Post-print of: Bartrina, J. and Auli, F. “Cell-based 2-step Pre-print/Post-print of: Bartrina, J. and Auli, F.
“Bitplane image coding with parallel coefficient processing” in IEEE transactions on image processing”, vol. 25,
issue 1 (Jan. 2016), p. 209-219. DOI 10.1109/TIP.2015.2484069

Bitplane Image Coding with
Parallel Coefficient Processing

Francesc Auli-Llinas, Senior Member, IEEE, Pablo Enfedaque,
Juan C. Moure, and Victor Sanchez, Member, I[IEEE

Abstract—Image coding systems have been traditionally tai-
lored for Multiple Instruction, Multiple Data (MIMD) computing.
In general, they partition the (transformed) image in codeblocks
that can be coded in the cores of MIMD-based processors. Each
core executes a sequential flow of instructions to process the
coefficients in the codeblock, independently and asynchronously
from the others cores. Bitplane coding is a common strategy
to code such data. Most of its mechanisms require sequential
processing of the coefficients. The last years have seen the up-
raising of processing accelerators with enhanced computational
performance and power efficiency whose architecture is mainly
based on the Single Instruction, Multiple Data (SIMD) principle.
SIMD computing refers to the execution of the same instruction
to multiple data in a lockstep synchronous way. Unfortunately,
current bitplane coding strategies can not fully profit from
such processors due to inherently sequential coding task. This
paper presents bitplane image coding with parallel coefficient
processing (BPC-PaCo), a coding method that can process many
coefficients within a codeblock in parallel and synchronously.
To this end, the scanning order, the context formation, the
probability model, and the arithmetic coder of the coding engine
have been re-formulated. Experimental results suggest that the
penalization in coding performance of BPC-PaCo with respect
to traditional strategies is almost negligible.

Index Terms—Bitplane image coding, Single Instruction Mul-
tiple Data (SIMD), JPEG2000.

I. INTRODUCTION

VER the past 20 years, the computational complexity
Oof image coding systems has been increased notably.
Codecs of the early nineties were based on computationally
simple techniques like the discrete cosine transform (DCT)
and Huffman coding [1]. Since then, techniques have been
sophisticated to provide higher compression efficiency and
enhanced features. Currently, image compression standards
such as JPEG2000 [2] or HEVC intra-coding [3] employ

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

Francesc Auli-Llinas and Pablo Enfedaque are with the Department of
Information and Communications Engineering, Universitat Autonoma de
Barcelona, Spain (phone: +34 935811861; fax: +34 935813443; e-mail:
{fauli | pablo}@deic.uab.cat). Juan C. Moure is with the Department of
Computer Architecture and Operating Systems, Universitat Autonoma de
Barcelona, Spain (e-mail: juancarlos.moure@uab.cat). Victor Sanchez is with
the Department of Computer Science, The University of Warwick, United
Kingdom (e-mail: vsanchez@dcs.warwick.ac.uk). This work has been par-
tially supported by the Spanish Government (MINECO) and by FEDER
under Grants RYC-2010-05671, TIN2012-38102-C03-03, TIN2011-28689-
C02-1, and TIN2014-53234-C2-1-R, by Universitat Autonoma de Barcelona
under Grant UAB-472-02-2/2012, by the Catalan Government under Grant
2014SGR-691, by the EU Marie Curie CIG Programme under Grant PIMCO,
and by the UK Engineering and Physical Sciences Research Council.

complex algorithms that transform and scan the image multiple
times. This escalation in computational complexity continues
in each new generation of coding systems.

In general, modern coding schemes tackle the computational
complexity by means of fragmenting the image in sets of
(transformed) samples, called codeblocks, that do not hold (or
hold in a well-orderly way) dependencies among them. Each
codeblock [4], or group of codeblocks [5], can be coded inde-
pendently from the others employing the innermost algorithms
of the codec. These algorithms scan the samples repetitively,
producing symbols that are fed to an entropy coder. Key in
such a system is the context formation and the probability
model, which determine probability estimates employed by
the entropy coder. Commonly, the samples are visited in a
sequential order so that the probability model can adaptively
adjust the estimates as more data are coded. In many image
coding systems [6]-[10], these algorithms employ bitplane
coding strategies and context-adaptive arithmetic coders.

Modern Central Processing Units (CPUs) are mainly based
on the Multiple Instruction, Multiple Data (MIMD) principle.
They have multiple cores, each able to execute a flow of
instructions independently and asynchronously from the oth-
ers. CPUs handle well the computational complexity of image
coding systems. The tasks of the image codec are straight-
forwardly mapped to the CPU: each codeblock is assigned
to a core that runs a bitplane coding engine. This parallel
processing of codeblocks is called macroscopic parallelism [4].

Microscopic parallelism refers to parallel strategies of data
coding within a codeblock. There are few such strategies due
to the difficulty to unlock the data dependencies that arise
when the coefficients are processed in a sequential fashion.
Also, because most codecs are tailored for their execution in
CPUs, so parallelization in the bitplane coding stage is not
appealing. It has not been until recent years that microscopic
parallelism has become attractive due to the upraising of
accelerators, which are processors mainly based on the Single
Instruction, Multiple Data (SIMD) principle. The main idea
behind SIMD computing is to execute a flow of instructions to
multiple data in parallel and synchronously. This architectural
principle permits to increase the number of instructions simul-
taneously executed by an order of magnitude while lowering
the power consumption. Nowadays, the Graphics Processing
Units (GPUs) are the main representatives of such processors.

The fine level of parallelism required for SIMD computing
can only be achieved in image coding systems via microscopic
parallel strategies. Even so, the current trend is to implement
already developed coding schemes for their execution in

0001292
Cuadro de texto
Post-print of: Bartrina, J. and Aulí, F. “Cell-based 2-step Pre-print/Post-print of: Bartrina, J. and Aulí, F. “Bitplane image coding with parallel coefficient processing” in IEEE transactions on image processing”, vol. 25, issue 1 (Jan. 2016), p. 209-219. DOI 10.1109/TIP.2015.2484069

Cop. 2016 IEEE. Personal use of this material is permitted. Permissions from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

GPUs. Without aiming to be exhaustive, GPU implementa-
tions of JPEG2000 are found in [11]-[14] and there exist
commercial products like [15] as well. The JPEG XR standard
is implemented in [16], and video coding standards are studied
in [17], [18]. Other coding schemes such as EBCOT and
wavelet lower trees are also implemented in GPUs in [19]
and [20], respectively. Such implementations reduce the exe-
cution time of CPU-based implementations. Nonetheless, none
of them can fully exploit the resources of the GPU due to the
aforementioned sequential coefficient processing.

This paper introduces bitplane image coding with parallel
coefficient processing (BPC-PaCo), a wavelet-based coding
strategy tailored for SIMD computing. To this end, a new
scanning order, context formation, probability model, and
arithmetic coder are devised. All the proposed mechanisms
permit the processing of the samples in parallel or sequentially,
allowing efficient implementations for both SIMD and MIMD
computing. The coding performance achieved by the proposed
method is similar to that of JPEG2000. This paper describes
the employed techniques and assesses their performance from
an image coding perspective. Future work will describe its im-
plementation in a GPU appraising the computational through-
put. This paper extends our preliminary work [21] with a
sequential version of the algorithm, more experimental data,
and a revised and more descriptive text.

The remainder of the paper is structured as follows. Sec-
tion II provides preliminary concepts. Section III describes
the proposed bitplane coding strategy. Section IV assesses its
coding performance through experimental results carried out
for four different corpora of images. The last section concludes
with a brief summary.

II. PRELIMINARIES

The proposed bitplane coding strategy can be employed in
any wavelet-based compression scheme. We adopt the frame-
work of JPEG2000 due to its excellent coding performance
and advanced features. A conventional JPEG2000 implemen-
tation is structured in three main coding stages [4]: data
transformation, data coding, and codestream re-organization.
The first stage applies the wavelet transform and quantizes
wavelet coefficients. This represents approximately 15~20%
of the overall coding task and does not pose a challenge
for its implementation in SIMD architectures [22]-[28]. After
data transformation, the image is partitioned in small sets of
wavelet coefficients, the so-called codeblocks. Data coding
is carried out in each codeblock independently. It represents
approximately 70~75% of the coding task. The routines
employed in this stage are based on bitplane coding and
context-adaptive arithmetic coding. The last stage re-organizes
the final codestream in quality layers that include segments of
the bitstreams produced for each codeblock in the previous
stage. Commonly, the codestream re-organization is carried
out employing rate-distortion optimization techniques [29]-
[31], representing less than 10% of the coding task.

Bitplane coding strategies work as follows. Let
[brr—1,bp—2,...,b1,00], b; € {0,1} be the binary
representation of an integer v which represents the magnitude

of the index obtained by quantizing wavelet coefficient w,
with M being a sufficient number of bits to represent all
coefficients. The collection of bits b; from all coefficients is
called a bitplane. Bits are coded from the most significant
bitplane M —1 to the least significant bitplane 0. The first non-
zero bit of the binary representation of v is denoted by bs and
is referred to as the significant bit. The sign of the coefficient
is denoted by d € {4, —} and is coded immediately after b;,
so that the decoder can begin approximating w as soon as
possible. The bits b,, r < s are referred to as refinement bits.

JPEG2000 codes each bitplane employing three coding
passes [4] called significance propagation pass (SPP), mag-
nitude refinement pass (MRP), and cleanup pass (CP). The
SPP and CP perform significance coding. They visit those
coefficients that did not become significant in previous bit-
planes, coding whether they become significant in the current
bitplane or not. The difference between them is that the SPP
visits coefficients that are more likely to become significant.
The MRP refines the magnitude of coefficients that became
significant in previous bitplanes. The order of the coding
passes in each bitplane is SPP, MRP, and CP except for the
most significant bitplane, in which only the CP is applied.
This three coding pass scheme is convenient for rate-distortion
optimization purposes [10].

With regard to SIMD architectures, it is worth knowing
that they execute vector instructions. The vector unit (i.e., the
hardware component that executes the vector instructions) is
composed of T replicated lanes, each producing a different
data output element. A vector instruction is processed by
simultaneously executing the same operation in all the lanes
of the unit. GPUs adopt a convenient programming model that
simplifies the details of SIMD computing. In GPUs, the lanes
of a vector unit are abstracted as individual threads that execute
a flow of instructions in a lockstep synchronous way. If the
execution flow diverges (due to conditionals), the divergent
paths are executed sequentially one after another. In general,
divergent paths are to be minimized.

III. PROPOSED BITPLANE CODING STRATEGY

A parallel bitplane coding strategy must be deterministic,
i.e., the parallel execution must unambiguously correspond to
an equivalent sequential execution. The codestream generated
or processed by both the parallel and sequential versions of the
algorithm must be the same. Three mechanisms of the bitplane
coder have been re-formulated keeping in mind this purpose:
the scanning order, the context formation and its probability
model, and the arithmetic coder.

A. Scanning order

Scanning orders visit coefficients employing a pre-defined
sequence. Typical sequences are row by row or column by
column [5], in zig zag [32], using stripes of 4 rows that
are scanned from left to right [2], or via quadtree strate-
gies [8]. Regardless of the scanning sequence, all methods
visit coefficients in a consecutive fashion, which prevents
parallelism while executing a coding pass. The only way to
achieve microscopic parallelism in current bitplane coding

0001292
Cuadro de texto
Cop. 2016 IEEE. Personal use of this material is permitted. Permissions from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

engines is to execute coding passes in parallel. JPEG2000,
for instance, provides the RESET, RESTART, and CAUSAL
coding variations to achieve it. The main problem of coding
pass parallelism is that in order to code a coefficient in
the current pass, some information of its neighbors coded
in previous passes may be needed. This is addressed by
delaying the beginning of the execution of each coding pass
some coefficients with respect to its immediately previous
pass [4], [33]. Such an elaborate strategy is not suitable for
SIMD computing since each coding pass carries out different
operations, which generates divergence among threads.

The proposed method achieves microscopic parallelism by
means of coding T coefficients in parallel during the execution
of a coding pass. Sets of 7" threads perform the same operation
to different coefficients, so vector instructions can be naturally
mapped to process each codeblock. Fig. 1(a) depicts the
scanning order employed. The light- and dark-blue dots in
the figure represent the coefficients within a codeblock. The
coefficients are organized in vertical stripes that contain two
columns. Each stripe is processed by a thread. Coefficients are
scanned from the top to the bottom row, and from the left to
the right coefficient. All coefficients in the same position of
the stripes are processed at the same time.

The scanning order of Fig. 1(a) is highly efficient for context
formation purposes. Let us explain further. As seen in the
following section, the context of a coefficient is determined
via its eight adjacent neighbors. All information coded in
previous passes is available when forming the context since
such information has been already transmitted to the decoder.
Also, information coded in the current coding pass that be-
longs to those neighbors visited before the current coefficient
can also be employed. This information is valuable since it
helps to predict with higher precision the symbols coded.
The higher the Average number of already Visited Neighbors
in the current coding Pass (AVNP), the better the coding
performance. The AVNP is computed without considering
those coefficients in the border of the codeblock. Fig. 1(a)
depicts in gray the eight adjacent neighbors of two coefficients,
one in the left and the other in the right column of a stripe.
The coefficient for which the context is formed is depicted
with a red circle. The neighbors that were already visited in
the current coding pass are depicted with a white cross. The
coefficients in the left column (depicted in light blue) have
3 already visited neighbors, whereas the coefficients in the
right column have 5. So the AVNP achieved by the proposed
scanning order is 4. JPEG2000 and other coding systems
employing sequential scanning orders also achieve an AVNP
of 4.

The sequential version of the proposed scanning order is
depicted in Fig. 1(b). As seen in the figure, all light-blue
coefficients of a row are visited first from left to right, followed
by the dark-blue coefficients. The same routine is carried out
in each row, from the top to the bottom of the codeblock.
Since the parallel operation is synchronous and deterministic,
the context formation resulting from the parallel and sequential
version of this scanning order is identical. This scanning order
does not use fast-coding primitives such as the run mode of
JPEG2000 since they do not provide significant coding gains

stripe T-1

.._
]
-
ol
-~
-~

— —

JFAFAVARARAVAVEVARARARAV AN

19787679799 999 % 0

JFSVAVAVARUVAVAVANAFINAVAVANR AN

L L TN
LRNNNNRNNNNNN

—
)
e

start of
coding

¥
W\J N s T

Y W oW W W W W

AN HON O ONCHONCHONCHONC
S AN ONCONCA N HONCHONC.
SO SONCONCONCHONCSON o
S OFON OFONCION ONCHONCIONCK,
an SN SN O SON SO SN &
S CHONCHONCHONCHONCHONCHONC
~8 9.9 5. 8 0. 959 .0.8.0. 9

LN
RN N F oS BN F AN F N N

¥
end of
coding

(b)

Fig. 1: Illustration of the proposed scanning order for (a)
parallel and (b) sequential processing.

when employed with the proposed probability model [10].
The scanning order of BPC-PaCo is employed with the
same coding passes as those defined in JPEG2000. Though
other schemes may be utilized, the three-coding pass strat-
egy of JPEG2000 is adopted herein due to its high coding
efficiency [10]. The number of significant bitplanes coded for
each codeblock is signaled in the headers of the codestream.

B. Context formation and probability model

The contexts employed for significance coding use the
significance state of the eight adjacent neighbors of coefficient

w. The neighbors of w are denoted by w*, with k € {1
s = \G s, <, N\ referring to the neighbor in the top,
top-right, right,. .. position, respectively. The magnitude of the
quantization index of these neighbors is denoted by v*. The
significance state of v* in bitplane j is denoted by ®(v¥, 7).
It is 1 when its significance bit (i.e., bs) has already been
coded. Clearly, this definition includes all neighbors that
became significant in bitplanes higher than the current, i.e.,
®(vF j) = 1if s > j. It also includes the neighbors that
become significant in the current bitplane —and that are already
visited in the current coding pass—, i.e., ®(v¥,j) = 1 if s =
4 and v* is already visited. Otherwise, ®(v", j) = 0.

The contexts employed for significance coding are denoted
by ¢sig(-). They are computed as the sum of the significance
state of the eight adjacent neighbors of w, more precisely, the
context of v at bitplane j is computed as

¢sig(vaj) = Z(I)(Uk7j) . (l)
k

Therefore, ¢siq(-) € {0,...,8}. Although other works in the
literature [7], [9], [34] determine the context depending on
the position of the significance neighbors, the analysis in [35]
shows that simple context formation approaches like (1) also
achieve competitive coding performance. This approach is
employed herein due to its computational simplicity.

The contexts employed for sign coding are similar to
those of JPEG2000 since they obtain high efficiency. Sign
contexts employ the sign of the neighbors in the vertical and
horizontal positions. Let y(w",j) represent the sign of w”
when coding bitplane j. x(w”,7) is 0 if the coefficient is not
significant, otherwise is 1 and —1 for positive and negative
coefficients, respectively. Then, x¥ = x(w',7)+ x(w*, j) and
X = x(w,j)+x(w™,). Context dsign(w,j) is computed
according to

o

if (xV > 0and x > 0) or
(xV < 0and xY# <0)
Gsign(w,j) = ¢ 1 if X" =0and x¥ #0)
2 if YV #0and y =0
3 otherwise

Contexts for refinement coding should be based on com-
putationally intensive techniques such as the local average,
or otherwise use only one context for all refinement bits,
as suggested in [35]. Herein, the latter approach is used for
computational simplicity, so ¢rcr(v,j) = 0.

The contexts are employed together with the probability
model to determine the probability estimate that is fed to the
arithmetic coder. Conventional probability models adaptively
adjust the probability estimates of the symbols as more data
are coded. Such models are convenient since they are com-
putationally simple, achieve high compression efficiency, and
avoid a pre-processing step to collect statistics of the data.
Compression standards such as JBIG [36], JPEG2000 [2],
and HEVC [3] employ them. Unfortunately, context-adaptive

models cannot be employed herein. To do so, the probability
adaptation should be carried out for all data of the codeblock,
which is not possible due to the parallel processing of coef-
ficients. Such models achieve poor performance when coding
short sequences [33], so to use them independently for each
stripe is not effective.

The proposed bitplane coder employs a stationary proba-
bility model that uses a fixed probability for each context
and bitplane. As shown in [33], this model is based on the
empirical evidence that the probabilities employed to code all
symbols with a context are mostly regular in the same bitplane.
The probability estimates are precomputed off-line and stored
in a lookup table (LUT) that is known by the encoder and the
decoder, so there is no need to transmit it. The LUT contains
one probability estimate per context and bitplane for each
wavelet subband. It is accessed as Py [j][@{sig|sign|res} ()]
providing the probability of the symbol coded. v denotes the
wavelet subband. Note that such a probability model does
not need the adaptive probability tables employed in context-
adaptive arithmetic coders such as the MQ.

The probability estimates needed to populate the LUTSs
are determined as follows. Let Fy, (v | ¢siq(v, j)) denote the
probability mass function (pmf) of the quantization indices
at bitplane j given their significance context. This pmf is
computed for each wavelet subband using the data from all
images in a training set. Its support is [0, ...,27"! — 1] since
it contains quantization indices that were not significant in
bitplanes greater than j. The probability estimates used to
populate the LUTs are generated by integrating the pmfs to
obtain the probabilities of emitting O or 1 in the corresponding
contexts. Let us denote the probability that b; is 0 during sig-
nificance coding by Ps;4(b; = 0| ¢sig(v, j)). This probability
is determined from the corresponding pmf according to

291

Z Fu(v | ¢sig(v, 7))
Psig(bj = 0 | ¢sig(v,) = v=0 _

27+t _1

Z Fu(v | ¢sig(vaj))
v=0

2 Fu(’U | ¢sig(vaj)) 27 -1
v=0 = Z Fu(U | ¢sig(U7j)) .

v=0

1
3)

The probability estimates for refinement and sign coding
are derived similarly. The LUT is different for each image
type since the probability model exploits the fact that the data
produced after transforming images of the same type (e.g.,
natural, medical, etc.) with the same wavelet filter-bank are
statistically similar [35], [37], [38]. A more in-depth study on
this stationary probability model can be found in [33].

C. Arithmetic coder

The symbol and its probability estimate are fed to an
arithmetic coder. Conventional arithmetic coding works as

follows. The coder begins by segmenting the interval of
real numbers [0,1) into two subintervals. The size of the
subintervals is chosen according to the probability estimate
of the symbol. The first symbol is coded by selecting its
corresponding subinterval. Then, this procedure is repeated
within the selected subintervals for the following symbols.
The transmission of any number within the range of the
final subinterval guarantees that the reverse procedure decodes
the original message losslessly. The number transmitted is
generally referred to as codeword.

Most arithmetic coders employed for image compression
produce variable-to-variable length codes. This is, a variable
number of input symbols are coded with a codeword of a
priori unknown length. In JPEG2000, for instance, all data of
a codeblock is coded with a single —and commonly very long—
codeword. Practical realizations of arithmetic coders operate
with hardware registers of 16 or 32 bits, so the generation of
the codeword is carried out progressively. Roughly described,
this is done as follows. Let [L, R) denote the current interval of
the coder, with L and R being the fractional part of the left and
right boundaries of the interval stored in hardware registers.
Assume that the leftmost bits of the binary representations of
L and R are not equal in the current interval. When a new
symbol is coded, this interval is further reduced to [L', R’).
If the leftmost bits of L’ and R’ are then equal, all following
segmentations of the interval will also start with those same
bit(s) since L < L' < ... < R’ < R. This permits to dispatch
the leftmost bits of L’ and R’ that are identical and to shift
the remaining bits of the registers to the left. This procedure
is called renormalization.

Two aspects of conventional arithmetic coding prevent its
use in the proposed bitplane coding strategy. The first is the
generation of a single codeword. The scanning order described
above utilizes T' threads that code data in parallel. Forcing
them to produce a single codeword would require to code
their output in a sequential order, ruining the parallelism.
The second aspect is the computational complexity of cur-
rent arithmetic coders. Part of this complexity is due to the
renormalization procedure, which requires conditionals and
repositioning operations as explained before.

These aspects are addressed herein by means of a new
technique that employs multiple arithmetic coders that work in
parallel and generate fixed-length codewords that are optimally
positioned in the bitstream. As previously described, each
thread codes all data of a stripe. The coefficients coded by a
thread are visited in a sequential order, so an arithmetic coder
can be individually employed to code all symbols emitted
for a stripe. Instead of using conventional arithmetic coding,
we employ an arithmetic coder that generates codewords
of fixed length [39]-[43]. Variable-to-fixed length arithmetic
coding avoids renormalization, reducing the complexity of the
coder [43]. It uses an integer interval with a pre-defined range,
say [0,2" — 1] with W being the length of the codeword (in
bits). The division of the interval is carried out in a similar
way as with conventional arithmetic coding until its size is less
than 2. Then, the number within the last interval is dispatched
to the bitstream and a new interval is set (see below).

The codewords produced in each stripe are sorted generating

i stripe 0

stripe 5

bitstream i y : ‘

already bits reserved newly dispatched
dispatched for codeword codeword of
codewords of stripe 0 stripe 5

Fig. 2: Illustration of the sorting technique employed to situate
the codewords in the bitstream when encoding.

a single quality-embedded bitstream for all stripes that can be
truncated at any point so that the quality of the recovered
image is maximized. Such a bitstream is similar to that
produced by conventional image codecs, so it can be employed
in the same framework of rate-distortion optimization defined
in JPEG2000 to construct layers of quality and/or different
progression orders [4], [30]. In the encoder, the bitstream is
constructed as follows. Each time that a thread initializes its
interval (because is the beginning of coding or because the
interval is exhausted and a new symbol needs to be coded),
W bits are reserved at the end of the bitstream. This space
is reserved —but it is not filled— at this instant because the
interval of the thread has just been initialized, so the codeword
is still not available. After coding some symbols (possibly
from different coding passes), the interval of this thread is
exhausted, so its codeword is put in the reserved space. Fig. 2
illustrates an example of this sorting technique. All stripes
in the figure have its own space in the bitstream, which was
reserved when needed. The coefficients depicted with a red
circle are those currently visited. When the thread processing
the fifth stripe emits its symbol, it exhausts its interval, so the
codeword is put in the space that was reserved for this thread.
Note that this thread does not reserve a new space at the end
of the bitstream at this instant but it will do it when coding a
new symbol. Evidently, if two or more threads need to reserve
space at the same instant, some priority must be employed. In
order to provide determinism, stripes on the left have higher
priority. When the coding of the codeblock data finishes, the
arithmetic coders put their codewords in the bitstream, without
needing a byte flush operation.

As previously stated, the order in which the codewords are
sorted minimizes the distortion at any truncation point. This
can be seen from the perspective of the decoder. All the threads
need a non-exhausted interval to decode the data of their
corresponding stripes. The first thread that —while decoding—
exhausts its interval stops the whole decoding procedure
for that codeblock since all threads are synchronized. The
codewords are sorted so that, at any instant of the decoding,
the thread that exhausts its interval and needs to decode a
new symbol can found its immediately next codeword at the
immediately next position of the bitstream. In other words, any
thread of the decoder only needs to read the next W bits of

the bitstream when its interval is exhausted and a new symbol
is to be decoded. This decodes the maximum amount of data
for any given segment of the bitstream, thus the distortion of
the reconstructed coefficients is minimized.

The proposed arithmetic coding technique slightly penalizes
the coding performance with respect to an implementation
that produces a single codeword. This is because either if the
bitstream is truncated for rate-distortion optimization purposes,
or if it is fully transmitted, the last codeword that is read for
each stripe may contain some bits that are not really needed
to decode the data of the corresponding coding pass. Since
the proposed strategy utilizes 71" stripes, these excess bits may
not be negligible. The penalization in coding performance
decreases as more data are coded in each stripe. We found that
the coding of two columns is a good tradeoff between coding
performance and parallelism. Evidently, the implementation
of the proposed method in hardware architectures such as
FPGAs would require the replication of the arithmetic coder.
Replication is a common strategy to obtain high performance
codecs [44].

D. Algorithm

The encoding procedures of BPC-PaCo are embodied in
Algorithm 1. One procedure per coding pass is specified.
These procedures detail the operations carried out for a stripe.
The “ACencode” procedure describes the operations of the
arithmetic coder. The scanning order is specified in the first
two lines of the “SPP”, “MRP”, and “CP” procedures. The
(quantized) coefficient visited is denoted by (vy ;) wy,,, With
y,x indicating its row and column within the codeblock,
respectively. The SPP and CP check whether the visited
coefficient is significant in previous bitplanes or not. If not,
they code bit b; of the quantized coefficient. The SPP only
visits coefficients that have at least one significant neighbor
(i-e., those that have ¢g;4(vy 5, 7) # 0), whereas the CP visits
all non-significant coefficients that were not coded by the SPP.
The MRP codes the bit b; of all coefficients that became
significant in previous bitplanes.

The “ACencode” procedure codes all symbols emitted. The
interval of stripe ¢ is stored in registers L[¢] and S[t], which
are the left boundary and the size minus one of the interval,
respectively. Since the length of the codewords is W, both L][t]
and S[t] are integers in the range [0,2" — 1]. The codeword
is dispatched to the bitstream in lines 13-15 of this procedure
when the interval is exhausted. Note that when S[t] = 0, L[t]
represents the final number within the interval or, in other
words, the emitted codeword. If a new symbol is coded and
S[t] = 0, the procedure reserves W bits and sets L[t] + 0
and S[t] + 2 — 1 (see lines 1-5).

The interval division is carried out in lines 6-12. When the
symbol is 0 or —, the lower subinterval is kept, so the interval
size is reduced to

S[t] « (S[t] -p) > P,)

and L[t] is left unmodified. >> above denotes a bit shift to the
right. p is the probability of the symbol to be 0/+ expressed

Algorithm 1 BPC-PaCo encoding procedures
Initialization: S[t] <0 V 0<¢<T

SPP (u subband, j bitplane, ¢ stripe)
1: for y € [0,numRows — 1] do
2: forzet-2,t-2+1] do

3: if vy,» is not significant AND ¢sig(vy,z,) # 0 then
4; ACencode(bj, Pulj][¢sig(Vy,z,7)], 1)

5: if b; = 1 then

6: ACencode(d, Pu[j][¢psign(wy,z,7)]s t)

7: end if

8: end if

9: end for

10: end for

MRP (u subband, j bitplane, ¢ stripe)

1: for y € [0,numRows — 1] do

2 forz et-2,¢t-2+1] do

3: if v, is significant in j' > j then

4: ACencode(b;, Puljl[pres(vy,z,)], 1)
5 end if

6: end for

7: end for

CP (u subband, j bitplane, ¢ stripe)
1: for y € [0,numRows — 1] do

2: forz e [t-2,t-2+1] do

3: if vy . is not significant AND not coded in SPP then
4; ACencode(b;, Pu[j][¢sig(Vy,zs 5)], 1)

5: if b; = 1 then

6: ACencode(d, Pu[j][dsign(wy,z)], t)

7: end if

8: end if

9: end for

10: end for

ACencode (c symbol, p probability, ¢ stripe)
1: if S[¢t] = 0 then

2 Reserve the next W bits of the bitstream
3 Lit] + 0

4 S[t] 2" —1

5: end if

6: if c=0 OR c = — then__

7: S[t] + (S[t] - p) > P

8: else .

9: F< ((S[t]-p)>P)+1

10: Lit] < L[t} + f

11: S[t] < S[te] = f

12: end if

13: if S[t] = 0 then

14: Put L[t] in reserved space of the bitstream
15: end if

in the range [0, 2P 1], determined according to

p = |Puig(b; = 0| ¢sig(v,5)) - 27 (5)

for significance coding, and equivalently for refinement and
sign coding. |-| denotes the floor operation. As seen in
Algorithm 1, p is thg value that is stored in the LUTs, so (5) is
computed off-line. P is the number of bits employed to express
the symbol’s probability. The result of the multiplication in (4)
(i.e., (S[t] - p)) must not cause arithmetic overflow in the
hardware registers, so W + P < 64 in modern architectures.
Experimental evidence indicates that 16 < W < 32 and

Algorithm 2 BPC-PaCo relevant decoding procedures
Initialization: S[t] <0 V 0<¢<T

ACdecode (p probability, ¢ stripe)

1: if S[t] = 0 then

2 I[t] < read the next W bits of the bitstream
3 S[t] « 2" -1

4 L[t] + 0

5: end if
6
7
8

 f <+ ((S[t]-p)>P)+1
g+ L[t]+ f
. if I[t] > g then
9: c+ 10R +
10: S[t] < S[t] - f
11: Lit] g
12: else
13: c+ 0O0OR —
14: St f—1
15: end if
16: return c

P > 7 achieve competitive performance. In our implemen-
tation W =16 and P = 7.
The coding of 1/+ keeps the upper subinterval, so

L[t] « L[+ (S -p) > P) + 1, and
S[t] «+ S[t]— ((S[t]-p) >P)—1.

The interval division is carried out via integer multiplications
and bit shifts because these are the fastest operations in
hardware architectures. Also, because floating point arithmetic
should be avoided to prevent incompatibilities with different
architectures. An alternative to (4), (6) is the use of LUTs that
contain the result of these operations with relative precision,
similarly as how it is done in [1], [4], [45]-[48]. Our imple-
mentation employs the above operations since they are faster
than any other alternative tested.

The decoding procedures of the SPP, MRP, and CP are
similar to those of the encoder, so they are not detailed. Al-
gorithm 2 describes the decoding procedure of the arithmetic
coder. In this procedure, I[t] is the codeword read from the
bitstream for stripe ¢t. The procedure is similar to that of
the encoder. An extended description of the arithmetic coder
employed in Algorithms 1 and 2 can be found in [43].

The sequential version of BPC-PaCo carries out the same
instructions detailed above except that the two loops in lines
1 and 2 of the coding passes are replaced by loops that
implement the scanning order depicted in Fig. 1(b). The call
to “ACencode” or “ACdecode” replaces ¢ by z/2, so that
each stripe employs a different interval. Also, sign coding
is computed slightly different. In the parallel version, it is
carried out just after emitting bit b;. In the sequential version,
the sign can not be emitted just after b; since that would
produce a different bitstream from that obtained by the parallel
algorithm. When the coefficients are coded sequentially, sign
coding for the odd (even) coefficients must be carried out
just before starting the significance coding of the even (odd)
coefficients of the same (next) row. This is necessary to ensure
that the codewords are sorted in the bitstream identically in
both versions of the algorithm.

(6)

The replacement of the original algorithms of JPEG2000 by
the proposed bitplane coding strategy does not sacrifice any
feature of the coding system. The formation of quality layers,
the use of different progression orders, the region of interest
coding, or the scalability of the system is unaffected by the
use of the proposed strategy.

IV. EXPERIMENTAL RESULTS

Four corpora of images are employed to assess the perfor-
mance of BPC-PaCo. The first consists of the eight natural
images of the ISO 12640-1 corpus (20482560, gray scale, 8
bits per sample (bps)). The second is composed of four aerial
images provided by the Cartographic Institute of Catalonia,
covering vegetation and urban areas (7200x5000, gray scale,
8 bps). The third corpus has three xRay angiography images
from the medical community (512x512 with 15 components,
12 bps). The last corpus contains three AVIRIS (Airbone
Visible/Infrared Imaging Spectrometer) hyperspectral images
provided by NASA (512x512 with 224 components, 16 bps).
BPC-PaCo is implemented in the framework of JPEG2000 by
replacing the bitplane coding engine and the arithmetic coder
of a conventional JPEG2000 codec. The resulting codestream
is not compliant with JPEG2000, though it does not undermine
any feature of the standard. Our implementation BOI [49]
is employed in these experiments. Except when indicated,
the coding parameters for all tests are: 5 levels of wavelet
transform, codeblocks of 64x64, single quality layer, and
no precincts. The 9/7 and the 5/3 wavelet transforms are
employed for lossy and lossless regimes, respectively. BPC-
PaCo employs the same rate-distortion optimization techniques
as those of JPEG2000, which select the coding passes of each
codeblock included in the final codestream.

The first test evaluates the coding performance achieved by
BPC-PaCo as compared to that of JPEG2000. Fig. 3 depicts
the results achieved for the four corpora. The results are
reported as the peak signal to noise ratio (PSNR) difference
achieved between BPC-PaCo and JPEG2000. The performance
of JPEG2000 is depicted as the horizontal straight line in
the figures. Results below this line indicate that BPC-PaCo
achieves lower PSNR than that of JPEG2000. To avoid clutter-
ing the figure, results for only four of the eight natural images
are reported in Fig. 3(a), though similar plots are achieved for
the remaining The results of Fig. 3 indicate that, for natural
images, the proposed method achieves PSNR values between
0.2 to 1 dB below those of JPEG2000. As it is explained
in the previous section and analyzed below, this penalization
is mainly due to the use of multiple arithmetic coders. The
results achieved by BPC-PaCo for aerial images are between
0.2 to 0.4 dB below those of JPEG2000 at low and medium
bitrates, and from 0 to 0.6 dB above those of JPEG2000 at
high bitrates. For the corpus of xRay and AVIRIS images, the
results are similar to those obtained for aerial images.

For comparison purposes, Fig. 3(a) and 3(b) also report the
results when the RESET, RESTART, and CAUSAL coding
variations of JPEG2000 are in use when coding the first image
of the natural and aerial corpus (i.e., “Portrait” and “forest1”).
The results are reported with the plot with dots. We recall that

0.4

— JP'EGZOOO —_ Cafeteri'a —;'Musicians
—— Portrait Fruit
02 F
o
©
£
[0}
(&)
c
o
Q2
%
o
z
%]
o
1.2 1 1 1 1
0 1 2 3 4 5
bitrate (in bps)
(@)
1 T J T T T
—— JPEG2000 /
08 | B A /
c v
06 / \ N A
m
©
£ 7
[0
e -
o
Q2
©
o
z 4
%)
o
L

bitrate (in bps)
©

L T
JPEG2000
forest1
forest2
urbant
urban2

0.8 |

PSNR difference (in dB)

-0.6 1 1 1 1 1

0 1 2 3 4 5 6
bitrate (in bps)
(b)
04 T T T T T
— JPEG2000

cuprite ‘
jasper

0.2 F lunarLake /\/ ’]

PSNR difference (in dB)

bitrate (in bps)
(@

Fig. 3: Evaluation of the lossy coding performance achieved by BPC-PaCo compared to that of JPEG2000. Each subfigure
reports the performance achieved for images from a specific corpus: (a) natural, (b) aerial, (c) xRay, and (d) AVIRIS.

these coding variations are employed to enable coding pass
parallelism in JPEG2000 (see Section III-A). When they are
in use, the coding performance difference between BPC-PaCo
and JPEG2000 is reduced between 0.2 to 0.5 dB.

Table I reports the results achieved when coding all images
in lossless mode. The third column of the table reports the
bitrate achieved by JPEG2000, in bps. The fourth column
reports the bitrate difference between the proposed method
and JPEG2000. Again, BPC-PaCo achieves slightly lower
and higher compression efficiency than that of JPEG2000 for
the corpus of natural images and for the remaining corpora,
respectively. On average, BPC-PaCo increases the length of
the codestream negligibly.

The aim of the next test is to appraise three key mechanisms
of the proposed bitplane coding strategy. To this end, three
modifications are carried out to BPC-PaCo. The first replaces
its arithmetic coder and utilizes the MQ coder of JPEG2000.
The MQ coder employs context-adaptive mechanisms and
produces a single codeword for all data coded in a code-
block. The second modification compels the arithmetic coder
of BPC-PaCo to employ a single codeword for all stripes.
Evidently, these two modifications prevent parallelism. Their

sole purpose is to appraise the coding efficiency of these
two mechanisms. The third modification removes the context
formation approach and employs one context for significance
coding, one for refinement coding, and one for sign coding.
Fig. 4 reports the results obtained for one image of each corpus
when these modifications are in use. For comparison purposes,
the figure also reports the performance achieved by the original
BPC-PaCo. When the MQ coder is employed, the coding
performance achieved by BPC-PaCo is almost the same as that
of JPEG2000 for all images. This indicates that the scanning
order and the context formation employed in BPC-PaCo do
not penalize coding performance significantly. Clearly, the use
of multiple arithmetic coders producing multiple codewords
is the technique mainly responsible for the penalization in
compression efficiency. This can also be seen in Fig. 4 via the
second modification of BPC-PaCo, which employs a single
codeword for all stripes. When this modification is in use, the
coding performance of BPC-PaCo is enhanced from 0.25 to
0.5 dB, achieving higher PSNR than that of JPEG2000 for all
corpora except the natural. The third modification shows that
the proposed context formation approach enhances the coding
performance of the proposed method significantly (more than

1 | —— JPEG2000 H
—— BPC-PaCo
0.5 b —— BPC-PaCo with MQ coder -
——— BPC-PaCo with single codeword
— BPC-PaCo with no contexts
a 0
= N\
o 05 B
o
c
o 1k B
Q
©
c 15F B
z
2 -2f 1
25 F B
-3 [L L L L L L L I‘
0 0.5 1 15 2 2.5 3 3.5 4
bitrate (in bps)
(@)
1.5 T T T T T
— JPEG2000
—— BPC-PaCo
1 | —— BPC-PaCo with MQ coder
———— BPC-PaCo with single codeword
& BPC-PaCo with no contexts
T 05 E
[0
g 0
[
8 [~ MY
::C:S
o 4
z 0.5
%)
o
-1 -
1.5 | 1 1 1 1 1]
0 1 2 3 4 5 6
bitrate (in bps)
©

1.5 T T T T T
— JPEG2000
—— BPC-PaCo
1 —— BPC-PaCo with MQ coder
——— BPC-PaCo with single codeword
— BPC-PaCo with no contexts
m
© 05 F -
£
8 o
15 w VV\[
2
5 05} e
o
z
2 .
15 F E
L L L L L
0 1 2 3 4 5 6
bitrate (in bps)
(b)
1 F T T T T T T -
— JPEG2000
—— BPC-PaCo
0.5 f —— BPC-PaCo with MQ coder
—— BPC-PaCo with single codeword
& 0 BPC-PaCo with no contexts_ w
° W
£
o O05F E
2
@
g r A
E
o -15F B
zZ
n
o 2F .
25 F b
3 1 1 1 1 1 1
0 1 2 3 4 5 6
bitrate (in bps)
(d)

Fig. 4: Evaluation of the lossy coding performance achieved by BPC-PaCo when three modifications are employed. Each
subfigure reports the performance achieved for one image of a specific corpus: (a) natural image “Portrait”, (b) aerial image
“forestl”, (c) xRay image “A”, and (d) AVIRIS image “cuprite”.

T 64x128
—— 64x256

02 F T T T T
: — JPEG2000 —— 64x32
64x16 — 64x64

PSNR difference (in dB)

1.2 F B

14 F E

-16 F E

L L L L L L L L

0 0.5 1 1.5 2 25 3 35 4
bit rate (in bps)

Fig. 5: Evaluation of the lossy coding performance achieved
by BPC-PaCo and JPEG2000 when using different sizes of
codeblock. Results are reported for the “Portrait” image of
the ISO 12640-1 corpus.

3 dB in some cases). The results of these modifications are

also reported in Table I for the lossless regime. Similar results
are achieved for both lossy and lossless regimes.

The last test evaluates an interesting feature of the proposed
method. Vector instructions are commonly composed of 32
lanes.! Each thread codes a stripe containing two columns,
so the use of codeblocks with 64 columns is convenient. The
number of rows of the codeblock, on the other hand, strongly
influences the coding performance achieved. This is because
the more data coded in a stripe, the fewer the excess bits
stored in its codewords. This is illustrated in Fig. 5 for the
natural image “Portrait”. Results for codeblocks of 64 columns
and a variable number of rows are reported (both JPEG2000
and BPC-PaCo use the same variable codeblock size). The
results suggest that the more rows the codeblock has, the better
the coding performance. In general, codeblocks of 64x64
already achieve competitive performance while exposing a
large degree of parallelism. Results hold for the other images
of the corpus and the other corpora.

' All Nvidia GPUs, for instance, currently implement vector instructions of
32 lanes.

TABLE I: Evaluation of the lossless coding performance
achieved by BPC-PaCo and JPEG2000. Results are reported in
bps. The three rightmost columns report the results achieved
when variations in BPC-PaCo are employed.

BPC-PaCo with
BPC- single no
] image H JP2 | PaCo MQ | cwd. AC ctx.
“Portrait” [438 [+0.09 [[+0.02 | +0.06 | +0.45
“Cafeteria” || 5.28 | +0.08 || +0.04 | +0.05 | +049
& | “Fruit” 429 [4017 [[+0.01 | +0.14 | +047
S [“Wine” 457 | +0.16 || +0.02 [+0.13 | +043
S | “Bicycle” [[437 | +0.20 || +0.04 | +0.16 | +0.57
& | “Orchid” 358 | +0.24 || +0.01 | +021 | +0.59
“Musicians” || 5.56 | +0.11 [| +0.02 | +0.07 | +047
“Candle” 5.65 [+0.08 [| +0.04 | +0.04 | +0.58
“forest1” 620 [-0.04 || +0.01 [-0.08 [+0.12
= [“forest2” 628 | -0.05 || +0.01 [-0.09 | +0.13
& [“urbanl” 554 | +0.01 [| +0.02 | -0.03 | +0.21
“urban2” 520 | +0.03 || +0.01 | 0.00 | +0.29
NES 637 | -0.07 | 000 | -0.12 | 0.00
& | “B” 648 [003 || 0.00 | -0.11 [+0.02
S 635 | -006 | 000 [-0.11 | +0.02
@ [“cuprite” 7.00 [-0.03 [+0.01 [-0.07 [+041
= [asper” 7.66 | -0.04 [+0.02 | -0.08 | +0.48
< | “lunarLake” [[691 | -0.02 [| +0.01 | -0.05 | +0.46
average || 5.65 | +0.05 || +0.02 [+0.01 | +0.34 |

V. CONCLUSIONS

The computational complexity of modern image coding
systems can not be efficiently tackled with SIMD computing.
The main difficulty is that the innermost algorithms of current
coding systems process the samples in a sequential fashion.
This paper presents a bitplane coding strategy tailored to the
kind of parallelism required in SIMD computing. Its main
insight is to employ vector instructions that process 71" coeffi-
cients of a codeblock in parallel and synchronously. To achieve
this coefficient-level parallelism, some aspects of the bitplane
coder are modified. First, the scanning order is devised to
allow parallel coefficient processing without penalizing the
formation of contexts. Second, the context formation approach
is implemented via low-complexity techniques. Third, the
probability estimates of the emitted symbols employs a station-
ary probability model that does not need adaptive mechanisms.
And fourth, entropy coding is carried out by means of multiple
arithmetic coders generating fixed-length codewords that are
optimally sorted in the bitstream. The proposed bitplane cod-
ing strategy with parallel coefficient processing provides a very
fine level of parallelism that permits its efficient implemen-
tation for both SIMD and MIMD computing. Experimental
results indicate that the coding performance of the proposed
method is highly competitive, similar to that achieved by the
JPEG2000 standard. Future work implements the proposed
method in a GPU. Results of computational throughput are
not included in this paper because the proposed GPU imple-
mentation requires a detailed description. Preliminary results

indicate a 15x speedup with respect to the best CPU and GPU
implementations of JPEG2000.

REFERENCES

[1] W. Pennebaker and J. Mitchell, JPEG still image data compression
standard. New York: Van Nostrand Reinhold, 1993.

[2] Information technology - JPEG 2000 image coding system - Part 1:
Core coding system, ISO/IEC Std. 15444-1, Dec. 2000.

[3] High Efficiency Video Coding Standard, International Telecommunica-
tion Union Std. H.265, 2013.

[4] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression
fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[5] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[6] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243-250, Jun. 1996.

[7] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158-1170,
Jul. 2000.

[8] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219—
1235, Nov. 2004.

[9]1 N. Mehrseresht and D. Taubman, “A flexible structure for fully scalable
motion-compensated 3-D DWT with emphasis on the impact of spatial
scalability,” IEEE Trans. Image Process., vol. 15, no. 3, pp. 740-753,
Mar. 2006.

[10] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920-1933, Apr. 2012.

[11] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with
CUDA,” in Proc. IEEE International Conference on Computer and
Electrical Engineering, Dec. 2009, pp. 630-634.

[12] R. Le, I. R. Bahar, and J. L. Mundy, “A novel parallel tier-1 coder
for JPEG2000 using GPUs,” in Proc. IEEE Symposium on Application
Specific Processors, Jun. 2011, pp. 129-136.

[13] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit
implementation of JPEG2000 for hyperspectral image compression,”
SPIE Journal of Applied Remote Sensing, vol. 6, pp. 1-14, Jan. 2012.

[14] M. Ciznicki, M. Kierzynka, P. Kopta, K. Kurowski, and P. Gepnerb,
“Benchmarking JPEG 2000 implementations on modern CPU and GPU
architectures,” ELSEVIER Journal of Computational Science, vol. 5,
no. 2, pp. 90-98, Mar. 2014.

[15] Comprimato. (2014, Apr.) Comprimato JPEG2000@GPU. [Online].
Available: http://www.comprimato.com

[16] B. Pieters, J. D. Cock, C. Hollemeersch, J. Wielandt, P. Lambert, and
R. V. de Walle, “Ultra high definition video decoding with motion JPEG
XR using the GPU,” in Proc. IEEE International Conference on Image
Processing, Sep. 2011, pp. 377-380.

[17] N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. Wong, and C. H. Liu,
“Highly parallel rate-distortion optimized intra-mode decision on mul-
ticore graphics processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 11, pp. 1692-1703, Nov. 2009.

[18] N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung, “Video coding on
multicore graphics processors,” IEEE Signal Process. Mag., vol. 27,
no. 2, pp. 79-89, Mar. 2010.

[19] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT
context modeling for massively parallel architectures,” in Proc. IEEE
Data Compression Conference, Mar. 2011, pp. 423-432.

[20] V. Galiano, O. Lopez-Granado, M. Malumbres, L. A. Drummond,
and H. Migallon, “GPU-based 3D lower tree wavelet video encoder,”
EURASIP Journal on Advances in Signal Processing, vol. 1, pp. 1-13,
2013.

[21] F. Auli-Llinas, P. Enfedaque, J. C. Moure, 1. Blanes, and V. Sanchez,
“Strategy of microscopic parallelism for bitplane image coding,” in Proc.
IEEE Data Compression Conference, Apr. 2015, pp. 163-172.

[22] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet
transform on consumer-level graphics hardware,” IEEE Trans. Multime-
dia, vol. 9, no. 3, pp. 668-673, Apr. 2007.

[23] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, ‘“Parallel
implementation of the 2D discrete wavelet transform on graphics pro-
cessing units: Filter bank versus lifting,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 3, pp. 299-310, Mar. 2008.

[24]

(25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(351

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. Matela, “GPU-Based DWT acceleration for JPEG200,” in Annual
Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science, Jan. 2009, pp. 136-143.

J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, “A parallel
implementation of the 2D wavelet transform using CUDA,” in Proc.
IEEE International Conference on Parallel, Distributed and Network-
based Processing, Feb. 2009, pp. 111-118.

W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating
wavelet lifting on graphics hardware using CUDA,” IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 1, pp. 132-146, Jan. 2011.

V. Galiano, O. Lopez, M. P. Malumbres, and H. Migallon, “Parallel
strategies for 2D discrete wavelet transform in shared memory systems
and GPUs,” SPRINGER The Journal of Supercomputing, vol. 64, no. 1,
pp. 4-16, Apr. 2013.

P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the
DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel
Distrib. Syst., 2015, in Press.

F. Auli-Llinas and J. Serra-Sagrista, “Low complexity JPEG2000 rate
control through reverse subband scanning order and coding passes
concatenation,” IEEE Signal Process. Lett., vol. 14, no. 4, pp. 251-254,
Apr. 2007.

——, “JPEG2000 quality scalability without quality layers,” [EEE
Trans. Circuits Syst. Video Technol., vol. 18, no. 7, pp. 923-936, Jul.
2008.

F. Auli-Llinas, J. Bartrina-Rapesta, and J. Serra-Sagrista, “Self-
conducted allocation strategy of quality layers for JPEG2000,” EURASIP
Journal on Advances in Signal Processing, vol. 2008, pp. 1-7, 2008,
article ID 728794.

Digital compression and coding for continuous-tone still images,
ISO/IEC Std. 10918-1, 1992.

F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for
microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960-970, Jun. 2014.

A. J. R. Neves and A. J. Pinho, “Lossless compression of microarray
images using image-dependent finite-context models,” IEEE Trans. Med.
Imag., vol. 28, no. 2, pp. 194-201, Feb. 2009.

F. Auli-Llinas, “Stationary probability model for bitplane image coding
through local average of wavelet coefficients,” IEEE Trans. Image
Process., vol. 20, no. 8, pp. 2153-2165, Aug. 2011.

Information technology - Lossy/lossless coding of bi-level images,
ISO/IEC Std. 14492, 2001.

R. W. Buccigrossi and E. P. Simoncelli, “Image compression via joint
statistical characterization in the wavelet domain,” IEEE Trans. Image
Process., vol. 8, no. 12, pp. 1688-1701, Dec. 1999.

F. Auli-Llinas, M. W. Marcellin, J. Serra-Sagrista, and J. Bartrina-
Rapesta, “Lossy-to-lossless 3D image coding through prior coefficient
lookup tables,” ELSEVIER Information Sciences, vol. 239, no. 1, pp.
266282, Aug. 2013.

D.-Y. Chan, J.-F. Yang, and S.-Y. Chen, “Efficient connected-index
finite-length arithmetic codes,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 11, no. 5, pp. 581-593, May 2001.

M. D. Reavy and C. G. Boncelet, “An algorithm for compression of
bilevel images,” IEEE Trans. Image Process., vol. 10, no. 5, pp. 669—
676, May 2001.

H. Chen, “Joint error detection and vf arithmetic coding,” in Proc. IEEE
Int. Conference on Communications, Jun. 2001, pp. 2763-2767.

Y. Xie, W. Wolf, and H. Lekatsas, “Code compression using variable-
to-fixed coding based on arithmetic coding,” in Proc. IEEE Data
Compression Conference, Mar. 2003, pp. 382-391.

F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-
length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1385—
1390, Aug. 2015.

K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture
for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.
Video Technol., vol. 21, no. 6, pp. 825-836, Jun. 2011.

P. Howard and J. S. Vitter, “Design and analysis of fast text compression
based on quasi-arithmetic coding,” in Proc. IEEE Data Compression
Conference, Mar. 1992, pp. 98-107.

W. D. Wither, “The ELS-coder: a rapid entropy coder,” in Proc. I[EEE
Data Compression Conference, Mar. 1997, pp. 475-475.

L. Bottou, P. G. Howard, and Y. Bengio, “The Z-Coder adaptive binary
coder,” in Proc. IEEE Data Compression Conference, Mar. 1998, pp.
1-10.

M. Slattery and J. Mitchell, “The Qx-coder,” IBM Journal of Research
and Development, vol. 42, no. 6, pp. 767-784, Nov. 1998.

F. Auli-Llinas. (2014, Nov.) BOI codec. [Online]. Available: http:
/Iwww.deic.uab.cat/~francesc/software/boi

Francesc Auli-Llinas (S’06-M’08-SM’14) is a
Ramoén y Cajal Fellow (with the I3 certificate) with
the Department of Information and Communications
Engineering, Universitat Autonoma de Barcelona
(UAB). He received the Ph.D. (cum laude) in com-
puter science in 2006 from the UAB. Since 2002,
he has been consecutively funded with doctoral and
postdoctoral fellowships in competitive calls. From
2007 to 2009, he carried out two research stages with
the group of D. Taubman and M. Marcellin. He de-
velops and maintains BOI, a free-source JPEG2000
implementation. He was a recipient of two awards of bachelor given to the
first students of the promotion in 2000 and 2002. In 2013, he was awarded
with a distinguished R-Letter given by the IEEE Communications Society for
a paper co-authored with M. Marcellin. He is reviewer for various magazines
and symposiums and has authored numerous papers in the top journals and
conferences of his field. His current research interests include highly scalable
image and video coding systems, massively parallel computing architectures,
arithmetic coding, and embedded quantization.

Pablo Enfedaque is a Ph.D student with the Depart-
ment of Information and Communications Engineer-
ing, Universitat Autonoma de Barcelona, Spain. He
received the B.E. degree in computer science and
the M.Sc. degree in high performance computing
and information theory in 2012 and 2013, respec-
tively, from Universitat Autonoma de Barcelona.
His research interests include image coding, high
performance computing and parallel architectures.

Juan C. Moure received his B.Sc. degree in com-
puter science and his Ph.D. degree in computer ar-
chitecture from Universitat Autonoma de Barcelona
(UAB). Since 2008 he is associate professor with
the Computer Architecture and Operating Systems
Department at the UAB, where he teaches com-
puter architecture and parallel programming. He
has participated in several European and Spanish
projects related to high-performance computing. His
current research interest focuses on the usage of
massively parallel architectures and the application
of performance engineering techniques to open research problems in bioin-
formatics, signal processing, and computer vision. He is reviewer for various
magazines and symposiums and has authored numerous papers in journals
and conferences.

Victor Sanchez Victor Sanchez received his M.Sc.
degree in 2003 from the University of Alberta,
Canada, and Ph.D in 2010 from the University
of British Columbia, Canada. He is currently an
assistant professor at the Department of Computer
Science, University of Warwick, UK. From 2011 to
2012 he was with the Video and Image Process-
ing (VIP) Lab, University of California, Berkeley,
as a post-doctoral researcher. In 2012, he was a
visiting lecturer at the Group on Interactive Coding
of Images, Universitat Autonoma de Barcelona. Dr
Sanchez main research interests are in the area of signal and information
processing with applications to multimedia analysis, image and video coding
and communications. He has published over 40 technical papers in these areas
and co-authored a book on Simulation of Healthcare Systems (Springer, 2012).
His research has been funded by Consejo Nacional de Ciencia y Tecnologia
(CONCYT) Mexico, the Natural Sciences and Engineering Research Council
of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the
European Union, and the Engineering and Physical Sciences Research Council
(EPSRC), UK.

