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Abstract

We give an algebraic structure for a large family of binary quasi-
cyclic codes. We construct a family of commutative rings and a canon-
ical Gray map such that cyclic codes over this family of rings produce
quasi-cyclic codes of arbitrary index in the Hamming space via the
Gray map. We use the Gray map to produce optimal linear codes that
are quasi-cyclic.
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1 Introduction

Cyclic codes have been a primary area of study for coding theory since its
inception. In many ways, they were a natural object of study since they have
a natural algebraic description. Namely, cyclic codes can be described as
ideals in a corresponding polynomial ring. A canonical algebraic description
for quasi-cyclic codes has been more elusive. In this paper, we shall give an
algebraic description of a large family of quasi-cyclic codes by viewing them
as the image under a Gray map of cyclic codes over rings from a family which
we describe. This allows for a construction of binary quasi-cyclic codes of
arbitrary index.
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In [6], cyclic codes were studied over F2 + uF2 + vF2 + uvF2 which give
rise to quasi-cyclic codes of index 2. In [1], [2] and [3], a family of rings,
Rk = F2[u1, u2, . . . , uk]/〈u2

i = 0〉, was introduced. Cyclic codes were studied
over this family of rings. These codes were used to produce quasi-cyclic
binary codes whose index was a power of 2. In this work, we shall describe
a new family of rings which contains the family of rings Rk. With this new
family, we can produce quasi-cyclic codes with arbitrary index as opposed
to simply indices that are a power of 2.

A code of length n over a ring R is a subset of Rn. If the code is also a
submodule then we say that the code is linear. Let π act on the elements of
Rn by π(c0, c1, . . . , cn−1) = (cn−1, c0, c1, . . . , cn−2). Then a code C is said to
be cyclic if π(C) = C. If πs(C) = C then the code is said to be quasi-cyclic
of index s.

2 A Family of Rings

In this section, we shall describe a family of rings which contains the family
of rings described in [1], [2] and [3].

Let p1, p2, . . . , pt be prime numbers with t ≥ 1 and pi 6= pj if i 6= j, and

let ∆ = pk1
1 p

k2
2 · · · p

kt
t . Let {upi,j}(1≤j≤ki) be a set of indeterminants. Define

the following ring

R∆ = R
p
k1
1 p

k2
2 ···p

kt
t

= F2[up1,1, . . . , up1,k1 , up2,1 . . . , up2,k2 , . . . , upt,kt ]/〈u
pi
pi,j

= 0〉,

where the indeterminants {upi,j}(1≤i≤t,1≤j≤ki) commute. Note that for each
∆ there is a ring in this family.

Any indeterminant upi,j may have an exponent in the set Ji = {0, 1, . . . , pi−
1}. For αi ∈ Jkii denote uαi,1pi,1

· · ·uαi,kipi,ki
by uαii , and for a monomial uα1

1 · · ·u
αt
t

in R∆ we write uα, where α = (α1, . . . , αt) ∈ Jk1
1 × · · · × J

kt
t . Let J =

Jk1
1 × · · · × J

kt
t .

Any element c in R∆ can be written as

c =
∑
α∈J

cαu
α =

∑
α∈J

cαu
α1,1
p1,1
· · ·uα1,k1

p1,k1
· · ·uαt,1pt,1

· · ·uαt,ktpt,kt
, (1)

with cα ∈ F2.

Lemma 2.1. The ring R∆ is a commutative ring with |R∆| = 2p
k1
1 p

k2
2 ···p

kt
t .

Proof. The fact that the ring is commutative follows from the fact that the
indeterminants commute.

There are pk1
1 · · · p

kt
t different values for α ∈ J . Moreover, for each fixed

α, we have that cα ∈ F2 and hence there are 2p
k1
1 p

k2
2 ···p

kt
t elements in R∆.
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We define the ideal m = 〈upi,j〉(1≤i≤t,1≤j≤ki). We can write every element
in R∆ as R∆ = {a0 + a1m | a0, a1 ∈ F2,m ∈ m}. We will prove that units
of R∆ are elements a0 + a1m, with m ∈ m and a0 6= 0. First, the following
lemma is needed.

Lemma 2.2. Let m ∈ m. There exists ξ > 0 such that mξ 6= 0 and mξ+1 =
0.

Proof. It is enough to prove that for m ∈ m there exit ε such that mε = 0;
for example, it is true if ε = p1p2 · · · pt. Then it follows that there must be
a minimal such exponent.

Define the map µ : R∆ → F2, as µ(c) = c0, where c =
∑

α∈J cαu
α ∈ R∆

and 0 is the all-zero vector.

Lemma 2.3. Let c =
∑

α∈J cαu
α ∈ R∆. Then c is a unit if and only if

µ(c) = 1; that is, c = 1 +m, for m ∈ m.

Proof. Consider c =
∑

α∈J cαu
α ∈ R∆, and A = {α ∈ J |cα = 1}.

If c0 = 0, then define, βi,j = pi − maxα∈A(αi,j), for i = 1, . . . , t, j =

1 . . . , ki, and c̃ = uβ1
1 · · ·u

βt

t . We have that c · c̃ = 0 and therefore c is not a
unit.

In the case when c0 = 1, there exists m ∈ m such that c = 1 + m.
Consider the maximum ξ such that mξ 6= 0. We know such a ξ exists by
Lemma 2.2. Then, (1 + m)(1 + m + · · · + mξ) = 1 + mξ+1 = 1. Therefore
c = 1 +m is a unit.

As a natural consequence of the proof of the previous lemma, we have
the following proposition.

Proposition 2.4. For m ∈ m,

(1 +m)−1 = 1 +m+ · · ·+mξ,

where ξ is the maximum value such that mξ 6= 0.

Note that µ(m) = 0 for m ∈ m. In fact, m = Ker(µ).

Lemma 2.5. The ring R∆ is a local ring, where the maximal ideal is m.
Moreover [R∆ : m] = 2 and hence R∆/m ∼= F2.

Proof. We have that R∆/Ker(µ) ∼= Im(µ) = F2. Therefore [R∆ : m] = 2
and m is a maximal ideal.

If m′ 6= m is a maximal ideal, then there exits a unit u ∈ m′ which gives
that m′ = R∆. Therefore m is the unique maximal ideal.
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Now we will prove that R∆ is in fact a Frobenious ring. To do that, first
we shall determine the Jacobson radical and the socle of R∆. Recall that
for a ring R, the Jacobson radical consists of all annihilators of simple left
R-submodules. It can be characterized as the intersection of all maximal
right ideals. Since R∆ is a commutative local ring, we have that its Jacobson
radical is:

Rad(R∆) = m = 〈upi,j〉(1≤i≤t,1≤j≤ki).

The socle of a ring R is defined as the sum of all the minimal one sided ideals
of the ring. For the ring R∆ there is a unique minimal ideal and hence the
socle of the ring R∆ is:

Soc(R∆) = {0, up1−1
p1,1
· · ·up1−1

p1,k1
· · ·upt−1

pt,1
· · ·upt−1

pt,kt
}.

Note that the socle of R∆ is, in fact, the annihilator of m, AnnR∆
(m).

Theorem 2.6. The local ring R∆ is a Frobenius ring.

Proof. With the definition ofRad(R∆) and Soc(R∆), we have thatR∆/Rad(R∆) =
R∆/m ∼= F2

∼= Soc(m) and hence R∆ is a Frobenius ring.

For a complete description of codes over Frobenius rings, see [7].

2.1 Codes over R∆ and their Orthogonals

Recall that a linear code of length n over R∆ is a submodule of Rn∆. We
define the usual inner-product, namely

[w,v] =
∑

wivi where w,v ∈ Rn∆.

The orthogonal of a code C is defined in the usual way as

C⊥ = {w ∈ Rn∆ | [w,v] = 0, ∀v ∈ C}.

By Theorem 2.6, we have that R∆ is a Frobenius ring and hence we have
that both MacWilliams relations hold, see [7] for a complete description.
This implies that we have at our disposal the main tools of coding theory to
study codes over this family of rings. In particular, we have that |C||C⊥| =
|R∆

n| = 2∆n.

2.2 Ideals of R∆

In this subsection, we shall study some ideals in the ring R∆. We will see
later in Theorem 5.5, the importance of understanding the ideal structure
of R∆.

Let A∆ be the set of all monomials of R∆ and Â∆ be the subset of A∆

of all monomials with one indeterminant. Clearly |A∆| = pk1
1 p

k2
2 · · · p

kt
t = ∆
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and |Â∆| = pk1
1 +pk2

2 + · · ·+pktt . View each element a ∈ A∆, a = uα for some

α ∈ J , as the subset {uαi,jpi,j
|αi,j 6= 0}(1≤i≤t,1≤j≤ki) ⊆ Â∆. We will denote by

â the corresponding subset of Â∆. For example, the element a = u2,1u
2
3,4u

3
5,2

is identified with the set â = {u2,1, u
2
3,4, u

3
5,2}. Note that 1 ∈ A∆ and 1̂ = ∅,

the empty set.
Consider the vector of exponents α = (α1,1, . . . , α1,k1 , . . . , αt,1, . . . , αt,kt) ∈

J and denote by ᾱ the vector (p1−α1,1, · · · , p1−α1,k1 , · · · , pt−αt,kt), note
that ¯̄α = α.

Let Iα be the ideal Iα = 〈uα〉, for α ∈ J . Note that I0 = 〈1〉 = R∆. We
also define I(p1,··· ,p1,p2··· ,pt,··· ,pt) = {0}. Now we define the ideal

Îα = 〈ûα〉 = 〈uαi,jpi,j
|αi,j 6= 0〉(1≤i≤t,1≤j≤ki).

Example 1. Consider ∆ = 325 and α = (2, 1, 2). Then with the previous
definitions, Iα = 〈u2

3,1u3,2u
2
5,1〉, Îα = 〈u2

3,1, u3,2, u
2
5,1〉, and Iᾱ = 〈u3,1u

2
3,2u

3
5,1〉.

Note that 〈u2
3,1, u3,2, u

2
5,1〉⊥ = 〈u3,1u

2
3,2u

3
5,1〉. The following proposition will

prove this fact in general.

Proposition 2.7. Let α ∈ J be a vector of exponents. Then Î⊥α = Iᾱ.

Proof. It is clear that Iᾱ ⊂ Î⊥α . Then we are going to see that Î⊥α ⊂ Iᾱ.
Suppose that it is not true, then there exist an element b =

∑
β∈J cβu

β ∈ Î⊥α
that does not belong to Iᾱ. Then there exists a particular β such that cβ 6= 0

and βi,j < ᾱi,j for some i and j. Then, u
αi,j
pi,j
· b 6= 0 for u

αi,j
pi,j
∈ Îα. Therefore,

b 6∈ Î⊥α and Î⊥α ⊂ Iᾱ.

Here, we have Î⊥0 = R⊥∆ = {0} = I(p1,··· ,p1,p2··· ,pt,··· ,pt) = I0̄.

Proposition 2.8. The number of elements of Iα is 2
∏
i∈ᾱ i and the number

of elements of Îα is 2∆−
∏
i∈α i.

Proof. Consider the set of all monomials of Iα. There are p1 − α1,1 dif-
ferent monomials fixing all the indeterminates except the first one, up1,1.
There are p1−α1,2 different monomials fixing all the indeterminates except
the second one, up1,2. By induction and by the laws of counting, there are∏

1≤i≤t,1≤j≤ki(pi − αi,j) different monomials in Iα. Since ᾱ is the vector
(p1 − α1,1, · · · , p1 − α1,k1 , · · · , pt − αt,kt) and all element in Iα are a linear
combination of its monomials, we have that |Iα| = 2

∏
i∈ᾱ i. By Proposi-

tion 2.7, clearly we have that |Îα| = 2∆−
∏
i∈α i.

Example 2. We continue Example 1 by counting the size of the ideals given
there. We note that ∆ = 45. Here α = (2, 1, 2) and so α = (1, 2, 3). Then
|Iα| = 26 = 64 and |Îα| = 245−4 = 241 = 2, 199, 023, 255, 552.
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3 Gray map to the Hamming Space

We will consider the elements in R∆ as a binary vector of ∆ coordinates
and consider the set A∆. Order the elements of A∆ lexicographically and
use this ordering to label the coordinate positions of F∆

2 . For a ∈ A∆, define
the Gray map Ψ : R∆ → F∆

2 as follows:
For all b ∈ A∆

Ψ(a)b =

{
1 if b̂ ⊆ {â ∪ 1},
0 otherwise,

where Ψ(a)b indicates the coordinate of Ψ(a) corresponding to the position
of the element b ∈ A∆ with the defined ordering. We have that Ψ(a)b is 1 if
each indeterminant upi,j in the monomial b with non-zero exponent is also
in the monomial a with the same exponent; that is, b̄ is a subset of ā. In
order to consider all the subsets of ā, we also add the empty subset that is
given when b = 1; that is we compare b̄ to â∪ 1. Then extend Ψ linearly for
all elements of R∆.

Example 3. Let ∆ = 6 = 2 · 3, then we have the following ordering of the
monomials [1, u2,1, u2,1u3,1, u2,1u

2
3,1, u3,1, u

2
3,1]. As examples,

Ψ(1) = (1, 0, 0, 0, 0, 0), Ψ(u2
3,1) = (1, 0, 0, 0, 0, 1),

Ψ(u2,1u3,1) = (1, 1, 1, 0, 1, 0), Ψ(u2,1u
2
3,1) = (1, 1, 0, 1, 0, 1).

Proposition 3.1. Let a ∈ A∆ such that a 6= 1. Then wtH(Ψ(a)) is even.

Proof. Since â is a non-empty set then â has 2|â| subsets. Thus, Ψ(a) has
an even number of non-zero coordinates.

Notice that for a, b ∈ A∆ such that a, b 6= 1, we have

wtH(Ψ(a+ b)) = wtH(Ψ(a)) + wtH(Ψ(b))− 2wtH(Ψ(a) ?Ψ(b))),

which is even, where ? is the componentwise product. Therefore we have
the following result.

Theorem 3.2. Let m be an element of R∆. Then, m ∈ m if and only if
wtH(Ψ(m)) is even.

Proof. We showed that if m ∈ m then wtH(Ψ(m)) is even. Since |m| = |R∆|
2

and there are precisely |m| = |R∆|
2 binary vectors in F∆

2 of even weight, then
the odd weight vectors correspond to the units in R∆.

Each code C corresponds to a binary linear code, namely the code Ψ(C)
of length ∆n. It is natural now to ask if orthogonality is preserved over
the map Ψ. In the following case, as proven in [1], it is preserved as in the
following proposition. Recall that the ring Rk was a special case of R∆ when
∆ was a power of 2.
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Proposition 3.3. Let ∆ = 2k and let C a linear code over R∆ of length n.
Then,

Ψ(C⊥) = (Ψ(C))⊥.

In general, orthogonality will not be preserved. In the next example we
will see that if C is a code over R∆ then, in general, Ψ(C)⊥ 6= Ψ(C⊥) and
the following diagram does not commute:

C
Ψ−→ Ψ(C)

↓
C⊥

Ψ−→ Ψ(C⊥)

Example 4. Let ∆ = 6 = 2 · 3 and consider the length one code Î(1,2) =

〈u2,1, u
2
3,1〉. By Proposition 2.7, we have that the dual is Î⊥(1,2) = I(1,1) =

〈u2,1u3,1〉. Clearly, [u2
3,1, u2,1u3,1] = 0 ∈ R∆ but, by Example 3, we have that

[Ψ(u2
3,1),Ψ(u2,1u3,1)] 6= 0.

Computing Ψ(Î(1,2))
⊥ and Ψ(Î⊥(1,2)) one obtains binary linear codes with

parameters [6, 2, 2] and [6, 2, 4], respectively. That is, not only are they differ-
ent codes but they have different minimum weights and hence not equivalent.

4 MacWilliams Relations

Let C be a linear code over R∆ of length n. Define the complete weight
enumerator of C in the usual way, namely:

cweC(X) =
∑
c∈C

n∏
i=1

xci .

We are using X to denote the set of variables (xci) where the ci are the
elements of R∆ in some order.

In order to relate the complete weight enumerator of C with the complete
weight enumerator of its dual, we first shall define a generator character of
the ring. It is well known, see [7], that a finite ring is Frobenius if and only
if it admits a generating character. Hence, a generating character exits for
the ring R∆. We shall find this character explicitly.

Define the character χ : R∆ −→ C? as

χ(
∑
α∈J

cαu
α) =

∏
α∈J

(−1)cα .

In other words, the character has a value of −1 if there are oddly many
monomials and 1 if there are evenly many monomials in a given element.

Consider the minimal ideal of the ring

Soc(R∆) = {0, up1−1
p1,1
· · ·up1−1

p1,k1
· · ·upt−1

pt,1
· · ·upt−1

pt,kt
}.
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Note that χ(0) = 1 and χ(upt−1
pt,1
· · ·upt−1

pt,kt
) = −1 since it is a single monomial.

Therefore, χ is non-trivial on the minimal ideal. Note also that this minimal
ideal is contained in all ideals of the ring R∆ since it is the unique minimal
ideal. This gives that ker(χ) contains no non-trivial ideal. Hence, by Lemma
4.1 in [7], we have that the character χ is a generating character of the ring
R∆. This generating character allows us to give the MacWilliams relations
explicitly.

Use the elements of R∆ as coordinates for the rows and columns. Let
T be the |R∆| × |R∆| matrix given by Ta,b = χ(ab), for a, b ∈ R∆. By the
results in [7], we have the following theorem.

Theorem 4.1. Let C be a linear code over R∆. Then

cweC⊥(X) =
1

|C|
cweC(T ·X),

where T · X represents the action of T on the vector X given by matrix
multiplication TXt, where Xt is the transpose of X.

5 Cyclic codes over R∆

In this section, we shall give an algebraic description of cyclic codes over
R∆. These codes will, in turn, give quasi-cyclic codes of index ∆ over F2.

Recall that, for an element a in R∆, µ(a) is the reduction modulo {upi,j}
for all i ∈ {1, . . . , t} and j ∈ {1, . . . , ki}. Now, we can define a polynomial
reduction µ from R∆[x] to F2[x] where µ(f) = µ(

∑
aix

i) =
∑
µ(ai)x

i.
A monic polynomial f over R∆[x] is said to be a basic irreducible poly-

nomial if µ(f) is an irreducible polynomial over F2[x]. Since F2 is a subring
of R∆ then, any irreducible polynomial in F2[x] is a basic irreducible poly-
nomial viewed as a polynomial of R∆[x].

Lemma 5.1. Let n be an odd integer. Then, xn − 1 factors into a product
of finitely many pairwise coprime basic irreducible polynomials over R∆,
xn − 1 = f1f2 . . . fr. Moreover, f1, f2, . . . , fr are uniquely determined up to
a rearrangement.

Proof. The field F2 is a subring of R∆ and xn − 1 factors uniquely as a
product of pairwise coprime irreducible polynomials in F2[x]. Therefore, the
polynomial factors in R∆ since F2 is a subring of R∆. Then Hensel’s Lemma
gives that regular polynomials (namely, polynomials that are not zero divi-
sors) over R∆ have a unique factorization.

The previous lemma is highly dependent upon the fact that F2 is a
subring of the ambient ring. Were this not the case, the lemma would not
hold.
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As in any commutative ring we can identify cyclic codes with ideals in a
corresponding polynomial ring. We give the standard definitions to assign
notation. Let R∆,n = R∆[x]/〈xn − 1〉.

Theorem 5.2. Cyclic codes over R∆ of length n can be viewed as ideals in
R∆,n.

Proof. We view each codeword (c0, c1, . . . , cn−1) as a polynomial c0 + c1x+
c2x

2 + · · ·+ cn−1x
n−1 in R∆,n and multiplication by x as the cyclic shift and

the standard proof applies.

The next theorem follows from the cannonical decomposition of rings,
noting that for odd n the factorization is unique.

Theorem 5.3. Let n be an odd integer and let xn − 1 = f1f2 . . . fr. Then,
the ideals in R∆,n can be written as I ∼= I1 ⊕ I2 ⊕ · · · ⊕ Ir where Ii is an
ideal of the ring R∆[x]/〈fi〉, for i = 1, . . . , r.

Let f be an irreducible polynomial in F2[x], then f is a basic monic
irreducible polynomial over R∆. Our goal now is to show that there is a one
to one correspondence between ideals of R∆[x]/〈f〉 and ideals of R∆. We
have that F2[x]/〈f〉 is a finite field of order 2deg(f). Let L0,0 = F2[x]/〈f〉
and Lp1,1 = L0,0[up1,1]/〈up1

p1,1
〉. For 1 ≤ i ≤ t, 1 ≤ j ≤ ki, define

Lpi,j =

{
Lpi−1,ki−1

[upi,1]/〈upipi,1〉 if j = 1,

Lpi,j−1[upi,j ]/〈u
pi
pi,j
〉 otherwise.

Then we have that any element a ∈ Lpi,j can be written as a = a0 +

a1upi,j + a2u
2
pi,j

+ · · · + api−1u
pi−1
pi,j

where a0, . . . , api−1 belong to Lpi,j−1 if
j 6= 1 or to Lpi−1,ki−1

if j = 1.

Proposition 5.4. Let a =
∑pi−1

d=0 adu
d
pi,j

be an element of Lpi,j. Then, a is
a unit in Lpi,j if and only if a0 is a unit in Lpi,j−1 if j 6= 1 or in Lpi−1,ki−1

if j = 1.

Proof. Suppose a0 a unit in Lpi,j−1 if j 6= 1 or in Lpi−1,ki−1
if j = 1. Define

b = a−1
0 (
∑pi−1

d=1 adu
d
pi,j

). Clearly, b is a zero divisor and 1 + b is a unit since

(1 + b)(1 + b+ b2 + · · ·+ bpi−1) = 1. So a0(1 + b) = a is also a unit.
If a0 is not a unit then there exists b in Lpi,j−1 if j 6= 1 or in Lpi−1,ki−1

if j = 1, such that ba0 = 0. Therefore, bupi−1
pi,j

a = 0.

Denote by U(Lpi,j) the group of units of Lpi,j . By the previous result we
can see that

|U(Lpi,j)| =
{
|U(Lpi−1,ki−1

)||Lpi−1,ki−1
| if j = 1,

|U(Lpi,j−1)||Lpi,j−1| otherwise.
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Since |U(L0,0)| = 2deg(f)−1, we get that |U(Lp1,1)| = 2deg(f)(2deg(f)−1).
By induction, we obtain that

|Lpt,kt | = (2deg(f))∆ and |U(Lpt,kt)| = (2deg(f))∆ − (2deg(f))∆−1.

Moreover, the group U(Lpi,j) is the direct product of a cyclic group G
of order 2deg(f)−1 and an abelian group H of order (2deg(f))∆−1.

Theorem 5.5. The ideals of Lpt,kt are in bijective correspondence with the
ideals of R∆.

Proof. From Proposition 5.4, it is straightforward that the zero-divisors of
Lpt,kt are of the form

∑
cαu

α1
1 · · ·u

αt
t with cα ∈ L0,0 and c0 = 0, furthermore

there are (2deg(f))∆−1 of them. This gives the result.

Corollary 5.6. Let n be an odd integer. Let xn − 1 = f1f2 . . . fr be the
factorization of xn−1 into basic irreducible polynomials over R∆ and let I∆

be the number of ideals in R∆. Then, the number of linear cyclic codes of
length n over R∆ is (I∆)r.

6 One generator cyclic codes

We shall examine codes that have a single generator. We shall proceed in
a similar way as was done in [2] for the case when ∆ was a power of 2. If
a polynomial s ∈ R∆,n generates an ideal, then the ideal is the entire space
if and only if s is a unit. Hence we need to consider codes generated by a
non-unit. For foundational results in this section, see [5].

Let Cn denote the cyclic group of order n. Consider the group ring
R∆Cn. This ring is canonically isomorphic to R∆,n. Any element in R∆Cn
corresponds to a circulant matrix in the following form:

σ(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1) =


a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2
...

...
...

...
...

a1 a2 a2 . . . a0

 .

Take the standard definition of the determinant function, det : Mn(R∆)→
R∆.

Proposition 6.1. An element α = a0 +a1x+a2x
2 + · · ·+an−1x

n−1 ∈ R∆,n

is a non-unit if and only if det(σ(α)) ∈ m. Equivalently, we have an element
α = a0 + a1x + a2x

2 + · · · + an−1x
n−1 ∈ R∆,n is a non-unit if and only if

µ(det(σ(α))) = 0.

This proposition allows for a straightforward computational technique
to find generators for cyclic codes over R∆ which give binary quasi-cyclic
codes of index ∆ via the Gray map.
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7 Binary Quasi-Cyclic Codes

In this section, we shall give an algebraic construction of binary quasi-cyclic
codes from codes over R∆.

Lemma 7.1. Let v be a vector in Rn∆. Then Ψ(π(v)) = π∆(Ψ(v)).

Proof. The result is a direct consequence from the definition of Ψ.

The following theorems gives a construction of linear binary quasi-cyclic
codes of arbitrary index from cyclic codes and quasi-cyclic codes over R∆.

Theorem 7.2. Let C be a linear cyclic code over R∆ of length n. Then
Ψ(C) is a linear binary quasi-cyclic code of length ∆n and index ∆.

Proof. Since C is a cyclic code, π(C) = C. Then by Lemma 7.1, Ψ(C) =
Ψ(π(C)) = π∆(Ψ(C)). Hence Ψ(C) is a quasi-cyclic code of index ∆.

Theorem 7.3. Let C be a linear quasi-cyclic code over R∆ of length n and
index k. Then, Ψ(C) is a linear binary quasi-cyclic code of length ∆n and
index ∆k.

Proof. We can apply the same argument as in Theorem 7.2, taking into
account that Ψ(C) = Ψ(πk(C)) = π∆k(Ψ(C)).

8 Examples R∆

Examples of R∆-cyclic codes of length n for the case ∆ = 2k1 can be found
in [2].

Table 1 shows some examples of one generator R∆-cyclic codes, for
∆ 6= 2k1 , whose binary image via the Ψ map give optimal codes ([4]) with
minimum distance at least 3. For each cyclic code C ∈ Rn∆, in the table
there are the parameters [∆, n], the generator polynomial, and the param-
eters [N, k, d] of Ψ(C), where N is the length, k is the dimension, and d is
the minimum distance.
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Table 1: Quasi-cyclic codes of index ∆

[∆, n] Generators Binary Image

[6,2] (u2,1u
2
3,1 +u2,1u3,1 +u2

3,1 +u3,1)x+u2,1u3,1 +u2,1 +
u3,1

[12, 6, 4]

[6,3] (u2,1u
2
3,1 + u2,1u3,1 + u3,1)x2 + (u2,1u3,1 + u2,1 +

u3,1)x
[18, 11, 4]

[6,3] (u2,1u
2
3,1 +u2,1 +u2

3,1 +u3,1)x2 + (u2,1u3,1 +u2,1 +
u3,1)x

[18, 10, 4]

[6,3] (u2,1u
2
3,1 +u2,1u3,1 +u2

3,1)x2 +(u2,1u
2
3,1 +u2,1u3,1 +

u2
3,1)x

[18, 4, 8]

[6,3] (u2,1u
2
3,1 +u2,1u3,1 +u2

3,1)x2 +(u2,1u
2
3,1 +u2,1u3,1 +

u2
3,1)x+ u2,1u

2
3,1 + u2,1u3,1 + u2

3,1

[18, 2, 12]

[6,4] (u2,1u
2
3,1 + u2,1u3,1 + u2,1 + u3,1)x3 + (u2,1u

2
3,1 +

u2,1u3,1)x2 + (u2,1u3,1 + u2,1 + u3,1)x

[24, 8, 8]

[6,4] (u2,1u
2
3,1 + 1)x3 + x2 + (u2,1u3,1 + u2,1 + 1)x +

u2,1u3,1 + u2,1 + 1
[24, 9, 8]

[6,6] (u2,1u
2
3,1 + u2,1 + u2

3,1 + 1)x5 + (u2
3,1 + 1)x4 +

(u2,1u
2
3,1 +u2,1)x3 +(u2,1 +u2

3,1 +1)x2 +(u2,1u3,1 +
u2,1 + 1)x

[36, 17, 8]

[6,6] (u2,1u
2
3,1 + u2,1u3,1 + u3,1 + 1)x5 + (u2,1u

2
3,1 +

u2,1u3,1 + u2
3,1)x4 + (u2,1u3,1 + u2,1 + u2

3,1)x3 +

(u2,1u3,1 + u2,1 + 1)x2

[36, 18, 8]

[6,7] (u2,1u
2
3,1+u2,1+u3,1+1)x6+(u2,1u3,1+u2,1+u3,1+

1)x5+(u2,1u3,1+u2,1+1)x4+(u2,1u3,1+u2,1+1)x2

[42, 32, 4]

[6,7] (u2,1+u3,1+1)x6+(u2,1+u2
3,1+1)x5+(u2

3,1+1)x4+

(u2,1u3,1 + u2
3,1 + u3,1x

3 + (u2,1u3,1 + u2,1 + 1)x2

[42, 33, 4]

[9,2] (u2
3,1u3,2 + u2

3,1 + u3,1u3,2)x+ u2
3,1u

2
3,2 + u2

3,1u3,2 +

u2
3,1 + u3,1u3,2

[18, 4, 8]

[9,2] (u2
3,1u

2
3,2 + u2

3,1 + u3,1u
2
3,2 + u3,1 + 1)x+ u2

3,1u3,2 +

u3,1u
2
3,2 + u3,1u3,2 + u3,1 + 1

[18, 10, 4]

[9,3] (u2
3,1u3,2 + u2

3,1 + u3,1u
2
3,2 + u3,1u3,2 + u3,1 + u2

3,2 +

u3,2)x2 + (u2
3,1 + u3,1u

2
3,2 + u3,1u3,2 + u3,1)x+ u2

3,2

[27, 18, 4]

[9,4] (u2
3,1u

2
3,2 + u3,1 + u2

3,2)x3 + (u2
3,1 + u3,1 + 1)x2 +

(u2
3,1 + u3,1u

2
3,2 + u3,1u3,2 + u2

3,2 + 1)x

[36, 27, 4]

[12,3] (u2,1u
2
3,1 + u2,1 + u2,2u

2
3,1 + u2,2u3,1 + u2,2 +

u2
3,1)x2+(u2,1u2,2u

2
3,1+u2,1u

2
3,1+u2,2u3,1+u2,2)x+

u2,1u2,2u
2
3,1 +u2,1u2,2 +u2,1u3,1 +u2,1 +u2,2u

2
3,1 +

u2,2u3,1

[36, 17, 8]

[12,3] u3,1x
2 +(u2,1u2,2u

2
3,1 +u2,1u

2
3,1 +u2,2u3,1 +u2,2)x+

u2,1u2,2u
2
3,1 +u2,1u2,2 +u2,1u3,1 +u2,1 +u2,2u

2
3,1 +

u2,2u3,1

[36, 18, 8]
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