we tested, only those based
168 on residuals and executive brain ratio calculated on log-transformed data completely
169 removed the effects of body size (table S2). Analyses based on metrics such as fractions
170 and proportions therefore do not deal exclusively with brain part variation, but also include
171 body size.

172 When allometric effects are taken into account by estimating residuals, some areas
173 show stronger inter-relationships than others, suggesting a combination of concerted and
174 mosaic evolution (fig.1b, table S3). Concerted evolution is particularly evident for the areas
175 forming the associative part of the telencephalon, notably the nidopallium and mesopallium
176 ($r = 0.94$). These two areas show much larger amounts of variation independent of body
177 size than do basal brain areas such as the brainstem (fig. 2, table S4). Phylogenetically
178 corrected variation in nidopallium and mesopallium size correctly classifies 95 and 92%
179 respectively of the positive and negative residuals of whole brain size regressed against
180 body size (fig. 2a-b). In contrast, brainstem volume is strongly related to body size and does
181 not discriminate between species with large versus small brain residuals (fig. 2e). As a

182 consequence, brain to body size residuals are better predicted by variation in associative
183 pallium residuals (mesopallium + nidopallium) than by other brain parts (fig. 3), regardless
184 of whether allometry is corrected by body (table S5) mass or brainstem volume (table S6).
185 In fact, brain size and associative pallium (after corrections for allometric effects) are
186 almost indistinguishable measures of encephalization (fig. 4; PGLS: $R^2 = 0.91$, $p < 0.001$).
187 Inferring the evolution of avian brains with phylogenetic reconstructions yields virtually
188 identical results with the two metrics (fig. 5), were we can see independent shifts in the
189 increase of both relative brain and associative pallium sizes in crows and parrots and the
190 reduction of these two measures in three practically independent clades (rheids, galliforms
191 and swifts).

192

193 **Discussion**

194 Our analyses lead to three main conclusions regarding the evolution of the avian brain.
195 First, all six brain parts analyzed here tended to increase in a concerted way, a trend that
196 was not simply a consequence of allometry or phylogeny. Second, some areas, notably
197 those belonging to the associative pallium, evolved in a more concerted way than others.
198 Finally, large brains primarily resulted from a disproportionate increase in these pallial
199 areas. These areas are not only anatomically well delineated (thus minimizing measurement
200 error), but also comprise a large fraction of the brain, in particular the nidopallium. Thus,
201 the same proportional increase of these areas is likely to have a stronger effect on the size
202 of the whole brain than that of smaller areas, an idea previously proposed by Rehkämper et
203 al's [1991].

204 The associative pallium areas are known to have key roles in avian cognition. The
205 nidopallium, in particular its caudolateral part, the NCL, is the closest avian equivalent of
206 the mammalian pre-frontal cortex. Several lines of evidence, using different approaches and
207 techniques (connectome: [Shanahan et al., 2013]; single unit recording: [Lengersdorf et al.,
208 2015, Rose and Colombo, 2005, Veit and Nieder, 2013]; receptor architecture: [Herold et
209 al., 2011, Rose et al., 2010]; temporary inactivation: [Helduser and Güntürkün, 2012];
210 lesions: [Mogensen and Divac, 1993]) point to the importance of NCL in avian executive
211 control. Comparative work also suggests that the nidopallium is the brain area most closely
212 correlated with avian tool use [Lefebvre et al., 2002], while the other part of the associative

213 pallium, the mesopallium, is most closely correlated with innovation rate [Timmermans et
214 al., 2000]. The mesopallium is significantly enlarged in the bird with the most sophisticated
215 form of tool use, the New Caledonian crow (*Corvus moneduloides*) [Mehlhorn et al., 2010].
216 The very tight relationship between nidopallium and mesopallium size, once phylogeny and
217 allometry have been removed, further suggests that evolutionary changes in the two
218 structures are strongly linked. Together, the two structures are the closest avian equivalent
219 of the mammalian non-visual cortex. These areas appear to be a crucial to domain-general
220 cognitive abilities.

221 Our results suggest caution in the use of absolute brain size to study the neural basis
222 of cognitive skills, at least in birds. Given that this measure is confounded with body size,
223 traits associated with body size (e.g. range, energetics, prey size) will confound any
224 comparative test of brain size correlates. Using relative measures could be a solution to
225 remove allometric effects, but we found here that dividing brain part volume by the volume
226 of the whole (proportions) or the rest of the brain (fractions), with or without prior log
227 transforms of the volumes, leaves significant body size confounds (Table 1 appendix).
228 Studies using these metrics (e.g. [Burish, Kueh, & Wang, 2004; Clark, Mitra, & Wang,
229 2001]) thus contain a hidden confound that might affect conclusions about evolutionary
230 trends.

231 In contrast, residual brain size seems to better describe how brains increase due to a
232 disproportionate enlargement of specific, large brain areas. Using residuals completely
233 removes allometric effects on the brain but might face a problem of interpretation, as it is
234 unclear what a disproportionately large area means in functional terms. The underlying
235 assumption for existing variation in brain size among species is that any increase in size
236 provides some increase in function. Although this is supported by growing evidence linking
237 residual brain to enhanced cognition [Benson-Amram et al., 2016; Sol et al., 2005] (but see
238 a revision by Lefebvre and Sol [2008]), why should a disproportionate increase matter at
239 all? Because the brain processes information, and this is done by discrete neurons acting
240 together via neurotransmitters and receptors, the functional significance of volume
241 differences might not be clear. In mammals, different orders have different scaling
242 relationships of neuron numbers to brain area volume [S. Herculano-Houzel, 2012; Suzana
243 Herculano-Houzel, 2011]. Similar differences might well characterize bird brains. One can

244 imagine, for example, that a corvid or a parrot mesopallium might have more neurons per
245 mm³ than a quail brainstem. Knowing this would obviously be important, but it would not
246 change correlational trends of the type we report here, or the associations with cognition
247 reported in the literature. We might in fact be underestimating selection on brain areas
248 associated with cognition by focusing on mass or volume rather than neuron numbers if
249 differences in density go in the same direction as differences in classical metrics of
250 encephalization. This also assumes that neuron numbers is the main determinant of
251 information processing capacity, not their connectedness or the density and type of
252 neurotransmitters and receptors. Comparative studies of receptor density and gene
253 expression in brain areas will shed new light on the functional significance enlarged brains
254 [Goodson, Kelly, & Kingsbury, 2012].

255 The finding that enlarged brains have primarily evolved by the concerted increase of
256 certain brain regions does not deny the importance of mosaic evolution. Indeed, the fact
257 that some areas evolve more concertedly than others can be interpreted as a combination of
258 mosaic and concerted evolution. Theoretical work on other biological systems (e.g.
259 metabolic networks, [Ravasz, Somera, Mongru, Oltvai, & Barabási, 2002]) suggests that
260 modular units are organized into hierarchical clusters, a principle that might reconcile
261 modular and concerted views on the way in which the neural substrate of cognitive abilities
262 operate and evolve. Moreover, mosaic evolution could be more important for small areas
263 specialized in particular behaviours, which have not been evaluated here. A case in point is
264 the network of song nuclei that has been extensively studied in oscines. Nuclei of this type
265 are absent in non-oscines, with the exception of parrots and hummingbirds [Jarvis, 2007],
266 and at least one of them, HVC, varies strongly as a result of sexual selection on repertoire
267 size [Devoogd, Krebs, Healy, & Purvis, 1993; Moore, Székely, Büki, & Devoogd, 2011]. If
268 there is one clear case of adaptive specialization of brain areas in birds, it is the case of
269 oscine song nuclei, which could evolve independently from other brain regions. However,
270 these findings do not deny that, as our study suggests, the main variation in whole brain
271 size is due to concerted changes in pallial areas, allowing the use of relative brain size as a
272 proxy for relative pallium size in comparative studies.

273

274 **Acknowledgements**

275 We are grateful to members of Sol's Laboratory for helpful discussion. We also thank two
276 anonymous reviewers for their comments and José Luis Ordóñez for his help with the
277 figures. This research was supported by funds from the Spanish government (CGL2013-
278 47448-P) to DS. FS was supported by a PhD fellowship FI-DGR 2014 from the Catalan
279 government.

280

281

282 **References**

283

284 Anderson M L, & Finlay B L (2013): Allocating structure to function: the strong links
285 between neuroplasticity and natural selection. *Front. Hum. Neurosci.* 7:918.

286 Barrett H C, & Kurzban R (2006): Modularity in cognition: framing the debate. *Psychol.*
287 *Rev.* 113:628.

288 Barton R A, & Harvey P H (2000): Mosaic evolution of brain structure in mammals.
289 *Nature* 405:1055–8.

290 Benson-Amram S, Dantzer B, Stricker G, Swanson E M, & Holekamp K E (2016): Brain
291 size predicts problem-solving ability in mammalian carnivores. *Proc. Natl. Acad. Sci.*
292 201505913.

293 Burish M J, Kueh H Y, & Wang S S-H (2004): Brain architecture and social complexity in
294 modern and ancient birds. *Brain. Behav. Evol.* 63:107–24.

295 Charvet C J, Striedter G F, & Finlay B L (2011): Evo-devo and brain scaling: candidate
296 developmental mechanisms for variation and constancy in vertebrate brain evolution.
297 *Brain. Behav. Evol.* 78:248–57.

298 Clark D a, Mitra P P, & Wang S S (2001): Scalable architecture in mammalian brains.
299 *Nature* 411:189–193.

300 Devoogd T J, Krebs J R, Healy S D, & Purvis A (1993): Relations between song repertoire
301 size and the volume of brain nuclei related to song: comparative evolutionary analyses
302 amongst oscine birds. *Proc. R. Soc. London B Biol. Sci.* 254:75–82.

303 Dunning J B (2007): *Handbook of Avian Body Masses* (J.B. Dunning Jr., Ed.) (Second).
304 CRC Press.

305 Ericson P G P (2012): Evolution of terrestrial birds in three continents: biogeography and
306 parallel radiations. *J. Biogeogr.* 39:813–824.

307 Franklin D C, Garnett S T, Luck G W, Gutierrez-Ibanez C, & Iwaniuk A N (2014):
308 Relative brain size in Australian birds. *Emu* 160–170.

309 Fuchs R, & Winkler H (2014): Brain Geometry and its Relation to Migratory Behavior in
310 Birds. *J. Adv. Neurosci. Res.* 1:1–9.

311 Goodson J L, Kelly A M, & Kingsbury M a. (2012): Evolving nonapeptide mechanisms of
312 gregariousness and social diversity in birds. *Horm. Behav.* 61:239–250.

313 Gutiérrez-Ibáñez C, Iwaniuk A N, Moore B a, Fernández-Juricic E, Corfield J R, Krilow J
314 M, ... Wylie D R (2014): Mosaic and concerted evolution in the visual system of

315 birds. *PLoS One* 9:e90102.

316 Hackett S J, Kimball R T, Reddy S, Bowie R C K, Braun E L, Braun M J, ... Yuri T
317 (2008): A phylogenomic study of birds reveals their evolutionary history. *Science*
318 320:1763–8.

319 Harvey P H, & Krebs J R (1990): Comparing brains. *Science* (80-). 249:140–146.

320 Healy S D, & Rowe C (2007): A critique of comparative studies of brain size. *Proc. R. Soc.*
321 *B Biol. Sci.* 274:453–464.

322 Helduser S, & Güntürkün O (2012): Neural substrates for serial reaction time tasks in
323 pigeons. *Behav. Brain Res.* 230:132–143.

324 Herculano-Houzel S (2011): Scaling of brain metabolism with a fixed energy budget per
325 neuron: implications for neuronal activity, plasticity and evolution. *PLoS One*
326 6:e17514.

327 Herculano-Houzel S (2012): The remarkable, yet not extraordinary, human brain as a
328 scaled-up primate brain and its associated cost. *Proc. Natl. Acad. Sci.* 109:10661–
329 10668.

330 Herold C, Palomero-Gallagher N, Hellmann B, Kröner S, Theiss C, Güntürkün O, & Zilles
331 K (2011): The receptor architecture of the pigeons' nidopallium caudolaterale: an
332 avian analogue to the mammalian prefrontal cortex. *Brain Struct. Funct.* 216:239–254.

333 Isler K, & van Schaik C (2006): Costs of encephalization: the energy trade-off hypothesis
334 tested on birds. *J. Hum. Evol.* 51:228–43.

335 Iwaniuk A N, Dean K M, & Nelson J E (2004): A mosaic pattern characterizes the
336 evolution of the avian brain. *Proc. Biol. Sci.* 271 Suppl :S148–51.

337 Iwaniuk A N, Heesy C P, Hall M I, & Wylie D R W (2008): Relative Wulst volume is
338 correlated with orbit orientation and binocular visual field in birds. *J. Comp. Physiol.*
339 A 194:267–282.

340 Iwaniuk A N, & Hurd P L (2005): The evolution of cerebrotypes in birds. *Brain. Behav.*
341 *Evol.* 65:215–30.

342 Iwaniuk A N, & Wylie D R W (2006): The evolution of stereopsis and the Wulst in
343 caprimulgiform birds: A comparative analysis. *J. Comp. Physiol. A Neuroethol.*
344 *Sensory, Neural, Behav. Physiol.* 192:1313–1326.

345 Jarvis E D (2007): Neural systems for vocal learning in birds and humans: a synopsis. *J.*
346 *Ornithol.* 148:35–44.

347 Jetz W, Thomas G H, Joy J B, Hartmann K, & Mooers a O (2012): The global diversity of
348 birds in space and time. *Nature* 491:444–8.

349 Kawabe S, Shimokawa T, Miki H, Okamoto T, Matsuda S, Itou T, ... Endo H (2013):
350 Relationship Between Brain Volume and Brain Width in Mammals and Birds.
351 *Paleontol. Res.* 17:282–293.

352 Lefebvre L (2012): *Primate encephalization* *Progress in Brain Research* (1st ed., Vol. 195).
353 Elsevier B.V.

354 Lefebvre L, Gaxiola A, Dawson S, Timmermans S, Rosza L, & Kabai P (1998): Feeding
355 innovations and forebrain size in Australasian birds. *Behaviour* 135:1077–1097.

356 Lefebvre L, Nicolakakis N, & Boire D (2002): Tools and brains in birds. 939–973.

357 Lefebvre L, Reader S M, & Sol D (2004): Brains , Innovations and Evolution in Birds and
358 Primates. *Brain. Behav. Evol.* 63:233–246.

359 Lefebvre L, & Sol D (2008): Brains, lifestyles and cognition: are there general trends?
360 *Brain. Behav. Evol.* 72:135–44.

361 Lefebvre L, Whittle P, & Lascaris E (1997): Feeding innovations and forebrain size in
362 birds. *Anim. Behav.* 53:549–560.

363 Lengersdorf D, Marks D, Uengoer M, Stüttgen M C, & Güntürkün O (2015): Blocking
364 NMDA-receptors in the pigeon’s “prefrontal” caudal nidopallium impairs appetitive
365 extinction learning in a sign-tracking paradigm. *Front. Behav. Neurosci.* 9:85.

366 Mehlhorn J, Hunt G R, Gray R D, Rehkämper G, & Güntürkün O (2010): Tool-Making
367 New Caledonian Crows Have Large Associative Brain Areas. *Brain. Behav. Evol.*
368 75:63–70.

369 Mogensen J, & Divac I (1993): Behavioural effects of ablation of the pigeon-equivalent of
370 the mammalian prefrontal cortex. *Behav. Brain Res.* 55:101–107.

371 Møller A P (2010): Brain size, head size and behaviour of a passerine bird. *J. Evol. Biol.*
372 23:625–635.

373 Moore J M, Székely T, Büki J, & Devoogd T J (2011): Motor pathway convergence
374 predicts syllable repertoire size in oscine birds. *Proc. Natl. Acad. Sci. U. S. A.*
375 108:16440–5.

376 Nicolakakis N, & Lefebvre L (2000): Forebrain size and innovation rate in European birds:
377 feeding, nesting and confounding variables. *Behaviour* 137:1415–1429.

378 Nottebohm F (2005): The neural basis of birdsong. *PLoS Biol.* 3:0759–0761.

379 Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, & Pearse W (2013): caper:
380 Comparative Analyses of Phylogenetics and Evolution in R. .

381 Pagel M (1999): Inferring the historical patterns of biological evolution. *Nature* 401:877–
382 84.

383 R C T (2013): R: A language and environment for statistical computing. *R Found. Stat.*
384 *Comput.* Vienna,Austria.

385 Ravasz E, Somera A L, Mongru D A, Oltvai Z N, & Barabási A-L (2002): Hierarchical
386 organization of modularity in metabolic networks. *Science* (80-.). 297:1551–1555.

387 Reader S M, Hager Y, & Laland K N (2011): The evolution of primate general and cultural
388 intelligence. *Philos. Trans. R. Soc. B Biol. Sci.* 366:1017–1027.

389 Reader S M, & Laland K N (2002): Social intelligence, innovation, and enhanced brain size
390 in primates. *Proc. Natl. Acad. Sci. U. S. A.* 99:4436–41.

391 Rehkämper G, Frahm H D, & Zilles K (1991): Quantitative Development of Brain and
392 Brain Structures in Birds (Galliformes and Passeriformes) Compared to that in
393 Mammals (Insectivores and Primates)(Part 2 of 2). *Brain. Behav. Evol.* 37:135–143.

394 Revell L J (2012): phytools: an R package for phylogenetic comparative biology (and other
395 things). *Methods Ecol. Evol.* 3:217–223.

396 Rose J, & Colombo M (2005): Neural correlates of executive control in the avian brain.
397 *PLoS Biol.* 3:1139–1146.

398 Rose J, Schiffer A-M, Dittrich L, & Güntürkün O (2010): The role of dopamine in
399 maintenance and distractability of attention in the “prefrontal cortex” of pigeons.
400 *Neuroscience* 167:232–237.

401 Schuck-Paim C, Alonso W J, & Ottoni E B (2008): Cognition in an ever-changing world:
402 climatic variability is associated with brain size in Neotropical parrots. *Brain. Behav.*
403 *Evol.* 71:200–15.

404 Shanahan M, Bingman V P, Shimizu T, Wild M, & Güntürkün O (2013): Large-scale
405 network organization in the avian forebrain: a connectivity matrix and theoretical
406 analysis. *Front. Comput. Neurosci.* 7:89.

407 Shultz S, & Dunbar R I M (2010): Social bonds in birds are associated with brain size and
408 contingent on the correlated evolution of life-history and increased parental
409 investment. *Biol. J. Linn. Soc.* 100:111–123.

410 Sol D (2009): Revisiting the cognitive buffer hypothesis for the evolution of large brains.
411 *Biol. Lett.* 5:130–3.

412 Sol D, Duncan R P, Blackburn T M, Cassey P, & Lefebvre L (2005): Big brains, enhanced
413 cognition, and response of birds to novel environments. *Proc. Natl. Acad. Sci. U. S. A.*
414 102:5460–5.

415 Sol D, Székely T, Liker A, & Lefebvre L (2007): Big-brained birds survive better in nature.
416 *Proc. R. Soc. London, Ser. B* 274:763–9.

417 Timmermans S, Lefebvre L, Boire D, & Basu P (2000): Relative size of the hyperstriatum
418 ventrale is the best predictor of feeding innovation rate in birds. *Brain Behav. Evol.*
419 196–203.

420 Veit L, & Nieder A (2013): Abstract rule neurons in the endbrain support intelligent
421 behaviour in corvid songbirds. *Nat. Commun.* 4.

422 Winkler H, Leisler B, & Bernroider G (2004): Ecological constraints on the evolution of
423 avian brains. *J. Ornithol.* 145:238–244.

424 Zorina Z a., & Obozova T a. (2012): New data on the brain and cognitive abilities of birds.
425 *Biol. Bull.* 39:601–617.

426

427
 428 **Table 1.** Encephalization metrics used in the comparative literature on birds. Res = residual; tel =
 429 telencephalon; region = varies according to study (e.g. mesopallium, nidopallium, hyperpallium, visual areas);
 430 rest of brain or tel = volume of the brain or telencephalon minus volume of the region studied.

Metric	Reference
Frequently used metrics	
Log brain mass	[Lefebvre & Sol, 2008]; [Shultz & Dunbar, 2010]
Res log (brain) log (body)	[Isler & van Schaik, 2006]; [Franklin, Garnett, Luck, Gutierrez-Ibanez, & Iwaniuk, 2014]
Res log (tel) log (body)	[Nicolakakis & Lefebvre, 2000]; [Lefebvre & Sol, 2008]; [Iwaniuk & Wylie, 2006]
Res log (tel) log (rest of brain)	[Iwaniuk & Wylie, 2006]
Volume tel/brainstem	[Lefebvre et al., 1997]
Volume tel/brain	[Burish et al., 2004]
Volume tel/rest of brain	[Shultz & Dunbar, 2010]
Log region	[Lefebvre & Sol, 2008]
Res log (region) log (body)	[Mehlhorn et al., 2010; Timmermans et al., 2000]
Res log (region) log (body) log (other regions)	[Iwaniuk, Dean, & Nelson, 2004]
Res log (region) log (tel)	[Fuchs & Winkler, 2014]
Res log (region) log rest of brain	[Gutiérrez-Ibáñez et al., 2014; Iwaniuk & Wylie, 2006]
Res log (region) log (rest of tel)	[Iwaniuk & Wylie, 2006]; [Iwaniuk, Heesy, Hall, & Wylie, 2008]
Volume region/brainstem	[Lefebvre & Sol, 2008]
Volume region/ brain	[Fuchs & Winkler, 2014; Iwaniuk & Hurd, 2005]
Rarely used metrics	
Martin EQ	[Lefebvre & Sol, 2008]
Head volume	[Møller, 2010]
Shape based on absolute values	[Kawabe et al., 2013]
Shape based on regressions against body size	[Kawabe et al., 2013]
Telencephalon/brainstem of galliforme	[Lefebvre et al., 1997; Zorina & Obozova, 2012]
Log tel/brainstem of galliforme	[Lefebvre et al., 1998]
Skull height	[Winkler, Leisler, & Bernroider, 2004]

468 **FIGURE LEGENDS**

469

470

471 **Fig. 1.** Phylogenetic correlations between different brain regions, using (a) absolute values or (b) residuals from
472 log-log regressions against body size.

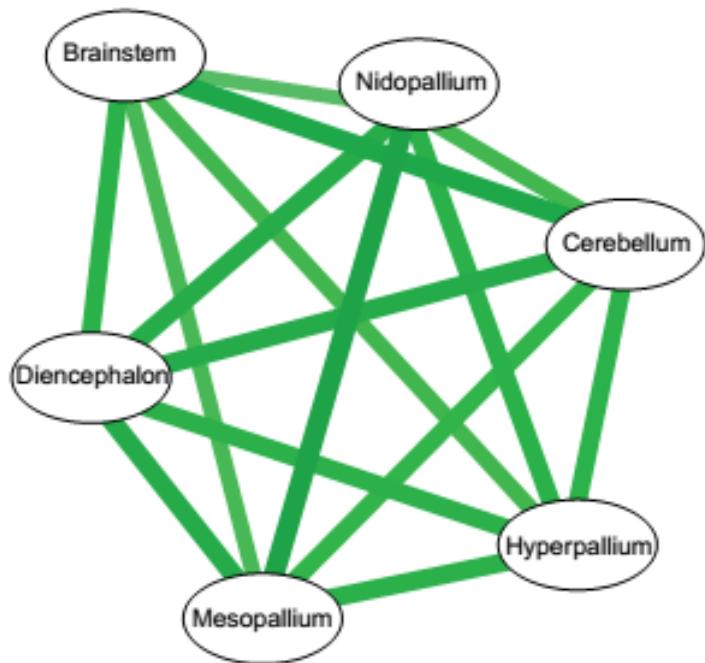
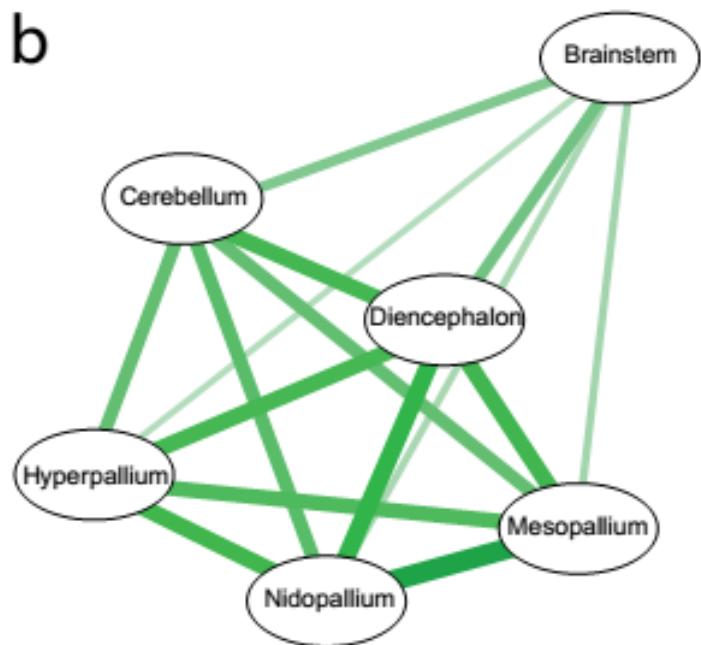
473

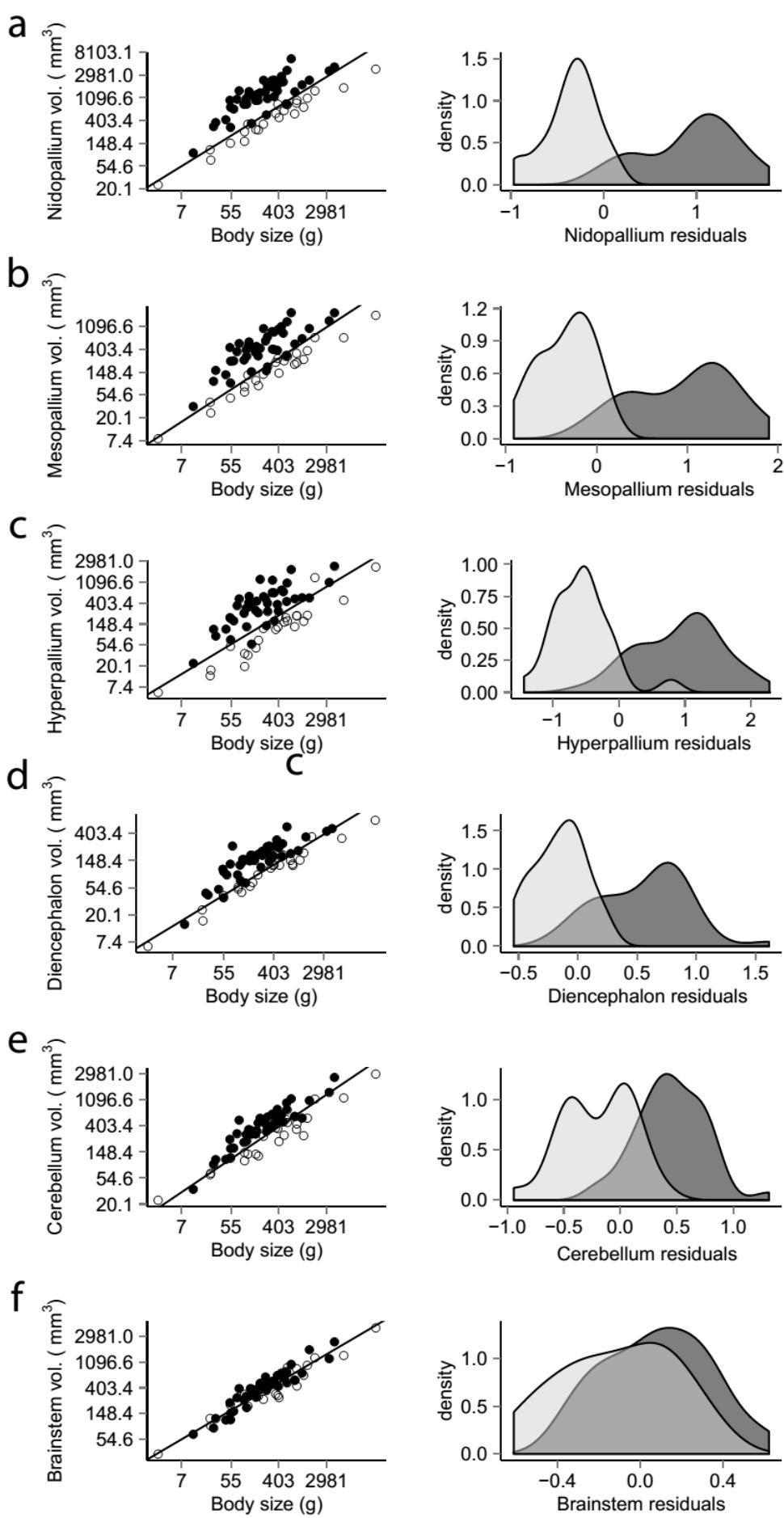
474 **Fig. 2.** Log size of the six brain parts against log body mass, distinguishing species with positive brain residuals
475 (black data points) and species with negative brain residuals (open data points). In the right of each plot, we
476 present two histograms, one for each set of dots from the plots (black and open), corresponding to positive and
477 negative brain residuals

478 .

479

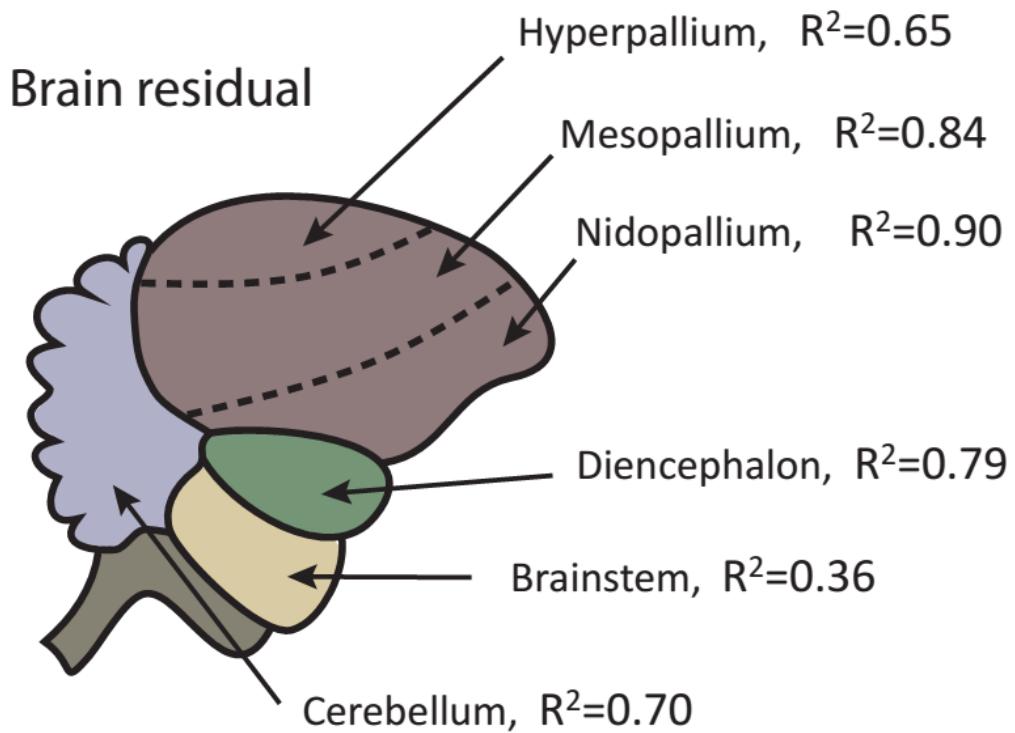
480 **Fig. 3.** Relationship between residuals of different brain parts and whole brain residuals, all regressed against
481 log body mass, with the R^2 for PGLS models represented on a schematic avian brain (redrawn based on
482 Nottebohm, 2005).



483

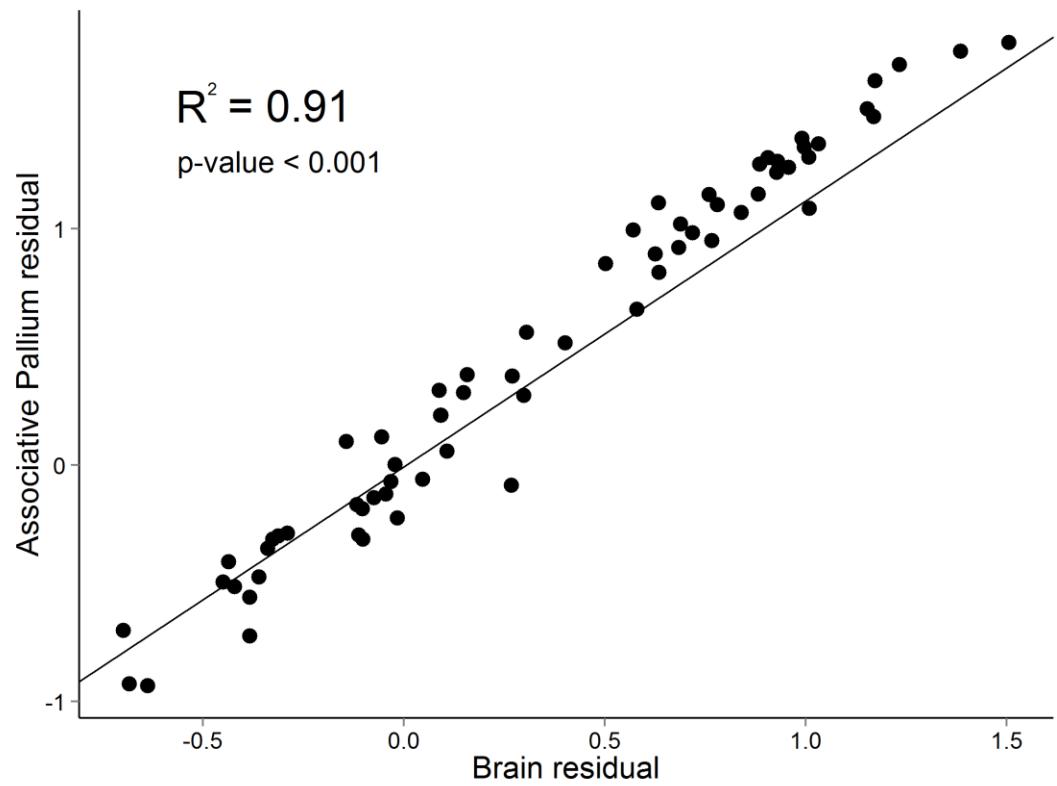

484 **Fig. 4.** Residual of whole brain size against body size plotted against residual of associative pallium size against
485 brainstem size. The data points represent actual species, while the line represents the PGLS model. The slightly
486 lower slope of the regression with respect to the cloud of data points is due to the phylogenetic corrections.

487

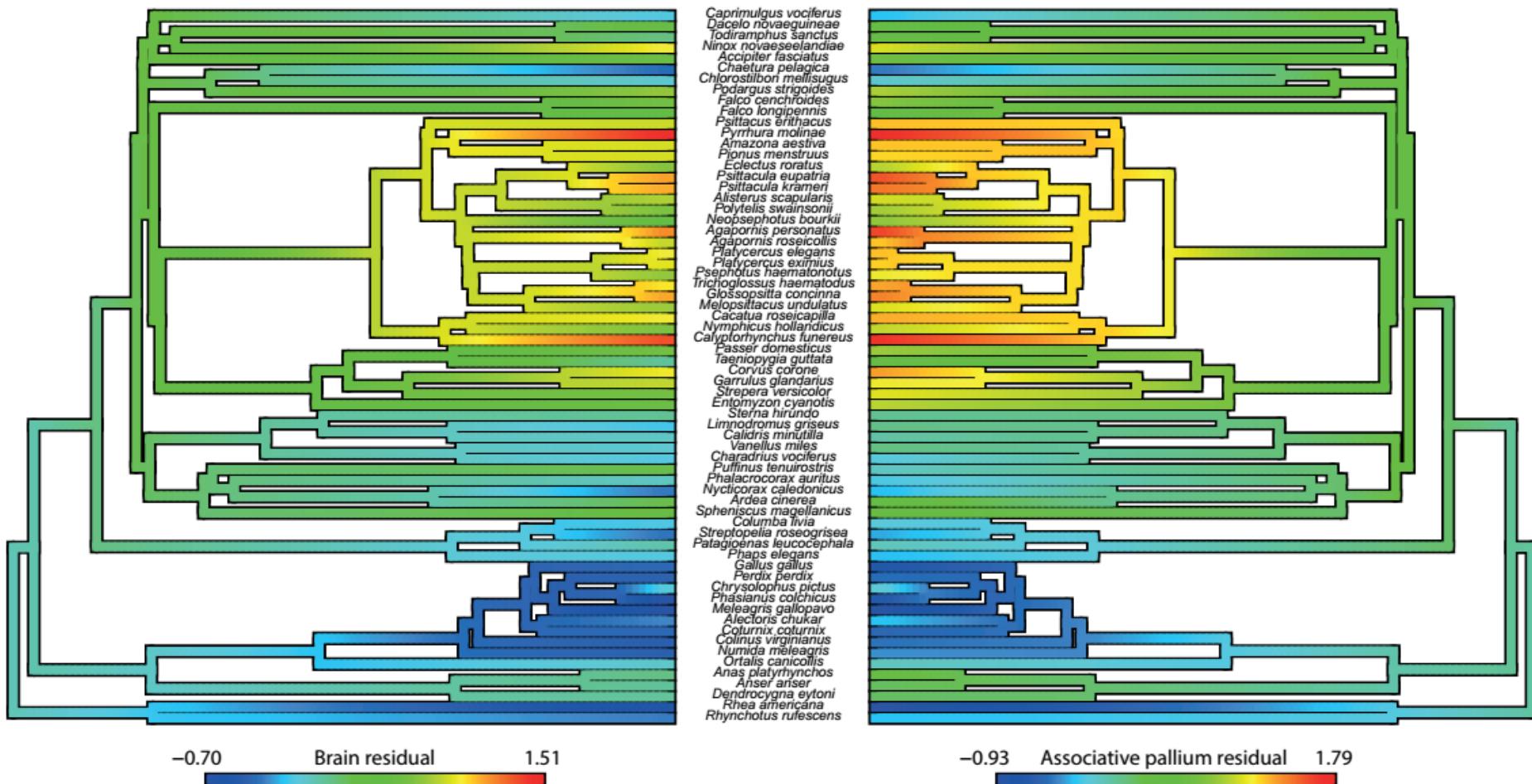
488 **Fig. 5.** Phylogenetic reconstruction in a sample phylogenetic hypothesis of birds in our dataset, representing
489 residual brain size evolution and residual associative pallium size evolution.


Figure 1

a**b**


Figure 2

494
495
496


Figure 3

497 **Figure 4**

498 **Figure 5**

499 **Supplementary Tables (S1-S6) and Figures (S1)**

500

501

502

503 **Table S1.** Correlation matrix between the raw volume of the six major brain parts
504 controlling for phylogenetic non-independence of the species.

505

506

	Nidopallium	Mesopallium	Hyperpallium	Diencephalon	Cerebellum
Mesopallium	0.975	-	-	-	-
Hyperpallium	0.864	0.872	-	-	-
Diencephalon	0.896	0.907	0.869	-	-
Cerebellum	0.756	0.823	0.853	0.911	-
Brainstem	0.649	0.728	0.759	0.863	0.940

507

508
509**Table S2.** Relationships between log body mass and different encephalization metrics used in other studies. Ndp: Nidopallium; Brn: Brainstem.

Brain Measure	Predictor	Intercept \pm SE	Slope \pm SE	Pr(> t)	R ²	Lambda
<i>Absolute measures</i>						
Log (absolute Ndp)	Log (body size)	1.43 \pm 0.40	0.66 \pm 0.04	<0.001	0.82	1.00
<i>Residuals</i>						
Ndp residual (against Brn)	Log (body size)	-343.97 \pm 477.59	0.00 \pm 0.01	0.935	0.00	1.00
Ndp residual (against body)	Log (body size)	-326.93 \pm 582.85	0.05 \pm 0.05	0.374	0.00	1.00
<i>Proportions</i>						
Ndp / brain	Log (body size)	0.24 \pm 0.05	0.01 \pm 0.05	0.001	0.09	1.00
Log (Ndp) / Log (brain)	Log (body size)	0.73 \pm 0.02	0.02 \pm 0.02	<0.001	0.48	1.00
<i>Fractions</i>						
Ndp / brain - Ndp	Log (body size)	0.23 \pm 0.15	0.04 \pm 0.02	0.001	0.09	1.00
Log (Ndp) / Log (brain - Ndp)	Log (body size)	0.79 \pm 0.03	0.02 \pm 0.00	<0.001	0.27	1.00
<i>Executive ratios</i>						
Ndp / Brn	Log (body size)	-0.65 \pm 1.39	0.36 \pm 0.14	0.010	0.08	0.97
Log (Ndp) / Log (Brn)	Log (body size)	1.06 \pm 0.07	0.01 \pm 0.01	0.319	0.00	0.98

510
511
512
513

514 **Table S3.** Correlation matrix between the six major brain parts after removing the
515 allometric effect of body mass by means of residuals and controlling for phylogenetic
516 non-independence of the species.

517
518

	Nidopallium	Mesopallium	Hyperpallium	Diencephalon	Cerebellum
Mesopallium	0.942	-	-	-	-
Hyperpallium	0.737	0.664	-	-	-
Diencephalon	0.796	0.726	0.710	-	-
Cerebellum	0.609	0.572	0.573	0.713	-
Brainstem	0.273	0.297	0.232	0.490	0.434

519

520 **Table S4.** Body size and brainstem size as predictors of whole brain size and the
 521 different brain parts, using PGLS models.
 522

Brain area	Predictor	Intercept \pm SE	Slope \pm SE	Pr(> t)	Adj R²	lambda
Log (whole brain)	Log(Body size)	4.24 \pm 0.24	0.63 \pm 0.03	<0.001	0.85	0.97
Log (Nidopallium)	Log(Body size)	2.72 \pm 0.33	0.65 \pm 0.04	<0.001	0.81	0.98
Log(Mesopallium)	Log(Body size)	1.49 \pm 0.35	0.69 \pm 0.04	<0.001	0.80	0.91
Log(Hyperpallium)	Log(Body size)	1.32 \pm 0.48	0.68 \pm 0.05	<0.001	0.71	1.00
Log(Cerebellum)	Log(Body size)	2.23 \pm 0.24	0.62 \pm 0.03	<0.001	0.85	0.69
Log(Diencephalon)	Log(Body size)	1.48 \pm 0.26	0.53 \pm 0.03	<0.001	0.82	0.87
Log(Brainstem)	Log(Body size)	2.94 \pm 0.15	0.55 \pm 0.02	<0.001	0.89	0.19
Log(Nidopallium)	Log(Brainstem)	0.01 \pm 0.49	1.07 \pm 0.07	<0.001	0.80	1.00
Log(Mesopallium)	Log(Brainstem)	-1.57 \pm 0.49	1.15 \pm 0.07	<0.001	0.82	0.97
Log(Hyperpallium)	Log(Brainstem)	-1.61 \pm 0.72	1.13 \pm 0.10	<0.001	0.66	0.96
Log(Cerebellum)	Log(Brainstem)	-0.59 \pm 0.32	1.06 \pm 0.05	<0.001	0.88	0.50
Log(Diencephalon)	Log(Brainstem)	-1.14 \pm 0.35	0.96 \pm 0.05	<0.001	0.85	0.83

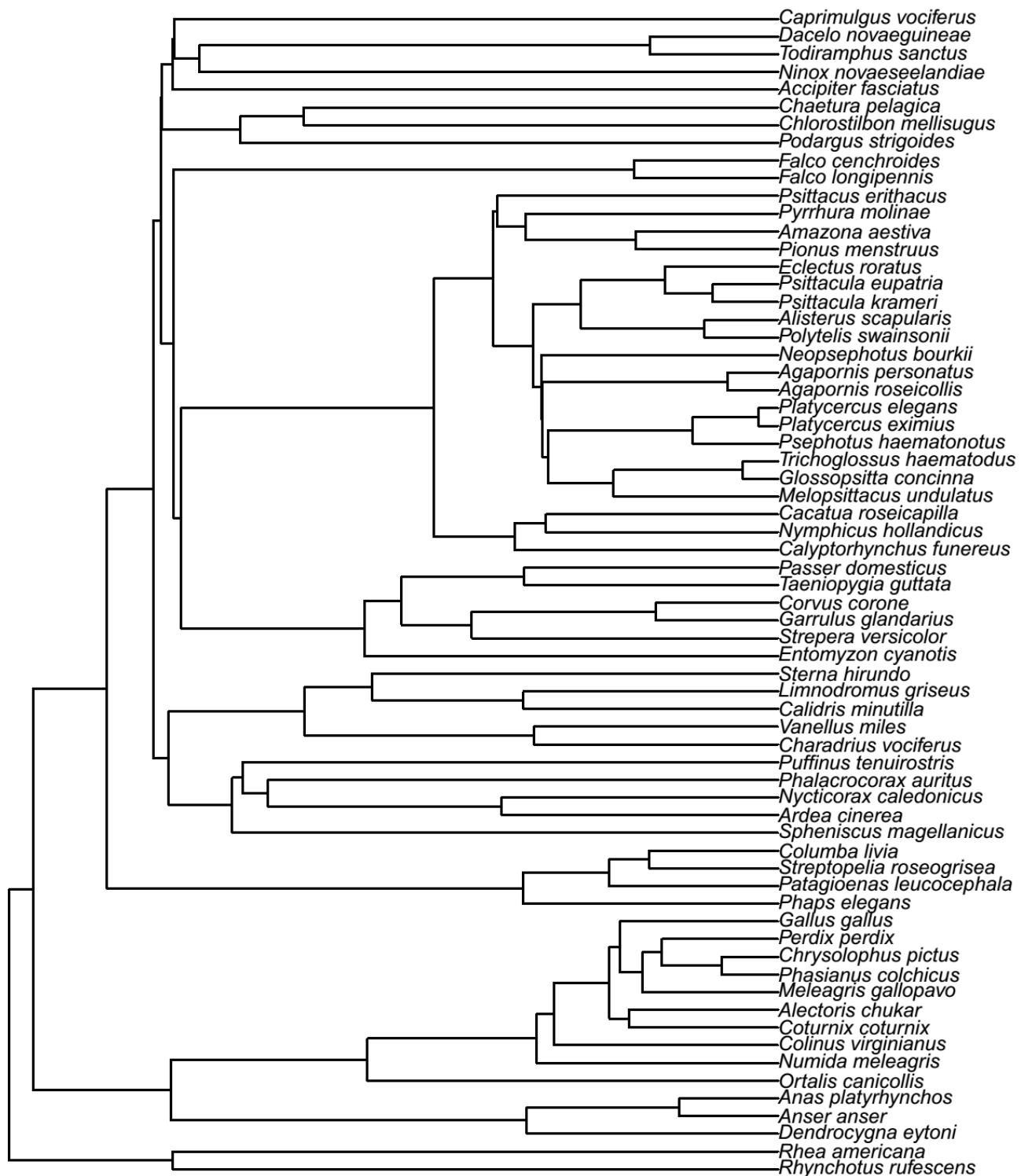

523
524
525
526

Table S5. Relationship of different brain parts with brain size after removing allometry by means of residuals from body size and using PGLS models to control for phylogenetic non-independence of the species.

Response	Predictor	Intercept ±SE	Slope ±SE	Pr(> t)	Adj R²	lambda
Brain size	Nidopallium	0.00 ±0.05	0.76 ±0.03	<0.001	0.90	0.72
Brain size	Mesopallium	0.00 ±0.06	0.70 ±0.04	<0.001	0.84	0.71
Brain size	Hyperpallium	0.01 ±0.09	0.46 ±0.04	<0.001	0.65	0.74
Brain size	Diencephalon	0.00 ±0.08	0.88 ±0.06	<0.001	0.79	1.00
Brain size	Cerebellum	-0.01 ±0.11	0.77 ±0.06	<0.001	0.70	1.00
Brain size	Brainstem	0.00 ±0.16	0.58 ±0.09	<0.001	0.36	1.00

527
528
529
530
531
532
533
534
535
Table S6. Relationship of different brain parts with brain size after removing the allometric effect by means of
residuals from brainstem size and using PGLS models to control for phylogenetic non-independence of the
species

Response	Predictor	Intercept ±SE	Slope ±SE	Pr(> t)	Adj R ²	lambda
Brain size	Nidopallium	-0.03 ±0.13	0.48 ±0.07	<0.001	0.39	0.59
Brain size	Mesopallium	-0.04 ±0.14	0.46 ±0.08	<0.001	0.34	0.67
Brain size	Hyperpallium	-0.05 ±0.15	0.29 ±0.05	<0.001	0.29	0.72
Brain size	Diencephalon	0.00 ±0.13	0.57 ±0.11	<0.001	0.27	0.72
Brain size	Cerebellum	-0.01 ±0.17	0.29 ±0.12	<0.001	0.07	0.87

Figure S1. Example of one of the 20 phylogenetic hypotheses used in the analyses.