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Abstract. We consider the Liénard analytic differential systems ẋ = y, ẏ =

−g(x) − f(x)y, where f, g : R → R are analytic functions and the origin is an

isolated singular point. Then for such systems we characterize the existence of
local analytic first integrals in a neighborhood of the origin and the existence

of global analytic first integrals.

1. Introduction and statement of the main results. One of the more classical
problems in the qualitative theory of planar analytic differential systems in R2 is to
characterize the existence of analytic first integrals in a neighborhood of an isolated
singular point, and in particular the existence of a global analytic first integral when
the differential system is defined in the whole R2.

One of the best and oldest results in this direction is the analytic nondegerate
center theorem. In order to be more precise we recall some definitions. A singular
point is a nondegenerate center if it is a center with eigenvalues purely imaginary.
If a real planar analytic system has a nondegenerate center at the origin, then after
a linear change of variables and a rescaling of the time variable, it can be written
in the form:

ẋ = y +X(x, y),
ẏ = −x+ Y (x, y),

(1)

where X(x, y) and Y (x, y) are real analytic functions without constant and linear
terms defined in a neighborhood of the origin.

Let U be an open subset of R2, H : U → R be a nonconstant analytic function
and X be an analytic vector field defined on U . Then H is an analytic first integral
of X if H is constant on the solutions of X ; i.e. if XH = 0.

The next result is due to Poincaré [9] and Liapunov [6], see also Moussu [8].
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Theorem 1 (Analytic nondegerate center theorem). The analytic differential sys-
tem (1) has a nondegerate center at the origin if and only if there exists an analytic
first integral defined in a neighborhood of the origin.

One of the more studied differential systems are the so–called generalized Liénard
equation

ẍ+ f(x)ẋ+ g(x) = 0, (2)

which were studied by many researchers. Such dynamical systems appear very
often in several branches of the sciences, such as biology, chemistry, mechanics,
electronics, etc. The differential equation (2) of second order can be written as the
equivalent 2–dimensional Liénard differential system of first order

ẋ = y, ẏ = −g(x)− f(x)y. (3)

When g(x) = x the Liénard differential systems (3) are called the classical Liénard
systems. The main objective of this paper is to study the analytical integrability of
the Liénard systems (3) depending on the analytic functions f and g.

In order that the origin of system (3) be a singular point we need that g(0) = 0,
and since it must be isolated we need that g(x) 6≡ 0. Therefore, since we want to
study the local analytic integrability at the isolated singular point located at the
origin in the rest of the paper we always assume that

g(0) = 0, g(x) 6≡ 0 and f(x) 6≡ 0. (4)

Of course if g(x) ≡ 0 or f(x) ≡ 0 then the Liénard differential system becomes a
differential equation with separable variables.

The functions

F (x) =

∫ x

0

f(s)ds and G(x) =

∫ x

0

g(s)ds

are useful in the study of the Liénard system (3).
Through the paper Z+ will denote the set of non-negative integers, Z− will denote

the set of negative integers, Q+ will denote the set of non-negative rational numbers
and Q− will denote the set of negative rational numbers.

In the spacial case in which g(x) = − pq

(p− q)2
f(x)F (x) with p, q ∈ Z+ \ {0} and

p 6= q we have that

H = ((p− q)y + pF (x))p((p− q)y − qF (x))q (5)

is a global analytic first integral of system (3).
Due to technicalities we will also assume in the paper that

(H0) if f(0) 6= 0 then g′(0) 6= − pq
(p−q)2 f(0)2 for some p, q ∈ Z+ \ {0} and p 6= q.

Note that when f(0) 6= 0, g′(0) = − pq
(p−q)2 f(0)2 and g(x) = − pq

(p−q)2 f(x)F (x) then

system (3) is integrable with first integral given in (5) but we are not considering
this case in our paper.

When f(0) = g(0) = g′(0) = 0 then using the Taylor expansion for the analytic
functions g(x) and f(x) we can write:

g(x) =
∑

i≥0

g`0+ix
`0+i, f(x) =

∑

i≥0

f`1+ix
`1+i,

where `0 ≥ 2 and `1 ≥ 1. Now depending on `0 and `1 we will consider other
assumptions on our systems. We will assume that:

(H1) either `0 = `1 + 1;
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(H2) or `0 > 2`1 + 1.

The main result of this paper is the following.

Theorem 2. System (3) under assumptions (4) and satisfying hypothesis H0 has
a local analytic first integral in a neighborhood of the origin if and only if one of the
following conditions hold.

(a.1) f(0) = g(0) = 0, g′(0) > 0 and F (x) = Φ(G(x)) for some analytic function
Φ(x) with Φ(0) = 0;

(a.2) f(0) = g(0) = 0, g′(0) < 0 and F (x) =
√

2|G(x)|Φ̃(2|G(x)|) for some analytic

function Φ̃(x).

Note that when `0 = `1 then we can have an analytic first integral as the following
example shows.

Example 3. We consider the system

ẋ = y, ẏ = x`0(a0 + a1y). (6)

System (6) satisfies `0 = `1 and it has a first integral of the form

H = (a0 + a1y)a0(1+`0)ea1(a1x
1+`0−(1+`0)y)

that is globally analytic when a0 ∈ Z (taking H−1 when a0 ∈ N−).

As a Corollary of Theorem 2 we obtain the following characterization of the
analytic first integrals of the so–called classical Liénard equations.

Theorem 4. System (3) with g(x) = x and f(x) 6≡ 0 has a local analytic first
integral in a neighborhood of the origin if and only if F (x) = F (−x).

In the classical Liénard system, i.e., when g(x) = x and f(x) 6≡ 0, we have that
(4) and hypotheses H0–H2 automatically hold. Therefore we are on the assumptions
of Theorem 2. Furthermore, g′(0) = 1 > 0 and then only statement (a.1) can hold.
In this case, since G(x) = x2/2 we have that system (3) has a local analytic first
integral in a neighborhood of the origin if and only if F (x) = Φ(x2/2), for some
analytic function Φ with Φ(0) = 0. This clearly implies Theorem 4.

The paper has been divided as follows. In Section 2 we introduce some prelimi-
nary results and as a corollary as those results we prove Theorem 2(a.1). In Section
3 we prove Theorem 2 when f(0) 6= 0 and hypothesis H0 holds. In Section 4 we
prove Theorem 2 when f(0) = g(0) = 0 and g′(0) < 0. In Sections 5 we prove
Theorem 2 when hypothesis H1 holds, and in finally in Section 6 we prove Theorem
2 when hypothesis H2 holds.

2. Preliminary results. In this section we shall introduce two results that will
be used through the paper. Let h = h(x, y) be the vector field associated to our
system (3).

The following result is due Poincaré and its proof can be found in [11], see also
[4].

Theorem 5. Assume that the eigenvalues λ1 6= 0 and λ2 6= 0 at some singular
point of h do not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z+ with k1 + k2 > 0.

Then system (3) has no local analytic first integrals.
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The following result extends the previous one to the case that one eigenvalues is
zero, see Li, Llibre and Zhang [5].

Theorem 6. Assume that the eigenvalues λ1 and λ2 at some singular point p of h
satisfy that λ1 = 0 and λ2 6= 0. Then system (3) has no local analytic first integrals
in a neighborhood of the singular p if it is isolated.

We must mention that the singular points appearing in the statements of Theo-
rems 5 and 6 can be real or complex, but our system (3) is always real.

We have the following nice characterization of the centers at the origin for the
Liénard systems (3) due to Christopher [1].

Theorem 7 (Center Theorem for analytic Liénard systems). Let f(x) and g(x)
be analytic functions defined in a neighborhood of zero such that f(0) = g(0) = 0
and g′(0) > 0. Then the Liénard differential system (3) has a nondegenerate center
at the origin if and only if F (x) = Φ(G(x)) for some analytic function Φ(x), with
Φ(0) = 0.

An immediate consequence of Theorems 1 and 7 is:

Corollary 8. Let f(x) and g(x) be analytic functions defined in a neighborhood of
zero such that f(0) = g(0) = 0 and g′(0) > 0. Then there exists an analytic first
integral defined in a neighborhood of the origin if and only if F (x) = Φ(G(x)) for
some analytic function Φ(x), with Φ(0) = 0.

Note that Corollary 8 is exactly Theorem 2(a.1).
If a real analytic system has a center at the origin and after a linear change of

varibles and a rescaling of the time variable, it can be written in the form

ẋ = y +X(x, y), ẏ = Y (x, y),

where X(x, y) and Y (x, y) are real analytic functions without constant and linear
terms defined in a neighborhood of the origin, then it is called a nilpotent center.

3. Case f(0) 6= 0. In this section we will prove the following result.

Proposition 9. Let f(x) and g(x) be analytic functions defined in a neighborhood
of the origin satisfying (4) such that f(0) 6= 0 and hypothesis H0 holds. Then
system (3) has no local analytic first integrals in a neighborhood of zero.

We separate the proof of Proposition 9 into different lemmas.

Lemma 10. Let f(x) and g(x) be analytic functions defined in a neighborhood of
the origin satisfying (4) and such that f(0) 6= 0 and g′(0) = 0. Then system (3)
has no local analytic first integrals in a neighborhood of zero.

Proof. We note that system (3) has the singular point (0, 0). If X = (y,−g(x) −
f(x)y), then the eigenvalues of DX(0, 0) are

−f(0)± |f(0)|
2

.

So one eigenvalue is zero and the other is nonzero.
Since g(x) 6≡ 0 and g(x) is analytic, we have that (0, 0) is an isolated singular

point of system (3) and by Theorem 6, system (3) has no local analytic first integrals
in a neighborhood of zero.

Now we can assume that g′(0) 6= 0.
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Lemma 11. Let f(x) and g(x) be analytic functions defined in a neighborhood of
the origin satisfying (4) and such that f(0) 6= 0, g′(0) 6= 0 and f(0)2/g′(0) 6∈ Q−.
Then system (3) has no local analytic first integrals in a neighborhood of zero.

Proof. We note that system (3) has the singular point (0, 0). If X = (y,−g(x) +
f(x)y) then the eigenvalues of DX(0, 0) are

λ1 =
f(0) +

√
f(0)2 − 4g′(0)

2
and λ2 =

f(0)−
√
f(0)2 − 4g′(0)

2
.

Clearly

λ1 + λ2 = f(0) and λ1λ2 = g′(0). (7)

Suppose that there exist positive integers k1 and k2 such that k1λ1 +k2λ2 = 0. Note
that by Theorem 5 if such integers do not exist the proposition is proved. Then
λ1 = −αλ2 with α a positive rational. The two equalities of (7) become

f(0) = (1− α)λ2, and g′(0) = −αλ2
2.

Since we have
f(0)2

g′(0)
= − (1− α)2

α
∈ Q−.

Note that α 6= 1 because f(0) 6= 0, and α 6= 0 because g′(0) 6= 0. Therefore
since f(0)2/g′(0) ∈ Q−, we cannot have k1λ1 + k2λ2 = 0, and consequently the
proposition is proved.

Lemma 12. Let f(x) and g(x) be analytic functions defined in a neighborhood of the
origin satisfying (4) and such that f(0) 6= 0, g′(0) 6= 0 and f(0)2/g′(0) = −α ∈ Q−
and hypothesis H0 holds, i.e., α 6= pq/(p − q)2 for some p, q ∈ Z+, p 6= q. Then
system (3) has no local analytic first integrals in a neighborhood of zero.

Proof. We write g′(0) = −αf(0)2 with α ∈ Q+\{0}. Doing the rescaling (X,Y, T ) =
(f(0)x, y, f(0)t) system (3) becomes of the form

x′ = y, ẏ = αx− y + h.o.t.,

where we have written again (x, y, t) instead of (X,Y, T ) and where h.o.t. means
terms of higher order. We assume that H = H(x, y) is a local analytic first integral
in a neighborhood of the origin. We write it as H =

∑
k≥0Hk(x, y) where Hk are

homogeneous polynomials of degree k. We will show by induction that

Hk = 0 for k ≥ 1 (8)

Then clearly from (8) we will obtain that system (3) has no local analytic first
integrals, and the proof of the proposition will be done.

Since H is a first integral it must satisfy

(αf(0)x− y)
∂H

∂y
+ y

∂H

∂x
= 0. (9)

Now we will do the induction. The terms of degree one in (9) must satisfy

(αx− y)
∂H1

∂y
+ y

∂H1

∂x
= 0.

Suppose that H1 = ax+by. Then the previous equation becomes (αx−y)b+ay = 0.
So αb = 0, since α 6= 0 we get that ∂H1/∂y = b = 0. Then we also obtain
∂H1/∂x = 0 and thus H1 = 0 which proves (8) for k = 1. Now we assume that
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(8) is true for k = 1, . . . , j − 1 with j ≥ 2 and we will prove it for k = j. By the
induction hypothesis, the terms of order j in (9) must satisfy

(αx− y)
∂Hj

∂y
+ y

∂Hj

∂x
= 0.

Therefore, either Hj = 0 or Hj is a first integral of the linear system

ẋ = y, ẏ = αx− y.
Computing a first integral of this system, we obtain that it must be a function of

G =

(
1

2
(1−

√
1 + 4α)x+ y

)−1+
√

1+4α(
1

2
(1 +

√
1 + 4α)x+ y

)1+
√

1+4α

.

The unique possibility for a power or function of G to be a polynomial is that

−1 +
√

1 + 4α =
n1

n2
and 1 +

√
1 + 4α =

n3

n2
, n1, n3 ∈ Z+, n3 6= n1.

Then we have that
n1

n2
+ 1 =

n3

n2
− 1, that is n2 =

n3 − n1

2
.

Hence, √
1 + 4α =

n1 + n2

n2
=
n1 + n3

n3 − n1

which yields

α =
1

4

((n1 + n3

n3 − n1

)2

− 1

)
=

n1n3

(n3 − n1)2
, n1, n3 ∈ Z+, n1 6= n3,

a contradiction. Since all first integrals are functions of G it is clear that Hj cannot
be a homogeneous polynomial of degree j. Hence Hj = 0 and the induction process
has ended.

From Lemmas 10, 11 and 12 it follows the proposition.

4. Case f(0) = g(0) = 0, g′(0) < 0. In this section we will prove the following
proposition.

Proposition 13. Let f(x) and g(x) be analytic functions defined in a neighborhood
of the origin satisfying (4) such that f(0) = 0. Then there exists an analytic first
integral defined in a neighborhood of the origin if and only if F (x) = Φ(2|G(x)|) for
some analytic function Φ(x).

Proof. Making the transformation (X,Y ) = (x, y + F (x), system (3) becomes

x′ = y − F (x), y′ = −g(x) (10)

where we have written again (x, y) instead of (X,Y ).
Let u be the negative root of 2G. From the hypothesis on g (that is, g(0) = 0

and g′(0) < 0) it is clear that it is well defined and analytic in a neighborhood of
x = 0. Thus

u = −(−2G(x))1/2sgn (x) = −(−g′(0))1/2x+O(x2) (11)

defines an invertible analytic transformation in a neighborhood of x = 0. Let x(u)
denote its inverse. This transformation takes system (10) to the system

u′ = −g(x(u))

u
(y − F (x(u)), y′ = −g(x(u)). (12)
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Since g(x(u))/u = (−g′(0))1/2 + O(u) is analytic in a neighborhood of the origin.
We can rescale (12) by multiplying the right-hand side by u/g(x(u)) which gives

u′ = y + F (x(u)), y′ = u. (13)

We write

F̃ (u) = F (x(u)) =
∑

j≥2

aju
j , aj ∈ R.

Then system (13) becomes

u′ = y + F̃ (u), y′ = u. (14)

We introduce the change of variables

y = ib, u = a, (15)

with this change of variables system (14) becomes

db

dt
= −ia, da

dt
= ib+ F̃ (a), (16)

where

F̃ (a) =
∑

j≥2

F̃ja
j .

It is clear that system (13) is locally integrable around the origin if and only if
system (16) is locally integrable around the origin. Moreover, system (16) is locally

integrable if and only if F̃j = 0 for j odd, see for more details the Appendix. More

precisely, the coefficients F̃j for j odd are the Poincaré–Liapunov constants of the
Lienard analytic differential system (16), and in the papers [2, 15] it is proved that
the Lienard differential systems have an analytic first integral in the neighborhood
of the origin if and only if all the Poincaré–Liapunov constants are zero.

In short, system (13) has a local analytic first integral in a neighborhood of the

origin if and only if F̃ is an even function. Now we express this condition in a
more geometrical setting. The argument above shows that there is a local analytic
first integral if and only if F̃ (u) = F (x(u)) = φ(u2) for some analytic function φ.
However, u2 = 2|G(x)| and this concludes the proof of the proposition.

5. Case H1. The main result in this section is the following.

Proposition 14. System (3) with `0 ≥ 2 and `1 = `0 − 1 has no analytic first
integrals.

Proof. System (3) becomes

x′ = y y′ = g`0x
`0 + f`0−1yx

`0−1 + h.o.t., (17)

where h.o.t. denote the higher order terms. We claim that (17) has not global
analytic first integrals. We note that the proof of the proposition will follow then
from the claim. Now we shall prove the claim.

Let H = H(x, y) =
∑
k≥1Hk(x, y) be a first integral of (17), where Hk is a

homogeneous polynomial of degree k. Then H satisfies

y
∂H

∂x
+
(
g`0x

`0 + f`0−1yx
`0−1 + h.o.t

)∂H
∂y

= 0. (18)
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Note that the right-hand side of equation (18) has degree at least `0. Now we will
show by induction that for k ≥ 1,

Hk−1 = 0 and
∂Hk

∂x
= · · · = ∂Hk+`0−2

∂x
= 0. (19)

We have taken the criterium that for j ≥ 0, H−j = 0. If (19) holds, then since all
Hk−1 = 0 for k ≥ 1, and H =

∑
k≥1Hk it follows that H = 0, a contradiction with

the fact that H is a global first integral of system (17). Hence the claim will be
proved if we prove the induction hypothesis.

Computing the terms in (18) with degree one we obtain that y ∂H1

∂x = 0 and since
H0 = 0 the induction hypothesis is proved for k = 1.

Now we assume that (19) is true for k = 1, . . . , l (l ≥ 1) and we will prove it for
k = l + 1. By the induction hypothesis we have

Hl−i = 0 and
∂Hl

∂x
= · · · = ∂Hl+`0−2

∂x
= 0

for i = 1, . . . , l that is,

Hl−i = 0 and Hl+j = al+jy
l+j , al+j ∈ R, (20)

for i = 1, . . . , l and j = 0, . . . , `0 − 2. Computing the degree l + `0 − 1 in (18) and
using the induction hypothesis, we get that

y
∂Hl+`0−1

∂x
= −

(
g`0x

`0 + f`0−1yx
`0−1

)
∂Hl

∂y

= −lal(g`0x`0 + f`0−1yx
`0−1)yl−1.

(21)

If l = 1, then (21) becomes

y
∂H`0

∂x
= −a1(g`0x

`0 + f`0−1yx
`0−1).

From this equation since g`0 6= 0 we get that a1 = 0 and ∂H`0/∂x = 0, so H1 = 0
and from equation (20) with l = 1 we get H1 = 0, ∂H2/∂x = · · · = ∂H`0/∂x = 0.
The induction hypothesis is proved for k = 2. Now we assume l ≥ 2.

First we will prove by induction that for m ≥ 1,

Hl+m(`0−1) = (−1)malg
m−1
`0

(g`0Cl,mx+f`0−1Kl,my)x(`0+1)m−1yl−2m+O(yl−2m+2),

(22)
where Cl,m, Kl,m are positive constants depending on l and m and O(yl−2m+2)
denote the terms of order greater or equal l − 2m + 2 in y. Furthermore, for
j = 1, . . . , `0 − 2,

Hl+m(`0−1)+j = O(yl−2m). (23)

Note that from (22) and (23) we have that

Hl+m(`0−1)+j = O(yl−2m), for j = 0, . . . , `0 − 2. (24)

Equations (22) and (23) will allow us to complete the proof of the induction
hypothesis (19).

Since l ≥ 2, solving (21) we get

Hl+`0−1 = −allyl−2

(
g`0

x`0+1

`0 + 1
+
f`0−1

`0
yx`0

)
+ al+1y

l+1

= −alg`0Cl,1yl−2x`0+1 − alf`0−1Kl,1y
l−1x`0 +O(yl),
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where Cl,1 = l/(`0 + 1) and K1,l = l/`0. This proves (22) with m = 1. Computing
the degree l + `0 − 1 + n in (18) with 1 ≤ n ≤ `0 − 2 and using (20) we get that

y
∂Hl+`0−1+n

∂x
= −

n∑

i=0

g`0+ix
`0+i ∂Hl+n−i

∂y
−

n∑

i=0

f`0+i−1x
`0+i−1y

∂Hl+n−i
∂y

= −
n∑

i=0

g`0+ix
`0+i(l + n− i)al+n−iyl+n−i−1

−
n∑

i=0

f`0−1+ix
`0+i−1(l + n− i)al+n−iyl+n−i

= −lal(g`0+nx
`0+n + f`0−1+nyx

`0−1+n)yl−1

− (l + 1)al+1g`0+n−1x
`0+n−1yl +O(yl+1),

(25)

that is, after simplifying the right-hand side of equation (25) by y and taking inte-
grals in x we get that

Hl+`0−1+n = − l

`0 + n+ 1
alg`0+nx

`0+n+1yl−2 +O(yl−1) = O(yl−2).

This proves (23) with m = 1 and j = 1, . . . , `0 − 2.
Now we assume that (22) is true for m = 1, . . . , n− 1 (n ≥ 2) and we will prove

it for m = n.
Computing the degree l + n(`0 − 1) in (18) and using the induction hypothesis

and (24) we get that

y
∂Hl+n(`0−1)

∂x

= −(g`0x
`0 + f`0−1yx

`0−1)
∂Hl+(n−1)(`0−1)

∂y

−
n−1∑

r=1

`0−2∑

j=1

gr`0+j−2(r−1)x
r`0+j−2(r−1) ∂Hl+(n−1−r)(`0−1)+`0−1−j

∂y

−
n−1∑

r=1

`0−2∑

j=1

fr`0+j−2(r−1)−1x
r`0+j−2(r−1)−1y

∂Hl+(n−1−r)(`0−1)+`0−1−j
∂y

= −(g`0x
`0 + f`0−1yx

`0−1)
∂Hl+(n−1)(`0−1)

∂y
+O(yl−2(n−1)+1).

Therefore, y∂Hl+n(`0−1)/∂x is equal to

− (g`0x
`0 + f`0−1yx

`0−1)
(

(−1)n−1al(l − 2(n− 1))gn−1
`0

Cl,n−1,0x
(`0+1)(n−1)yl−2(n−1)−1

+ (−1)n−1al(l − 2(n− 1) + 1)gn−2
`0−1f`0−1Kl,n−1,0x

(`0+1)(n−1)−1yl−2(n−1)

+O(yl−2(n−1)+1)

)
+O(yl−2(n−1)+1)

= (−1)nal(l − 2(n− 1))gn`0Cl,n−1,0x
(`0+1)(n−1)+`0yl−2(n−1)−1
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+ (−1)nal(l − 2(n− 1) + 1)gn−1
`0

f`0−1Kl,n−1,0x
(`0+1)(n−1)−1+`0yl−2(n−1)

+ (−1)nal(l − 2(n− 1))gn−1
`0−1f`0−1Cl,n−1,0x

(`0+1)(n−1)+`0−1yl−2(n−1)

+O(yl−2(n−1)+1).

This yields that

∂Hl+n(`0−1)

∂x
= (−1)nal(l − 2(n− 1))gn`0Cl,n−1x

(`0+1)n−1yl−2(n−1)−2

+ (−1)nal(l − 2(n− 1) + 1)gn−1
`0

f`0−1Kl,n−1x
(`0+1)n−2yl−2(n−1)−1

+ (−1)nal(l − 2(n− 1))gn−1
`0−1f`0−1Cl,n−1x

(`0+1)n−2yl−2(n−1)−1

+O(yl−2(n−1))

and thus

Hl+n(`0−1) = (−1)nalg
n
`0Cl,nx

(`0+1)nyl−2n

+ (−1)nalg
n−1
`0

f`0−1Kl,nx
(`0+1)n−1yl−2n+1

+O(yl−2n+2)

with

Cl,n =
l − 2(n− 1)

n(`0 + 1)
Cl,n−1,

and

Kl,n =
(l − 2(n− 1) + 1)Kl,n−1 + (l − 2(n− 1))Cl,n−1

n(`0 + 1)− 1
.

Therefore (22) is proved if m = n. Now we want to prove (23) for m = n and j =
1, . . . , `0−2. Computing the degree l+n(`0−1)+s in (18), with 1 ≤ s ≤ `0−2 using
the induction hypothesis (together with (22) with m = n) and taking into account
that as we did before, the terms Hl+r(`0−1)+j with r ≤ n− 2 and j = 0, . . . , `0 − 2

are of order O(yl−2r) = O(yl−2n+4) (see (24)) that lead to higher order terms, we
get that only the terms Hl+r(`0−1)+j with r = n− 1 matter. Hence,

y
∂Hl+n(`0−1)+s

∂x

= −
s∑

i=0

g`0+ix
`0+i ∂Hl+(n−1)(`0−1)+s−i

∂y

−
s∑

i=0

f`0+i−1yx
`0+i−1 ∂Hl+(n−1)(`0−1)+s−i

∂y

= −
s∑

i=0

g`0+ix
`0+iO(yl−2n+1)−

s∑

i=0

f`0+i−1x
`0+iO(yl−2n+2)

= O(yl−2n+1).

(26)

Solving (26) we clearly obtain

∂Hl+n(`0−1)+s

∂x
= O(yl−2n) that is Hl+n(`0−1)+s = O(yl−2n)

and concludes the proof of (23).
Now we continue with the proof of the induction hypothesis (20). In fact we

shall prove that al = 0 for l ≥ 2. Then Hl = 0 and from (21) we have that
∂Hl+`0−2/∂x = 0. This proves (20). We distinguish two cases.
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We first assume that l is odd. Then by (22) with m = (l − 1)/2 we obtain that

Hl+(l−1)(`0−1)/2 = (−1)(l−1)/2alg
(l−1)/2
`0

Cl,(l−1)/2x
(`0+1)(l−1)/2y +O(y2).

Then computing in (18) the term of degree l + (l + 1)(`0 − 1)/2 and using (24) we
get

y
∂Hl+(l+1)(`0−1)/2

∂x

= −(g`0x
`0 + f`0−1yx

`0−1)[(−1)(l−1)/2alg
(l−1)/2
`0

Cl,(l−1)/2x
(`0+1)(l−1)/2 +O(y)]

+O(y)

= (−1)(l+1)/2alg
(l+1)/2
`0

Cl,(l−1)/2x
(`0+1)(l−1)/2+`0 +O(y).

(27)

Now setting y = 0 in (27) and since g`0 6= 0 we get that al = 0.
Finally, if l is even, then (22) with m = l/2 yields

Hl+l(`0−1)/2 = (−1)l/2alg
l/2
`0
Cl,l/2x

(`0+1)l/2

+ (−1)l/2alg
l/2−1
`0

f`0−1Kl,l/2x
(`0+1)l/2−1y +O(y2).

Then computing in (18) the term of degree l + (l + 2)(`0 − 1)/2 and using (24) we
get

y
∂Hl+(l+2)(`0−1)/2

∂x

= −(g`0x
`0 + f`0−1yx

`0−1)[(−1)l/2alg
l/2−1
`0

f`0−1Kl,l/2x
(`0+1)l/2−1 +O(y)]

+O(y)

= (−1)(l+1)/2alg
l/2
`0
f`0−1Kl,l/2x

(`0+1)l/2+`0−1 +O(y).

(28)

Now setting y = 0 in (28) and since g`0f`0−1 6= 0 we get that al = 0. This concludes
the proof of the proposition.

6. Case H2. The main result in this section is the following.

Proposition 15. System (3) with `0 ≥ 2`1 + 2 has no analytic first integrals.

Proof. System (3) becomes

x′ = y + F (x) = y +
∑

i≥0

f`1+i

`1 + i+ 1
x`1+i+1 = y +

∑

i≥0

f̄`1+ix
`1+i+1,

y′ = −
∑

i≥0

g`0+ix
`0+i,

(29)

We claim that (29) has not global analytic first integrals. We note that the proof
of the proposition will follow then from the claim. Now we shall prove the claim.

Let H = H(x, y) =
∑
k≥1Hk(x, y) be a first integral of (29) where Hk is a

homogeneous polynomial of degree k. Then H satisfies

(
y +

∑

i≥0

f̄`1+ix
`1+i+1

)∂H
∂x
−
(∑

i≥0

g`0+ix
`0+i

)∂H
∂y

= 0. (30)
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Note that the term in (30) before ∂H/∂y has degree at least `0. We will show by
induction that for k ≥ 1,

Hk−1 = 0 and
∂Hk

∂x
= · · · = ∂Hk+`0−2

∂x
= 0. (31)

We have taken the criterium that for j ≥ 0, H−j = 0. We note that (31) clearly
implies that H = 0, a contradiction with the fact that H is a global first integral of
system (29). Hence the claim will be proved if we prove the induction hypothesis.

Computing the terms in (30) with degree one we obtain that y
∂H1

∂x
= 0 and

since H0 = 0 the induction hypothesis is proved for k = 1.
Now we assume that (31) is true for k = 1, . . . , l (l ≥ 1) and we will prove it for

k = l + 1. By the induction hypothesis, we have

Hl−i = 0 and
∂Hl

∂x
= · · · = ∂Hl+`0−2

∂x
= 0

for i = 1, . . . , l that is,

Hl−i = 0 and Hl+j = al+jy
l+j , al+j ∈ R, (32)

for i = 1, . . . , l and j = 0, . . . , `0 − 2. Computing the degree l + `0 − 1 in (30) and
using the induction hypothesis, we get that

y
∂Hl+`0−1

∂x
= −g`0x`0

∂Hl

∂y
= −allg`0x`0yl−1. (33)

If l = 1, then (33) becomes

y
∂H`0

∂x
= −a1g`0x

`0 .

From this equation since g`0 6= 0 we get that a1 = 0 and ∂H`0/∂x = 0, so H1 = 0
and from equation (32) with l = 1 we get H1 = 0, ∂H2/∂x = · · · = ∂H`0/∂x = 0.
The induction hypothesis is proved for k = 2. Now we assume l ≥ 2.

Now show that by the induction hypothesis, we have

Hl+`0−1 = −g`0alClx`0+1yl−2 +O(yl+`0−1), (34)

and for j = 1, . . . , `1 − 1,

Hl+`0−1+j = O(yl−2), (35)

where Cl = l/(`0 + 1), O(yl+`0−1) denote the terms of order greater than or equal
to l + `0 − 1 in y and O(yl−2) denote the terms of order greater than or equal to
l − 2 in y. Note that from (34), (35) and since `0 ≥ 2`1 + 2 ≥ 4 (`1 ≥ 1) we have
that Hl+`0−1+κ = O(yl−2) for κ = 0, . . . , `1 − 1.

Indeed, since l ≥ 2, solving (33) we get

Hl+`0−1 = −allyl−2g`0g`0
x`0+1

`0 + 1
yl−2 + al+`0−1y

l+`0−1

= −alg`0Clx`0+1yl−2 +O(yl+`0−1),

where Cl = l/(`0 + 1). This proves (34).
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Computing the degree l + `0 − 1 + j in (30) with j = 1, . . . , `1 − 1 (note that in
this case j − 1− i− `1 ≤ −2) and using (32) we get that

y
∂Hl+`0−1+j

∂x
= −

j∑

i=0

g`0+ix
`0+i ∂Hl+j−i

∂y

= −
j∑

i=0

g`0+ix
`0+i(l + j − i)al+j−iyl+j−i−1

= −lalg`0+jx
`0+jyl−1 − (l + 1)al+1g`0+j−1x

`0+j−1yl +O(yl+1),

(36)

that is, after simplifying the right-hand side of equation (36) by y and taking inte-
grals in x we get that

Hl+`0−1+j = − l

`0 + j + 1
alg`0+jx

`0+j+1yl−2 +O(yl−1) = O(yl−2).

This proves (35) with j = 1, . . . , `1 − 1.

Lemma 16. For n = 1, . . . , l − 2,

Hl+`0−1+n`1 = (−1)n+1f̄n`1alg`0Kl,nx
`0+1+n(`1+1)yl−2−n +O(yl−1−n), (37)

and for j = 1, . . . , `1 − 1,

Hl+`0−1+n`1+j = O(yl−2−n), (38)

where Kl,n is a positive constant depending on l, n; O(yl−1−n) denote the terms of
order greater than or equal to l − 1 − n in y and O(yl−2−n) denote the terms of
order greater than or equal to l − 2− n in y.

Proof of the lemma. The proof will be done by induction over n. Computing the
degree l + `0 − 1 + `1 in (30) and using (32) and (34) we get that

y
∂Hl+`0−1+`1

∂x
= −f̄`1x`1+1 ∂Hl+`0−1

∂x
−

`1∑

i=0

g`0+ix
`0+i ∂Hl+`1−i

∂y

= f̄`1alg`0Cl(`0 + 1)x`0+`1+1yl−2 +O(yl)

−
`1∑

i=0

g`0+ix
`0+ial+`1−i(l + `1 − i)yl+`1−i−1

= f̄`1alg`0Cl(`0 + 1)x`0+`1+1yl−2 +O(yl),

where we have used that `0 ≥ 2(`1 + 1). Then, after taking simplifying by y and
taking integrals in x we get

Hl+`0−1+`1 = f̄`1alg`0Kl,1x
`0+`1+2yl−3 +O(yl−1),

where Kl,1 = (`0 + 1)Cl/(`0 + `1 + 2). This proves (37) with n = 1.
Now computing the degree l + `0 − 1 + `1 + r in (30) with 1 ≤ r ≤ `1 − 1 and

using (32) we get that

y
∂Hl+`0−1+`1+r

∂x

= −
`0+r−1∑

i=0

f̄`1+ix
`1+1+i ∂Hl+`0−1−i+r

∂x
−
`1+r∑

i=0

g`0+ix
`0+i ∂Hl+`1+r−i

∂y

= O(yl−2),

(39)
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where we have used that the terms in (34) and (35) are of order O(yl−2) and
that Hl+κ with κ < `0− 1 is also O(yl−2). Furthermore, we can write Hl+`1+r−1 =
Hl+`0−1+2`1+r−`0+1 and since `0 ≥ 2`1+2 we have that 2`1+r−`0+1 ≤ j−1 < `1−1
and then by equation (35) we have that Hl+`1+r−1 = O(yl−2). Now simplifying (39)
by y and integrating in x we conclude that (38) holds for n = 1 and j = 1, . . . , `1−1.

Now we assume that (37) and (38) hold for n = 0, . . . , ñ− 1 and we will prove it
for n = ñ.

Computing the degree l + `0 − 1 + ñ`1 in (30) and the induction hypothesis, we
have

y
∂Hl+`0−1+ñ`1

∂x
= −f̄`1x`1+1 ∂Hl+`0−1+(ñ−1)`1

∂x

−
`0−1+(ñ−1)`1∑

i=1

f̄`1+ix
`1+1+i ∂Hl+`0−1+(ñ−1)`1−i

∂x

−
ñ`1∑

i=0

g`0+ix
`0+i ∂Hl+ñ`1−i

∂y
.

Note that since i ≥ 1, by (37) and (38) with n ≤ ñ− 1 we have

∂Hl+`0−1+(ñ−1)`1−i
∂x

=
∂Hl+`0−1+(ñ−2)`1+(`1−i)

∂x
= O(yl−ñ).

Furthermore we can write l + ñ`1 − i in ∂Hl+ñ`1−i/∂y of the form

l + ñ`1 − i = l + `0 − 1 + ñ`1 − i− `0 + 1.

Since `0 ≥ 2`1 + 2 and i ≥ 0 we have that

l + ñ`1 − i ≤ l + `0 − 1 + ñ`1 − 2`1 − 2 + 1 ≤ l + `0 − 1 + (ñ− 2)`1 − 1

≤ l + `0 − 1 + (ñ− 3)`1 + (`1 − 1)

and by (37) and (38) with n ≤ ñ − 3 we have that Hl+ñ`1−i = O(yl−ñ+1) which
yields

∂Hl+ñ`1−i
∂y

= O(yl−ñ).

Therefore, using also the induction hypothesis, we have that

y
∂Hl+`0−1+ñ`1

∂x
= −f̄`1x`1+1 ∂Hl+`0−1+(ñ−1)`1

∂x
+O(yl−ñ)

= (−1)ñ+1f̄ ñ`1alg`0Kl,ñ−1(`0 + 1 + (ñ− 1)(`1 + 1))x`0+ñ(`1+1)yl−2−ñ+1 +O(yl−ñ).

Hence,

Hl+`0−1+ñ`1 = (−1)ñ+1f̄ ñ`1alg`0Kl,ñx
`0+1+ñ(`1+1)yl−2−ñ +O(yl−ñ−1),

where

Kl,ñ =
(`0 + 1 + (ñ− 1)(`1 + 1))Kl,ñ−1

`0 + 1 + ñ(`1 + 1)
.

This proves (37) with n = ñ.
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Computing the degree l+ `0− 1 + ñ`1 + j in (30) with j = 1, . . . , `1− 1, and the
induction hypothesis, we have

y
∂Hl+`0−1+ñ`1+j

∂x
= −

`0+j−1+(ñ−1)`1∑

i=0

f̄`1+ix
`1+1+i ∂Hl+`0−1−i+j+(ñ−1)`1

∂x

−
ñ`1+j∑

i=0

g`0+ix
`0+i ∂Hl+ñ`1+j−i

∂y
.

(40)

Note that since i ≥ 1, by (37) and (38) with n ≤ ñ− 1 we have

∂Hl+`0−1−i+j+(ñ−1)`1

∂x
= O(yl−(ñ−1)−2) = O(yl−ñ−1).

Furthermore we can write l + ñ`1 + j − i in ∂Hl+ñ`1+j−i/∂y of the form

l + ñ`1 + j − i = l + `0 − 1 + ñ`1 + j − i− `0 + 1.

Since `0 ≥ 2`1 + 2 and i ≥ 0 we have that

l + ñ`1 + j − i ≤ l + `0 − 1 + j + ñ`1 − 2`1 − 2 + 1 ≤ l + `0 − 1 + (ñ− 2)`1 + j − 1

and by (38) with n ≤ ñ− 2 we have that Hl+ñ`1+j−i = O(yl−ñ) which yields

∂Hl+ñ`1+j−i
∂y

= O(yl−ñ−1).

Now simplifying (40) by y and integrating in x we conclude that (38) holds for
n = ñ and j = 1, . . . , `1 − 1. This completes the proof of the lemma.

Now we continue with the proof of Proposition 15. Given l ≥ 2 if we take n = l−2
and use (34) (if l = 2) or (37) in Lemma 16 if l ≥ 3 we get that

Hl+`0−1+(l−2)`1 = (−1)l−1f̄ l−2
`1

alg`0K1,l−2x
`0+1+(l−2)(`1+1) +O(y),

where K1,0 = Cl. Now computing in (30) the term of degree l + `0 − 1 + (l − 1)`1
and proceeding as in the proof of Lemma 16 we get that

y
∂Hl+`0−1+(l−1)`1

∂x

= (−1)lf̄ l−1
`1

alg`0K1,l−2(`0 + 1 + (l − 2)(`1 + 1))x`0+(l−2)(`1+1) +O(y).

(41)

Now setting y = 0 in (41) and since g`0 f̄`1Kl,l−2(`0 + 1 + (l− 2)(`1 + 1)) 6= 0 we get
that al = 0. This concludes the proof of the proposition.

Appendix. Poincaré in [10] defined the notion of a center for a real polynomial
differential system in R2. He showed that a necessary and sufficient condition in
order that a real polynomial differential system has a center at a singular point with
purely imaginary eigenvalues, is that it has a local analytic first integral defined in
its neighborhood. Then doing a linear change of variables and a scaling of the
independent variable, we can write any polynomial differential system with a focus
at the origin with purely imaginary eigenvalues (i.e. having either weak focus or a
center) into the form

ẋ = p(x, y) = y + p2(x, y) + . . .+ pm(x, y),
ẏ = q(x, y) = −x+ q2(x, y) + . . .+ qm(x, y),

(42)
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where

pi(x, y) =

i∑

j=0

aijx
i−jyj , qi(x, y) =

i∑

j=0

bijx
i−jyj .

The following result is due to Shi [13, 14]. It is better stated in [12] (see also [7]).

Lemma 17. For the polynomial system (42) there exists a formal power series
F ∈ Q[a20, . . . , b0m][[x, y]],

F =
1

2
(x2 + y2) + F3(x, y) + F4(x, y) + . . . ,

and polynomials V1, . . . , Vi, . . . ∈ Q[a20, . . . , b0m] such that

dF

dt
=
∂F

∂x
p+

∂F

∂y
q =

∞∑

i=1

Vi(x
2 + y2)i+1.

The constants Vi are called focus quantities or Poincaré-Liapunov constants.
They are not uniquely determined. From a result of Shi, all such Vi’s are in the
same coset modulo the ideal generated by V1, . . . , Vi−1 in the ring Q[a20, . . . , b0m].
From Poincaré [10] system (42) has a center at the origin if and only if Vi = 0 for
all i. The ideal 〈V1, . . . , Vi, . . .〉 has a finite basis due to Hilbert’s basis theorem.

A hyperbolic saddle such that the trace of its linear part is zero is a weak saddle.
Dulac [3] in his studies of hyperbolic saddles in complex systems used a definition
which in real coefficients can be a center. With a linear change of coordinates and a
scaling of the independent variable, we can write any polynomial differential system
with a weak saddle at the origin into the form

ẋ = p(x, y) = y + p2(x, y) + . . .+ pm(x, y),
ẏ = q(x, y) = x+ q2(x, y) + . . .+ qm(x, y),

(43)

where pi and qi are the same as in (42).
The proof of the next result is analogous to the proof of Lemma 17.

Lemma 18. For the polinomial system (43) there exists a formal power series
F ∈ Q[a20, . . . , b0m][[x, y]],

F =
1

2
xy + F3(x, y) + F4(x, y) + . . . ,

and polynomials L1, . . . , Li, . . . ∈ Q[a20, . . . , b0m] such that

dF

dt
=
∂F

∂x
p+

∂F

∂y
q =

∞∑

i=1

Li(xy)i+1.

The constants Li are called the saddle quantities. They are not uniquely deter-
mined. As for the Vi’s, all Li’s are in the same coset modulo the ideal generated by
L1, . . . , Li−1 in the ring Q[a20, . . . , b0m].

We say that the origin is an integrable saddle if and only if Li = 0 for all i. The
ideal 〈L1, . . . , Li, . . .〉 has a finite basis due to Hilbert’s basis theorem.

Doing a linear change of coordinates any complex polynomial differential system
with a weak saddle at the origin can be written as

ẋ = y + p(x, y),
ẏ = x+ q(x, y),

(44)
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where p and q are complex polynomials without constant and linear terms. With
the change of variables x = a, y = ib, system (44) becomes the complex differential
system

ȧ = ib+ P (a, ib),

ḃ = −ia+Q(a, ib),
(45)

where P and Q are complex polynomials. Then the focus quantities Vj of system
(45) coincide with the saddle quantities Lj of system (44). From this duality be-
tween focus quantities and saddle quantities it follows that an integrable saddle has
an analytic first integral defined in a neighborhood of it. This is the reason why
we call such a saddle an integrable saddle. The complex change (45) is done for
showing the duality of weak focus and weak saddles.

If we apply a change of the form (45), precisely the change (15), to system (14)
we get the differential system (16). Exactly system (16), which is a particular case
of system (45), has been studied in [2, 15] showing that it has a first integral of the

form given in Lemma 17 if and only if F̃j = 0 for j odd.
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