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Abstract—The analysis techniques applied to DNA microarray
images are under active development. As new techniques become
available, it will be useful to apply them to existing microarray
images to obtain more accurate results. The compression of these
images can be a useful tool to alleviate the costs associated
to their storage and transmission. The recently proposed Rel-
ative Quantizer (RQ) coder provides the most competitive lossy
compression ratios while introducing only acceptable changes
in the images. However, images compressed with the RQ coder
can only be reconstructed with a limited quality, determined
before compression. In this work, a progressive lossy-to-lossless
scheme is presented to solve this problem. Firstly, the regular
structure of the RQ intervals is exploited to define a lossy-to-
lossless coding algorithm called the Progressive RQ (PRQ) coder.
Secondly, an enhanced version that prioritizes a region of interest,
called the PRQ-ROI coder, is described. Experiments indicate
that the PRQ coder offers progressivity with lossless and lossy
coding performance almost identical to the best techniques in
the literature, none of which is progressive. In turn, the PRQ-
ROI exhibits very similar lossless coding results with better rate-
distortion performance than both the RQ and PRQ coders.

Index Terms—DNA microarray images, Image compression,
Quantization

I. INTRODUCTION

DNA microarrays are a state-of-the-art tool in biology and
biomedicine, employed to monitor in parallel the function
and regulation of thousands of genes of many different or-
ganisms [1]. Recent publications based on DNA microarray
data can be found in the literature [2]-[11]. When a DNA
microarray experiment is performed, two biological samples
are put on a microarray chip, which is then scanned to
produce two grayscale images. These images are analyzed
to extract the genetic data of interest The different parts of
the analysis process are under active development [12]-[28].
This work does not focus on the analysis of DNA microarray
images and, hence, a discussion of previous works is out of
scope. As new analysis techniques are developed, it will be
desirable to apply them to obtain more accurate genetic data
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from previously performed experiments. However, repeating
all parts of the experiment is usually not an option because
the required biological samples may not be available some
time after performing the original experiment, or because the
re-analysis may need to be performed in another laboratory.
Therefore, storing the DNA microarray images is paramount to
enable future, more accurate genetic data extraction. In order
to facilitate the management and transmission of these images,
image compression emerges as a valuable tool.

The lossless compression of DNA microarray images has
proven to be a very challenging task. Compression ratios
significantly better than 2:1 are not generally obtained even
by algorithms specifically designed for such images [29]. On
the other hand, lossy coders can yield arbitrary compression
ratios at the cost of modifying the images. Subsequent anal-
ysis techniques may be distorted by these modifications, al-
though sufficiently small distortions can be considered accept-
able [30]-[32]. Several generic image compression approaches
(or adaptations thereof) have been applied to DNA microarray
images [30], [31], [33]-[36]. Since these coding techniques
are not specifically designed with the analysis of microarray
images in mind, results for these methods may not be optimal.
The recently proposed Relative Quantizer (RQ) coder [29],
expressly designed for this type of images, introduces only
acceptable changes in the images and exhibits higher rate-
distortion performance than all previously existing lossy cod-
ing algorithms. However, it does not allow a progressive
lossy-to-lossless reconstruction of the compressed images. In
this work, a progressive lossy-to-lossless compression scheme
based on the RQ coder is proposed.

The rest of this paper is structured as follows. Section II
describes the most relevant features of the technique presented
in [29]. A lossy-to-lossless coding approach is proposed in
Section III and its compression performance is analyzed in
Section IV. Finally, Section V draws some conclusions.

II. THE RELATIVE QUANTIZER

The lossy compression method presented in [29] is based on
a non-uniform scalar quantizer called the Relative Quantizer
(RQ). This quantizer is applied independently to unsigned
pixels of images of bitdepth B > 1. The quantization intervals
of the RQ are fully determined by an integer parameter
k € {1,..., B} that controls the precision of the quantization
process. The first 2% intervals have size 1 and, hence, pixel
intensities in {0,...,2% — 1} are preserved losslessly. The
next 2"~ intervals have each size 2! and the following 2¢~!
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intervals have size 22. Each successive group of 27! intervals
has size 23, 24, etc until the last group, which contains intervals
of size 28~% A diagram of the quantization intervals of
the RQ and their associated indices is shown in Fig. 1 for
B = 4 and all possible values of k. This definition of the
RQ was developed to preserve information that is important
to microarray image analysis. In this regard, RQ was shown to
yield superior results to modern bit plane coding architectures
which employ uniform quantization. Specifically, it yields
very competitive compression performance while introducing
only demonstrably acceptable distortion in subsequent analysis
results [29]. Thus, the lossy-to-lossless scheme proposed in
Section III is based on the RQ.

In [29], the quantization indices produced by the RQ are
coded with the lossless compressor described in [37]. The
bitplanes are compressed in raster order using an arithmetic
coder (AC), beginning with the most significant bitplane. The
probabilities used to drive the AC are computed based on a
model that employs information from previously encoded bits.
The position of the bits employed to extract that information
is referred to as the context. A key property of this algorithm
is the fact that the actual context employed in each bitplane is
calculated at compression time. To calculate the best context,
a greedy algorithm evaluates each candidate context by com-
pressing a rectangular region of the center of the image using
that context. After that, the best candidate is selected. Thence,
this algorithm is able to very accurately adapt to the individual
properties of each bitplane. As a result of this flexibility, this
compressor exhibits the best performance for this type of
images and the RQ-quantized versions thereof. Therefore, a
version of this algorithm is employed in the lossy-to-lossless
coder proposed in Section III.

The main drawback of the RQ coder is the fact that
compressed images can only be reconstructed up to a cer-
tain precision determined by the chosen value of k. If the
user wants to reconstruct the image losslessly or at different
qualities, several compressed versions of the image need be
kept. This approach multiplies the storage requirements and,
thus, is not practical. In what follows, a microarray-specific
progressive lossy-to-lossless scheme based on the RQ and
the compression algorithm from [37] is presented and its
performance is analyzed.

ITI. PROGRESSIVE LOSSY-TO-LOSSLESS CODING
A. Progressive Representation of DNA Microarray Images

In this section, the relationship between the quantization
intervals of the RQ for different values of k is exploited to
define a progressive representation of DNA microarray image
pixels. As described in Section II, the quantization intervals
of the RQ for a given image bitdepth B are determined by
an integer parameter k € {1,..., B}. The parameter k = 1
corresponds to the most aggressive (least precise) quantization
and k = B corresponds to not performing any quantization.
A key observation is that the RQ with parameter ky > 1 is
actually a refined version of the RQ with parameter kg — 1.
More specifically, all quantizer intervals that include more than
one pixel intensity for kg — 1 are divided in half for k(. Let us
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Fig. 1: Quantization intervals of the RQ for B = 4 and
all possible values of k. The index of each interval is also
indicated.

consider the case B = 4, shown in Fig. 1. The interval with
index 3 for k = 1 is divided into the intervals with indices
4 and 5 for k = 2. Likewise, the interval with index 6 for
k = 2 is divided into the intervals with indices 8 and 9 for
k = 3. On the other hand, intervals that contain only one pixel
intensity cannot be further refined and their index is identical
to the contained pixel intensity. For example, for £ = 3, only
intervals with index ¢ > 7 can be refined. For k¥ = B, all
intervals contain only one pixel intensity and their index is
identical to that intensity. Analogous relationships between the
quantization intervals apply for any B > 1 including B = 16,
the bitdepth of DNA microarray images.

The previous observations can be formalized to enable a
lossless, progressive representation of these type of images.
Given a pixel intensity p, let RQj(p) be the quantization
interval corresponding to p for the RQ with parameter & and let
|IRQy, (p)| be the number of intensities assigned to that interval.
Clearly, RQz(p) C RQp_1(p) C - - C RQ;(p). If the index
of the RQ,(p) interval is encoded, the decoder knows that
p € RQ;(p). If [RQ;(p)| > 1, the exact value of p is not
known, and additional information can be encoded to allow a
more precise reconstruction of that pixel. Since |RQ; (p)| > 1,
the interval RQ,(p) is divided into two intervals of size
IRQ;(p)|/2 for k = 2, as in the example above. Therefore,
only one refinement bit is needed to signal which of these two
intervals corresponds to RQ,(p). Hereinafter, a refinement bit
equal to O (resp. 1) is used when RQ,, ; (p) equals the lower
(resp. upper) half of RQ,,(p). By encoding this bit, the range
of possible reconstruction values is halved and, hence, the
precision is doubled. Likewise, if RQ,(p) comprises more than
one value, another refinement bit can be encoded so that the
decoder can determine which candidate interval corresponds
to RQ3(p). By successively applying this refinement process,
it is possible to sequentially determine RQ; (p),...,RQz(p),
i.e., the quantization indices corresponding to p for all values
of k. Recall that, by definition, RQz(p) allows a lossless
reconstruction of the original pixel intensity p.

Based on this, we define here a lossless, progressive RQ-
based (PRQ) representation of the pixel p as

PRQ(p) = RQ;(p), A152(p), ..., Ap—158(D), (1

where Ay x+1(p) is the refinement bit needed to obtain
RQp1(p) from RQ,(p). For instance let B = 4 and p = 11.
As can be seen in Fig. 1, RQ;(11) = 4, RQ,(11) = 6,
RQ3(11) = 9 and RQ,(11) = 11. Therefore, the refinement
bits are Aj_,2(11) = 0 (lower half), As_,3(11) = 1 (upper
half) and As_,4(11) = 1 (upper half). Thus, PRQ(11) =



4,0,1,1. Note that |[RQ,,(p)| = 1 implies that the interval
need not be refined and, hence, A,,_,+1(p) need not be
signaled for any m > n. For instance, for B =4 and p = 3,
PRQ(3) =2, 1.

The PRQ representation of any pixel p can also be ex-
pressed in binary form. As shown in [29], the total number
of quantization intervals of the RQ with parameter £ is
given by (B — k + 2)2F~!. Hence, for DNA microarray
images (B = 16), 17 quantization intervals are employed
for k = 1. Thus, the index of RQ;(p) can be expressed
using [log, 17] = 5 bits. Once the first element of the PRQ
is signaled, each refinement bit Ay x11(p) provides enough
information to recover the quantization interval index for the
RQ with the next value of k. Therefore, at most B —1 =15
such refinement bits need be coded to enable the recovery
of the original pixel value p. By sequentially appending the
refinement bits to the index of RQ,(p), any pixel can be
expressed in a progressive lossy-to-lossless way by signaling
at most 20 bits.

B. Progressive Compression

In what follows, a progressive lossy-to-lossless coder for
DNA microarray images based on the PRQ representation is
introduced. This coder is hereinafter referred to as the PRQ
coder.

When compressing an image, its 20-bpp PRQ representation
is first computed. The resulting data are coded with a version
of the algorithm introduced in [37]. This version includes two
modifications to adapt the original algorithm to the partic-
ularities of the PRQ representation and improve its coding
efficiency. As described in Section II, the compressor in [37]
proceeds by sequentially coding each of the image bitplanes,
beginning with the most significant bit. Hence, the elements
of the PRQ representation are coded in the order described in
Equation (1). As explained in III-A, some of the 15 refinement
bits are not needed for a given pixel p when |RQ,,(p)| = 1
for n < 16. Therefore, the first modification consists in not
coding any unneeded refinement bit of the PRQ representation.
As described in II, the original algorithm selects the optimal
context by comparing several candidates, each of which is
evaluated by compressing a rectangular N x M region in
the center of the image. If that region is not representative
of the whole image, a sub-optimal candidate context would
be selected. Thus, the second modification to [37] consists in
evaluating the candidate contexts by compressing N M pixels
uniformly sampled across the image. Since sampled pixels are
not confined in a relatively small region of the image, an over-
all more precise context can be selected, which can improve
the compression performance at a similar computational cost.

When the image is decompressed, the 20-bpp PRQ represen-
tation of the image is first obtained by applying a version of the
decoder presented in [37]. This version includes modifications
analogous to those described above to make it compatible
with the output of the encoder. For each pixel p, the index
of the RQ, (p) interval is then obtained from the 5 most sig-
nificant bits of its PRQ representation. Finally, the refinement
information contained in subsequent bitplanes is successively

applied until RQ,4(p) is recovered. By definition, the index
of this interval is identical to the original pixel intensity p
and, thus, the image can be losslessly recovered. As discussed
later in Section IV, the 20 bpp PRQ representation can be
losslessly coded with approximately the same performance as
the original 16 bpp pixels.

The correct decoding of truncated data is required to en-
able a progressive lossy-to-lossless coding pipeline. Since the
algorithm proposed in [37] is designed for purely lossless
coding, it needs be adapted to accept truncated versions of the
encoded data produced at the encoder. If 5 or more complete
bitplanes are decoded before the end of file (EOF) is reached,
RQ;(p) and possibly some refinement bits are available for
each pixel p. Hence, RQ,,(p) can be computed for some n
with 1 < n < 16, depending on the number of refinement
bits available. As in the original RQ, the recovered value of p
is calculated using the interval midpoint of RQ,,(p), rounded
up to the next integer. If less than 5 complete bitplanes are
available, then the index of RQ, (p) —corresponding to k = 1-
would need to be estimated for some pixels. Even though it
is possible to do so, this scenario should be generally avoided
due to the relatively high distortion introduced in subsequent
analysis processes for k = 1 [29].

An additional enhancement is described now to improve
the coding performance of the progressive lossy-to-lossless
PRQ coder described above. The original algorithm introduced
in [37] assigns equal priority to all pixels of the image.
Thus, all bits of a bitplane are coded before proceeding to
the next bitplane. However, almost all information relevant
to the analysis of microarray images is contained in pixels
belonging to the so-called spots [1]. For a given image, all
such spots can be enclosed within a single rectangular region
of interest (ROI). Pixels that do not lie within the ROI are
relatively unimportant for subsequent analysis processes. If
all bitplanes inside the ROI are coded prior to any bit planes
of pixels from outside the ROI, relevant information is placed
closer to the beginning of the compressed file, significantly
improving the rate-distortion performance of the PRQ coder,
while still allowing for lossless decoding of the entire image,
if desired. The version of the PRQ coder that includes the
ROI prioritization enhancement is hereinafter referred to as
the PRQO-ROI coder.

IV. COMPRESSION PERFORMANCE

The compression performance of the proposed PRQ and
PRQ-ROI coders is addressed in this section. First, the bitrate
required to obtain a lossless compression is surveyed. After
that, the rate-distortion results yielded by these lossy-to-
lossless algorithms are discussed.

To test the lossless compression efficiency, 228 real DNA
microarray images where compressed with the proposed
coders. This corpus contains most images used for the bench-
marking of microarray image compressors in the literature.
The average compression results in bpp —calculated as the
total number of compressed bits required for a lossless re-
covery of the images divided by the total number of pixels
in all images— is provided in Table I. Results for the best-
performing lossless compressor for DNA microarray images



TABLE I: Average lossless compression bitrate in bpp and
execution time expressed in relation to [37].

Neves and Pinho [37] PRQ coder PRQ-ROI coder
Bitrate 7.909 7.871 7.892
Time 100% 97.38% 99.76%

—first published in [37]- are also provided for comparison. The
average time for compressing and decompressing 4 times each
of the 228 images, expressed as a percentage of the execution
time of [37], is also provided in the table.

It can be observed that both the PRQ and the PRQ-ROI
coders achieve a slightly better lossless coding efficiency than
the best state-of-the-art lossless compressor [37], even though
the latter does not offer lossy-to-lossless capabilities. This can
be explained by the modifications described in Section III-B
(skipping of unneeded refinement bits and improved candidate
context evaluation). It can also be observed that the PRQ-ROI
coder yields a lossless compression performance almost iden-
tical to that of the PRQ coder. This suggests that the lossless
coding overhead due to the ROI prioritization capabilities is
negligible. As can be seen in the table, the PRQ and PRQ-ROI
coders are, respectively, 2.62% and 0.24% faster than the non-
progressive algorithm from [37]. These differences are due
to the fact that the PRQ-based coders skip the coding of all
unneeded refinement bits, which compensates for the larger
amount of bitplanes that need be processed.

Since the proposed PRQ coder is a progressive lossy-to-
lossless algorithm, it is paramount to analyze its rate-distortion
performance. It is worth noting that DNA microarrays are
not typically viewed by humans. Rather, they are analyzed
by specialized software such as GenePix [38]. Thus, it is
important to assess the amount of distortion introduced in the
results of the analysis process. Traditional image distortion
metrics such as MSE are not suitable for this purpose because
they do not characterize the analysis result distortion [29].
That is, small MSE values do not necessarily correspond to
small errors in the analysis. For this reason, the microarray-
specific measures introduced in [29] —the AREcgym and the
FWDOC measures— are hereinafter employed to assess the
distortion introduced in the images. Unlike traditional met-
rics, these microarray-specific measures directly compare the
data yielded by real analysis software when applied to the
original or the modified images. Hence, the AREcrM and
the FWDOC measures provide an accurate measure of the
distortion introduced in subsequent analysis processes. In this
work, 44 of the 228 aforementioned DNA microarray images
are considered. The rest of the images could not be used
because of the lack of publicly available analysis software
compatible with these images.

First, the 44 images were compressed with the PRQ-
Uniform and the PRQ-ROI coders and the resulting code-
streams were truncated at 7 different lengths. The first trun-
cation point was selected so that only the first element of
the PRQ representation of each pixel is available. The next
truncation point was chosen so that the first refinement bit is
also available for all pixels. Each of the successive truncation
points was selected so that exactly one more refinement bit is
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Fig. 2: Rate distortion results for the AREcgy measure (left)

and the FWDOC measure (right).

available for all pixels, as compared to the previous truncation
point. For each truncation point and coder, a reconstructed
version of the 44 images was then obtained. Finally, the two
aforementioned distortion measures were calculated for each
reconstructed version. The average distortion results for the
PRQ and the PRQ-ROI coders as a function of the average
bitrate after truncation is provided in Fig. 2 for the AREcrm
and the FWDOC measures, respectively. The rate-distortion
results for the non-progressive RQ coder for k € {1,...,7}
are also provided for comparison.

It can be observed that the PRQ and the RQ coders yield
almost identical results for all tested bitrates. This suggests that
the PRQ representation introduces only a negligible overhead
even when only some of the refinement bits are coded. It
can also be seen that the PRQ-ROI coder generally yields
significantly better rate-distortion results than both the PRQ
and RQ coders. This can be explained by the fact that the
information important for subsequent analysis is coded before
the relatively unimportant information of the background. In
light of these data, it appears that the ROI-prioritization is an
effective way of enhancing their rate-distortion performance.

V. CONCLUSIONS

Better analysis techniques for DNA microarray images are
being actively investigated. Hence, it is convenient to store
the images to enable future re-analysis of the data. The
compression of this type of images is a useful tool to reduce
the storage and management costs and to accelerate the sharing
of these images. Lossy coding algorithms can yield high
compression ratios introducing only acceptable distortion in
subsequent analysis processes. A lossy compression method
called Relative Quantization (RQ) was recently proposed. In
spite of its competitive compression performance, an image
coded with the RQ can only be reconstructed with a certain
quality level determined before compression and it is not
possible to recover the original image. This work introduces
an original solution to this problem. First, a lossless repre-
sentation of DNA microarray images is defined. Then the
PRQ coder, a progressive lossy-to-lossless coder based on
this representation, is proposed. Finally, an enhanced version
of this coder that includes region-of-interest prioritization —
the PRQ-ROI coder— is described. The proposed PRQ-ROI
exhibits significantly better rate-distortion results than the non-
progressive RQ coder without introducing any overhead in the
lossless compression bitrate nor in the average execution time.
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