Abstract

A $\mathbb{Z}_2\mathbb{Z}_4$-additive code $C \subseteq \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$ is called cyclic if the set of coordinates can be partitioned into two subsets, the set of \mathbb{Z}_2 and the set of \mathbb{Z}_4 coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the $\mathbb{Z}_4[x]$-module $\mathbb{Z}_2[x]/(x^\alpha - 1) \times \mathbb{Z}_4[x]/(x^\beta - 1)$. The parameters of a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code are determined in terms of the generator polynomials of the code C.

Index Terms

Binary cyclic codes, Cyclic codes over \mathbb{Z}_4, Duality, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes.

I. INTRODUCTION

Denote by \mathbb{Z}_2 and \mathbb{Z}_4 the rings of integers modulo 2 and modulo 4, respectively. We denote the space of n-tuples over these rings as \mathbb{Z}_2^n and \mathbb{Z}_4^n. A binary code is any non-empty subset C of \mathbb{Z}_2^n. If that subset is a vector space then we say that it is a linear code. A code over \mathbb{Z}_4 is a non-empty subset C of \mathbb{Z}_4^n and a submodule of \mathbb{Z}_4^n is called a linear code over \mathbb{Z}_4.

In Delsarte’s 1973 paper (see [5]), he defined additive codes as subgroups of the underlying abelian group in a translation association scheme. For the binary Hamming scheme, namely, when the underlying abelian group is of order 2^n, the only structures for the abelian group are those of the form $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$, with $\alpha + 2\beta = n$. This means that the subgroups C of $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$ are the only additive codes in a binary Hamming scheme. In [4], $\mathbb{Z}_2\mathbb{Z}_4$-additive codes were studied.
For vectors $u \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$ we write $u = (u | u')$ where $u = (u_0, \ldots, u_{\alpha-1}) \in \mathbb{Z}_2^\alpha$ and $u' = (u'_0, \ldots, u'_{\beta-1}) \in \mathbb{Z}_4^\beta$.

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$-additive code. Since C is a subgroup of $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$, it is also isomorphic to a commutative structure like $\mathbb{Z}_4^\alpha \times \mathbb{Z}_4^\beta$. Therefore, C is of type $2^{\gamma+\delta}$ as a group, it has $|C| = 2^{\gamma+2\delta}$ codewords and the number of order two codewords in C is $2^{\gamma+\delta}$.

Let X (respectively Y) be the set of \mathbb{Z}_2 (respectively \mathbb{Z}_4) coordinate positions, so $|X| = \alpha$ and $|Y| = \beta$. Unless otherwise stated, the set X corresponds to the first α coordinates and Y corresponds to the last β coordinates. Call C_X (respectively C_Y) the punctured code of C by deleting the coordinates outside X (respectively Y). Let C_0 be the subcode of C which contains all order two codewords and let κ be the dimension of $(C_0)_X$, which is a binary linear code. For the case $\alpha = 0$, we will write $\kappa = 0$.

Considering all these parameters, we will say that C is of type $(\alpha, \beta; \gamma, \delta; \kappa)$. Notice that C_Y is a linear code over \mathbb{Z}_4 of type $(0, \beta; \gamma_Y, \delta; 0)$, where $0 \leq \gamma_Y \leq \gamma$, and C_X is a binary linear code of type $(\alpha, 0; \gamma_X, 0; \gamma_X)$, where $\kappa \leq \gamma_X \leq \kappa + \delta$. A $\mathbb{Z}_2\mathbb{Z}_4$-additive code C is said to be separable if $C = C_X \times C_Y$.

Let κ_1 and δ_2 be the dimensions of the subcodes $\{(u | 0 \ldots 0) \in C\}$ and $\{(0 \ldots 0 | u') \in C : \text{ the order of } u' \text{ is } 4\}$, respectively. Define $\kappa_2 = \kappa - \kappa_1$ and $\delta_1 = \delta - \delta_2$. By definition, it is clear that a $\mathbb{Z}_2\mathbb{Z}_4$-additive code is separable if and only if κ_2 and δ_1 are zero; that is, $\kappa = \kappa_1$ and $\delta = \delta_2$.

We define a Gray Map as $\phi : \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta \rightarrow \mathbb{Z}_2^{\alpha+2\beta}$ such that $\phi(u) = \phi(u | u') = (u, \phi_4(u'))$, where ϕ_4 is the usual quaternary Gray map defined by $\phi_4(0) = (0, 0), \phi_4(1) = (0, 1), \phi_4(2) = (1, 1), \phi_4(3) = (1, 0)$.

The standard inner product, defined in [4], can be written as
$$u \cdot v = 2 \left(\sum_{i=0}^{\alpha-1} u_i v_i \right) + \sum_{j=0}^{\beta-1} u'_j v'_j \in \mathbb{Z}_4,$$
where the computations are made taking the zeros and ones in the α binary coordinates as zeros and ones in \mathbb{Z}_4, respectively. The dual code of C, is defined in the standard way by
$$C^\perp = \{v \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta | u \cdot v = 0, \text{ for all } u \in C\}.$$

If C is separable then $C^\perp = (C_X)^\perp \times (C_Y)^\perp$. From [4], and the previous definition of κ_1 and δ_1 we obtain the number of codewords of C, C_X, C_Y and their duals.

Proposition 1.1: Let C be a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$. Let κ_1 and δ_1 be defined as before. Then,
$$|C| = 2^{\gamma+\delta}, \quad |C^\perp| = 2^{\alpha+\gamma-2\kappa_1 \delta-\kappa+\gamma-\delta},$$
$$|C_X| = 2^{\kappa+\delta_1}, \quad |(C_X)^\perp| = 2^{\alpha-\kappa-\delta_1},$$
$$|C_Y| = 2^{\gamma-\kappa_1 \delta}, \quad |(C_Y)^\perp| = 2^{\gamma-\kappa_1 \delta-\gamma-\delta+\kappa_1}.$$
with generator matrix of the form

\[G_C = \begin{pmatrix}
I_{\kappa_1} & T & T_{b_1}' & T_{b_1} \\
0 & I_{\kappa_2} & T_{b_2}' & T_{b_2} \\
0 & 0 & 0 & 0 \\
0 & 0 & S_{\delta_1} & S_b \\
0 & 0 & 0 & S_{\delta_1}
\end{pmatrix} \begin{pmatrix}
0 & 0 & 0 & 0 \\
2T_2 & 2T_{\kappa_2} & 0 & 0 \\
2T_1 & 2T_1' & 2I_{\gamma-\kappa} & 0 & 0 \\
S_{11} & S_{12} & R_1 & I_{\delta_1} & 0 \\
S_{21} & S_{22} & R_2 & R_{\delta_1} & I_{\delta_2}
\end{pmatrix} \]

where \(I_r \) is the identity matrix of size \(r \times r \); the matrices \(T_{b_1}, T_{b_2}, S_{\delta_1}, S_b \) are over \(\mathbb{Z}_2 \); the matrices \(T_1, T_2, T_{\kappa_2}, T_1', R_i \) are over \(\mathbb{Z}_4 \) with all entries in \(\{0, 1\} \subset \mathbb{Z}_4 \); and \(S_{ij} \) are matrices over \(\mathbb{Z}_4 \). The matrices \(S_{\delta_1} \) and \(T_{\kappa_2} \) are square matrices of full rank \(\delta_1 \) and \(\kappa_2 \) respectively, \(\kappa = \kappa_1 + \kappa_2 \) and \(\delta = \delta_1 + \delta_2 \).

This new generator matrix can be obtained by applying convenient column permutations and linear combinations of rows to the generator matrix given in [4]. This new form is going to help us to relate the parameters of the code and the degrees of the generator polynomials of a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic code.

II. \(\mathbb{Z}_2 \mathbb{Z}_4 \)-ADDITIVE CYCLIC CODES

A. Parameters and generators

Let \(u = (u | u') \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta \) and \(i \) be an integer. Then we denote by

\[u^{(i)} = (u^{(i)} | u'^{(i)}) \]

\[= (u_{0+i}, u_{1+i}, \ldots, u_{\alpha-1+i} | u'_{0+i}, u'_{1+i}, \ldots, u'_{\beta-1+i}) \]

the cyclic \(i \)th shift of \(u \), where the subscripts are read modulo \(\alpha \) and \(\beta \), respectively.

We say that a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive code \(C \subseteq \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta \) is cyclic if for any codeword \(u \in C \) we have \(u^{(1)} \in C \).

Let \(R_{\alpha, \beta} = \mathbb{Z}_4[x]/(x^\alpha - 1) \times \mathbb{Z}_4[x]/(x^\beta - 1) \), for \(\beta \geq 0 \) odd, and define the operation \(* : \mathbb{Z}_4[x] \times R_{\alpha, \beta} \rightarrow R_{\alpha, \beta} \) as \(\lambda(x) * (p(x) | q(x)) = (\lambda(x)p(x) \mod (2) | \lambda(x)q(x)) \). From [1], we know that \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic codes are identified as \(\mathbb{Z}_4[x] \)-submodules of \(R_{\alpha, \beta} \). Moreover, if \(C \) is a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa)\), then it is of the form

\[C = \langle (b(x) | 0), (\ell(x) | f(x)h(x) + 2f(x)) \rangle, \quad (1) \]

where \(f(x)h(x)g(x) = x^\beta - 1 \) in \(\mathbb{Z}_4[x] \), \(b(x), \ell(x) \in \mathbb{Z}_2[x]/(x^\alpha - 1) \) with \(b(x)|(x^\alpha - 1) \), \(\deg(\ell(x)) < \deg(b(x)) \), and \(b(x) \) divides \(\frac{x^{\alpha-1}}{f(x)}\ell(x) \mod (2) \).

Note that if \(C \) is a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic code with \(C = \langle (b(x) | 0), (\ell(x) | f(x)h(x) + 2f(x)) \rangle \), then the canonical projections \(C_X \) and \(C_Y \) are a cyclic code over \(\mathbb{Z}_2 \) and a cyclic code over \(\mathbb{Z}_4 \) generated by \(gcd(b(x), \ell(x)) \) and \((f(x)h(x) + 2f(x)) \), respectively (see [6], [9]).

Since \(b(x) \) divides \(\frac{x^{\alpha-1}}{f(x)}\ell(x) \mod (2) \), we have the following result.

Corollary 2.1: Let \(C \) be a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa)\) with \(C = \langle (b(x) | 0), (\ell(x) | f(x)h(x) + 2f(x)) \rangle \). Then, \(b(x) \) divides \(\frac{x^{\alpha-1}}{f(x)} \gcd(b(x), \ell(x)) \mod (2) \) and \(b(x) \) divides \(h(x) \gcd(b(x), \ell(x)g(x)) \mod (2) \).

Note that if a \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive cyclic code is separable, then \(\ell(x) = 0 \).
In the following, a polynomial $f(x) \in \mathbb{Z}_2[x]$ or $\mathbb{Z}_4[x]$ will be denoted simply by f and the parameter β will be an odd integer.

Lemma 2.2: Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code. Then,

$$C_b = \langle (b \mid 0), (\ell g \mid 2fg), (0 \mid 2fh) \rangle.$$

Proof: C_b is the subcode of C which contains all codewords of order 2. Since $C = \langle (b \mid 0), (\ell g \mid fh + 2f) \rangle$, then all codewords of order 2 are generated by $\langle (b \mid 0), (\ell g \mid 2fg), (0 \mid 2fh) \rangle$.

The following results show the close relation of the parameters of the type of a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code and the degrees of the generator polynomials of the code.

First, the next theorem gives the spanning sets in terms of the generator polynomials.

Theorem 2.3: [1, Theorem 13] Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code of type $(\alpha, \beta; \gamma, \delta; \kappa)$, where $fhg = x^\beta - 1$. Let

$$S_1 = \bigcup_{i=0}^{\alpha - \deg(b) - 1} \{ x^i \ast (b \mid 0) \},$$

$$S_2 = \bigcup_{i=0}^{\deg(g) - 1} \{ x^i \ast (\ell \mid fh + 2f) \},$$

and

$$S_3 = \bigcup_{i=0}^{\deg(h) - 1} \{ x^i \ast (\ell g \mid 2fg) \}.$$

Then, $S_1 \cup S_2 \cup S_3$ forms a minimal spanning set for C as a \mathbb{Z}_4-module. Moreover, C has $2^{\alpha - \deg(b)} 4^{\deg(g)} 2^{\deg(h)}$ codewords.

Note that S_2 generates all order 4 codewords and the subcode of codewords of order 2, C_b, is generated by $\{ S_1, 2S_2, S_3 \}$. Hence, in the following theorem, by using these spanning sets, we can obtain the parameters $(\alpha, \beta; \gamma, \delta; \kappa)$ of the code.

Theorem 2.4: Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code of type $(\alpha, \beta; \gamma, \delta; \kappa)$, where $fhg = x^\beta - 1$. Then

$$\gamma = \alpha - \deg(b) + \deg(h),$$

$$\delta = \deg(g),$$

$$\kappa = \alpha - \deg(\gcd(\ell g, b)).$$

Proof: The parameters γ and δ are known from Theorem 2.3 and the parameter κ is the dimension of $(C_b)_X$. By Lemma 2.2, the space $(C_b)_X$ is generated by the polynomials b and ℓg. Since the ring is a polynomial ring and thus a principal ideal ring, it is generated by the greatest common divisor of the two polynomials. Then, $\kappa = \alpha - \deg(\gcd(\ell g, b))$.

In this case we have that $|C| = 2^{\alpha - \deg(b)} 4^{\deg(g)} 2^{\deg(h)}$.

October 21, 2016 DRAFT
Proposition 2.5: Let $C = \langle \langle b \mid 0 \rangle, (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code of type $(\alpha, \beta; \gamma, \delta = \delta_1 + \delta_2; \kappa = \kappa_1 + \kappa_2)$, where $fhg = x^{\beta} - 1$. Then,

$$\kappa_1 = \alpha - \deg(b), \quad \kappa_2 = \deg(b) - \deg(\gcd(b, \ell g)), \quad \delta_1 = \deg(\gcd(b, \ell g)) - \deg(\gcd(b, \ell)) \quad \text{and} \quad \delta_2 = \deg(g) - \delta_1.$$

Proof: The result follows from Proposition 1.1 and knowing the generator polynomials of C_X and $(C_b)_X$. They are $\gcd(b, \ell)$ and $\gcd(b, \ell g)$, respectively.

B. Dual $\mathbb{Z}_2\mathbb{Z}_4$-Additive Cyclic Codes

In [1], it is proven that the dual code of a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code is also a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code. So, we will denote

$$C^\perp = \langle \langle \bar{b} \mid 0 \rangle, (\bar{\ell} \mid \bar{fh} + 2\bar{f}) \rangle,$$

where $fhg = x^{\beta} - 1$ in $\mathbb{Z}_4[x]$, $\bar{b}, \bar{\ell} \in \mathbb{Z}_2[x]/(x^\alpha - 1)$ with $\bar{b}(x^{\alpha} - 1), \deg(\ell) < \deg(\bar{b})$ and \bar{b} divides $\frac{x^{\beta - 1} - 1}{\ell} \pmod{2}$.

The reciprocal polynomial of a polynomial $p(x)$ is $x^{\deg(p(x))}p(x^{-1})$ and is denoted by $p^*(x)$. As in the theory of cyclic codes over \mathbb{Z}_2 and \mathbb{Z}_4 (see [6], [7]), reciprocal polynomials have an important role on duality.

We denote the polynomial $\sum_{i=0}^{m-1} x^i$ by $\theta_m(x)$. Using this notation we have the following proposition.

Proposition 2.6: Let $n, m \in \mathbb{N}$. Then,

$$x^{nm} - 1 = (x^n - 1)\theta_m(x^n).$$

Proof: It is well known that $y^m - 1 = (y - 1)\theta_m(y)$, replacing y by x^n the result follows.

From now on, m denotes the least common multiple of α and β.

Definition 2.7: Let $u(x) = (u(x) \mid u'(x))$ and $v(x) = (v(x) \mid v'(x))$ be elements in $R_{\alpha, \beta}$. We define the map

$$\circ : R_{\alpha, \beta} \times R_{\alpha, \beta} \rightarrow \mathbb{Z}_4[x]/(x^m - 1),$$

such that

$$\circ(u(x), v(x)) = 2u(x)\theta_m(x^{\alpha})x^{m-\deg(v(x))}v^*(x) + u'(x)\theta_m(x^{\beta})x^{m-\deg(v'(x))}v'^*(x) \pmod{(x^m - 1)},$$

where the computations are made taking the binary zeros and ones in $u(x)$ and $v(x)$ as quaternary zeros and ones, respectively.

The map \circ is linear in each of its arguments; i.e., if we fix the first entry of the map invariant, while letting the second entry vary, then the result is a linear map. Similarly, when fixing the second entry invariant. Then, the map \circ is a bilinear map between $\mathbb{Z}_4[x]$-modules.

From now on, we denote $\circ(u(x), v(x))$ by $u(x) \circ v(x)$. Note that $u(x) \circ v(x)$ belongs to $\mathbb{Z}_4[x]/(x^m - 1)$.

Thus, \(u \) and \(v \) are orthogonal to each other and all its shifts if and only if

\[
u(x) \circ v(x) = 0.
\]

Proof: The \(i \)th shift of \(v \) is \(v^{(i)} = (v_{0+i}v_{1+i} \ldots v_{n-1+i} | v_{0+i}^\prime \ldots v_{\beta-1+i}^\prime) \). Then,

\[
u \cdot v^{(i)} = 0 \text{ if and only if } 2 \sum_{j=0}^{\alpha-1} u_j v_{j+i} + \sum_{k=0}^{\beta-1} u_k^\prime v_{k+i}^\prime = 0.
\]

Let \(S_i = 2 \sum_{j=0}^{\alpha-1} u_j v_{j+i} + \sum_{k=0}^{\beta-1} u_k^\prime v_{k+i}^\prime \). One can check that

\[
u(x) \circ v(x) = 2 \theta_{\bf Z}(x^\alpha) \left[\sum_{n=0}^{\alpha-1} \sum_{j=n}^{\alpha-1} u_j v_j x^{m-1-n} \right. \\
+ \sum_{n=1}^{\alpha-1} \sum_{j=n}^{\alpha-1} u_j v_{j-n} x^{m-1+n} \\
+ \theta_{\bf Z}(x^\beta) \left[\sum_{t=0}^{\beta-1} \sum_{k=t}^{\beta-1} u_k^\prime v_{k-t}^\prime x^{m-1-t} \\
+ \sum_{t=1}^{\beta-1} \sum_{k=t}^{\beta-1} u_k^\prime v_{k-t}^\prime x^{m-1+t} \right] \mod (x^m - 1).
\]

Then, arranging the terms one obtains that

\[
u(x) \circ v(x) = \sum_{i=0}^{m-1} S_i x^{m-1-i} \mod (x^m - 1).
\]

Thus, \(\nu(x) \circ v(x) = 0 \) if and only if \(S_i = 0 \) for \(0 \leq i \leq m - 1 \).

Lemma 2.9: Let \(u = (u(x) | u^\prime(x)) \) and \(v = (v(x) | v^\prime(x)) \) be elements in \(R_{\alpha,\beta} \) such that \(\nu(x) \circ v(x) = 0 \). If \(u^\prime(x) \) or \(v^\prime(x) \) equals 0, then \(u(x) v^*(x) \equiv 0 \pmod{\alpha-1} \) over \(\bf Z_2 \). If \(u(x) \) or \(v(x) \) equals 0, then \(u^\prime(x) v^*(x) \equiv 0 \pmod{\beta-1} \) over \(\bf Z_4 \).

Proof: Let \(u^\prime(x) \) or \(v^\prime(x) \) equals 0, then

\[
0 = \nu(x) \circ v(x) \\
= 2u(x) \theta_{\bf Z}(x^\alpha)x^{m-1-\deg(v(x))} u^*(x) + 0 \mod (x^m - 1).
\]

So,

\[
2u(x) \theta_{\bf Z}(x^\alpha)x^{m-1-\deg(v(x))} u^*(x) = 2\mu^\prime(x)(x^m - 1),
\]

for some \(\mu^\prime(x) \in \bf Z_4[x] \).
This is equivalent to
\[u(x)\theta(x^\alpha)x^{m-\deg(v(x))}v(x) = \mu'(x)(x^m - 1) \in \mathbb{Z}_2[x]. \]

By Proposition 2.6,
\[u(x)x^m v^*(x) = \mu(x)(x^\alpha - 1), \]
\[u(x)v^*(x) \equiv 0 \pmod{(x^\alpha - 1)}. \]

A similar argument can be used to prove the other case.

The following proposition determines the degrees of the generator polynomials of the dual code in terms of the degrees of the generator polynomials of the code. These results will be helpful to determine the generator polynomials of the dual code.

Proposition 2.10: Let \(C = \langle (b \mid 0), (\ell \mid f h + 2f) \rangle \) be a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa)\), where \(f g h = x^\beta - 1 \), and with dual code \(C^\perp = \langle (\bar{b} \mid 0), (\bar{\ell} \mid \bar{f} h + 2\bar{f}) \rangle \), where \(\bar{f} h = \bar{x^\beta - 1} \). Then,
\[
\begin{align*}
\deg(\bar{b}) &= \alpha - \deg(\gcd(b, \ell)), \\
\deg(\bar{f}) &= \deg(g) + \deg(\gcd(b, \ell)) - \deg(\gcd(b, \ell g)), \\
\deg(\bar{h}) &= \deg(h) - \deg(b) - \deg(\gcd(b, \ell)) + 2 \deg(\gcd(b, \ell g)), \\
\deg(\bar{g}) &= \deg(f) + \deg(b) - \deg(\gcd(b, \ell g)).
\end{align*}
\]

Proof: Let \(C^\perp \) be a code of type \((\alpha, \beta; \bar{\gamma}, \bar{\delta}; \overline{\kappa})\). It is easy to prove that \((C_X)^\perp\) is a binary cyclic code generated by \(\bar{b} \), so \(|(C_X)^\perp| = 2^{\alpha - \deg(\bar{b})}\). Moreover, by Proposition 1.1, \(|(C_X)^\perp| = 2^{\alpha - \kappa - \delta_1}\) and by Proposition 2.5, we obtain that \(\deg(\bar{b}) = \alpha - \deg(\gcd(b, \ell)) \). Finally, from [4] it is known that
\[
\begin{align*}
\bar{\gamma} &= \alpha + \gamma - 2\kappa, \\
\bar{\delta} &= \beta - \gamma - \delta + \kappa, \\
\overline{\kappa} &= \alpha - \kappa,
\end{align*}
\]
and applying Theorem 2.4 to the parameters of \(C \) and \(C^\perp \), we obtain the result.

We know that a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive code \(C \) is separable if and only if \(C^\perp \) is separable. Moreover, if a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code is separable, then it is easy to find the generator polynomials of the dual, that are given in the following proposition.

Proposition 2.11: Let \(C = \langle (b \mid 0), (0 \mid f h + 2f) \rangle \) be a separable \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa)\), where \(f g h = x^\beta - 1 \). Then,
\[C^\perp = \langle \left(\frac{x^\alpha - 1}{b^*} \mid 0 \right), (0 \mid g^* h^* + 2g^*) \rangle. \]

Proof: If \(C \) is separable, then \(C^\perp = (C_X)^\perp \times (C_Y)^\perp \), where \((C_X)^\perp = \langle \frac{x^\alpha - 1}{b^*} \rangle\) and \((C_Y)^\perp = \langle g^* h^* + 2g^* \rangle\). ■
Proposition 2.12: Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code of type $(\alpha, \beta; \gamma, \delta; \kappa)$ with dual code $C^\perp = \langle (\bar{b} \mid 0), (\bar{\ell} \mid f\bar{h} + 2\bar{f}) \rangle$. Then,

$$\bar{b} = \frac{x^{\alpha} - 1}{(\gcd(b, \ell))^2} \in \mathbb{Z}_2[x].$$

Proof: We have that $(\bar{b} \mid 0)$ belongs to C^\perp. Then,

$$(b \mid 0) \circ (\bar{b} \mid 0) = 0,$$

$$(\ell \mid fh + 2f) \circ (\bar{b} \mid 0) = 0.$$

Therefore, by Lemma 2.9,

$$bb^* \equiv 0 \pmod{(x^\alpha - 1)},$$

$$\ell b^* \equiv 0 \pmod{(x^\alpha - 1)},$$

over \mathbb{Z}_2. So, $\gcd(b, \ell)b^* \equiv 0 \pmod{(x^\alpha - 1)}$, and there exist $\mu \in \mathbb{Z}_2[x]$ such that $\gcd(b, \ell)b^* = \mu(x^\alpha - 1)$.

Moreover, since $\gcd(b, \ell)$ and b^* divides $(x^\alpha - 1)$ and, by Proposition 2.10, we have that $\deg(b) = \alpha - \deg(\gcd(b, \ell))$.

We conclude that

$$\bar{b}^* = \frac{x^\alpha - 1}{\gcd(b, \ell)} \in \mathbb{Z}_2[x].$$

Proposition 2.13: Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code of type $(\alpha, \beta; \gamma, \delta; \kappa)$, where $fgh = x^\beta - 1$, and with dual code $C^\perp = \langle (\bar{b} \mid 0), (\bar{\ell} \mid \bar{f}\bar{h} + 2\bar{f}) \rangle$, where $f\bar{g}\bar{h} = x^\beta - 1$. Then, $f\bar{h}$ is the Hensel lift of the polynomial $(x^\beta - 1)_{\gcd(b, \ell)\bar{g}} \in \mathbb{Z}_2[x]$.

Proof: It is known that h and g are coprime, from which we deduce easily that $p_1fh + p_2fg = f$, for some $p_1, p_2 \in \mathbb{Z}_4[x]$. Since $(b \mid 0), (0 \mid 2fh)$ and $(\ell g \mid 2fg)$ belong to C, then

$$(0 \mid b_{\gcd(b, \ell)\bar{g}}(2p_1fh + 2p_2fg)) = (0 \mid b_{\gcd(b, \ell)\bar{g}}2f) \in C.$$

Therefore,

$$(\ell \mid \bar{f}h + 2\bar{f}) \circ (0 \mid b_{\gcd(b, \ell)\bar{g}}2f) = 0.$$

Thus, by Lemma 2.9,

$$(\bar{f}h + 2\bar{f}) \left(\frac{b^*2f^*}{\gcd(b, \ell)\bar{g}} \right) \equiv 0 \pmod{(x^\beta - 1)},$$

and

$$(2\bar{f}h) \left(\frac{b^*f^*}{\gcd(b, \ell)\bar{g}} \right) = 2\mu(x^\beta - 1), \quad (2)$$

for some $\mu \in \mathbb{Z}_4[x]$.

If (2) holds over \mathbb{Z}_4, then it is equivalent to

$$\bar{f}h \left(\frac{b^*f^*}{\gcd(b, \ell)\bar{g}} \right) = \mu(x^\beta - 1) \in \mathbb{Z}_2[x].$$
It is known that \(fh \) is a divisor of \(x^\beta - 1 \) and, by Corollary 2.1, we have that \(\left(\frac{b^* f^*}{\gcd(b, \ell g)} \right) \) divides \((x^\beta - 1) \) over \(\mathbb{Z}_2 \). By Corollary 2.10, \(\deg(fh) = \beta - \deg(f) - \deg(b) + \deg(\gcd(b, \ell g)) \), so

\[
\beta = \deg \left(\frac{fh}{\gcd(b, \ell g)^*} \right) = \deg(x^\beta - 1).
\]

Hence, we obtain that \(\mu = 1 \in \mathbb{Z}_2 \) and

\[
\bar{f}h = \frac{(x^\beta - 1) \gcd(b, \ell g)^*}{f^* b^*} \in \mathbb{Z}_2[x].
\]

(3)

Since \(\beta \) is odd and by the uniqueness of the Hensel lift [9, p.73], \(\bar{f}h \) is the unique monic polynomial in \(\mathbb{Z}_4[x] \) dividing \((x^\beta - 1) \) and satisfying (3).

Proposition 2.14: Let \(C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle \) be a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa) \), where \(fgh = x^\beta - 1 \), and with dual code \(C^\perp = \langle (b \mid 0), (\ell \mid f\bar{h} + 2f) \rangle \), where \(f\bar{g}h = x^\beta - 1 \). Then, \(\bar{f} \) is the Hensel lift of the polynomial \(\left(\frac{(x^\beta - 1) \gcd(b, \ell g)^*}{f^* h^*} \right) \in \mathbb{Z}_2[x] \).

Proof: One can factorize in \(\mathbb{Z}_2[x] \) the polynomials \(b, \ell, \ell g \) in the following way:

\[
\ell = \gcd(b, \ell) \rho,
\]

\[
\ell g = \gcd(b, \ell g) \rho \tau_1,
\]

\[
b = \gcd(b, \ell g) \tau_2,
\]

where \(\tau_1 \) and \(\tau_2 \) are coprime polynomials.

Hence, there exist \(t_1, t_2 \in \mathbb{Z}_2[x] \) such that \(t_1 \tau_1 + t_2 \tau_2 = 1 \). Then,

\[
\gcd(b, \ell g) \rho (t_1 \tau_1 + t_2 \tau_2) = \gcd(b, \ell g) \rho,
\]

and

\[
t_1 \ell g + \rho t_2 b = \frac{\gcd(b, \ell g)}{\gcd(b, \ell)} \ell.
\]

Therefore,

\[
\frac{\gcd(b, \ell g)}{\gcd(b, \ell)} \star(\ell \mid fh + 2f) + t_1 \star(\ell g \mid 2fg) + \rho t_2 \star(b \mid 0) = \frac{\gcd(b, \ell g)}{\gcd(b, \ell)} (fh + 2f) + t_1 2fg \in C.
\]

Since \(\bar{h} \) and \(\bar{g} \) are coprime, there exist \(\bar{p}_1, \bar{p}_2 \in \mathbb{Z}_4[x] \) such that \(2\bar{p}_1 \bar{f}h + 2\bar{p}_2 \bar{g} = 2\bar{f} \). So, \((2\bar{p}_1 + \bar{p}_2 \bar{g}) \star(\ell \mid fh + 2f) = (\bar{p}_2 \ell g \mid 2f) \in C^\perp \).

Therefore,

\[
(\bar{p}_2 \ell g \mid 2f) \circ \left(0 \right) \frac{\gcd(b, \ell g)}{\gcd(b, \ell)} (fh + 2f) + t_1 2fg = 0.
\]

By Lemma 2.9, arranging properly, we obtain that

\[
2f \left(\frac{\gcd(b, \ell g)^*}{\gcd(b, \ell)^*} \right) f^* h^* \equiv 0 \pmod{(x^\beta - 1)}
\]
we have that

\[
\bar{\ell} = \frac{\gcd(b, \ell g)\ast}{\gcd(b, \ell)\ast} \cdot \frac{f\ast h\ast}{\mu} = 2\mu(x^\beta - 1), \tag{4}
\]

for some \(\mu \in \mathbb{Z}_4[x] \).

If (4) holds over \(\mathbb{Z}_4 \), then it is equivalent to

\[
\bar{\ell} \left(\frac{\gcd(b, \ell g)\ast}{\gcd(b, \ell)\ast} \right) f\ast h\ast = \mu(x^\beta - 1) \in \mathbb{Z}_2[x].
\]

It is easy to prove that \(\left(\frac{\gcd(b, \ell g)\ast}{\gcd(b, \ell)\ast} \right) f\ast h\ast \) divides \((x^\beta - 1) \) in \(\mathbb{Z}_2[x] \). By Corollary 2.10, \(\deg(\bar{\ell}) = \beta - \deg(f) - \deg(h) - \deg(\gcd(b, \ell)) - \deg(\gcd(b, \ell g)) \), so

\[
\beta = \deg \left(\bar{\ell} \left(\frac{\gcd(b, \ell g)\ast}{\gcd(b, \ell)\ast} \right) f\ast h\ast \right) = \deg(x^\beta - 1).
\]

Hence, we obtain that \(\mu = 1 \) and

\[
\bar{\ell} = \frac{(x^\beta - 1) \gcd(b, \ell g)\ast}{\gcd(b, \ell)\ast} f\ast h\ast \in \mathbb{Z}_2[x]. \tag{5}
\]

Since \(\beta \) is odd and by the uniqueness of the Hensel lift [9, p.73] then \(\bar{\ell} \) is the unique monic polynomial in \(\mathbb{Z}_4[x] \) dividing \((x^\beta - 1) \) and holding (5).

Lemma 2.15: Let \(C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle \) be a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa) \), where \(fhg = x^\beta - 1 \). Then, the Hensel lift of \(\frac{b}{\gcd(b, \ell g)} \) divides \(h \).

Proof: In general, if \(a \mid b \mid x^\beta - 1 \) over \(\mathbb{Z}_2[x] \) with \(\beta \) odd, then the Hensel lift of \(a \) divides the Hensel lift of \(b \) that divides \(x^\beta - 1 \) over \(\mathbb{Z}_4[x] \). Then, by Corollary 2.1, the result follows.

In the family of \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic codes there is a particular class when the polynomials \(b \) and \(\gcd(b, \ell g) \) are the same. Applying Lemma 2.2 to this class we obtain that \(C_b \) has only two generators, \(\langle (b \mid 0), (0 \mid 2f) \rangle \), instead of three, \(\langle (b \mid 0), (\ell g \mid 2fg), (0 \mid 2f h) \rangle \). So, we have to take care of this class of \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic codes.

Proposition 2.16: Let \(C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle \) be a non-separable \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha, \beta; \gamma, \delta; \kappa) \), where \(fhg = x^\beta - 1 \), and with dual code \(C^\perp = \langle (\bar{b} \mid 0), (\bar{\ell} \mid \bar{f}h + 2\bar{f}) \rangle \), where \(\bar{f}g\bar{h} = x^\beta - 1 \). Let \(\rho = \frac{\ell}{\gcd(b, \ell g)} \). Then,

\[
\bar{\ell} = \frac{x^\alpha - 1}{b^*} \cdot \frac{(\gcd(b, \ell g)\ast \ast x^{m - \deg(f)} \mu_1}{\gcd(b, \ell)\ast} + \frac{b^*}{\gcd(b, \ell)\ast} \ast x^{m - \deg(fh) \mu_2},
\]

where

\[
\begin{align*}
\mu_1 &= x^{\deg(\ell)} (\rho^*)^{-1} \mod \left(\frac{b^*}{\gcd(b, \ell g)\ast} \right); \\
\mu_2 &= x^{\deg(\ell)} (\rho^*)^{-1} \mod \left(\frac{b^*}{\gcd(b, \ell g)\ast} \right).
\end{align*}
\]

Proof: In order to calculate \(\bar{\ell} \), by using \(\circ \), we are going to operate \((\bar{\ell} \mid \bar{f}h + 2\bar{f}) \) by three different codewords of \(C \). The result of these operations is 0 modulo \(x^m - 1 \).

First, consider \((\bar{\ell} \mid \bar{f}h + 2\bar{f}) \circ (b \mid 0) = 0 \). By Lemma 2.9, \(\bar{b}^* \equiv 0 \mod (x^\alpha - 1) \) and, for some \(\lambda \in \mathbb{Z}_2[x] \), we have that \(\bar{\ell} = \frac{x^\alpha - 1}{b^*} \lambda \).
Second, consider \(\tau = \frac{\gcd(b, \ell g)}{\gcd(b, \ell)} \) and compute \((\ell | f h + 2f) \circ (\tau \ell | \tau f h + 2\tau f)\). Let \(t = \deg(\tau) \) and note that \((f h + 2f)^* = f^* h^* + 2x^{\deg(h)} f^*\). We obtain that

\[
0 = (\ell | f h + 2f) \circ (\tau \ell | \tau f h + 2\tau f) = \\
2\ell \theta_{\frac{m}{b}} (x^\alpha x^{m-\deg(\ell) - 1 - t} \tau^* \ell^*) \\
+ fh \theta_{\frac{m}{b}} (x^\beta x^{m-\deg(f h) - 1 - t} \tau^* f^*) \\
+ 2\ell \theta_{\frac{m}{b}} (x^\beta x^{m-\deg(f) - 1 - t} \tau^* f^*) \\
+ 2 \theta_{\frac{m}{b}} (x^\beta x^{m-\deg(f h) - 1 - t} \tau^* f^* h^*) \mod (x^m - 1).
\]

(6)

Apply Proposition 2.6 to each addend and \(\ell = \frac{x^{\alpha - 1}}{b} \lambda \). In addend (6), by Proposition 2.13, we may replace \(f h \) by the Hensel lift of \(\frac{(x^\beta - 1) \gcd(b, \ell g)^*}{f^* b^*} \). The Hensel lift of \((x^\beta - 1) \) and \(f^* \) (mod 2) are the same polynomials. Moreover, by Lemma 2.15, the addend (6) is 0 modulo \((x^m - 1) \). Therefore, by Proposition 2.13 and Proposition 2.14, we get that

\[
0 = (\ell | f h + 2f) \circ (\tau \ell | \tau f h + 2\tau f) = \\
2(x^{m - 1}) \lambda x^{m - \deg(\ell) - 1 - t} \tau^* \ell^* \\
+ 2(x^{m - 1}) \gcd(b, \ell)^* x^{m - \deg(f h) - 1 - t} \tau^* f^* h^* \\
+ 2(x^{m - 1}) \gcd(b, \ell g)^* x^{m - \deg(f) - 1 - t} \tau^* f^* \mod (x^m - 1).
\]

(7)

Clearly, the addend (7) is 0 modulo \((x^m - 1) \). Since \(\tau = \frac{\gcd(b, \ell g)}{\gcd(b, \ell)} \), we have that \((\ell | f h + 2f) \circ (\tau \ell | \tau f h + 2\tau f)\) is equal to

\[
2(x^{m - 1}) \frac{\gcd(b, \ell g)^*}{b^*} \left(\lambda x^{m - \deg(\ell) - 1 - t} \rho^* \\
+ x^{m - \deg(f) - 1 - t} \tau^* \right) \equiv 0 \pmod{(x^m - 1)}.
\]

(8)

This is equivalent, over \(\mathbb{Z}_2 \), to

\[
\frac{(x^{m - 1}) \gcd(b, \ell g)^*}{b^*} \left(\lambda x^{m - \deg(\ell) - 1 - t} \rho^* \\
+ x^{m - \deg(f) - 1 - t} \tau^* \right) \equiv 0 \pmod{(x^m - 1)}.
\]

Then,

\[
\left(\lambda x^{m - \deg(\ell) - 1 - t} \rho^* \\
+ x^{m - \deg(f) - 1 - t} \tau^* \right) \equiv 0 \pmod{(x^m - 1)},
\]

(9)
or
\[
\left(\lambda x^{m-\deg(f)-1} - \ell \rho^*\right) + x^{m-\deg(f)-1} - \lambda \equiv 0 \pmod{\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)}.
\] (10)

Since \((\frac{b^*}{\gcd(b, \ell g)^*})\) divides \((x^m - 1)\), then (9) implies (10).

The greatest common divisor between \(\rho\) and \(\left(\frac{b}{\gcd(b, \ell g)}\right)\) is 1, then \(\rho^*\) is invertible modulo \(\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)\). Thus,
\[
\lambda = \tau^* x^{m-\deg(f)+\deg(\ell)} (\rho^*)^{-1} \pmod{\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)}.
\]

Let \(\lambda_1 = \tau^* x^{m-\deg(f)+\deg(\ell)} (\rho^*)^{-1} \pmod{\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)}\). Then \(\lambda = \lambda_1 + \lambda_2\) with \(\lambda_2 \equiv 0 \pmod{\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)}\).

Finally, we compute \((\bar{\ell} | \bar{f}h + 2 \bar{f}) \circ (\ell | fh + 2f)\).

\[
0 = (\bar{\ell} | \bar{f}h + 2 \bar{f}) \circ (\ell | fh + 2f) =
2\bar{\ell} \theta \equiv (x^\alpha) x^{m-\deg(\ell)} - 1 \rho^* \\
+ fh \theta \equiv (x^\beta) x^{m-\deg(fh)} - 1 f^* h^* \\
+ 2fh \theta \equiv (x^\beta) x^{m-\deg(f)} - 1 f^* \\
+ 2fh \theta \equiv (x^\beta) x^{m-\deg(fh)} - 1 f^* h^* \mod (x^m - 1).
\] (11)

Apply Proposition 2.6 to each addend. By Lemma 2.15 and replacing \(f\) by the Hensel lift of \(\frac{(x^\beta - 1) \gcd(b, \ell g)^*}{b^*}\), then the addend (11) is 0 \(\mod (x^m - 1)\) and, by Proposition 2.13 and Proposition 2.14, \((\bar{\ell} | \bar{f}h + 2 \bar{f}) \circ (\ell | fh + 2f)\) is equal to

\[
2\left(\frac{x^m - 1}{b^*}\right)(\lambda_1 + \lambda_2) x^{m-\deg(\ell)} - 1 \rho^* \\
+ 2\left(\frac{x^m - 1}{\gcd(b, \ell g)^*}\right) x^{m-\deg(f)} - 1 \\
+ 2\left(\frac{x^m - 1}{\gcd(b, \ell g)^*}\right) x^{m-\deg(fh)} - 1 \equiv 0 \pmod{(x^m - 1)}.
\]

Since \(\lambda_1 = \tau^* x^{m-\deg(f)+\deg(\ell)} (\rho^*)^{-1} \mod{\left(\frac{b^*}{\gcd(b, \ell g)^*}\right)}\), we have that
\[
2\left(\frac{x^m - 1}{b^*}\right)\lambda_1 x^{m-\deg(\ell)} - 1 \rho^* \\
+ 2\left(\frac{x^m - 1}{\gcd(b, \ell g)^*}\right) x^{m-\deg(f)} - 1 \equiv 0 \pmod{(x^m - 1)}.
\]

Therefore, we obtain that
\[
2\left(\frac{x^m - 1}{b^*}\right)\lambda_2 x^{m-\deg(\ell)} - 1 \rho^* \\
+ 2\left(\frac{x^m - 1}{\gcd(b, \ell g)^*}\right) x^{m-\deg(fh)} - 1 \equiv 0 \pmod{(x^m - 1)}.
\]
and then
\[
2 \left(\frac{x^m - 1}{\gcd(b, \ell)} \right) \left(\lambda_2 x^{m - \deg(\ell)} - 1 \rho^* \right) + \frac{b^*}{\gcd(b, \ell)} x^{m - \deg(fh) - 1} \equiv 0 \pmod{(x^m - 1)}.
\]

Arguing similar to the calculation of \(\lambda \) in (8), we obtain that
\[
\lambda_2 = \frac{b^*}{\gcd(b, \ell)} x^{m - \deg(fh) + \deg(\ell) (\rho^*)^{-1}} \mod \left(\frac{b^*}{\gcd(b, \ell)} \right).
\]

Now, considering the values of \(\lambda_1 \) and \(\lambda_2 \) and defining properly \(\mu_1 \) and \(\mu_2 \) we obtain the expected result. □

We summarize the previous results in the next theorem.

Theorem 2.17: Let \(C = ((b \mid 0), (\ell \mid fh + 2f)) \) be a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code of type \((\alpha; \beta; \gamma; \delta; \kappa) \), where \(fgh = x^\beta - 1 \), and with dual code \(C^\perp = ((b \mid 0), (\ell \mid fh + 2f)) \), where \(fgh = x^\beta - 1 \). Let \(\rho = \frac{\ell}{\gcd(b, \ell)} \). Then,
1) \(\bar{b} = \frac{x^{\beta - 1}}{\gcd(b, \ell)} \in \mathbb{Z}_2[x] \),
2) \(f\bar{h} \) is the Hensel lift of the polynomial \(\frac{(x^{\beta - 1}) \gcd(b, \ell)}{f^* \ell} \in \mathbb{Z}_2[x] \).
3) \(\bar{f} \) is the Hensel lift of the polynomial \(\frac{(x^{\beta - 1}) \gcd(b, \ell)}{f^* \ell} \in \mathbb{Z}_2[x] \).
4) \[
\bar{\ell} = \frac{x^\alpha - 1}{b^*} \left(\frac{\gcd(b, \ell)}{\gcd(b, \ell)} x^{m - \deg(f)} \mu_1 \right) + \frac{b^*}{\gcd(b, \ell)} x^{m - \deg(fh) \mu_2} (\mod \frac{b^*}{\gcd(b, \ell)}) \in \mathbb{Z}_2[x],
\]

where
\[
\begin{align*}
\mu_1 &= x^{\deg(\ell)} (\rho^*)^{-1} \mod \left(\frac{b^*}{\gcd(b, \ell)} \right), \\
\mu_2 &= x^{\deg(\ell)} (\rho^*)^{-1} \mod \left(\frac{b^*}{\gcd(b, \ell)} \right).
\end{align*}
\]

Note that from Theorem 2.17 and Theorem 2.3 one can easily compute the minimal spanning set of the dual code \(C^\perp \) as a \(\mathbb{Z}_4 \)-module, and use the encoding method for \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic codes described in [1].

III. Examples

As a simple example, consider the \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic code \(C_1 = ((x - 1 \mid (x^2 + x + 1) + 2)) \) of type \((3; 2; 1; 2) \).

We have that \(b = x^3 - 1, \ell = (x - 1), f = 1 \) and \(h = x^2 + x + 1 \).

The generator matrix ([4]) is
\[
G = \begin{pmatrix} 101 & 200 \\ 011 & 220 \\ 000 & 111 \end{pmatrix}.
\]

Then, applying the formulas of Theorem 2.17 we have \(\bar{b} = x^2 + x + 1, \bar{\ell} = x, f\bar{h} = x - 1, \) and \(\bar{f} = x - 1 \).

Therefore, \(C_1^\perp = ((x^2 + x + 1 \mid 0), (x \mid (x - 1) + 2(x - 1))) \), is of type \((3; 3; 1; 2; 1) \) and has generator matrix
\[
H = \begin{pmatrix} 111 & 000 \\ 100 & 310 \\ 001 & 301 \end{pmatrix}.
\]
In order to determine some cyclic codes with good parameters, we will consider some optimal codes with respect to the minimum distance. Applying the classical Singleton bound [8] to a $\mathbb{Z}_2\mathbb{Z}_4$-additive code C of type $(\alpha, \beta; \gamma, \delta; \kappa)$ and minimum distance d, the following bound is obtained:

$$\frac{d - 1}{2} \leq \frac{\alpha}{2} + \frac{\beta}{2} - \frac{\gamma}{2} - \delta. \quad (12)$$

According to [2], a code meeting the bound (12) is called maximum distance separable with respect to the Singleton bound, briefly MDSS.

By [1, Theorem 19] it is known that $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ with $b = x - 1, \ell = 1$ and $f = h = 1$ is an MDSS code of type $(\alpha, \beta; \alpha - 1, \beta; \alpha - 1)$. Applying Theorem 2.17 to compute the dual code of C one obtain that $C^\perp = \langle (\bar{b} \mid 0), (\bar{\ell} \mid f\bar{h} + 2\bar{f}) \rangle$ with $\bar{b} = x^\alpha - 1, \bar{\ell} = \theta_\alpha(x), \bar{f} = \theta_\beta(x) \text{ and } \bar{h} = x - 1$, which is also an MDSS code. In fact, the binary image of C is the set of all even weight vectors and the binary image of C^\perp is the repetition code. Moreover, these are the only MDSS $\mathbb{Z}_2\mathbb{Z}_4$-additive codes with more than one codeword and minimum distance $d > 1$, as can be seen in [2].

Finally, we are going to see a pair of examples of self-dual $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, giving the generators and type of these codes.

<table>
<thead>
<tr>
<th>Generators</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b = x^{10} + x^8 + x^7 + x^5 + x + 1, \ell =$</td>
<td>$(14, 7; 8, 3; 7)$</td>
</tr>
<tr>
<td>$x^6 + x^4 + x + 1, fh = y^4 + 2y^3 + 3y^2 + y + 1, f = 1$</td>
<td></td>
</tr>
<tr>
<td>$b = x^5 + 1, \ell = 0, fh = y^5 - 1, f = 1$</td>
<td>$(10, 5; 10, 0; 5)$</td>
</tr>
</tbody>
</table>

The second code in the table belongs to an infinite family of self-dual $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes that was given in [3, Theorem 4].

Proposition 3.1: Let α be even and β odd. Let $C = \langle (b \mid 0), (\ell \mid fh + 2f) \rangle$ be a $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic code with $b = x^{\alpha} - 1, \ell = 0, h = x^\beta - 1$ and $f = 1$. Then C is a self-dual code of type $(\alpha, \beta; \beta + \frac{\alpha}{2}, 0, \frac{\alpha}{2})$.

Proof: By Theorem 2.17, one obtains that $\bar{b} = x^{\bar{\alpha}} - 1, \bar{\ell} = 0, \bar{h} = x^{\bar{\beta}} - 1$ and $\bar{f} = 1$. Hence C is self-dual and, by Theorem 2.4, it is of type $(\alpha, \beta; \beta + \frac{\alpha}{2}, 0, \frac{\alpha}{2})$. \hfill \blacksquare

REFERENCES

Joaquim Borges was born in Lleida, Catalonia, Spain, in October 1965. He received the graduate degree in Sciences (Computer Science Section) in 1988 from the Universitat Autònoma de Barcelona, Spain, and the Ph.D. degree in Computer Science Engineering in 1998 from the same university.

Since 1988, he has been with the Computer Science Department first, and from 2005 with the Information and Communications Engineering Department, at the Universitat Autònoma de Barcelona, where he is currently Associate Professor. His research interests include subjects related to Combinatorics, Coding Theory and Graph Theory.

Cristina Fernández-Córdoba was born in Sabadell, Catalonia (Spain) in December 1977. She received her Bachelor’s degree in Mathematics in 2000 from the Universitat Autònoma de Barcelona and the Ph.D. degree in Science (Computer Science Section) in 2005 from the same university. In 2000 she joined the Department of Computer Science at the Universitat Autònoma de Barcelona, and in 2005 the Department of Information and Communications Engineering at the same university. In 2008, she joined the Fundación Española para la Ciencia y la Tecnología and she did a one year research stay at Auburn University under a Fulbright grant. From 2009, she is within the Department of Information and Communications Engineering at the Universitat Autònoma de Barcelona where currently is an Associate Professor. Her research interests include subjects related to combinatorics, coding theory and graph theory.

Roger Ten-Valls was born in Barcelona, Catalonia (Spain) in June 1987. He received the B.Sc. degree in mathematics in 2011 from the Universitat Autònoma de Barcelona and the M.Sc. in mathematics in 2013 from Universitat Politècnica de Catalunya. He is currently working toward the Ph.D. at the Department of Information and Communications Engineering at the Universitat Autònoma de Barcelona. His research interests include coding theory, combinatorics and abstract algebra.