Quasi-Cyclic Codes as Cyclic Codes over a Family of Local Rings

Steven T. Dougherty, Cristina Fernández-Córdoba, and Roger Ten-Valls*"

December 1, 2015

Abstract

We give an algebraic structure for a large family of binary quasicyclic codes. We construct a family of commutative rings and a canonical Gray map such that cyclic codes over this family of rings produce quasi-cyclic codes of arbitrary index in the Hamming space via the Gray map. We use the Gray map to produce optimal linear codes that are quasi-cyclic.

Key Words: Quasi-cyclic codes, codes over rings.

1 Introduction

Cyclic codes have been a primary area of study for coding theory since its inception. In many ways, they were a natural object of study since they have a natural algebraic description. Namely, cyclic codes can be described as ideals in a corresponding polynomial ring. A canonical algebraic description for quasi-cyclic codes has been more elusive. In this paper, we shall give an algebraic description of a large family of quasi-cyclic codes by viewing them as the image under a Gray map of cyclic codes over rings from a family which we describe. This allows for a construction of binary quasi-cyclic codes of arbitrary index.

[^0]In [6], cyclic codes were studied over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$ which give rise to quasi-cyclic codes of index 2. In [1], [2] and [3], a family of rings, $R_{k}=\mathbb{F}_{2}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}=0\right\rangle$, was introduced. Cyclic codes were studied over this family of rings. These codes were used to produce quasi-cyclic binary codes whose index was a power of 2 . In this work, we shall describe a new family of rings which contains the family of rings R_{k}. With this new family, we can produce quasi-cyclic codes with arbitrary index as opposed to simply indices that are a power of 2 .

A code of length n over a ring R is a subset of R^{n}. If the code is also a submodule then we say that the code is linear. Let π act on the elements of R^{n} by $\pi\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right)$. Then a code C is said to be cyclic if $\pi(C)=C$. If $\pi^{s}(C)=C$ then the code is said to be quasi-cyclic of index s.

2 A Family of Rings

In this section, we shall describe a family of rings which contains the family of rings described in [1], [2] and [3].

Let $p_{1}, p_{2}, \ldots, p_{t}$ be prime numbers with $t \geq 1$ and $p_{i} \neq p_{j}$ if $i \neq j$, and let $\Delta=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$. Let $\left\{u_{p_{i}, j}\right\}_{\left(1 \leq j \leq k_{i}\right)}$ be a set of indeterminants. Define the following ring
$R_{\Delta}=R_{p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{t}^{k_{t}}}=\mathbb{F}_{2}\left[u_{p_{1}, 1}, \ldots, u_{p_{1}, k_{1}}, u_{p_{2}, 1} \ldots, u_{p_{2}, k_{2}}, \ldots, u_{p_{t}, k_{t}}\right] /\left\langle u_{p_{i}, j}^{p_{i}}=0\right\rangle$,
where the indeterminants $\left\{u_{p_{i}, j}\right\}_{\left(1 \leq i \leq t, 1 \leq j \leq k_{i}\right)}$ commute. Note that for each Δ there is a ring in this family.

Any indeterminant $u_{p_{i}, j}$ may have an exponent in the set $J_{i}=\left\{0,1, \ldots, p_{i}-\right.$ 1\}. For $\alpha_{i} \in J_{i}^{k_{i}}$ denote $u_{p_{i}, 1}^{\alpha_{i}, 1} \cdots u_{p_{i}, k_{i}}^{\alpha_{i}, k_{i}}$ by $u_{i}^{\alpha_{i}}$, and for a monomial $u_{1}^{\alpha_{1}} \cdots u_{t}^{\alpha_{t}}$ in R_{Δ} we write u^{α}, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in J_{1}^{k_{1}} \times \cdots \times J_{t}^{k_{t}}$. Let $J=$ $J_{1}^{k_{1}} \times \cdots \times J_{t}^{k_{t}}$.

Any element c in R_{Δ} can be written as

$$
\begin{equation*}
c=\sum_{\alpha \in J} c_{\alpha} u^{\alpha}=\sum_{\alpha \in J} c_{\alpha} u_{p_{1}, 1}^{\alpha_{1}, 1} \cdots u_{p_{1}, k_{1}}^{\alpha_{1}, k_{1}} \cdots u_{p_{t}, 1}^{\alpha_{t}, 1} \cdots u_{p_{t}, k_{t}}^{\alpha_{t}, k_{t}}, \tag{1}
\end{equation*}
$$

with $c_{\alpha} \in \mathbb{F}_{2}$.

Proof. The fact that the ring is commutative follows from the fact that the indeterminants commute.

There are $p_{1}^{k_{1}} \ldots p_{t}^{k_{t}}$ different values for $\alpha \in J$. Moreover, for each fixed

We define the ideal $\mathfrak{m}=\left\langle u_{p_{i}, j}\right\rangle_{\left(1 \leq i \leq t, 1 \leq j \leq k_{i}\right)}$. We can write every element in R_{Δ} as $R_{\Delta}=\left\{a_{0}+a_{1} m \mid a_{0}, a_{1} \in \mathbb{F}_{2}, m \in \mathfrak{m}\right\}$. We will prove that units of R_{Δ} are elements $a_{0}+a_{1} m$, with $m \in \mathfrak{m}$ and $a_{0} \neq 0$. First, the following lemma is needed.

Lemma 2.2. Let $m \in \mathfrak{m}$. There exists $\xi>0$ such that $m^{\xi} \neq 0$ and $m^{\xi+1}=$ 0.

Proof. It is enough to prove that for $m \in \mathfrak{m}$ there exit ϵ such that $m^{\epsilon}=0$; for example, it is true if $\epsilon=p_{1} p_{2} \cdots p_{t}$. Then it follows that there must be a minimal such exponent.

Define the map $\mu: R_{\Delta} \rightarrow \mathbb{F}_{2}$, as $\mu(c)=c_{0}$, where $c=\sum_{\alpha \in J} c_{\alpha} u^{\alpha} \in R_{\Delta}$ and $\mathbf{0}$ is the all-zero vector.

Lemma 2.3. Let $c=\sum_{\alpha \in J} c_{\alpha} u^{\alpha} \in R_{\Delta}$. Then c is a unit if and only if $\mu(c)=1$; that is, $c=1+m$, for $m \in \mathfrak{m}$.

Proof. Consider $c=\sum_{\alpha \in J} c_{\alpha} u^{\alpha} \in R_{\Delta}$, and $A=\left\{\alpha \in J \mid c_{\alpha}=1\right\}$.
If $c_{0}=0$, then define, $\beta_{i, j}=p_{i}-\max _{\alpha \in A}\left(\alpha_{i, j}\right)$, for $i=1, \ldots, t, j=$ $1 \ldots, k_{i}$, and $\tilde{c}=u_{1}^{\beta_{1}} \cdots u_{t}^{\beta^{t}}$. We have that $c \cdot \tilde{c}=0$ and therefore c is not a unit.

In the case when $c_{0}=1$, there exists $m \in \mathfrak{m}$ such that $c=1+m$. Consider the maximum ξ such that $m^{\xi} \neq 0$. We know such a ξ exists by Lemma 2.2. Then, $(1+m)\left(1+m+\cdots+m^{\xi}\right)=1+m^{\xi+1}=1$. Therefore $c=1+m$ is a unit.

As a natural consequence of the proof of the previous lemma, we have the following proposition.

Proposition 2.4. For $m \in \mathfrak{m}$,

$$
(1+m)^{-1}=1+m+\cdots+m^{\xi},
$$

where ξ is the maximum value such that $m^{\xi} \neq 0$.
Note that $\mu(m)=0$ for $m \in \mathfrak{m}$. In fact, $\mathfrak{m}=\operatorname{Ker}(\mu)$.
Lemma 2.5. The ring R_{Δ} is a local ring, where the maximal ideal is \mathfrak{m}. Moreover $\left[R_{\Delta}: \mathfrak{m}\right]=2$ and hence $R_{\Delta} / \mathfrak{m} \cong \mathbb{F}_{2}$.

Proof. We have that $R_{\Delta} / \operatorname{Ker}(\mu) \cong \operatorname{Im}(\mu)=\mathbb{F}_{2}$. Therefore $\left[R_{\Delta}: \mathfrak{m}\right]=2$ and \mathfrak{m} is a maximal ideal.

If $\mathfrak{m}^{\prime} \neq \mathfrak{m}$ is a maximal ideal, then there exits a unit $u \in \mathfrak{m}^{\prime}$ which gives that $\mathfrak{m}^{\prime}=R_{\Delta}$. Therefore \mathfrak{m} is the unique maximal ideal.

Now we will prove that R_{Δ} is in fact a Frobenious ring. To do that, first we shall determine the Jacobson radical and the socle of R_{Δ}. Recall that for a ring R, the Jacobson radical consists of all annihilators of simple left R-submodules. It can be characterized as the intersection of all maximal right ideals. Since R_{Δ} is a commutative local ring, we have that its Jacobson radical is:

$$
\operatorname{Rad}\left(R_{\Delta}\right)=\mathfrak{m}=\left\langle u_{p_{i}, j}\right\rangle_{\left(1 \leq i \leq t, 1 \leq j \leq k_{i}\right)} .
$$

The socle of a ring R is defined as the sum of all the minimal one sided ideals of the ring. For the ring R_{Δ} there is a unique minimal ideal and hence the socle of the ring R_{Δ} is:

$$
\operatorname{Soc}\left(R_{\Delta}\right)=\left\{0, u_{p_{1}, 1}^{p_{1}-1} \cdots u_{p_{1}, k_{1}}^{p_{1}-1} \cdots u_{p_{t}, 1}^{p_{t}-1} \cdots u_{p_{t}, k_{t}}^{p_{t}-1}\right\} .
$$

Note that the socle of R_{Δ} is, in fact, the annihilator of $\mathfrak{m}, A n n_{R_{\Delta}}(\mathfrak{m})$.
Theorem 2.6. The local ring R_{Δ} is a Frobenius ring.
Proof. With the definition of $\operatorname{Rad}\left(R_{\Delta}\right)$ and $\operatorname{Soc}\left(R_{\Delta}\right)$, we have that $R_{\Delta} / \operatorname{Rad}\left(R_{\Delta}\right)=$ $R_{\Delta} / \mathfrak{m} \cong \mathbb{F}_{2} \cong S o c(\mathfrak{m})$ and hence R_{Δ} is a Frobenius ring.

For a complete description of codes over Frobenius rings, see [7].

2.1 Codes over R_{Δ} and their Orthogonals

Recall that a linear code of length n over R_{Δ} is a submodule of R_{Δ}^{n}. We define the usual inner-product, namely

$$
[\mathbf{w}, \mathbf{v}]=\sum w_{i} v_{i} \text { where } \mathbf{w}, \mathbf{v} \in \mathcal{R}_{\Delta}^{n} .
$$

The orthogonal of a code C is defined in the usual way as

$$
C^{\perp}=\left\{\mathbf{w} \in \mathcal{R}_{\Delta}^{n} \mid[\mathbf{w}, \mathbf{v}]=0, \forall \mathbf{v} \in C\right\} .
$$

By Theorem 2.6, we have that R_{Δ} is a Frobenius ring and hence we have that both MacWilliams relations hold, see [7] for a complete description. This implies that we have at our disposal the main tools of coding theory to study codes over this family of rings. In particular, we have that $|C|\left|C^{\perp}\right|=$ $\left|R_{\Delta}{ }^{n}\right|=2^{\Delta n}$.

2.2 Ideals of R_{Δ}

In this subsection, we shall study some ideals in the ring R_{Δ}. We will see later in Theorem 5.5, the importance of understanding the ideal structure of R_{Δ}.

Let A_{Δ} be the set of all monomials of R_{Δ} and \widehat{A}_{Δ} be the subset of A_{Δ} of all monomials with one indeterminant. Clearly $\left|A_{\Delta}\right|=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}=\Delta$
and $\left|\widehat{A}_{\Delta}\right|=p_{1}^{k_{1}}+p_{2}^{k_{2}}+\cdots+p_{t}^{k_{t}}$. View each element $a \in A_{\Delta}, a=u^{\alpha}$ for some $\alpha \in J$, as the subset $\left\{u_{p_{i}, j}^{\alpha_{i, j}} \mid \alpha_{i, j} \neq 0\right\}_{\left(1 \leq i \leq t, 1 \leq j \leq k_{i}\right)} \subseteq \widehat{A}_{\Delta}$. We will denote by \widehat{a} the corresponding subset of \widehat{A}_{Δ}. For example, the element $a=u_{2,1} u_{3,4}^{2} u_{5,2}^{3}$ is identified with the set $\widehat{a}=\left\{u_{2,1}, u_{3,4}^{2}, u_{5,2}^{3}\right\}$. Note that $1 \in A_{\Delta}$ and $\widehat{1}=\emptyset$, the empty set.

Consider the vector of exponents $\alpha=\left(\alpha_{1,1}, \ldots, \alpha_{1, k_{1}}, \ldots, \alpha_{t, 1}, \ldots, \alpha_{t, k_{t}}\right) \in$ J and denote by $\bar{\alpha}$ the vector ($p_{1}-\alpha_{1,1}, \cdots, p_{1}-\alpha_{1, k_{1}}, \cdots, p_{t}-\alpha_{t, k_{t}}$), note that $\overline{\bar{\alpha}}=\alpha$.

Let I_{α} be the ideal $I_{\alpha}=\left\langle u^{\alpha}\right\rangle$, for $\alpha \in J$. Note that $I_{0}=\langle 1\rangle=R_{\Delta}$. We also define $I_{\left(p_{1}, \cdots, p_{1}, p_{2} \cdots, p_{t}, \cdots, p_{t}\right)}=\{0\}$. Now we define the ideal

$$
\widehat{I}_{\alpha}=\left\langle\widehat{u^{\alpha}}\right\rangle=\left\langle u_{p_{i}, j}^{\alpha_{i, j}} \mid \alpha_{i, j} \neq 0\right\rangle_{\left(1 \leq i \leq t, 1 \leq j \leq k_{i}\right)} .
$$

Example 1. Consider $\Delta=3^{2} 5$ and $\alpha=(2,1,2)$. Then with the previous definitions, $I_{\alpha}=\left\langle u_{3,1}^{2} u_{3,2} u_{5,1}^{2}\right\rangle, \widehat{I}_{\alpha}=\left\langle u_{3,1}^{2}, u_{3,2}, u_{5,1}^{2}\right\rangle$, and $I_{\bar{\alpha}}=\left\langle u_{3,1} u_{3,2}^{2} u_{5,1}^{3}\right\rangle$. Note that $\left\langle u_{3,1}^{2}, u_{3,2}, u_{5,1}^{2}\right\rangle^{\perp}=\left\langle u_{3,1} u_{3,2}^{2} u_{5,1}^{3}\right\rangle$. The following proposition will prove this fact in general.
Proposition 2.7. Let $\alpha \in J$ be a vector of exponents. Then $\widehat{I}_{\alpha}^{\perp}=I_{\bar{\alpha}}$.
Proof. It is clear that $I_{\bar{\alpha}} \subset \widehat{I}_{\alpha}^{\perp}$. Then we are going to see that $\widehat{I}_{\alpha}^{\perp} \subset I_{\bar{\alpha}}$. Suppose that it is not true, then there exist an element $b=\sum_{\beta \in J} c_{\beta} u^{\beta} \in \widehat{I}_{\alpha}^{\perp}$ that does not belong to $I_{\bar{\alpha}}$. Then there exists a particular β such that $c_{\beta} \neq 0$ and $\beta_{i, j}<\bar{\alpha}_{i, j}$ for some i and j. Then, $u_{p_{i}, j}^{\alpha_{i, j}} \cdot b \neq 0$ for $u_{p_{i}, j}^{\alpha_{i, j}} \in \widehat{I}_{\alpha}$. Therefore, $b \notin \widehat{I}_{\alpha}^{\perp}$ and $\widehat{I}_{\alpha}^{\perp} \subset I_{\bar{\alpha}}$.

Here, we have $\widehat{I}_{0}^{\perp}=R_{\Delta}^{\perp}=\{0\}=I_{\left(p_{1}, \cdots, p_{1}, p_{2} \cdots, p_{t}, \cdots, p_{t}\right)}=I_{\overline{\mathbf{0}}}$.
Proposition 2.8. The number of elements of I_{α} is $2 \prod_{i \in \bar{\alpha}}{ }^{i}$ and the number of elements of \widehat{I}_{α} is $2^{\Delta-\prod_{i \in \alpha} i}$.

Proof. Consider the set of all monomials of I_{α}. There are $p_{1}-\alpha_{1,1}$ different monomials fixing all the indeterminates except the first one, $u_{p_{1}, 1}$. There are $p_{1}-\alpha_{1,2}$ different monomials fixing all the indeterminates except the second one, $u_{p_{1}, 2}$. By induction and by the laws of counting, there are $\prod_{1 \leq i \leq t, 1 \leq j \leq k_{i}}\left(p_{i}-\alpha_{i, j}\right)$ different monomials in I_{α}. Since $\bar{\alpha}$ is the vector $\left(p_{1}-\alpha_{1,1}, \cdots, p_{1}-\alpha_{1, k_{1}}, \cdots, p_{t}-\alpha_{t, k_{t}}\right)$ and all element in I_{α} are a linear combination of its monomials, we have that $\left|I_{\alpha}\right|=2 \Pi_{i \in \bar{\alpha}}{ }^{i}$. By Proposi-

Example 2. We continue Example 1 by counting the size of the ideals given there. We note that $\Delta=45$. Here $\alpha=(2,1,2)$ and so $\bar{\alpha}=(1,2,3)$. Then $\left|I_{\alpha}\right|=2^{6}=64$ and $\left|\widehat{I}_{\alpha}\right|=2^{45-4}=2^{41}=2,199,023,255,552$.

3 Gray map to the Hamming Space

We will consider the elements in R_{Δ} as a binary vector of Δ coordinates and consider the set A_{Δ}. Order the elements of A_{Δ} lexicographically and use this ordering to label the coordinate positions of \mathbb{F}_{2}^{Δ}. For $a \in A_{\Delta}$, define the Gray map $\Psi: R_{\Delta} \rightarrow \mathbb{F}_{2}^{\Delta}$ as follows:

For all $b \in A_{\Delta}$

$$
\Psi(a)_{b}= \begin{cases}1 & \text { if } \widehat{b} \subseteq\{\widehat{a} \cup 1\}, \\ 0 & \text { otherwise },\end{cases}
$$

where $\Psi(a)_{b}$ indicates the coordinate of $\Psi(a)$ corresponding to the position of the element $b \in A_{\Delta}$ with the defined ordering. We have that $\Psi(a)_{b}$ is 1 if each indeterminant $u_{p_{i}, j}$ in the monomial b with non-zero exponent is also in the monomial a with the same exponent; that is, \bar{b} is a subset of \bar{a}. In order to consider all the subsets of \bar{a}, we also add the empty subset that is given when $b=1$; that is we compare \bar{b} to $\widehat{a} \cup 1$. Then extend Ψ linearly for all elements of R_{Δ}.
Example 3. Let $\Delta=6=2 \cdot 3$, then we have the following ordering of the monomials $\left[1, u_{2,1}, u_{2,1} u_{3,1}, u_{2,1} u_{3,1}^{2}, u_{3,1}, u_{3,1}^{2}\right]$. As examples,

$$
\begin{array}{ll}
\Psi(1)=(1,0,0,0,0,0), & \Psi\left(u_{3,1}^{2}\right)=(1,0,0,0,0,1), \\
\Psi\left(u_{2,1} u_{3,1}\right)=(1,1,1,0,1,0), & \Psi\left(u_{2,1} u_{3,1}^{2}\right)=(1,1,0,1,0,1) .
\end{array}
$$

Proposition 3.1. Let $a \in A_{\Delta}$ such that $a \neq 1$. Then $w t_{H}(\Psi(a))$ is even.
Proof. Since \widehat{a} is a non-empty set then \widehat{a} has $2^{|\widehat{a}|}$ subsets. Thus, $\Psi(a)$ has an even number of non-zero coordinates.

Notice that for $a, b \in A_{\Delta}$ such that $a, b \neq 1$, we have

$$
\left.w t_{H}(\Psi(a+b))=w t_{H}(\Psi(a))+w t_{H}(\Psi(b))-2 w t_{H}(\Psi(a) \star \Psi(b))\right),
$$

which is even, where \star is the componentwise product. Therefore we have the following result.

Theorem 3.2. Let m be an element of R_{Δ}. Then, $m \in \mathfrak{m}$ if and only if $w t_{H}(\Psi(m))$ is even.
Proof. We showed that if $m \in \mathfrak{m}$ then $w t_{H}(\Psi(m))$ is even. Since $|\mathfrak{m}|=\frac{\left|R_{\Delta}\right|}{2}$ and there are precisely $|\mathfrak{m}|=\frac{\left|R_{\Delta}\right|}{2}$ binary vectors in \mathbb{F}_{2}^{Δ} of even weight, then the odd weight vectors correspond to the units in R_{Δ}.

Each code C corresponds to a binary linear code, namely the code $\Psi(C)$ of length Δn. It is natural now to ask if orthogonality is preserved over the map Ψ. In the following case, as proven in [1], it is preserved as in the following proposition. Recall that the ring R_{k} was a special case of R_{Δ} when Δ was a power of 2 .

Proposition 3.3. Let $\Delta=2^{k}$ and let C a linear code over R_{Δ} of length n. Then,

$$
\Psi\left(C^{\perp}\right)=(\Psi(C))^{\perp}
$$

In general, orthogonality will not be preserved. In the next example we will see that if C is a code over R_{Δ} then, in general, $\Psi(C)^{\perp} \neq \Psi\left(C^{\perp}\right)$ and the following diagram does not commute:

$$
\begin{array}{ccc}
C & \xrightarrow{\Psi} & \Psi(C) \\
\downarrow & & \\
C^{\perp} & \xrightarrow{\Psi} & \Psi\left(C^{\perp}\right)
\end{array}
$$

Example 4. Let $\Delta=6=2 \cdot 3$ and consider the length one code $\widehat{I}_{(1,2)}=$ $\left\langle u_{2,1}, u_{3,1}^{2}\right\rangle$. By Proposition 2.7, we have that the dual is $\widehat{I}_{(1,2)}^{\perp}=I_{(1,1)}=$ $\left\langle u_{2,1} u_{3,1}\right\rangle$. Clearly, $\left[u_{3,1}^{2}, u_{2,1} u_{3,1}\right]=0 \in R_{\Delta}$ but, by Example 3, we have that $\left[\Psi\left(u_{3,1}^{2}\right), \Psi\left(u_{2,1} u_{3,1}\right)\right] \neq 0$.

Computing $\Psi\left(\widehat{I}_{(1,2)}\right)^{\perp}$ and $\Psi\left(\widehat{I}_{(1,2)}^{\perp}\right)$ one obtains binary linear codes with parameters $[6,2,2]$ and $[6,2,4]$, respectively. That is, not only are they different codes but they have different minimum weights and hence not equivalent.

4 MacWilliams Relations

Let C be a linear code over R_{Δ} of length n. Define the complete weight enumerator of C in the usual way, namely:

$$
c w e_{C}(X)=\sum_{c \in C} \prod_{i=1}^{n} x_{c_{i}}
$$

We are using X to denote the set of variables $\left(x_{c_{i}}\right)$ where the c_{i} are the elements of R_{Δ} in some order.

In order to relate the complete weight enumerator of C with the complete weight enumerator of its dual, we first shall define a generator character of the ring. It is well known, see [7], that a finite ring is Frobenius if and only if it admits a generating character. Hence, a generating character exits for the ring R_{Δ}. We shall find this character explicitly.

Define the character $\chi: R_{\Delta} \longrightarrow \mathbb{C}^{\star}$ as

$$
\chi\left(\sum_{\alpha \in J} c_{\alpha} u^{\alpha}\right)=\prod_{\alpha \in J}(-1)^{c_{\alpha}}
$$

In other words, the character has a value of -1 if there are oddly many monomials and 1 if there are evenly many monomials in a given element.

Consider the minimal ideal of the ring

$$
\operatorname{Soc}\left(R_{\Delta}\right)=\left\{0, u_{p_{1}, 1}^{p_{1}-1} \cdots u_{p_{1}, k_{1}}^{p_{1}-1} \cdots u_{p_{t}, 1}^{p_{t}-1} \cdots u_{p_{t}, k_{t}}^{p_{t}-1}\right\}
$$

Note that $\chi(0)=1$ and $\chi\left(u_{p_{t}, 1}^{p_{t}-1} \cdots u_{p_{t}, k_{t}}^{p_{t}-1}\right)=-1$ since it is a single monomial. Therefore, χ is non-trivial on the minimal ideal. Note also that this minimal ideal is contained in all ideals of the ring R_{Δ} since it is the unique minimal ideal. This gives that $\operatorname{ker}(\chi)$ contains no non-trivial ideal. Hence, by Lemma 4.1 in [7], we have that the character χ is a generating character of the ring R_{Δ}. This generating character allows us to give the MacWilliams relations explicitly.

Use the elements of R_{Δ} as coordinates for the rows and columns. Let T be the $\left|R_{\Delta}\right| \times\left|R_{\Delta}\right|$ matrix given by $T_{a, b}=\chi(a b)$, for $a, b \in R_{\Delta}$. By the results in [7], we have the following theorem.

Theorem 4.1. Let C be a linear code over R_{Δ}. Then

$$
c w e_{C^{\perp}}(X)=\frac{1}{|C|} c w e_{C}(T \cdot X)
$$

where $T \cdot X$ represents the action of T on the vector X given by matrix multiplication $T X^{t}$, where X^{t} is the transpose of X.

5 Cyclic codes over R_{Δ}

In this section, we shall give an algebraic description of cyclic codes over R_{Δ}. These codes will, in turn, give quasi-cyclic codes of index Δ over \mathbb{F}_{2}.

Recall that, for an element a in $R_{\Delta}, \mu(a)$ is the reduction modulo $\left\{u_{p_{i}, j}\right\}$ for all $i \in\{1, \ldots, t\}$ and $j \in\left\{1, \ldots, k_{i}\right\}$. Now, we can define a polynomial reduction μ from $R_{\Delta}[x]$ to $\mathbb{F}_{2}[x]$ where $\mu(f)=\mu\left(\sum a_{i} x^{i}\right)=\sum \mu\left(a_{i}\right) x^{i}$.

A monic polynomial f over $R_{\Delta}[x]$ is said to be a basic irreducible polynomial if $\mu(f)$ is an irreducible polynomial over $\mathbb{F}_{2}[x]$. Since \mathbb{F}_{2} is a subring of R_{Δ} then, any irreducible polynomial in $\mathbb{F}_{2}[x]$ is a basic irreducible polynomial viewed as a polynomial of $R_{\Delta}[x]$.

Lemma 5.1. Let n be an odd integer. Then, $x^{n}-1$ factors into a product of finitely many pairwise coprime basic irreducible polynomials over R_{Δ}, $x^{n}-1=f_{1} f_{2} \ldots f_{r}$. Moreover, $f_{1}, f_{2}, \ldots, f_{r}$ are uniquely determined up to a rearrangement.

Proof. The field \mathbb{F}_{2} is a subring of R_{Δ} and $x^{n}-1$ factors uniquely as a product of pairwise coprime irreducible polynomials in $\mathbb{F}_{2}[x]$. Therefore, the polynomial factors in R_{Δ} since \mathbb{F}_{2} is a subring of R_{Δ}. Then Hensel's Lemma gives that regular polynomials (namely, polynomials that are not zero divisors) over R_{Δ} have a unique factorization.

The previous lemma is highly dependent upon the fact that \mathbb{F}_{2} is a subring of the ambient ring. Were this not the case, the lemma would not hold.

As in any commutative ring we can identify cyclic codes with ideals in a corresponding polynomial ring. We give the standard definitions to assign notation. Let $R_{\Delta, n}=R_{\Delta}[x] /\left\langle x^{n}-1\right\rangle$.

Theorem 5.2. Cyclic codes over R_{Δ} of length n can be viewed as ideals in $R_{\Delta, n}$.

Proof. We view each codeword ($c_{0}, c_{1}, \ldots, c_{n-1}$) as a polynomial $c_{0}+c_{1} x+$ $c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}$ in $R_{\Delta, n}$ and multiplication by x as the cyclic shift and the standard proof applies.

The next theorem follows from the cannonical decomposition of rings, noting that for odd n the factorization is unique.

Theorem 5.3. Let n be an odd integer and let $x^{n}-1=f_{1} f_{2} \ldots f_{r}$. Then, the ideals in $R_{\Delta, n}$ can be written as $I \cong I_{1} \oplus I_{2} \oplus \cdots \oplus I_{r}$ where I_{i} is an ideal of the ring $R_{\Delta}[x] /\left\langle f_{i}\right\rangle$, for $i=1, \ldots, r$.

Let f be an irreducible polynomial in $\mathbb{F}_{2}[x]$, then f is a basic monic irreducible polynomial over R_{Δ}. Our goal now is to show that there is a one to one correspondence between ideals of $R_{\Delta}[x] /\langle f\rangle$ and ideals of R_{Δ}. We have that $\mathbb{F}_{2}[x] /\langle f\rangle$ is a finite field of order $2^{\operatorname{deg}(f)}$. Let $L_{0,0}=\mathbb{F}_{2}[x] /\langle f\rangle$ and $L_{p_{1}, 1}=L_{0,0}\left[u_{p_{1}, 1}\right] /\left\langle u_{p_{1}, 1}^{p_{1}}\right\rangle$. For $1 \leq i \leq t, 1 \leq j \leq k_{i}$, define

$$
L_{p_{i}, j}= \begin{cases}L_{p_{i-1}, k_{i-1}}\left[u_{p_{i}, 1}\right] /\left\langle u_{p_{i}, 1}^{p_{i}}\right\rangle & \text { if } j=1, \\ L_{p_{i}, j-1}\left[u_{p_{i}, j}\right] /\left\langle u_{p_{i}, j}\right\rangle & \text { otherwise. }\end{cases}
$$

Then we have that any element $a \in L_{p_{i}, j}$ can be written as $a=a_{0}+$ $a_{1} u_{p_{i}, j}+a_{2} u_{p_{i}, j}^{2}+\cdots+a_{p_{i}-1} u_{p_{i}, j}^{p_{i}-1}$ where $a_{0}, \ldots, a_{p_{i}-1}$ belong to $L_{p_{i}, j-1}$ if $j \neq 1$ or to $L_{p_{i-1}, k_{i-1}}$ if $j=1$.
Proposition 5.4. Let $a=\sum_{d=0}^{p_{i}-1} a_{d} u_{p_{i}, j}^{d}$ be an element of $L_{p_{i}, j}$. Then, a is a unit in $L_{p_{i}, j}$ if and only if a_{0} is a unit in $L_{p_{i}, j-1}$ if $j \neq 1$ or in $L_{p_{i-1}, k_{i-1}}$ if $j=1$.

Proof. Suppose a_{0} a unit in $L_{p_{i}, j-1}$ if $j \neq 1$ or in $L_{p_{i-1}, k_{i-1}}$ if $j=1$. Define $b=a_{0}^{-1}\left(\sum_{d=1}^{p_{i}-1} a_{d} u_{p_{i}, j}^{d}\right)$. Clearly, b is a zero divisor and $1+b$ is a unit since $(1+b)\left(1+b+b^{2}+\cdots+b^{p_{i}-1}\right)=1$. So $a_{0}(1+b)=a$ is also a unit.

If a_{0} is not a unit then there exists b in $L_{p_{i}, j-1}$ if $j \neq 1$ or in $L_{p_{i-1}, k_{i-1}}$ if $j=1$, such that $b a_{0}=0$. Therefore, $b u_{p_{i}, j}^{p_{i}-1} a=0$.

Denote by $\mathcal{U}\left(L_{p_{i}, j}\right)$ the group of units of $L_{p_{i}, j}$. By the previous result we can see that

$$
\left|\mathcal{U}\left(L_{p_{i}, j}\right)\right|= \begin{cases}\left|\mathcal{U}\left(L_{p_{i-1}, k_{i-1}}\right)\right|\left|L_{p_{i-1}, k_{i-1}}\right| & \text { if } j=1, \\ \left|\mathcal{U}\left(L_{p_{i}, j-1}\right)\right|\left|L_{p_{i}, j-1}\right| & \text { otherwise } .\end{cases}
$$

Since $\left|\mathcal{U}\left(L_{0,0}\right)\right|=2^{\operatorname{deg}(f)}-1$, we get that $\left|\mathcal{U}\left(L_{p_{1}, 1}\right)\right|=2^{\operatorname{deg}(f)}\left(2^{\operatorname{deg}(f)}-1\right)$. By induction, we obtain that

$$
\left|L_{p_{t}, k_{t}}\right|=\left(2^{\operatorname{deg}(f)}\right)^{\Delta} \text { and }\left|\mathcal{U}\left(L_{p_{t}, k_{t}}\right)\right|=\left(2^{\operatorname{deg}(f)}\right)^{\Delta}-\left(2^{\operatorname{deg}(f)}\right)^{\Delta-1}
$$

Moreover, the group $\mathcal{U}\left(L_{p_{i}, j}\right)$ is the direct product of a cyclic group G of order $2^{\operatorname{deg}(f)-1}$ and an abelian group H of order $\left(2^{\operatorname{deg}(f)}\right)^{\Delta-1}$.

Theorem 5.5. The ideals of $L_{p_{t}, k_{t}}$ are in bijective correspondence with the ideals of R_{Δ}.

Proof. From Proposition 5.4, it is straightforward that the zero-divisors of $L_{p_{t}, k_{t}}$ are of the form $\sum c_{\alpha} u_{1}^{\alpha_{1}} \cdots u_{t}^{\alpha_{t}}$ with $c_{\alpha} \in L_{0,0}$ and $c_{0}=0$, furthermore there are $\left(2^{\operatorname{deg}(f)}\right)^{\Delta-1}$ of them. This gives the result.

Corollary 5.6. Let n be an odd integer. Let $x^{n}-1=f_{1} f_{2} \ldots f_{r}$ be the factorization of $x^{n}-1$ into basic irreducible polynomials over R_{Δ} and let I_{Δ} be the number of ideals in R_{Δ}. Then, the number of linear cyclic codes of length n over R_{Δ} is $\left(I_{\Delta}\right)^{r}$.

6 One generator cyclic codes

We shall examine codes that have a single generator. We shall proceed in a similar way as was done in [2] for the case when Δ was a power of 2 . If a polynomial $s \in R_{\Delta, n}$ generates an ideal, then the ideal is the entire space if and only if s is a unit. Hence we need to consider codes generated by a non-unit. For foundational results in this section, see [5].

Let \mathfrak{C}_{n} denote the cyclic group of order n. Consider the group ring $R_{\Delta} \mathfrak{C}_{n}$. This ring is canonically isomorphic to $R_{\Delta, n}$. Any element in $R_{\Delta} \mathfrak{C}_{n}$ corresponds to a circulant matrix in the following form:

$$
\sigma\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}\right)=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1} & a_{2} & a_{2} & \ldots & a_{0}
\end{array}\right) .
$$

Take the standard definition of the determinant function, det : $M_{n}\left(R_{\Delta}\right) \rightarrow$ R_{Δ}.

Proposition 6.1. An element $\alpha=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \in R_{\Delta, n}$ is a non-unit if and only if $\operatorname{det}(\sigma(\alpha)) \in \mathfrak{m}$. Equivalently, we have an element $\alpha=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \in R_{\Delta, n}$ is a non-unit if and only if $\mu(\operatorname{det}(\sigma(\alpha)))=0$.

This proposition allows for a straightforward computational technique to find generators for cyclic codes over R_{Δ} which give binary quasi-cyclic codes of index Δ via the Gray map.

7 Binary Quasi-Cyclic Codes

In this section, we shall give an algebraic construction of binary quasi-cyclic codes from codes over R_{Δ}.

Lemma 7.1. Let \mathbf{v} be a vector in R_{Δ}^{n}. Then $\Psi(\pi(\mathbf{v}))=\pi^{\Delta}(\Psi(\mathbf{v}))$.
Proof. The result is a direct consequence from the definition of Ψ.
The following theorems gives a construction of linear binary quasi-cyclic codes of arbitrary index from cyclic codes and quasi-cyclic codes over R_{Δ}.

Theorem 7.2. Let C be a linear cyclic code over R_{Δ} of length n. Then $\Psi(C)$ is a linear binary quasi-cyclic code of length Δn and index Δ.

Proof. Since C is a cyclic code, $\pi(C)=C$. Then by Lemma 7.1, $\Psi(C)=$ $\Psi(\pi(C))=\pi^{\Delta}(\Psi(C))$. Hence $\Psi(C)$ is a quasi-cyclic code of index Δ.

Theorem 7.3. Let C be a linear quasi-cyclic code over R_{Δ} of length n and index k. Then, $\Psi(C)$ is a linear binary quasi-cyclic code of length Δn and index Δk.

Proof. We can apply the same argument as in Theorem 7.2, taking into account that $\Psi(C)=\Psi\left(\pi^{k}(C)\right)=\pi^{\Delta k}(\Psi(C))$.

8 Examples R_{Δ}

Examples of R_{Δ}-cyclic codes of length n for the case $\Delta=2^{k_{1}}$ can be found in [2].

Table 1 shows some examples of one generator R_{Δ}-cyclic codes, for $\Delta \neq 2^{k_{1}}$, whose binary image via the Ψ map give optimal codes ([4]) with minimum distance at least 3 . For each cyclic code $C \in \mathcal{R}_{\Delta}^{n}$, in the table there are the parameters $[\Delta, n]$, the generator polynomial, and the parameters $[N, k, d]$ of $\Psi(C)$, where N is the length, k is the dimension, and d is the minimum distance.

References

[1] S.T. Dougherty, B. Yildiz, and S. Karadeniz, Codes over R_{k}, Gray maps and their Binary Images, Finite Fields Appl., 17, no. 3, 205-219, 2011.
[2] S.T. Dougherty, B. Yildiz, and S. Karadeniz, Cyclic Codes over R_{k}, Des. Codes Cryptog., 63, no. 1, 113-126, 2012.
[3] S.T. Dougherty, B. Yildiz, and S. Karadeniz, Self-dual Codes over R_{k} and Binary Self-Dual Codes, Eur, J. of Pure and Appl. Math., 6, no. 1, 2013
[4] M. Grassl, Table of bounds on linear codes. http://www.codestable.de
[5] T. Hurley, Group Rings and Rings of Matrices, Inter. J. Pure and Appl. Math., 31, no.3, 319-335, 2006.
[6] B. Yildiz, S. Karadeniz, Cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$, Des. Codes Crypt., 54, 61-81, 2011.
[7] Wood, Jay A. Duality for modules over finite rings and applications to coding theory. Amer. J. Math. 121, no. 3, 555-575, 1999.

Table 1: Quasi-cyclic codes of index Δ

[$\Delta, n]$	Generators	Binary Image
[6,2]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}^{2}+u_{3,1}\right) x+u_{2,1} u_{3,1}+u_{2,1}+ \\ & u_{3,1} \end{aligned}$	$[12,6,4]$
[6,3]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}\right) x^{2}+\left(u_{2,1} u_{3,1}+u_{2,1}+\right. \\ & \left.u_{3,1}\right) x \end{aligned}$	[18, 11, 4]
[6,3]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1}+u_{3,1}^{2}+u_{3,1}\right) x^{2}+\left(u_{2,1} u_{3,1}+u_{2,1}+\right. \\ & \left.u_{3,1}\right) x \end{aligned}$	[18, 10, 4]
[6,3]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}^{2}\right) x^{2}+\left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+\right. \\ & \left.u_{3,1}^{2}\right) x \end{aligned}$	[18, 4, 8]
[6,3]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}^{2}\right) x^{2}+\left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+\right. \\ & u_{3,1}^{2} x+u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}^{2} \end{aligned}$	[18, 2, 12]
[6,4]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{2,1}+u_{3,1}\right) x^{3}+\left(u_{2,1} u_{3,1}^{2}+\right. \\ & \left.u_{2,1} u_{3,1}\right) x^{2}+\left(u_{2,1} u_{3,1}+u_{2,1}+u_{3,1}\right) x \end{aligned}$	[24, 8, 8]
[6,4]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+1\right) x^{3}+x^{2}+\left(u_{2,1} u_{3,1}+u_{2,1}+1\right) x+ \\ & u_{2,1} u_{3,1}+u_{2,1}+1 \end{aligned}$	[24, 9, 8]
[6,6]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1}+u_{3,1}^{2}+1\right) x^{5}+\left(u_{3,1}^{2}+1\right) x^{4}+ \\ & \left(u_{2,1} u_{3,1}^{2}+u_{2,1}\right) x^{3}+\left(u_{2,1}+u_{3,1}^{2}+1\right) x^{2}+\left(u_{2,1} u_{3,1}+\right. \\ & \left.u_{2,1}+1\right) x \end{aligned}$	[36, 17, 8]
[6,6]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1} u_{3,1}+u_{3,1}+1\right) x^{5}+\left(u_{2,1} u_{3,1}^{2}+\right. \\ & \left.u_{2,1} u_{3,1}+u_{3,1}^{2}\right) x^{4}+\left(u_{2,1} u_{3,1}+u_{2,1}+u_{3,1}^{2}\right) x^{3}+ \\ & \left(u_{2,1} u_{3,1}+u_{2,1}+1\right) x^{2} \end{aligned}$	[36, 18, 8]
[6,7]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1}+u_{3,1}+1\right) x^{6}+\left(u_{2,1} u_{3,1}+u_{2,1}+u_{3,1}+\right. \\ & \text { 1) } x^{5}+\left(u_{2,1} u_{3,1}+u_{2,1}+1\right) x^{4}+\left(u_{2,1} u_{3,1}+u_{2,1}+1\right) x^{2} \end{aligned}$	[42, 32, 4]
[6,7]	$\begin{aligned} & \left(u_{2,1}+u_{3,1}+1\right) x^{6}+\left(u_{2,1}+u_{3,1}^{2}+1\right) x^{5}+\left(u_{3,1}^{2}+1\right) x^{4}+ \\ & \left(u_{2,1} u_{3,1}+u_{3,1}^{2}+u_{3,1} x^{3}+\left(u_{2,1} u_{3,1}+u_{2,1}+1\right) x^{2}\right. \\ & \hline \end{aligned}$	[42, 33, 4]
[9,2]	$\begin{aligned} & \left(u_{3,1}^{2} u_{3,2}+u_{3,1}^{2}+u_{3,1} u_{3,2}\right) x+u_{3,1}^{2} u_{3,2}^{2}+u_{3,1}^{2} u_{3,2}+ \\ & u_{3,1}^{2}+u_{3,1} u_{3,2} \end{aligned}$	[18, 4, 8]
[9,2]	$\begin{aligned} & \left(u_{3,1}^{2} u_{3,2}^{2}+u_{3,1}^{2}+u_{3,1} u_{3,2}^{2}+u_{3,1}+1\right) x+u_{3,1}^{2} u_{3,2}+ \\ & u_{3,1}^{2} u_{3,2}^{2}+u_{3,1} u_{3,2}+u_{3,1}+1 \\ & \hline \end{aligned}$	[18, 10, 4]
[9,3]	$\begin{aligned} & \left(u_{3,1}^{2} u_{3,2}+u_{3,1}^{2}+u_{3,1} u_{3,2}^{2}+u_{3,1} u_{3,2}+u_{3,1}+u_{3,2}^{2}+\right. \\ & \left.u_{3,2}\right) x^{2}+\left(u_{3,1}^{2}+u_{3,1} u_{3,2}^{2}+u_{3,1} u_{3,2}+u_{3,1}\right) x+u_{3,2}^{2} \end{aligned}$	[27, 18, 4]
[9,4]	$\begin{aligned} & \left(u_{3,1}^{2} u_{3,2}^{2}+u_{3,1}+u_{3,2}^{2}\right) x^{3}+\left(u_{3,1}^{2}+u_{3,1}+1\right) x^{2}+ \\ & \left(u_{3,1}^{2}+u_{3,1} u_{3,2}^{2}+u_{3,1} u_{3,2}+u_{3,2}^{2}+1\right) x \end{aligned}$	[36, 27, 4]
[12,3]	$\begin{aligned} & \left(u_{2,1} u_{3,1}^{2}+u_{2,1}+u_{2,2} u_{3,1}^{2}+u_{2,2} u_{3,1}+u_{2,2}+\right. \\ & u_{3,1}^{2} x^{2}+\left(u_{2,1} u_{2,2} u_{3,1}^{2}+u_{2,1} u_{3,1}^{2}+u_{2,2} u_{3,1}+u_{2,2}\right) x+ \\ & u_{2,1} u_{2,2} u_{3,1}^{2}+u_{2,1} u_{2,2}+u_{2,1} u_{3,1}+u_{2,1}+u_{2,2} u_{3,1}^{2}+ \\ & u_{2,2} u_{3,1} \end{aligned}$	[36, 17, 8]
[12,3]	$\begin{aligned} & u_{3,1} x^{2}+\left(u_{2,1} u_{2,2} u_{3,1}^{2}+u_{2,1} u_{3,1}^{2}+u_{2,2} u_{3,1}+u_{2,2}\right) x+ \\ & u_{2,1} u_{2,2} u_{3,1}^{2}+u_{2,1} u_{2,2}+u_{2,1} u_{3,1}+u_{2,1}+u_{2,2} u_{3,1}^{2}+ \\ & u_{2,2} u_{3,1} \end{aligned}$	[36, 18, 8]

[^0]: ${ }^{*}$ Manuscript received Month day, year; revised Month day, year.
 ${ }^{\dagger}$ S. T. Dougherty is with the Department of Mathematics, University of Scranton, Scranton, PA 18510, USA (e-mail:prof.steven.dougherty@gmail.com).
 ${ }^{\ddagger}$ C. Fernández-Córdoba is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain (e-mail: cristina.fernandez@uab.cat).
 ${ }^{\S} \mathrm{R}$. Ten-Valls is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain (e-mail: roger.ten@uab.cat).
 ${ }^{\text {T}}$ This work has been partially supported by the Spanish MEC grant TIN2013-40524-P and by the Catalan AGAUR grant 2014SGR-691.

