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Abstract. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a
saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic
expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including
the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of
functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on
the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a building block
in the study of bifurcations of critical periods in a neighbourhood of a polycycle. Finally, we apply
Theorems A and B to the study of critical periods of the Loud family of quadratic centers and we prove
that no bifurcation occurs for certain values of the parameters (Theorem C).

1 Introduction and main results

This paper is dedicated to the study of saddle-nodes and their unfoldings in the real plane. Our initial
motivation comes from the study of bifurcations of critical periods of quadratic centers, but we think that
our results are of more general interest. From the point of view of the study of the period function, the
most interesting stratum of quadratic centers is given by the Loud family

U = —v + uv, )
0 =u+ Du® + Fv?,

which is Darboux integrable (see Appendix B for a precise definition). Compactifying R? to the Poincaré
disc, the boundary of the period annulus of the center has two connected components, the center itself and
a polycycle. We call them the inner and outer boundary of the period annulus, respectively. In [6], we
described one part of the bifurcations of local critical periods from the outer boundary in this family, but
many claims remained conjectural, see Figure 1. In particular, the study of the segment {D € (—1,0), F = 1}
requires a theoretical result about the local time function of such a family in a neighbourhood of a saddle-
node appearing at infinity. There, the center is bounded in the Poincaré disc by a symmetric polycycle
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Figure 1: Bifurcation diagram of the period function of (1) at the outer boundary according
to Theorem A in [6]. More precisely, R? \ {I'g U T'y} corresponds to local regular values,
whereas I'g are local bifurcation values. The results in that paper did not allow us to determine
the character of the parameters in the dotted curve I'y.

and, crossing the line F = 1, an unfolding of a saddle-node with poles along the line at infinity occurs,
see Figure 2. In Theorem C, we prove that no bifurcation of critical periods occurs for the values of the
parameter in {D € (—1,0)\ {—%}, F= 1}, corresponding to saddle-nodes. The fundamental tool to obtain
this result is an asymptotic expansion of the period function. To this end, taking advantage of the symmetry
of the differential system (1), it suffices to study half of the period and then the essential part of the period
is given by the Dulac time in a neighbourhood of an unfolding of a saddle-node. By Dulac time we mean
the time that a trajectory spends for going between two given transverse sections to the separatrices of a
hyperbolic sector (see Figure 4), i.e. the time associated to the Dulac map (see for instance [9] and references
therein). By using the Darboux first integral and introducing an auxiliary parameter ¢ = 2(F — 1), we will
see in the proof of Theorem C that by a local change of coordinates this saddle-node unfolding can be

brought to the form
1

yU(z,y)
where y = 0 corresponds to the line at infinity in (1). More generally, in Theorem B we obtain an asymptotic

expansion, uniform with respect to the parameters, of the Dulac time of a saddle-node unfolding of the
following type:

(z(2® — €)0, — (2F — 2*)y0,), (2)

1
yU(z,y)
where P., U and V are analytic functions to be described later. In fact, we will see in Appendix B that any

saddle-node unfolding which is locally Darboux integrable is orbitally analytically equivalent to (3). In the
applications, the pole along the center manifold y = 0 will correspond to the line at infinity.

(P-(2)0y — V(2)yd,), (3)

To prove Theorem B we need to develop some results that in principle have nothing to do with the
Dulac time. Since we think that they are interesting on its own we state them separately as Theorem A.
For a better understanding of the statement of Theorem A, we briefly outline without technicalities the
underlying ideas that lead to the proof of Theorem B. For simplicity in the exposition let us consider (3)
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Figure 2: Phase portrait of the Loud family (1), with D € (—=1,0) and F > 0 in the Poincaré
disc, where the vertical invariant straight line is z = 1.

with € = 0 and suppose that the origin is a saddle-node with a hyperbolic sector in xy > 0 as shown in the
phase portrait on the left in Figure 3. We will see in Section 3 that its Dulac time T" between {y = 1} and
{z =1} can be written as a convergent series T'= 3 -, T;,, where each term T, is in turn the Dulac time
(between the same transverse sections) of

m (Po()0, — V(2)yd),) (4)

for some analytic function U,,. Note that T, (s) = fsl %(Zgzs) dz, where y(z;s) = exp(— [ }D/o (?
the trajectory of (4) passing through the point (s,1). A computation, see Section 3, shows that y = Tn(x)

is a trajectory of the vector field
Py(2)0, + (nV(2)y — Uy (x)) 9y (5)
U (0)
’ nV(0)
phase portrait on the right in Figure 3. This is the key point and explains why beginning with the problem
of computing the Dulac time associated to a hyperbolic sector, we end up studying the trajectories arriving
through a parabolic sector. Of course when € # 0 the saddle-node bifurcation occurs and we turn to study
the Dulac time of a hyperbolic sector in a saddle by considering the trajectories arriving through a parabolic
sector to a node. This is delicate because the uniformity with respect to parameters, in particular ¢ = 0,
is essential for the applications. The framework in both problems is the same, an unfolding of saddle-node,
but we pay attention to different objects. Thus, although our initial motivation was the “temporal result”
stated in Theorem B concerning the Dulac time of an unfolding of a saddle-node, as a byproduct of its proof
we obtain the “orbital result” given in Theorem A concerning the trajectories arriving through a parabolic
sector in an unfolding of a saddle-node. Next, we present the unfolding of saddle-node that we consider in
Theorem A, see the family (6) below, but let us advance that our approach to prove Theorem B, writing
T = Zn>1 T, , forces that the real parameter A has to be unbounded and that U must be a functional
parameter inside a Banach space. They will play, respectively, the role of n and U,, in (5) when we prove
Theorem B by applying Theorem A and, once again, the uniformity with respect to these parameters will
be crucial.

arriving backward in time to the saddle-node at (0 ) through the parabolic sector in = > 0, see the

In order to present our main results properly, we fix © € N and we consider the following unfolding of a
saddle-node

X = P.(2)0, + (A\Va(z)y — U(x))dy, (6)

parametrized by (g,a, A, U), with € ~ 0, a in an open subset A of R¥ A >0, U € % and
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Figure 3: On the left, transverse sections associated to the Dulac time T, for system (4) and,
on the right, trajectory y = T, (x) arriving backward in time to the saddle-node for system (5).

e P.(xr) = P(z;¢) is an analytic function in (z,¢), for |z| < r, such that Py(z) has a zero of order
u+1>2atz=0;

e V,(x) is analytic in (z,a), for || < r, with V,(0) =1, for all a € A4;
e % is the space of series U(z) = 3.5 u;x? € R{z}, with convergence radius greater than r > 0.

By rescaling, we assume that » = 1 and V,(z) > 0, for |z| < 1, for all a € A. We endow % with the norm
|U|l :=>_,50 |u;| and with this norm it becomes a Banach space. We denote %1 :={U € % : |U| < 1}.

By Weierstrass preparation theorem and rescaling, we can assume that P.(x) is a polynomial of degree
p+1in x, with Py(z) = 2#T1. The reason for not including the parameter X into a is that it will vary
in an unbounded interval. As we explained before, this will play a key role in the proof of Theorem B.
Moreover, the limit case A = oo corresponds to a singular deformation or slow-fast system, which is also of
independent interest. It is also worth mentioning that, although the unfolding (6) is not necessarily locally
Darboux integrable, it is always local Liouville integrable (see Remark 4.4 in Appendix B).

Notice that the singularity (z,y) = (0,U(0)/A) is a saddle-node of X |.—g, whose (real) parabolic sector
is contained in the half plane z > 0. We will assume that P.(z) has a real root for £ &~ 0. In what follows, ¥
will denote the biggest real root of P.(z). As it will be clear in a moment, our results refer to this root,
and the reason for choosing this one among the others is because we can approach it from the right inside a
parabolic sector that does not shrink as e tends to zero. In the study of bifurcations, having uniformity on
the parameters is crucial and, with respect to €, this only makes sense by approaching from the right to 9..
Moreover, this is the only relevant situation in the study of the period function near the outer boundary of
the period annulus. In the sequel, we will assume

(HO) P./(9.) > 0, for e ~ 0, so that the singular point (z,y) = (¥, %) is a node of X.
The polynomial P.(z) need not be irreducible. We identify the two branches that contain the root x = 9,

for ¢ > 0 and € < 0, and we apply Puiseux theorem to each one, obtaining p+ € N and analytic functions
o4 (z) € R{z}, such that
o_ ((—e)/r-), ife<O,
Ve =

oy ((+e)t/r+), ife>0. ™

Note that o4 (0) = 0, because J. tends to zero as ¢ — 0. This gives the continuity of the function 9.
Note that this function in general is not analytic at € = 0, even though o_ and o, are. In our first result,
Theorem A, we treat the unfolding (6), as € — 0T, or ¢ — 0~. Since the substitution € — —& interchanges
both situations, we will restrict to the case € > 0 and, in what follows, when there is no risk of confusion,
we will omit the subscript +, for the sake of shortness.



Besides the natural assumption (H0), we need to impose two technical conditions on P.(z) = P(z;e).
In order to state them precisely, we introduce the function

Q(S,E)IZ w7 (8)

S

which is analytic at (s,e) = (0,0) and polynomial in s. Moreover, Q(s,0) = s* and on account of (HO),
Q(0,e) = xe¥ + ..., with x > 0, for some v € N. Taking this notation into account, the aforementioned
assumptions are the following:

(H1) The Newton’s diagram of Q(s,e) has only one compact side (connecting the endpoints (u,0) and
(0,v)), i.e. @ admits a Taylor’s expansion of the form

Qs,e) = Z gijs'e’.

iz
(H2) The principal (u, v)-quasi-homogeneous part of Q(s,¢) is positive definite on the first quadrant, i.e.

3" qysin'Ocos’ 0> 0, for all 0 [0, a .

izt

Notice that (H2) implies (HO) because P/(J.) = Q(0,¢). On the other hand, if ged(p,v) = 1, then (H1)
implies (H2). However, the last implication does not hold in general, as the following example shows.

Example 1.1. If P.(z) = 2((z — ¢)? + &%), then 9. = 0, Q(x,e) = (s — )2 + &* =52 —2se + 2 + ¢* and
i =v = 2. One can easily show that P, satisfies (H0) and (H1), but it does not satisfy (H2). O

Let y(x) = y(z;zo,y0,,a,A,U) be the trajectory of (6), i.e. the solution of the linear differential
equation

Ps(m)y/@j) = )‘Va(w)y(l‘> - U(.’L’), (9)
with initial condition y(zo) = yo. We have y(z) = D(z) 5oy +yo(x), where
T Va(s)
D(x —Dz;s,a,)\:—exp<)\/ ds)
(@) = Dlase.a.) B
and
o U(s) ds

yr(z;xo,e,a,\,U):= D(x;¢,a, \)

x PE(S) D(S;E,G,A).

Here D(z) is a fundamental solution of the homogeneous equation and it coincides with the Dulac map
of the saddle point (z,y) = (J¢,0) of the vector field P.(x)0, — AV, (x)yd,, for z > ¥.. Moreover, yr(x)
is the particular solution with initial condition yg = 0 and it depends linearly on U € %. We are now
in position to state our first main result, which describes how the trajectories of (6) arrive at the node

(z,y) = (196, )g,(ﬁ@) )) given by hypothesis (HO). For convenience, in its statement we use the differential
operator

(—))\ e 7585, (10)

Theorem A. Let us consider the saddle-node unfolding given in (6), with e > 0. Assume that P.(x) satisfies
the hypothesis (H1) and (H2). Then, there exist functions c;(e,\,a,U), j € T, satisfying that, for each
Lk € ZT, \g > 0 and every compact set K, C A, there exists eg > 0, such that cq, ..., co are analytic on

A:=10,g0] x K, X [Ag,00) and are uniformly bounded linear operators on % and the following assertions
hold:



(a) for every compact set K, C (0,1], the particular solution yr, of (9) is of the form

¢
yr(s+ Y 20,8,a,\,U) = ch(sl/",a, A\ U)s? + sthy(s; zo,e,a,\,U),

3=0
where O hy(s) = 0, as s = 0T, uniformly on K, x Ax %, forr =0,1,....k;

(b) the fundamental homogeneous solution of (9) is of the form D(s + Vc;e,a,\) = sthy(s;e,a, ), where
O%he(s) = 0, as s — 0T, uniformly on A, forr =0,1,...,k.

Theorem A can be compared to the results [10] and [11] of Rousseau and Teyssier but important dif-
ferences exist. Both studies deal with unfoldings of saddle-nodes. Rousseau and Teyssier deal with the
complex foliation, whereas our study is essentially real. They construct what they call squid sectors on
which, by a holomorphic change of coordinates, the vector field can be brought to a model and give moduli
of analytic classification in terms of comparison of these normalizing coordinates and the period functions
on asymptotic cycles giving the temporal part of the moduli. Their model equation is like our equation (6),
but with U = 0. The real interval [J, ], which we study, would belong to one of their squid sectors, having
the node in its boundary. Our study gives the asymptotic expansion of the solutions at the boundary of
such a squid sector with a good uniform control together with all derivatives of the remainder term. It is
algorithmic. We think that it cannot be obtained from the results in [11]. Note that requiring the uniform
flatness property of a remainder term has proved its efficiency in studying the cyclicity (creation of cycles)
and their bifurcations from hyperbolic polycyles, see e.g. [8]. It is also the right condition for studying the
bifurcation of critical periods from monodromic polycycles.

A specific situation which will be useful for further applications is the following:

P.(z) = z(2* — €) and U(z) = 2™U(x), with m € Z*. (11)
In this case we have
p 0, ife <0, 12)
° 51/“, ife>0.

Our next main result follows almost directly by applying twice Theorem A. We point out that it deals with
both cases ¢ > 0 and € < 0.

Corollary A. Consider the saddle-node unfolding given in (6), taking the functions given in (11) and
setting Ve, as in (12). Then there exist functions cj(e, N\, a,U), j € Z*, satisfying that, for each £,k € Z7,
Ao > 0 and every compact set K, C A, there exists ¢g > 0 such that cg,...,cq are continuous on A :=
[—€0,€0] X Ko X [Ag,00) and are uniformly bounded linear operators on % , with c;(e,a,\,U) =0, fore <0
and j =0,1,...,m —1; and such that the following assertions hold:

(a) for every compact set K, C (0,1], the particular solution yy, of (9) is of the form

cjle, a, A, U)sj + szhg(s; xo,&,a,\,U),

M~

yL(S + w0, €, a4 A, U) =
=0

where O hy(s) — 0, as s = 0T, uniformly on K, x Ax 2, forr =0,1,...,k;

(b) the fundamental homogeneous solution of (9) is of the form D(s + V.;e,a,\) = s'hy(s;e,a, ), where
O%he(s) = 0, as s = 0T, uniformly on A, forr =0,1,...,k.



It is worth to notice that the case y=1,e =0, A=1,V, =1, m =1 and U = 1 in the above corollary
corresponds to the classical Euler equation 229, + (y + x)d,, having an irregular singular point at the origin
whose center manifold has a divergent asymptotic expansion y(z) = —>_ -, (n —1)la™ at x = 0.

Before stating properly the second main result of the paper let us recall that the general setting is
the study of the period function of a family of polynomial centers in the plane. It is well-known that,
by blowing-ups, any singularity of a vector field reduces to simple singularities or saddle-nodes, see for
instance [13]. Hence, the period function around any monodromic polycycle can always be expressed as the
sum of Dulac times of saddle or saddle-node singularities, composed by their corresponding Dulac maps.
Therefore, local Dulac time of saddles or saddle-nodes in the finite plane or at infinity can be thought of as
the basic building blocks in the study of the period function near the outer boundary of a period annulus. In
[5] and [7], we deal with orbitally linearizable and resonant saddles, respectively. In this paper we consider
the remaining case: saddle-node singularities. Since the Dulac time and its derivative of a singularity in
the finite plane tends to infinity, the interesting situation occurs when there are vertices of the polycycle
bounding the period annulus that belong to the divisor at infinity obtained by desingularization. We study
here the Dulac time of an unfolding of a saddle-node at infinity. Generically, the hyperbolic sector of the
saddle-node belonging to the polycycle bounding the period annulus is deformed to a hyperbolic sector of a
saddle point. This saddle point either remains at infinity or comes to the finite plane in the unfolding. In
the second situation there is a superposition of two different geometric phenomena. For this reason we study
the first case. The simplest way to assure this situation is by requiring that the line at infinity is the center
manifold. This requirement, together with the considerations about the Darboux integrability explained
before (see Proposition 4.5), motivates us to consider in the temporal setting the saddle-node unfolding (3).
Next we rewrite it for the reader’s convenience, making explicit the dependence on an auxiliary parameter
a€ACR™:

1

yUa(2,y)
Without loss of generality, we assume that U,(z,y) # 0 has an absolutely convergent Taylor series at
(z,y) = (0,0) on |z|, |y| <1, and that V,(z) is an analytic function on |z| < 1, with V,(0) > 0, for all a € A.
Notice that under assumption (H0), the point (Y., 0), where 9. is the biggest root of P.(x), is now a saddle
of the differential system (13), for € = 0. In these local coordinates, the period annulus is in the quadrant
y 2 0 and x > 9¥.. In the statement of our next result, 7(s;e,a) is the Dulac time of the saddle-node
unfolding (13) between the transverse sections {y = 1} and {z = 1}, i.e. it is the time that the trajectory
starting at (s + 9., 1) spends to arrive to {z = 1}. We also use © = 0, see (10), for shortness.

(Pe(2)0z = Va(2)ydy) - (13)

Theorem B. Let us consider the Dulac time T (s; e, a) of the saddle-node unfolding (13), with e > 0. Assume
that P.(z) satisfies conditions (H1) and (H2). Then there exist functions c;(g,a), j € Z*, satisfying that,
for each £,k € Z* and every compact set K, C A, there exists g > 0 such that co, ..., c are analytic on
[0,e0] X Kq; and the Dulac time can be written as

¢
T(s;e,a) = ch(al/p,a)sj + 5'hy(s; €, a),
§=0

with ©"hy(s) = 0, as s — 01, uniformly on [0,e0] x Kq, forr=0,1,... k.
As we already did in Corollary A, we particularize the unfolding (13) considered in Theorem B by taking
P.(x) = z(2" — €) and Uy, (z,y) = 2™ U, (z,y), (14)
where m € ZT and a € A. As before, we stress that our next result deals with both cases, ¢ > 0 and € < 0.

Corollary B. Let us consider the Dulac time T (s;e,a) of the saddle-node unfolding (13) taking the func-
tions in (14) and setting 9. as in (12). Then there exist functions c;(e,a), j € Z*, satisfying that for
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Figure 4: Local Dulac time and normalized transverse sections.

each £,k € ZT and every compact set K, C A, there exists £g > 0 such that cg,...,c, are continuous on
[—€0,¢€0] X Kq; and the Dulac time can be written as

¢
T(s;e,a) = ch (e,a)s + s'hy(s; €, a)

Jj=0

with ©"he(s) — 0, as s — 0T, uniformly on [—£g,&0] X Kq, forr =0,1,..., k. Moreover, cj(¢,a) =0, for
e<0andj=0,1,...,m—1.

Before introducing Theorem B we mentioned that the local Dulac time is the basic building block in the
study of the period function near the polycycle at the outer boundary of the period annulus. Let us now
clarify the role of Theorem B and Corollary B in this study and state our last main result. After blowing-up
the singularities, we can decompose the period function near the polycycle as a sum of Dulac times between
arbitrary transverse sections X7 and Y5 as it is shown in Figure 4. In order to study each Dulac time, we use
a diffeomorphism that brings the unfolding of the singularity to its normal form; a saddle or a saddle-node.
In this paper, we study the saddle-node unfolding, given in (13). We use the normalizing diffeomorphism
® to introduce two auxiliary normalized transverse sections X7 := ®({y = 1}) and X% := &({z = 1}).
The function 7 in Theorem B and Corollary B is precisely this local Dulac time between X7 and ¥%. In
order to have a general result on the Dulac time between arbitrary transverse sections, one must add to the
local Dulac time the two times necessary to go from given transverse sections to the normalized ones. For
applications it is convenient to express these times in the coordinate on the source transversal and this leads
to a composition problem. The symmetry of the differential system (1) makes this composition problem
easier than the general situation and we are able to solve it with the tools developed in the present paper.
More precisely, Corollaries A and B, together with a result obtained in [5], enable us to answer the initial
question motivating this paper. We can thus prove the following result, see also Figure 1, where for a precise
definition of local regular value we refer the reader to [6].

Theorem C. Denoting a = (D, F), let {X,,a € R?} be the family of differential systems in (1) and consider
the period function of the center at the origin. Then the parameters a € {D € (—1,0)\ {1}, F =1} are
local regular values of the period function at the outer boundary.

We point out that, by a result in [6], the exceptional parameter (D, F) = (—1,1) is a local bifurcation
value, as it can be seen in Figure 1.



The paper is organised as follows. In Section 2 we obtain the results dealing with the “orbital setting”
explained before, including the proofs of Theorem A and Corollary A. Sections 3 and 4 are devoted, respec-
tively, to the proof of Theorems B and C. In Appendix A we prove a L’Hopital’s rule with uniformity in the
parameters which is fundamental in the proof of Theorem A. Finally, in Appendix B we discuss the relations
between the notions of Darboux and Liouville local integrability in regard to the different unfoldings that we
consider in the paper. We thank the anonymous referee, whose comments helped improve the presentation
of the results.

2 Orbital results

This section is dedicated to the proof of Theorem A and Corollary A, but first some preliminary and
auxiliary results must be proved. To this end, we fix once for all Ay > 0 and compact subsets K, C A and
K, C (0,1]. Unless explicitly stated, we shall assume that € > 0 and in the sequel we shall use

§=He)i= e,

where p = p; € N is the inverse of the Puiseux exponent given in (7). Recall that a trajectory y = y(x)
of the unfolding, given in (6), verifies the linear differential equation P.(z)y'(x) = AV, (z)y(z) — U(z).
Accordingly,

P.(s+9:)y (s + ) = AVa(s +9e)y(s + 9:) — U(s + 9:).

On account of ¥, = o(¢), from the definition in (8), we get w = Q(s,4). Thus, since O = +s0;,
setting

T(s:4):=y(s +o@4)), V(s,4):=Va(s + 0(¢)) and U(s,¢):= %U(S +o(#)),

the above linear differential equation writes as @©,7 = VT — U. The idea to obtain the asymptotic
expansion is to search for a formal solution 7 (s) = co + c15 + c252 + ... satisfying

%Q(s,ép)s(cl +2co5+...) =V(s)(co + 15+ cas® +...) —U(s).

U()
V()"

o [i (3’8 ) g%) V(s)]i(?g(s)} ‘

Since Q(s,¢)s|szo = 0, evaluating in s = 0, we get ¢y = Next step gives

We formalize this inductive procedure as follows.

Definition 2.1. Consider the linear finite difference operator, acting on functions f(s) analytic at s = 0,
given by

f&)=FO) g 5 >0,
(Vf)(s):: { s

£(0) for s = 0.
Setting Iy = U, we define inductively Fyy1 = V,V(F;/Vy), where Vi(s):= V(s) — £Q(s;4). Finally, define

_ B

Cy:
l

¢
and Y,(s):= Z cjst.
s=0 =0

Note that, for each £, ¢; = ¢¢($, A\, a,U) is a well defined function on [—&4, g/] X [, 00) x K, x %, for some
g¢ > 0, which may go to zero, as £ — +oo. In the previous definitions, ¢ belongs to ZT, for convenience we
define X_1 := 0. O



Notice that the functions Fy, ¢ € N, are obtained from Fy = U, by iterating a sort of finite differences
operators, but conjugated by multiplication by V.

Remark 2.2. Let g(s) be an analytic function at s = 0. Then, for each m € N and k € {0,1,...,m}, we
have that V*(s™g(s)) = s™ Fg(s). O

Lemma 2.3. Q0,%, =V, —U + s*T'F,1, for each £ € NU {-1,0}.

Proof. We proceed by induction on ¢. For £ = —1, ¥, = 0 and the assertion holds. Assume now that the
claim is true for £ — 1. Then

Q0,5 = Q0,1 + QO (crs') = V81 — U+ 8 Fy +(Qcys* = VX — U + Sé(Fz — Vi)
=V —U+sT1F L,

because Fy — ¢¢Vy = sFy41, by definition. [ |

Definition 2.4. For each k € Z* and d € {0,1}, we say that a real function F(s,4;a,\,U) belongs to the
set ]-",‘f, if it can be written as
fls,d5a,\,0)
F(s,¢;a,\,U) = ———F—=,
(ot AU =0
where Q verifies hypothesis (H1) and (H2) and f is a function such that

(a) f(s,4;a,\U) is analytic at (s,4) = (0,0), for fixed a, A\, U and it is homogeneous of degree d in U, more
precisely, for d = 0, it does not depend on U and, for d = 1, it depends linearly on U,

(b) f(s,450,\U) = 3, 150 fij(a, A, U)s'47 with fi;(a,A,U) =0, for £ + 4 <k, and

(¢) there exists a neighbourhood W of (s,4) = (0,0) in C? such that the complex-analytic extension of f
in (s,4) satisfies

sup {|f(s,4;a,\,U)| : (s,4) € W, (a,\,U) € [Ag, +00) X Ky X %} < +00.

When we write & € F{, we will assume implicitly that f satisfies conditions (a), (b) and (c). O

Lemma 2.5. The following properties hold:

(a) Fi is stable by addition, FRF% C Fi., and Fi C Fi ;

(b) VFE C F¢;

(c) ONF C Fly;

(d) % € FY, Vo, 3k € FY and U - (s,4:0,\,U) — LU (s +9.) € Fy;

(e) If F € F{, then there exists a neighbourhood W of (s,4) = (0,0) in RT x Rt such that F is bounded on
W x Ka X[)\(),OO) X %1.

Proof. Assertion (a) is straightforward. To prove assertion (b), note first that since V is a linear operator
it preserves the homogeneous degree d on U. On the other hand, the condition on the Newton’s diagram
for belonging to F¢ (i.e. for k = 0) is empty. Let f be an element of F¢. There exists o > 0, such that the
function f(s,4;a, A, U) is defined, for every s € C, with |s| < ro. By applying Cauchy’s integral formula to
the function s — f(s,4;a, A, U), which is analytic at s = 0, we get

U G
vf(37¢7 a, A, U) - Tm /C_To Wdc
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If |s| < ro/2, then the denominator in the integrand is bounded away from zero and the boundedness of the
complex analytic extensmn of f implies the boundedness of that of V f.

(¢) Suppose that &% € Fi. We will prove first that @Q*f € Fl. To see this, note first that the derivative
O, is a linear operator and it does not affect the condition about the Newton’s diagram of f. On the other
hand, by Cauchy’s differentiation formula, we have that

1/ s f(C4:0,A,U)
2T |€|=ro )\(C—S)2

is bounded on W x K, X [Ag,00) X %, where W is a neighbourhood of (s,¢) = (0,
taking f = Q and k = 1, we deduce that O*Q € F7. Finally, on account of © ,\(Lk)
conclude that ©,Ff C F{, |, by using the assertlons in (a).

(d) Obviously % € F?Y. Due to V,(0) = 1 and Q(0,0) = 0, it follows that, for every £ € N and Ay > 0, there
exists a neighbourhood W of (s,4) = (0,0) in C? such that

Orf(s,¢3a,\,U) = dc

0) in C%. In partlcular,
= Q*f —k; O*Q,We

Va(s +9:) — éQ(S#) <2

N | =

on W x K, x [A\g,00). This shows that V; and - belong to F§. Finally, U € F¢ because M is clearly
linear in U and bounded on W x [Ag, 00) X %4, where W is a sufficiently small neighbourhood of (s,4) = (0,0)
in C? (in this case there is no dependence on a). o R
(e) It F = é belongs to F{, then f(r”sin6,r"cosf;&) = rkrv f(r;€) € FY, where £ := (@, \,U) with
a:= (a,#) varying in the compact set K, x [0, T]. By Remark 2.2, we have that f(r; &) = Vkrv (pkuv f(p: €)),
which belongs to F thanks to the assertion ( ), i.e. f(r;€) is bounded on V x K, x [0, Z1x o, 00) x 24,
where V' is some neighbourhood of » = 0 in C. On the other hand, hypothesis (H1) and (H2) imply that
Q(r¥sin @, r* cos0) = r*q(r,0) with G(0,0) > 6 > 0, for all § € [0, T]. Hence, there exists ro > 0 such that
G(r,0) > 0/2, for all v € [0,7¢] and 6 € [0, 5]. Accordingly, this shows that F'(r” sin @, r* cos;¢) = (Trf))k is
bounded, when r € [0,7¢], 0 € [0, 5] and (a,/\, U) € K, X [Ao,0) X %, as desired. [ ]

The reason to require the boundedness of f on W x K, x [Ag, 00) X %, where W is a neighbourhood of
the origin in C?, and not just in R?, is illustrated by the following example.

Example 2.6. The analytic function f(s;\) = sin(A?s) is bounded on R x [\, 00). However ©,f(s;\) =
As cos(A%s) is not bounded on (—sg,sp) X [Ag,0), for any sy > 0. Notice that, although there exists a
neighbourhood of R X [Ag, 00) in € x [Ag, 00) where the analytic extension of f is bounded, this function is
unbounded on U X [Ag, o0), for any neighbourhood U of s = 0 in C. Thus, f does not belong to FJ according
to Definition 2.4. O

Proposition 2.7. For each ¢ € ZT, F, € F} and there exists ey > 0 such that co(¢,a,\,U) is an analytic
function in (§,a,\) € [0,e7] X K4 X [N, 00) and a uniformly bounded linear operator on % .

Proof. To prove that F, € F}, we proceed by induction on £. The case £ = 0 follows from assertion (d)
of Lemma 2.5, because Fy = U. The inductive step follows easily from the recursive definition Fyy; =
ViV(F,V; 1), by using assertions (a), (b) and (d) of Lemma 2.5. Using again Lemma 2.5, we deduce that
% € Fy, which implies that ¢, = %L:o € FJ. By condition (c) in Definition 2.4, we have

sup {|ce(s,4;a, A\, U)| : (s,4) € W, (a, \,U) € [Ng, +00) X Ko X %} < +00,

for some neighborhood W of (s,e) = (0,0). The analyticity of ¢, in the remaining parameters (¢,a,\)
follows easily from Definition 2.1 by the analyticity of %U (s+0(4)) and Vo (s + o(4)). ]
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Next, we shall study the remainder term

T(s) — (s
he(s) = % (15)
of the asymptotic expansions in Theorem A. Notice that in the case of assertion (b), h¢(s) = s~*D(s), where

we denote
s+19¢ V

D(s;4):= D(s +V.) = exp </\/1 P:Eg dt) . (16)

The following two lemmas give the basis of induction k& = 0 in assertion (b) and (a) of Theorem A,
respectively.

Lemma 2.8. For each ¢ € Z and y > 0 small enough, there exists eg > 0 such that fjgg;; and s~'D(s)

tend to zero, as s — 0T, uniformly on [0,e0] x K, X [Ag, 00).

Proof. Note that it suffices to prove the first limit as y < 1 is fixed and D(y) < 1. By definition we have

that i’fg((;; = exp(—B(s,y;¢,a,\)), with

x + )

YV (
B(s,y,s,a,)\).—Elog(s/y)—!—)\/s Pzt 0. dx.

We must prove that there exists g > 0 such that lim+ B(s,y;e,a,\) = 400, uniformly on [0,&0] X K, X
s—0

[Ag,00). By hypothesis, due to the compactness of K,, there exists a positive constant m; such that
Va(x) = my, for any = € [s — Y.,y — 9.] and a € K,. Recall that ¥, is the biggest root of P., which tends
to zero as ¢ — 0, and that 9. = o (¢), with o analytic at zero. We have that P.(x +9.) = 2Q(x,4). Due to
9(0,0) = 0, for every mg > 0 there exists €9 > 0 such that |Q(z,4)| < myo, for all £,2 € [0,¢0]. Hence,

. _ ! Valo +9:) m
B(s,y;e,a,\) = Llog(s/y) + )\/s 20 +10.) dx > ()\omo E) log(y/s).

Taking mg small enough, we see that the right hand side tends to +o00, as s — 0%. [ ]

We show now the case k = 0 in assertion (a) of Theorem A. To this end we write, see (15), hy = % with

T(s) —Xe(s) . st
Ts)é and  g(s):= D(s)’

fo(s):= (17)

where D(s) is defined in (16).

Lemma 2.9. For each { € 7", there exists €9 > 0 such that he(s) tends to zero, as s — 0%, uniformly on
KI X [0,50] X Ka X [)\0,00) X 62/1.

Proof. This will follow by applying the uniform L’Hopital’s rule stated in Appendix A taking f, and gy
as in (17). To this end, we must check that these functions verify the five conditions in Proposition 4.1.
Condition (a) is obvious because f; and gy are differentiable for s > 0. Using that Q0,D = VD and
applying Lemma 2.3, we deduce that

241 ¢
—S Fg_,_l —S V@
Orfr=—— d Oyg, = .
A oD an 2= "op
In particular, 959, = — Asg;\/g < 0, for s > 0, which shows condition (b). Moreover,

Osfe _ ©xfe _ Sth+1
0590 Oxge Ve

12



tends to zero, as s — 0T uniformly on [0,&¢] x K, X [A\g,00) X %, for some €9 > 0 small enough. This
follows from Lemma 2.5, taking into account that Fyi; € Fa, thanks to Proposition 2.7. This shows
that (¢) and (d) are verified. It only remains to check (e). The first part follows from Lemma 2.8. To

see the second part, we must verify that, for each fixed s > 0 small enough, fe Ezg = LZE" is bounded on

K, x [0,e0] x K4 X [Ag,00) x % . This follows from Proposition 2.7 and the expressmn

B o U(x) dx
T60=26) | 556y

on account of sup{|U(z) |x € [s+ VYe,2z0]} < ||U|, the monotonicity of the Dulac map D(z) and the

inequalities s + 9. < z < ¢ < 1. We can thus apply Proposition 4.1, which shows that h(s) = I (
to zero, as s — 0T, uniformly on K, x [0,e0] X K4 X [Ag,0) X %, as desired. ]
The induction step, for assertions (a) and (b) in Theorem A, will be treated jointly:
Proposition 2.10. For each £,k € Z7T, there exist vy, € ]—"18 and wy € .7-",% such that
@I;hz = ’U@khg+kﬂ + swyg.
Proof. We proceed by induction on k. For &k = 1, we have that
O e —sF, heV
Ouhy = )\fé_he Age _ —8Fe1 + heVe
ge ge Q
Since T = Sy + s°he = Sepy + 81y, we get hy = sPhyy, + s, with Xf = ZEo2t = S Sey L sT
Therefore,
s*Vy VX — Frya
@)\h@ hg S———— .
g et Q
~—— —_————
Ve,1 We 1

It is clear that vy 1 € FY, because %5 E FYand V, € FQ, by Lemma 2.5. On the other hand, by Lemma 2.3,
1
Vs =5 (Ve — VE) — 3O
14
ST H(QOAT sy — QONDe — s g + s ) - £ QY

Y ) ¢ 1 )
= Qs tON(sTIEY) — 8" Fug g1 + Frgn — XQEZL = Q(-X) +O,\%)) — s"Frypt1 + Frqa.

A
Hence w1 = %Z’Z +O,\X) — %Fe‘l’ll“rl € Fi, thanks to Lemma 2.5 and Proposition 2.7. We now complete
the inductive step:

w
O5 T hy = ©1(O5he) = Ox(verhrky + swen) = Ox(ver) hotip + VeOxoiny + S(% + Oxrwik)

= O (ver) " P (k4 1) + SOX (Ver) ZY g, + Ver Vet 1 hog (k1) + SWetkp1] + S(% + O wey)

Wyl
= (Ox(ver)s" + vervesru1) Porrery + 5 (Oa(Ver) X 1, + VerWerkpn + —— + Orwer) |

A

Ve k
2, k+1 We k41

Here vy k1 € Fiyq and wy i1 € Fioy on account of the inductive hypothesis, Lemma 2.5 and Proposi-
tion 2.7. This completes the proof. [ |
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Proof of Theorem A. The coefficients ¢;, for j € Z*, are given in Definition 2.1. Proposition 2.7 shows
that there exists €9 > 0, such that cg,c1,...,ce are analytic on [0,eq] X K, X [\g,0) and are uniformly
bounded linear operators on %/. By Proposition 2.10, we get

Gghé = UZThZ-H‘u, + s wer,

with vg,. and wy,. bounded on [0, sg] X [0, 0] X [Ag, 00) X K4 X %, for some sg > 0 and gy > 0, thanks to
assertion (e) in Lemma 2.5. Notice that the linearity of wy, on U implies that in the case (b), where U = 0,
we have wp, = 0. We conclude that the limits, as s tends to zero, in assertions (a) and (b) of Theorem A
are zero uniformly on the corresponding parameters, using Lemma 2.9 and Lemma 2.8, respectively. [ ]

Proof of Corollary A. It is easy to check that on the half planes ¢ > 0 and £ < 0 the corresponding
functions Q(s;4), given by (12), satisfy hypothesis (H1) and (H2). To show assertion (a), we apply twice
assertion (a) of Theorem A, with p_ =1 and p; = u, to deduce that

Ef:o cj (E,a, A, U)sj + szh[(s)7 for € <0,
y(s+9.) =

E§:0 cj+ (51/“, a, \, U)sj + séhZ(s), for e > 0,

where the functions h;t (s), depending on the parameters (zo,¢, a, A, U), satisfy
OLhE(s) » 0, as s— 0T,

uniformly on K, X [—&g, 0] X [Ag,00) X Ky X%, for = 0,1,..., k. The flatness property of h;t, together
with the analyticity of c;t (£,a,A\,U) on ([—eg,e0] N {Fe > 0}) x K, % [Ao,00)x %, easily implies that, for all
j € Z, the functions

cj (e,a,A,U), for € <0,
cj(sl/“,a, \U), fore >0,

cj(s,a,)\,U)::{

are continuous at £ = 0. Moreover, the coefficients cg, ..., ¢;y,—1 are identically zero, for € < 0. This follows
from the fact that U(zx) = 2™U(x) and ¥, = 0, for ¢ < 0, by using the recursive definition of ¢; and
Remark 2.2. Finally, the derivative properties of the function

hy (s;xo,e,a,\,U), fore <0,
he(s;xo,e,a,\,U):=
hf (s;20,6,a,\,U), fore >0,

follow from the corresponding properties of hzt. Assertion (b) in Corollary A is deduced from assertion (b)
in Theorem A in a similar way. [ |

3 Temporal results

This section is dedicated to the proof of Theorem B, which follows by applying Theorem A. It will be clear
now why we need uniformity on A € [A\g, 00) and U varying in the Banach space % .

Proof of Theorem B. Consider ¢,k € ZT and a compact set K, C A. We decompose the given function
Uy(z,y) = Zn>1 Up.o(z)y"™ !, with U, , € %, for all n € N and a € K,. Since U,(x,y) is absolutely
convergent on [z, [y[ < 1, the series > -, [|Uyql[y™ and all its y0, derivatives have convergence radius at
least 1. Consequently,

an”Un,a” < o0, forallr € Z" and a € K,. (18)
n>1
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Let y(x;s) be the trajectory of the vector field P.(z)0, — Va(x)yd,, with initial condition y(s;s) = 1.
Note that the Dulac time in the statement is given by
b Ua(,y(a : ' na(2)y" (;
T(sik.a) :/ a(@y(x;s))y(z; ) dx:/ > Una(@)y" (235) -

s+, Pg(]}) s+, n>1 PE(J:)

— 1W -
/II,IL(S)—/6 PE(I) d )

We define

whose derivative satisfies

BT (s) = / Una(@0"(@i9) y - Unal®) _ nVals) o (o Una(s)

P.(z) YT P(s) P9 P.(s)

by using dsy(z; s) = y(z; )% P ES) This shows that T),(z) is the trajectory with initial condition T,,(1) = 0

of the vector field obtained from (6) by replacing U(x) by Uy, o(x), Va(z) by “Zggg and A by nV,(0). We can

thus apply Theorem A, with the given ¢,k € Z*, the compact set K, C A, \g:= inf{V,(0) :a € K,} >0
and U € % to obtain the asymptotic expansion of T, (s):= T, (s + 9J.) at s = 0. So, there exists g9 > 0 and

¢
:chzianV na)sj—i—s hg(ssanV( )Un,a),
=0

where the coefficients ¢; depend analytically on (¢, a,n) € [0,e0] X Kq x[1, 00). Moreover,
v = sup{\cj(s,a,)\,U)| 2 (e,a,\,U) € ]0,20] x Ko X [Ag, +00) X 02/1} < 400
and, for all positive s, small enough,

Mj (s):=sup {|O%he(s;e,a,\,U)| : (g,a, A\, U) € [0,20] x K4 X [Ag, +00) X % } < +00,

with M} (s) — 0,as s — 0T, forr = 0,1,..., k. In particular, for (¢,a,n) € [0,e0]x K, xNandr =0,1,...,k
we have

|Cj($,a,nVa(0), Un,a)| < ’YjHUn,a” and |®§\h5<53EaavnVa(O),Un,aﬂ < MZ<3>||Un7a|| (19)

Here, it is crucial that Theorem A holds for A unbounded and U varying in the Banach space % .
We define at this point the coefficients
¢i¢,a):= Z cj(¢,nV,(0),a,Up.q), for all j € ZT,
n>1

which are well-defined because the series are uniformly convergent on (¢, a) € [0, eg]xK, thanks to (18), with
r = 0 and the first inequality in (19). In particular, these coefficients are analytic on (¢,a) € [0,q] X K.
On the other hand, by using the second inequality in (19), the series

(s;e,a) ZhgseanV()U a)

n>1

is uniformly convergent on (s,4,a) € [0, sg]x[0, gg]x K, for sg small enough, and it tends to zero, as s — 07,
uniformly on (¢, a). Hence, the series

Z?;l(s; ZZC] ¢, a,nVq( na)sj —|—s£Zhg s;e,a,nV4(0),Uy.q)

n>1 n>lj 0 n>1

—ch a)s’ + s'hy (s34, )
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is uniformly convergent on (s,4,a) € [0, so] x[0, 0] X K4, because it is the sum of £ + 2 uniformly convergent
series. For this reason, we can commute summation and integration in the following expression of the Dulac

time
1
- [, P e = YT
stde p>1 n>1
Accordingly, T (s;¢,a) = Z?:o cj(k,a)s’ + shy(s;¢,a). Finally, taking A = nV,(0) and (10) into account,
forr=1,2,...,k, the series

Z |©The(s;8,a,nV4(0),Unq)| =V, (0) Z n" |O%he(s; €, a,nVe(0), Up.a)| < Va(0)" My (s) Z 2 ||Un,all

n>1 n>=1 n>1

is uniformly convergent in (s,4, a) and tends to zero, as s — 07, uniformly on (¢, a), thanks to (18) and (19).
Recall that uniform convergence of a series of functions does not imply the uniform convergence of its
derivatives. However, if {f,} is a sequence of functions, differentiable on [a,b] and such that {f,(xo)}
converges for some point z¢ € [a,b] and {f/,} converges uniformly on [a, b], then {f,} converges uniformly
on [a,b] to a function f and f'(z) = lim, o f}, (), for all « € [a,b] (see [12, Theorem 7.17]). Taking this
into account, we can assert that ©7h(s;e,a) = Zn>1 O7h(s;e,a,nV,(0),U, ) tends to zero, as s — 0
uniformly on [0, eg] x K, for all r = 0,1,..., k. This concludes the proof of the result. ]

The proof of Corollary B is completely analogous to that of Corollary A.

4 Application to Loud’s system

Proof of Theorem C. To study the passage through the unfolding of saddle-node at infinity we use the
chart of RP? given by (z,w) = (=%, 1), In these coordinates the Loud differential system (1) writes as

v v

%(z(l — F—Dz*+ (2D + 1)zw — (D + 1)w?)0z + w(—F — Dz* + (2D + 1)2w — (D + 1)w2)8w),

which is a meromorphic vector field with Darboux first integral
Iew) = 2 (1227 — )25 e
zyw)=—(1- —1)=—
) 2 ZZ )

(2 D+1) (D+1)

= r-nDp*"Y ~ 3FD w? — %. One can verify that the local change of coordinates given by

where g(z,w):=

(20)

{”” T Vi Vew) }

brings the above vector field to (13)

m((xQ —e)xdx — (2F — 2°)ydy),

—1
with a:= (D, F), Uy(z,y):= ( ((221?'11)) xy — (a';l)y2 2) * and particularizing e:= 2(F —1). In these local
coordinates, the period annulus is in the quadrant y > O and x > 9., where 9. is given by (12) with p = 2.
Working on a compact subset K, of {D € (-1,0),F >3 11 we see that U, (z,y) has an absolutely convergent
Taylor series at (z,y) = (0,0) on |z|, |y| < r for some r > 0 depending only on K,. By rescaling the local
coordinates, we can assume that r = 1. Let ® be the local diffeomorphism such that (z,w) = ®(z,y), i.e
the one obtained by inverting (20).
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Since the Loud system (1) is invariant by the symmetry (u,v) — (u, —v), half of the period function
is the Dulac time T of the singular point at infinity between transverse sections ¥; := {v = 0,u ~ 1}
and ¥y := {v = 0,u = —oo}. We decompose it in three parts. Let T5(s) be the local Dulac time
between the normalized transverse sections X7 := ®({y = 1}) and X% := ®({z = 1}) starting at the point
D(s 4+ 9Y.,0), see Figure 4. Let Ti(s) be the time that the trajectory starting at ¥; spends to arrive to
the point ®(s + ¥, 1) in X7 and let T5(s) be the time that the trajectory starting at the point ®(1,s)
spends to arrive to 3a. Finally, let D(s) be the Dulac map between X} and X%, i.e. D(s) is defined so
that the trajectory starting at ®(s + 9., 1) intersects ¥J at ®(1,D(s)). By construction, see Figure 4,
we have T'(s) = T1(s) + Ta(s) + T5(D(s)). We now examine the asymptotic expansion of each piece. To
this end, we denote by Z(A) the space of functions h(s;a), analytic on s € (0, s¢), such that h(s;a) and
s0sh(s;a) tend to zero, as s — 07 uniformly, for a varying in any compact subset of A. Observe that this
space is stable with respect to addition and multiplication. We apply Corollary B (with £ = k = 1) to
obtain £y > 0 and a uniform asymptotic expansion T5(s) = ca2.0 + 2,15 + sha(s), with hy € Z(A) and ¢z ;
continuous on A:= K, N{F € (1 —ep,1 +¢9)}. As we already remarked just before Theorem A, the graph
of the Dulac map D(s) is a trajectory of the vector field x(x? — )0z + 2F(1 — %)yay Hence, by applying
assertion (b) of Corollary A with A = 2F > 1, we deduce that D(s) = sho(s), with hg € Z(A). On the other
hand, the time function T3(s) is analytic in s, whereas T7(s) is an analytic function on s composed with
the continuous function (s,e) — s+ ¥.. Accordingly, they can be written as T;(s) = ¢;,0 + ¢;.15 + shi(s),
with h; € Z(A) and ¢ ¢ and ¢;;; continuous on A, for i = 1,3. Note that T5(D(s)) = ¢z + shs(s), with
hs(s) := e31ho(s) + ho(s)hs (sho(s)) and it can be easily checked that hs € Z(A). Summing up the three
terms we obtain that the period function of the Loud system is of the form

P(s;D,F)=2T(s; D, F) =co(D,F) + ¢1(D, F)s + sh(s; D, F),

with h:= 2(hy + hy + hs) € Z(A) and ¢; continuous on A. On the other hand, restricting to AN{F € (3,1)}
the singularity at (z,y) = (9,0) is a linearizable saddle and we can apply [5, Proposition 5.2] to obtain
the asymptotic expansion of the period function working with a different parametrization, say §. The two
parametrizations differ by composition with a diffeomorphism § = r(s) such that r(0) = 0 and 7'(0) =
a(D, F) #0, for F = 1. In this other parametrization the coefficient ¢ (D, F) of § is explicitly calculated

v7(2D +1) T((3F — 1)/(2F))
F(D+1)30((4F —1)/(2F))

é(D,F) =

Since ¢1 (D, F) = «(D, F)é1 (D, F) and one can verify that

202D + 1)

lim é(D,F)= "2~
A el B =y

it follows that ¢1(D,1) # 0, for D € (—=1,0) \ {—3}. On account of the continuity of ¢; and h € Z(A), we
conclude that
P/(s;D,F) = e1(D, F) + h(s; D, F) + sl/ (s D, F) # 0,

in a neighbourhood of any point (s, D, F) = (0, Dy, 1) in (0,1) x (=1,0) x (3,2), with Dy € (=1,0)\ {—3}.
This concludes the proof of the result. [ |
Appendix A

In our approach to the proof of Theorem A, the use of L’Hopital’s rule with uniformity in the parameters
is fundamental. We have not found such a version in the literature. For this reason we present here the
precise statement that we need together with a proof of it.
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Proposition 4.1. Consider two functions f,, g,: (a,b) — R depending on a parameter v belonging to an
arbitrary topological space A and verifying the following:

(a) f, and g, are differentiable on (a,b),
(b) g, (x) #0, for all x € (a,b) and v € A,

(¢) for allv € A, there exists L, € R such that lim Iy(@) L, uniformly on v € A,

r—at gx//(m)
(d) sup{|L,|;v € A} < o0,

gv(x)

o) | = To0 uniformly on

(e) there exists ¢ € (a,b) such that, for each y € (a,c), we have that lim+
T—ra
fu(y)

9v(y)

veAh andsup{

‘;ueA}<+oo.

Then lim £ = L, uniformly on v € A.

Jmoe ) T

fo(@)
o@ —Lv

v € A. Let us take £1 := min (ﬁ’ 1), where M := sup |L, |, which is well defined thanks to assumption (d).
veA

Proof. For a given £ > 0, we must find 6 > 0 such that, if € (a,a + 0), then

< g, for all

From (c) there exists 6; > 0 such that, if ¢ € (a,a+ d1), then 598
y € (a,a+01). By the Mean Value Theorem, for each = € (a,y), there exists ¢ = ¢; ., € (2,y) C (a,a+ 1)

So(@)=fu(y) _ f(c) ;
such that R OERORREACE Accordingly,

— L,,’ < ey, forall v € A. Let us fix any

fo(x)  fu(y)
g () g () .
1— 9v(y)
gv ()

fr ()

—L,
g,(c)

v

< é€1. (21)

On the other hand, the assumption (e) guarantees that there exists z, € (a,y) such that, if z € (a, 2z,), then

fv(y)
gv ()

Here, we also used that 2% — L) 9.(v)
gv(z) 9v(y) gv(z)

(L, + 51)9“—("’) < (|Ly| + €1)e1, and thus

90 (y)
g ()

tends to zero uniformly on v € A, as * — at. Note then that

< ey and

’ <eq, forallveA. (22)

gu(x)
= (ILv] +e1)er < (Lo isl)gygz; < (|Lu| + €1)er. (23)
The second inequality in (22) shows in particular that 1 — g:—g;"; > 0, because 1 < 1, so that, from (21), we
get
gy(y)> fly) _ fu(@) ( gu(y)) foly)
—e1+ L, (1— + < <(e1+L)[1- + .
Cat b nw) T o S e ST Lw) T aw
Therefore,

gu(y) + fu(y) < fl/(x) *Lu <e— (Ly+€1)

e (LV - 61)91/(-'15) gl/(-f) gl/(l') gl/(m) gV(x) '

From this, on account of (23) and the first inequality in (22), we get that

fv()
gu(-T)

—2e1 — (|LV| + 61)81 <

— L, <21+ (|L,| +&1)er-
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Accordingly,

gug; — L, <e1(2+ Ly +e1) <e1(B+|Ly]) <e1(3+ M) <,
as desired, and so, taking 6 = z, — a, the result follows. .

Appendix B

In this section we recall the notions of Darboux and Liouville local integrability of an analytic family
Yy = Ax(x, )9y + Bx(z,y)9, of planar vector fields defined on some open subset U C R? and parametrized
by A belonging to another open subset V' C R™. For each A € V, we consider the dual 1-form w) =
—By(z,y)dx+ Ax(x,y)dy. The family {¥, A € V} can also be thought of as a single analytic vector field Y’
defining a one-dimensional foliation on U x V. In the same vein we can also think of the family {wy, A € V}
as a single 1-form w on U x V, but in general it is not integrable (i.e. it does not define a codimension one
foliation). From this point of view, wy is the restriction of w to the slice A.

Definition 4.2. The unfolding Y) is locally Darbouz integrable if the dual 1-form wy admits a local mero-
morphic integrating factor gy(z,y) which is analytic in A, i.e. such that d(giwy) = 0. The unfolding Y)
is locally Liouville integrable if there exists an analytic family 7, of local meromorphic differential 1-forms
such that dwy = wy Any and dny = 0. O

Remark 4.3. Notice that Darboux integrability implies Liouvillian integrability because the logarithmic
derivative 1y := dlog gy = d9x of g meromorphic integrating factor g, of wy is closed and satisfies dwy =
wx A nx. Moreover, the equality gydwy = wy A dgy implies that the zeros and poles of gy are invariant by
wx. On the other hand, if wy is Liouville integrable, then gy = exp([ 7)) is a (not necessarily meromorphic)
integrating factor of wy. 0

According to [11], any analytic unfolding of a saddle-node (i.e. an analytic family of vector fields with a
saddle-node singularity at some parameter value )\g) of codimension p > 1 is analytically orbitally equivalent
to a (non unique) unfolding in the following prenormal form:

Ya(z,y) = Px(x)0, + (PA(x)Ro,,\(m) + Ry (x)y + y2R27,\(x, y))ay, (24)

where Py (z) = 2"t + v, (Va4 -+ i (N)z + vp(N), with Py (z) = 2# T, Ry (z) =1+ a(X)a# and
Ry » and Ry ) are germs of holomorphic functions. The dual form of the vector field Y}, is

wx = Pa(x)dy — (Px(z)Rox(x) + yRix(x) + y* Rox (2, y)) da.

Remark 4.4. If Ry (z,y) = 0 (respectively, Ry x(z) = 0 and R »(7,y) = y* 1Ry \(x), for some k > 1)

then wy is Liouville integrable with 1y = —%W dx (respectively, ) = %de— (k+ 1)’1—;’).
On the other hand, if Ry,x =0 and Ry ) = 0, then w) is Darboux integrable with inverse integrating factor

gx(z,y) = yPx(z). O

The next result shows that the converse of the last assertion in the previous remark is also true.

Proposition 4.5. Any locally Darboux integrable saddle-node unfolding is analytically orbitally equivalent
to (24) with Ry » =0 and Ry » = 0.

Proof. By the preparation theorem in [11] we can assume that the saddle-node unfolding has the form (24),
although as a matter of fact we will only use that Ry »,(0) # 0. Let gx(z,y) be a meromorphic integrating
factor of wy. We claim that the singular point (0,0, \g) € R™*2 of Y possesses an analytic center manifold. In
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this regard it is well known (see for instance [1]) that there exists a unique formal series y = éx(x) € C[[z, A]]
satisfying
dy _ Pa(z)Roa(x) + yRia(z) +y° Ran(@,y)
dx Py (z)
Thus, by applying the Center Manifold Theorem (see for instance [3, 4]), if the claim is not true then all the
invariant analytic hypersurfaces of Y passing through (0,0, \g) € R"*2 are contained in Py (z) = 0. Consider
the prime decomposition of Py =[] y Pj”)\ in the ring of convergent complex power series at (z, \) = (0, \g)
with ged(P; 5, Pjx) = 1if ¢ # j. Since the zeros and poles of a meromorphic integrating factor define
analytic invariant varieties (recall Remark 4.3), we can assert that

ax(x,y) = ux(z, y)]s,\(x) with uy a unity and Py := I_IP;C;\7 for some k; € Z.
J

For convenience, let us write uy = exp(ty) for some analytic function ¢y = ¢)(z,y). Then some computations
show that

1 dgx Pl
0= —d(grwy) = dwx + == Awy =dwy + | dty + ki—l2de | Aw
0 (grwn) A 0 A A A Ej P A

/

P!
— P;\ + Ry + 8y(y2R27A) + POty + (R07)\P>\ + Ry + RQ,,\y2)ayt)\ + Py Z kjﬁ dx A dy. (25)
j Js

Taking the limit (z,y, A) — (0,0, \g) above we get that Ry »,(0) = 0. This is a contradiction and so the
claim is true. By a suitable local change of coordinates we can assume that the center manifold is given by
y = 0. Accordingly, Ro = 0 and the integrating factor must write as gx(x,y) = ux(z,y)P(z)y*, with
uy = exp(ty) and Py as before, and kg € Z. Next we will use again that q%d(gyu)\) = 0 taking advantage of
the previous computation. To this end note that i]’% =dtx+ 3 k; ?’i dx + kod—yy. Consequently, in order
7,

to obtain q%d(g,\w,\)7 it suffices to add the term ko‘%y Awx = ko(R1x» + yR2 ) into (25) because Ry » = 0.
Evaluating at y = 0 the equality that we thus obtain we get

24
/ JA
Py 4+ (1 + ko)Rix + Pysx+ Py Ej kjipj =0,

where sy(z):= 9,tr(x,0). Taking the limit (z, A\) — (0, \g) above and using that R; x,(0) # 0, we deduce
that kg = —1. Therefore, on account of Py =[] j P;-:{\, the above expression yields to

! P!\ P!
—sx= =2+ ) kL= = kj+mr;) 2=,
A P)\ ZJ: J Pj,)\ zj:( J ])Pj,)\

Since sy () is analytic and the factors P; y are pairwise coprime, the above equality implies that k; +r; =0
for all j and that sy(z) = Oytx(x,0) = 0, log(ux(x,0)) is identically zero. The first fact implies that

gr(z,y) = Z}(f(’;’)), whereas the second one that uy(x,0) is a non-zero constant, say vy. It is clear then that

%ﬁ‘y) = yBx(z,y) + 1, with By(z,y) an analytic function.

At this point the idea is to use [2, Theorem 2.1] describing what type of first integral admits an arbitrary
Darboux integrable 1-form in terms of the integrating factor. However we can not apply directly this result
because it does not contemplate the parameter case. Instead, we will adapt its proof to our situation by

considering the closed 1-form
= IAEN (dy _ R dx) .
U Yy Py(x)
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Taking g*(w’y) = Bﬁfaz)’) + yPi(m) into account, we get that Qy = Ay (x,y)dx + Bx(z,y)dy with

M= 5 (Rl,m)BA(z,y) n ;um,ymmx,y)) |

In particular, Ax(z,0) = 0. This, together with the fact that 0,Ax(x,y) = 0,Bx(x,y) with Bx(z,y)
an analytic function, implies that Ay (z,y) is in turn analytic. Therefore, since a closed analytic 1-form
must be exact, there exists an analytic function ay(z,y) such that Q) = da,,. Hence, we conclude that the

function H)(z,y) = ye®>(@¥) exp(— Il RFI, X(S) dsc) is a first integral of wy. Finally, making the local change of
coordinates § = ye® (*¥) we obtain that Hy (x,9) = yeXp( Il RI; *(S dx) Consequently wy is proportional
to Py(x)dy — R1x(z)gdx. This proves the result. [ |

References

[1] S.A. Carrillo and F. Sanz, Briot-Bouquet’s theorem in high dimension, Publ. Math. 58 (2014), 135-152.
[2] D. Cerveau and J.-F. Mattei, Formes intégrables holomorphes singuliéres, Astérisque 97 (1982).

[3] C. Chicone, Ordinary differential equations with applications, Texts in Applied Mathematics, 34.
Springer-Verlag, New York, 1999.

[4] P. Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964.

[5] P. Mardesi¢, D. Marin and J. Villadelprat, On the time function of the Dulac map for families of
meromorphic vector fields, Nonlinearity 16 (2003), 855-881.

[6] P. Mardesi¢, D. Marin and J. Villadelprat, The period function of reversible quadratic centers, J. Dif-
ferential Equations 224 (2006), 120-171.

[7] P. Mardesi¢, D. Marin and J. Villadelprat, Unfolding of resonant saddles and the Dulac time, Discrete
and Continuous Dynamical Systems 21 (2008), 1221-1244.

[8] A. Mourtada, Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de
finitude. (French) [Finite cyclicity of hyperbolic polycycles of planar vector fields. Finiteness algorithm)]
Ann. Inst. Fourier 41, (1991), 719-753.

[9] R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert’s Sizteenth Problem, Progr. in Math.,
vol. 164, Birkhiiser Verlag, Basel, 1998.

[10] C. Rousseau, Modulus of orbital analytic classification for a family unfolding a saddle-node, Moscow
Math. Journal 5 (2005), 245-268.

[11] C. Rousseau and L. Teyssier, Analytical moduli for unfoldings of saddle-node vector fields, Moscow
Math. Journal 8 (2008), 547-616.

[12] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill (1976).

[13] A. Seidenberg, Reduction of the singularities of the differential equation Ady = Bdx, Amer. J. Math.
0 (1968), 248-269.

21



	Introduction and main results
	Orbital results
	Temporal results
	Application to Loud's system



