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INTRODUCTION

A major task of our society is to manage forests in a way that their resources are preserved to meet
future generation needs (Forest Europe et al., 2015). Current scenarios of climate change effects are
making this task extremely challenging (Kirilenko and Sedjo, 2007). Climate shifts will impact forest
vitality and affect goods and services forests provide, including carbon sequestration and climate
change mitigation (IPCC, 2014). To guide sustainable forest management, forest researchers are
asked to provide concrete answers about forest resilience in response to expected climatic trends,
and extreme climatic events (Lindner et al., 2014). This is not an easy task, because responses of
trees and forest ecosystems to environmental conditions are often non-linear andmoreover vary on
spatial and temporal scales (Smith, 2011; Anderegg et al., 2012; Reichstein et al., 2013). For instance,
although drought is one of the most frequent and widespread climatic extremes affecting forests
worldwide (e.g., Allen et al., 2010), the assessment of its impact on future forests is currently under
intense debate. Mechanisms behind tree growth and mortality are complex (McDowell et al., 2008,
2011; Fatichi et al., 2014; Anderegg et al., 2015; Meir et al., 2015). Besides strength or frequency of
external factors, such as extreme events, also the tree’s ability to resist and recover is relevant, which,
in turn, is largely determined by intrinsic factors such as the tree’s life stage, life history, and genetic
characteristics.

In this paper, we advocate for a tree-centered approach. By providing an improved mechanistic
understanding of physiological and growth responses of trees growing under various conditions
we can define the tree’s capacity to respond to external stress factors. This concept can valuably
contribute to the debate on how to shape future forests toward resilient forest ecosystems.

A TREE-CENTERED APPROACH

Current spatiotemporal simulations on future forest growth responses to changing climate
conditions are performed with dynamic global vegetation models (DGVMs; Wullschleger et al.,
2014). These models—usually generalizing tree species as plant functional types (PFTs)—provide
valuable descriptions of the evolution of natural vegetation at a grid cell level under several climate
scenarios. Such approaches are powerful in assessing growth responses related to the interaction
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between vegetation and atmosphere (including anthropogenic
impact). However, although first steps toward representation
of tree species, size classes, and forest structure in a DGVM
were recently made (e.g., Naudts et al., 2016) they often lack
to explain the variability between and within species, and often
do not adequately explain growth responses (Fatichi et al.,
2014) under varying site conditions, and to climatic extremes
(Anderegg et al., 2015). These aspects are however extremely
relevant to evaluate plasticity of tree individuals and tree species
and the resilience of forests under changing climatic conditions,
especially considering changing frequencies and intensities of
climatic extremes (Reyer et al., 2013).

The tree-centered approach proposed here considers the
individual tree as main source of information for understanding
variability in growth responses. Comprehensive investigations
using well-selected trees growing under different environmental
conditions foster a better understanding of projected large-
scale forest responses to changing climate. In comparison to
generalizing approaches using PFTs, the tree-centered approach
yields information with less spatial coverage but with the
potential to convey more details on specific tree responses to
a given climatic factor. This knowledge complements other
approaches and can for instance support forest managers in tree
species and/or provenance selection to better prepare specific
forest stands to cope with expected challenges.

FOUR IMPORTANT ELEMENTS

The incentive for the tree-centered approach is gaining a
process-based understanding on tree responses to changing
environmental conditions on temporal scales varying from short-
term responses to climatic extreme events to long time periods
matching the life cycles of tree populations. This can be achieved
through an ensemble of observational studies on a selection of
trees from different species and life histories, growing in diverse
settings (forest types, species composition, successional stages,
management regimes), and exposed to different climates and
extreme climatic events. Establishing such a model framework
requires the following elements:

(i) In-depth understanding of causal processes occurring
within the tree in response to environmental changes. The
cascade of physiological and growth responses is assessed by
an integration of real-time observations of physiological and
structural growth responses.

(ii) Assessment of the link between tree structure and function.
This allows for evaluation of the short-term impact of
extreme events on tree functioning as a consequence of
resulting structural changes in tree morphology as well as
wood and bark structure.

(iii) A long-term temporal perspective to verify the link
between a specific event and related responses. Here
we take advantage of the fact that trees rigorously
archive growth responses within their datable annual tree
rings. Dendrochronology provides this necessary historical
perspective for quantifying resilience by assessing impacts
of past events.

(iv) Comparative studies in selected sites experiencing extreme
events, long-term manipulation studies, and experiments,
including e.g., provenance trials are finally necessary to test
and validate the model framework to conditions expanding
even far outside today’s natural range.

IMPLEMENTATION OF THE
TREE-CENTERED APPROACH

The COST Action STReESS—a 4-year European framework
initiative to promote networking among researchers of several
plant-research disciplines to study tree responses to extreme
events—is demonstrating the potential of such an integrated
bottom-up approach. Starting from an enhanced understanding
of the physiological processes behind wood formation, the
STReESS Action established a modular process-based approach,
which will eventually result in a model framework for explaining
tree responses to climate extremes (Figure 1).

The COST Action STReESS contributed to the following
main interlinked elements of the concept along the causal path:
environmental trigger—structure—function—performance.

Long-Term High-Resolution Monitoring
Efforts performed for long-term high-resolution monitoring of
tree physiology, tree growth together with contemporary site,
and climatic factors, allows quantifying causal relationships
between external triggers and tree physiological and growth
responses (Steppe et al., 2015, 2016). Knowledge gained from
such real-time measurements has resulted in process-based plant
models in which the mechanisms underlying diel water and
carbon transport and their tight coupling have been integrated
(see review by De Swaef et al., 2015). In addition, worldwide
xylogenesis and dendrometer databases have been compiled
during the STReESS Action to assess global response patterns to
various specific climate and site conditions (Rossi et al., 2013) and
to gain insight into processes involved in wood formation (Cuny
et al., 2014, 2015; Steppe et al., 2015).

Linking Structure to Function
Linking structure to function is vital to understand the impact
of climate-caused changes on wood formation dynamics and
wood structure, which strongly influences the water, and
carbon household and determines actual, and future tree
survival chances and growth performance. Recent studies have
highlighted that tree morphological properties and related e.g.,
hydraulic safety properties (Delzon and Cochard, 2014) vary
within individuals, among provenances and species, or along
environments and stress gradients. Relevant parameters include
phloem to xylem ratio (Gričar et al., 2015; Jyske et al., 2015)
and connection (Pfautsch et al., 2015), as well as xylem and
phloem-cell characteristics in stems (Anfodillo et al., 2012;
Olano et al., 2013; Carrer et al., 2015; Gričar et al., 2016),
branches (Salmon et al., 2015), and roots (Brunner et al., 2015).
Such characteristics reflect functional adjustments in the tree’s
structures in response to changing environmental conditions. In
turn, these adjustments also form a legacy by influencing future
tree performance and hence reflecting the acclimation capacity
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FIGURE 1 | Schematic of the tree-centered approach applied by STReESS to enhance mechanistic understanding. The approach consists of the following

interlinked elements: (1) Environmental conditions affect physiological processes, which drive growth dynamics, and results in specific wood and bark structure. (2)

Quantity and structure of newly formed wood as assessed by dendrochronology affects whole-tree physiological functioning and performance. (3) Legacy of past

environmental conditions and extreme events is imprinted in wood structure, influencing tree functioning, and todays’ tree performance. This is important to assess tree

resilience ability. (4) Selection of comparative studies, monitoring, and controlled experiments allow model testing and validation in specific contexts. All four elements

are important to assess non-linear trigger-response relations and enable to create a model framework to explain and evaluate tree responses to climate events.

of trees and tree species (Lachenbruch and McCulloh, 2014;
Rosner et al., 2016a,b; Sterck et al., 2016; Anfodillo et al., in
review).

The Long-Term Perspective
The continuous adjustments in wood structure are
permanently stored in tree rings either as annual variations

in wood-anatomical characteristics, such as cell-wall thickness,
cell size, or tissue percentage, or in case of extreme climatic
events, as obvious wood-anatomical markers (Battipaglia et al.,
2016; Bräuning et al., 2016). These characteristics enable the
use of dated tree rings to reconstruct how trees have been
growing and functioning in the past (Fonti and Jansen, 2012),
and consequently reflect the resilience and acclimation strategies
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of trees in a changing climate (e.g., Breda et al., 2006). Typical
cases of wood-anatomical markers considered in the STReESS
action are flood rings (Copini et al., 2016), missing rings
and dark rings (Novak et al., 2016), and intra-annual density
fluctuations (IADFs). IADFs comprise an abrupt change in
wood density in a given tree ring (Nabais et al., 2014; Campelo
et al., 2015) and have been demonstrated to hold valuable
high-resolution information on the timing of past droughts
in Mediterranean conifers (Battipaglia et al., 2016; De Micco
et al., 2016; Zalloni et al., 2016). Recently, these approaches
became increasingly applicable due to methodological advances
in efficiently quantifying cell-lumen size, cell-wall thickness or
specific cell types as resin canals, and parenchyma cells (von
Arx and Carrer, 2014; von Arx et al., 2016). The enormous
potential of wood-anatomical characteristics and markers
lies in the information they provide on the exact timing of
climatic constraints (Fonti et al., 2010; Rathgeber et al., 2016)
and in the possibility to evaluate consequences that these
constraints have for xylem and phloem functioning. This
creates the bridge between the elements 1 and 2 and allows
to uniquely integrating a long-term functional perspective
on the current assessment of tree-growth responses to the
environment.

Field Studies, Provenance Trials,
Manipulation Experiments
The limit of spatial coverage in the high-resolution monitoring
approach (element 1) together with the need for testing the
effect of future climate-change scenarios on tree performance
can be waged by comparative field and experimental studies
to target specific species, provenances, or environmental
conditions. De Luis et al. (2014) illustrated the potential
of using tree-ring networks across species distributions to
assess local adaptation and plasticity of Pinus halepensis
in the Mediterranean basin. Another approach is a trans-
European cross experiment where drought mortality-resistance
of European beech provenances has been related to water
availability and to the origin of the beech seedlings (Pšidová
et al., 2015; Bolte et al., 2016). Hence, provenance trials
have revealed a genetic control of wood structural properties
(Eilmann et al., 2014; Nabais et al., in review), although
investigations of other tree species are needed to fully evaluate
the importance of genetic preadaptation to future climatic
conditions. Such kinds of studies prove the added value
of targeting specific situations, e.g., natural conditions or
manipulated experiment, for developing, and validating the
model framework.

Integration into a Model Framework
The four elements can be captured and integrated into
process-based tree models. The first steps of this integration
have already been achieved. For example, diel stem-size
variations and sap-flux densities combining real-time and high-
resolution measurements of tree functioning under on-site
environmental conditions have allowed to link environmental
triggers (climate events) with the resulting tree growth
and performance (e.g., Steppe et al., 2006; De Schepper

and Steppe, 2010; Hölttä et al., 2010; Schiestl-Aalto et al.,
2015). This means that instant responses of a tree to a
drought or a heat wave (Teskey et al., 2015) can be
readily assessed, and changes in its water and carbon budget
quantified. Effort still needs to be invested to implement
parameterizing of long-term climate-growth responses or the
peculiarity of species and proveniences into the existing
models to finally come up with estimates for tree plasticity,
acclimation potential of tree species, and ultimately resilience of
forests.

CONCLUSION AND PERSPECTIVE

There is a fundamental difference between generalized PFT-
based approaches (i.e., DGVMs) and tree-centered approaches.
While PFT-based approaches perform spatially explicit
“scenarios” of future global responses, the interdisciplinary
process-driven tree-centered approach has potential to also
provide practical support for local management decisions
based on a solid understanding of tree functioning under
specific site conditions. The COST Action STReESS has
improved our understanding on the variability of responses
to climate trends and extreme events. After 4 years of
collaboration, the consortium has collected indications of
the usefulness of such an integrated approach with continuous
“methodological” development, and creativity. Through
the integration of monitoring studies (e.g., time series of
dendrometers, wood formation, and forest inventories),
dendrochronological approaches, manipulation experiments
(e.g., induced drought stress), and process-based models
(e.g., at the cell, plant, or vegetation level) there is potential
to collect valuable characterization to build process-based
tree models accounting for variability between species,
provenances, sites, and climatic events. This will contribute
to unraveling a large set of yet unanswered questions
related to processes of tree mortality (e.g., McDowell et al.,
2011) or (mal)-adaptation (e.g., Martinez-Meier et al.,
2008). Such a process-based approach will help to reduce
uncertainty on tree performance under future environmental
conditions.

Actual plans include the extension of the twittering-tree
network for further development of a near real-time detection of
tree processes and environmental impacts (Steppe et al., 2016) as
well as the extension of global data networks and harmonization
of protocols for high-resolution growth measurements (e.g.,
dendrometer, xylogenesis).

Despite still many implementation challenges ahead, we
believe that the tree-centered approach offers an additional
opportunity to assess forest management sustainability at the
profit of the whole society.
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