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Abstract

In recer years, thestudyof Newton—Okounkowodies on normalarietieshas become aertral
subjectin the asymptotic theoryf linear series, afteiits introductionby Lazarsfeld—Mustia and
Kaveh—Khovanskii.One reason for this #hatthey encode alhumerical equivalence informatiayf
divisor classes (by work of Jow)At the same time, they can be seen as Ipcdlitivity invariarts,
and Kironya-Lozovanthave studiedthem indepthfrom this point of view.

We determinewhat informationis encoded by the set of @llewton—Okounkowodies of abig
divisor with respect to flagsentered at fixed point of a surface, by showinghatit determines
and isdeterminedby the numerical equivalencelass of the divisor up tmegative components in
the Zariski decomposition thatlo not gothroughthe fixed point.

1 Introduction

Newton—Okounkov bodiesinspired by the work of A. Okounkoy!”], R. Lazarsfeld and MMus-
tata [11] and independenthyK. Kaveh and A. Khovanskii5] introduced Newton—Okounkdvodies as
a tool in the asymptotictheory of linear series on normal varieties,toal which proved to beery
powerful and inrecent development®f the theory has gained a central role. éxtellert introduction
to the subject —noexhaustivedue to the rapiddevelopmet of the theory— can be found ihe
review [1] by S.Boucksom.

Newton—Okounkowodies are defined as follows. Let X be a normaljgumtive variety oflimension
n. A flag of irreducible sbvarieties

Y.={X =YoD2Y1D:--2Y,={p}}

is called full and admissible ¥; has codimension i in X and is smooth at gwnt p. p is calledthe
center of the flag. For every non-zerationalfunction ¢ € K (X)), write o9 = ¢, and fori=1,...,n

vi(g) Elordy, (i) , o E = ()
gy,

where gi is a local equation of; in Yj_1 around p (this makes sense because the flagnsssible).
The sequencey. = (v1,V2,...,vn) determinesa rank n discretevaluationK (X )" —— Z[1_ with certer

at p[16].
Definition 1. If X is a normal projective variety, D agbCartierdivisor on it, andY. an admissible
flag, the Newton—Okounkowody of D with respect td. is

Av.(D) & Y@ enox oxkp) keN R
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where {-} denotes the closure with respect to the usopblogy of R. Although not obviousfrom
this definition, Ay_(D) is convex and compact, withonemptyinterior, i.e., a body (sef], [11], [1]).
A. Klronya, V. Lozovanu and C. Macleapi(] have shownthatit is a polygon if X is a surfaceand
thatin higher dimensions it can h®n-polyhedral,even if X is a Mori dream space. Tlefinition
can be carried over to the more general setbhgraded linear series, and also to Q or Rsdig; in
the absence of some bigness conditigxy_(D) may fail to have topgimension.

By [11, Proposition4.1], Ay.(D) only depends on the numerical equivalentzsscof D. S. Y.Jow
proved in[6] thatthe set of aINewton—Okounkowbodies works as a complete set of numericadariarts
of D, in the sensg¢hat,if D’ is another bigCartierdivisor with Ay (D) = Ay (D) for all flagsY.,

then D andD’ are numericallyequivalen.

Flagson proper model®f K(X) It is mostnaturalto define Newton—Okounkovbodies with
respect to anyaluationv with value group equal t&d™*, and not only those coming from flags
X (see[5], [1]). Thus we consider admissible flags arbitrary birationamodels of X, notingthateven
to express the results for flags lying on (¥neorem?2 below) we need to consider clusters of iitéiy
near points.

Definition 2. We call admissible flag for X any admissiblagf. on X wheren : X - X is aproper

birationalmorphism. Whenever we need to specify the mapwiNause the notation
n o
Y.= X &= X=Yo2Y12:---2Y,={p}

but mostly we omit an explicit mention of the mbdeé on which p andY; lie. The point z(p) =0 € X
will be called the center of the flag on X ;adfcontractsthe whole flag, i.e.z(Y1) = n(p) = O then we
say thatY. is aninfinitesimal flag, and if codime(Y;) =i then it is a proper flag. K =X, n = idyx,
we saythatthe flag is smooth at O. The correspondiNgwton—Okounkowbodies will be alsccalled
infinitesimal, proper or smootlccordingly

Already Lazarsfeld—Must@ [11] considered Newton—Okounkovbodies of D defined by flagsn
varieties birationalto X —more precisely, flagsontainedin the exceptional divisor of a blowup of
X, with the goal of making a canonical choigk“generic infinitesimal” flag and getting ridf the
arbitrarinessof the choice of a flag—. A. Kironya and. Yozovanu [9] have pushed forwardhe
study of infinitesimal flags, with the philosophi viewpoir thatthe “localpositivity” (see[8, Chapter
5] of D at a smoothpoint O should be governed by the setNawton—Okounkovbodies Ay (D)
where the flagr. is centered at O. This raises the questibrwhat informationon L is conained
in the set oNewton—Okounkowodies Ay_(D) with fixed center, analogously to Jow’s uksfor the
set of allNewton—Okounkowbodies. In the case when X is a surface, weigeoa completeansver
which supportsthe “local positivity” viewpoint, and we provethat Newton—Okounkolodies givenby
infinitesimal flags suffice tadetermineall Newton—Okounkovbodies given by flags centered @t

Clustersof infinitely near points Fix X a projective surface, and ©X a smoothpoint. A point
infinitely near to O is a smootipoint p € X, wheren : X — X is a properbirational morphism, suc
thatn(p) =O.

A finite or infinite set K of points equal or infiely near to O, suchhatfor each pe K, K corntains
all points to which p is infinitely near, is cadl a cluster of points infinitely near to O. \Wew review
a few facts on clustershatwe need, referring to E. Casas-Alvero’s bdakfor details and proofsThe
simplest example of a cluster is the sequerfcenages of apoint p € X infinitely near to O:m, can

be factored as a sequence of point blowups n = blo ° bl A |
bl blpy ~
X =Xo &2 X, &2 &y =X =X,



and then
K(p) ={O,blp, *---+ blg_,(P), ... blp_,(P), P

is a cluster. A priori, infinitely near pointselong todifferent surfaces, but we consider tip®ints
p e Xp "2 X and pe X0 72 X to be the sam@oint when there is dirationalmap defined ima
neighborhood of p, X2 U, » X, which commutes withr,, ne, maps p to pand is anisomorphism
in a (possibly smaller) neighborhood of p. hee can safely assuminat the sequence gfoints
blown up to get the surface where p liefoisned exactly by the points in K(p) exceptitself:
K({) ={O,p1,--., k-1, p}- In this sense, every infinitely neg@oint p has a well definegoredecessor,
namely the last blown upoint px_1.

Points infinitely near to O are classified seellite if pe Sing(x=1(0)) and free otherwise We
shall call a cluster K free if every @ K is free. Arelevart fact when dealing with smooth flags is
thatthere is a smooth curvhroughO whosebirational transformin X contains the infinitelynear
point p € X if and only if the cluster K (p) is free. It mustomaryto saythata curve goeshrough an
infinitely near point p (or hasmultiplicity m there) if itsbirational transforndoes so; we will follow
this conventionwithout further notice.

A weighted cluster is a palik = (K, m) where K is a cluster and misa map m =k Z. A typical
example is, given a propdirationalmorphj mX & X (factored as above) and a curvetif@oughO,
the set of all points infinitely near to O In;_; X; thatbelong toC, weighted with m(p)= multp(é).

Let C c X be a curvethroughO which has no smooth brandhroughO. There exists ainimal
modelr : X -— X suchthat, denoting C the strict transformof C, all of the (finitely many) points of
c infinitely near to O (i.e.x~1(0) n C) are satellite. For anyfactorizationof such ar as a sequence
of point blowups, the centers of the blowups formreefcluster. This cluster, weighted withe
multiplicities of C at its points, will be called the clustef initial free points of C and denoteBc.
Remark thatan equality Fc = Fco meansthatthe minimal model sucthatthe strict transformof
C has no fregoint infinitely near to O is also the minimal modeick thatthe strict transformof C°
has no fregoint infinitely near to O, and moreover thaultiplicities of the strict transformsof C and
C! at each blown ugpoint coincide.

Local numerical equivalence on surfacest still X be a normal projective surfaceEvery

pseudoeffective Q-divisor D admits a uniqueriské decomposition D= P + N, where P, N ard&)-

divisors with P nef, N effective, the componentk of N have negative definitetersectionmatrix, and
P -N; = 0. Zariski showed in15] thata unique such decomposition exists for any effectiivisor D on

a smooth surface —in what can be consideretbumndationalwork of the asymptotictheory oflinear

systems. Thegeneralizatiorto pseudoeffective Q-divisors is due Fajita [4]. The result thencarries
over to normal surfaces using th@tersectiontheory developed by Sakai [i4], see[13, Theorem 2.2].
One should bear in mindhatin this case P and N are in general Weil stisd8 only, even if D is
Cartier.

Definition 3. Fix O e X, and let D be a divisor on X, with Zariski atenposition D=P + N. We
decompose the negative pas
N =No +N§

where thesupportof No are exactly the divisors in N which goroughO. We saythat
D =P +Np +N§

is the refined Zariski decomposition a®.

Definition 4. Giventwo divisors D,D” on X with refined Zariski decompositions &

D=P+No +N§, D'=P'+N’ &N'§



we saythatD and D' are numerically equivalent near O if

P=Pland Nb =NJ{. Q)

The main result®f this paper showthat the information containedn the s¢ of all Newton—
Okounkov bodies of a bi@artierdivisor D with center at a smoothoint O of a surface is exactlyhe
numerical equivalence class near O of D in thessabove.

Theorem1l. Let D,D" be bigCartierdivisors on a normal projective surface X dalet O e X a
smooth point. The following aregeivalent:

1. D andD! are numerically equivalent near O, i.e., th&ariski decompositionssatisfy ().
2. For all admissible flags with center @y _(D) = Ay (D).

3. For allinfinitesimal admissible flags with center Q\y_.(D) = Ay (D).

4. For all proper admissible flags with cen®; Ay (D) = Ay (D).

It is obviousthat(2) is equivalert to [(3) and @)]. The skeleton of our proof is as follows:

=0 =2%6=0.

Each implication follows from one ortwo of the lemmas in sectiof; some of the lemmas amectually
stronger than is required and may ibeerestingfor themseles.

Remark thatit is not enough to know th&lewton—Okounkowodies of D with respect to all flags
lying on X with center at O (smooth flags) in erdto recover the numerical equivalence class aea
The information containedn this smaller collection oNewton—Okounkowodies isdeterminedn the
next theorem, after which it will be easy to egiexamples. Assume D is a diviseith refined Zariski
decomposition

D =P +No +Ng,

and decompose further oN= NS+ N§™ where N§™ is formed by all components with at least one
smooth branchthroughO. Then the result can be expressed in teoithe clusters of initial free
pOintS FNging and FNgsigg:

Theorem2. Fix Oe X a smooth point. Let DD° be bigCartierdivisors on X, withrefined Zariski
decompsitions

D=P+NS"9+NS§™+N&, D'=P’+N"J"9+NT+N'G
The following are quivalent:
1. P= P’ N§™=N'G" and Fysins = Fyosino.
2. For almost alinfinitesimal admissible fIagg)Z > E > {p}} with center O such that theuster
K (p) is free, Ay_(D) = Ay (D).
3. For all smooth admissible flags with center &, (D) = Ay (DY).

The easiest example in which the set of all smagdwton—Okounkovbodies with center at @oes
not determinethe numerical equivalence class near O is giverww big Cartierdivisors D,D" whose
negative parts N, Nare distinctirreducible curves with ordinary cusps at the sgoint O and with
the sametangentdirection (it is not difficult toconstructsuch divisors on suitable blowups )P In



thatcaseF Ngino = FNOS.ng consists oftwo points: O and theoint infinitely near to it in thedirection
tangentto the cusps, W|thnult|pI|C|t|e32 and 1 respectively. Therefore Bléwton—Okounkovbodies
with respect to smooth flags centered at O d¢décbut Ny =N =N"=NY,

The proof,containedin the lemmas of sectiof follows the samStructureaS for theoreml. The
main ingrediert in both cases is theomputationof Newton—Okounkovbodies in terms oEariski
decompositions which can be found as Theoremir6[41]. Although Lazarsfeld andMustaa proved
this fact for smooth surfaces, the result appbesa normal surface X as long as the flag isezedtat
a smoothpoint O of X. Indeed, using a resolution of singuiagtz : X — X which is anisomorphism
in a neighbourhoof O, one may apply11, Theorem 6.4] to the pullback divisom* D with respectto
the pulled back flag, because Zariski decompositi@yree via pull-backs (s¢&3, 2.3]) andintersection
numbers agree by the projectidormula.

Higher dimension Our results depend on the existence of a Zadgldomposition. Decompositions
with similar properties exist on some highéamehsional varieties as well (for instance, orict vari-
eties) and inthatcase one can expect the behaviourNefvton—Okounkowodies to be related tthe
decomposition similarly to what happens $orfaces

Given aCartierR-divisor D on X, a Zariski decomposition of Dtime sense d€utkosky-Kawamata-
Moriwaki (or simply a CKM-Zariskidecomposition)s an equaliy

"D =P+ N
on a smoothbirationalmodification = : X — X suchthat
1. P is nef,
2. N is effective,
3. all sections of multiples of D are carried By i.e., thenatural maps
HO(X, Ox (bkPc)) — HO(X, 0 ~kn*Dc)) = HO(X, Ox (bkDc))
are bijective for all k= 0.

See Y. Prokhorov's surveyl3] for more on CKM-Zariski decompositions and othgeneralizations.
Such decompositions don't always exjst and when they do, P and N may ibmtional even if D

is an integral divisor. But if they do exidpr instance if X is a toric variety7], Newton—Okounlov

bodies centered at a givgwoint O will be governed by the Zariskiecomposition:

Proposition5. Let D,D" be bigCartierdivisors on a variety X, admitting a CKM-Zariskiecompo-
sition and let Oe X a point. If D andD" are numerically equivalent near O, i.e., th€KM-Zariski
decompositionsatisfy (). Then for all admissible flags with center Qy_(D) = Ay_(D ).

It should be expectedhata conversestatemensimilar to what holds for surfaces be valid migher
dimension. In fact, the proof of lemmid below can be easilpdaptedo the higher dimensionaetting,
so Ny is indeeddeterminedby the Newton—Okounkowodies centered at O. The methods of thige
are however nosufficient to showthatthe positive part is alsdeterminedby the Newton—Okounkv
bodies centered aD.

We work over an algebraically closed field.

Acknowledgemet The authorgreatly benefited frontonversationswith A. Kironya on the con-
tents of this work.



2 Proofs

Local numerical equivalence implies equal NewAOkounkov bodiesLet us first prove
(1) = (2) in theorems1 and 2, and at the same time propositidn So assumehatD and D' are
big Cartier divisors on a variety X, numericallgquivaletn near O, i.e., with refine@KM-Zariski
decompositions satisfyingt):

D =P +No +N§,  n'D'=P’+Npo +N'g
with P = P’ By Lazarsfeld-Mustg [11, Theorem 4.1], alNewton-Okounkovbodies ofD’ and
D"=D"+(P -P) =P +No +N'

coincide, becausd®” and D" are numerically equivalent. Thus for the proof of propositiors and
(1) = (2) in theorem1 it is not restrictiveto assumethatP = P?. Then there is a sequencedofisors

D =Dg,D;,...,0 =D’

whose CKM-Zariski decompositiong*D; = P + N; have the same positive part ahy differs from
Ni+1 in a multiple of a base divisdE; with O 6€ n(E;j). Thus the desiredmplication follows from
thefollowing:

Lemmas. Let D,D be two bigCartierdivisors withrespective refine@ariski decompsitions
"D =P+N, n°D'=P +(N +AE)
with L € R, and O any point @ n(E). Then for all admissible flags with center @Qy_(D) = Ay_(D

). Proof. An equation of E is invertible in a nd@igrhood of O, and therefore alsoan

neighborhood
of every point p infinitely near to O. So for every flag centered at Oyy_(E) = 0. Sinceglobal
sections obkDc and bkD’c differ exactly inbkAEc, their values undewy_ agree, and thereforéhe
Newton—Okounkowodies are thesame. |

Now the following lemma is enough to finish the pf®f (1) = (2) in theorem2:

Lemma?7. Let D,D' be two bigCartierdivisors on a normal surface X witespective refined Zariski
decompsitions
D=P+(N+)AC), D'=P+(N +2A'C)
with A, A’ € R, and CC! irreducible curves with no smooth branch through and satisfying\Fc =
T

MFco Then for all infinitesimal admissible flagsX <= X > E > {p}} with center at a given smth
point O such that the cluster K(p) is free anepFc, Ay.(D) = Ay_(D ).

Note thatthe clusterFc = Fco is finite, and its weights are theaultiplicities of C (equivaletly,
C") at each ps Fc. The equalityAFc = A’Fco meansthatboth clusters consist of the sameints,
and their respective weights m{ satisfy theproportionalityam(p) = A’m(p) for all pe Fc.

Proof. Let {X <~ X > E > {p}} be an infinitesimal admissible flag with centér suchthat the
cluster K(p)={O = po,p1,..., k-1, P = P} is free and [be Fc. Let E? be the birational
transform
of E in the blowup X:
_ blo blp, blpy_; _
X —Xo —= X1 — ... & Xk —Xp.
Since pe E’, E' is an irreducible curve (is natontractedn X,), and sinceE’ contractsto the snmooth
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point O, it must be one of the exceptional componeitstact it must be the lasg’ = Ep, _,, which is



the only one containing p. Thus it is n@strictiveto assumethatX = Xp, m =Dblg *bly, *----bl
and E= Ep, _,.
The order of vanishing of*C along E is
1 . X1
ordg(n"C) = mult,, C= m(p;)
i=0 i=0

Pk —17

Py
(where m(p;) =0 if p; 6€ Fc) because the;mare free; similarly,ordg(n* C%) = iﬁol m'(pi). Moreover,

C and C’ do not pasghroughp. Soivy.(C) =A% (C?. Therefore we conclude as in theevious
lemma: since global sections i¥Dc and bkD’c differ exactly inbkA(C - C"c, their values undewy .
agree, and therefore thdewton—Okounkowodies are theasne.
]

Equality of infinitesimal bodies implies equalitgf proper bodies Now we prove §) = (4)
in theorem 1 and @) = (3) in theorem 2, namely we need to shothatif Ay_(D) = Ay.(D") for
all_infinitesimal admissible flagg. with center O (resp. for almost all infinitewl admissible flags
{X > E > {p}} with center O suctthatthe cluster K (p) is free) then the same eguatiolds forall
proper admissible flags. with center O, (resp. for all smooth admissililiegsY. with center O).

Given a curve ChroughO, an infinite cluster K= {po =0, p1,..., R, ...} will be called abranch
cluster for C if each jpis infinitely near topj_; and all of them belong t€. Note thatin a brant
cluster, at most finitely manpoints aresatellite,and C has a smooth branch at O if and only if
admits a branch cluster which is free.

Associated to each branch cluster there isqaesee of flags

Y89 = {X 2 Ep, 2 {pdh *)
and a corresponding sequencevaluationsv(®) = Vy® -

Lemmas. Let ¢ ®), oy be the valuations associated to a branch cluisterthe irreducible curveC
through O. Let k be such that théirational transfornof C at py, is smooth, and lef. ={X > C >
{pc}} be thecorrespondingproper admissible flag. Then for evesye K (X ) and every k 0 thereis
an equality

vy = KR v ).

Proof. Assumewithoutloss of geneality thate is a regular function on meighbourhoof py,. Recall
the definition ofvy_(9): vi(¢) = ordc (9), ¢1 = ¢/g**®, where g is a local equation Gf at p,,
and vz () = ordy, (¢1 |c)- o1 is the local equation of some effective divisorvibich does not cdain
C, and hence, by Noether’'s formula fatersection multiplicitiq,_s{ , Theorem 3.3.1], there is lsut
thatD doesnot gothroughany point pc, k > ki and vo(p) = ‘i“:ko multy,, D = OrdEpk,l ¢ for all
k > k;. On the other hand, it is immediatbat ordEpkil g = k - ko for all k > max{ko, 1}, so

vi9(g) = orde,, _(¢) = (k - ko)vi () +v2(¢) for all k > max{ks, 1}. Similarly, v*%(g1) =0 for k > ky
and vﬁk)(g) =1, and the claim follows. O

Corollary 9. Let D, D bearbitrary Cartierdivisors on a surface X, and © X aosth mint.
7T

Given a proper admissible flag = {X - X 5 C > {p}} centered at O, and a brancluster

K = {po,...,R,...} for n(C), denoteY.! the sequence of flags)( If the set of indices k with
A, 0 (D) = A, aw(D") is infinite, thenAy (D) = Ay (D).



The proof of the corollary istraightforwardand is left to thereader.

Now the desired implications in theorefnand 2 follow, because every curve throughO (resp.
smooth at O) admits a branch cluster (respfree branch cluster), amstatement3) in theorem 1
(resp. B) in theorem?2) imply the infiniteness needed in corollagy

Equality of proper bodies implies local numerical equivalen€mally we prove 4 = (1)
in theorem 1 and @) = (1) in theorem?2. We dealseparatelywith the positive and negativparts,
because for the positive part it is enough toswer smooth proper flags:

Lemmal0. Let D andD’ be bigCartierdivisors with Zariskidecomsitions
D=P+N, D'=P’+N"

Assume that, for all curves € X smooth at O, the bodiesy.(D) = Ay.(D’) agree for the flag
O}}. Then P= PL

Proof. Choose ample divisor classes L ., L, whose Q-span is all of theational Néron-Severispace
N1(X)q. Replacing eaclh; by a suitable multiple, we can assutfeatit is the class of amreducible
curve C; smooth at O, whoseangentdirection there is differanfrom every tangentdirection to a
componen of the augmentedase locus which may pasisroughO. (This is well known, and cape

proved as follows: by Serre vanishing there tekissuchthatH (X, IZO(L?k)) = 0 whereIo denotes
the ideal sheaf of thgoint O in X. Then the exact sequence in cohomoldgyerminedoy

0— I3 ®LE — Ox(L®) — (Ox/IZ)(LP¥) — 0

shows that H (X, Ox (L®¥)) surjects onto (X, Ox/I%) and inparticularit is possible to finda

section in H(X, Ox (Li‘x"‘)) which vanishes at O to order exactly 1 and ha&agsignedmage=tangen
direction).

So for each i=1,...,, we can computeNewton—-Okounkovbodies of D andD'® with respectto
the flagY.® = {X > C; > {O}}, and by[11, Theorem 6.4], théheigtt of the intersectionof Ay _, (D)
with the second coordinate axis equals LR; since by hypothesis the bodigs, (D) = Ay @ (D)
coincide, it followsthatP -L; = P"- L, for all i. Therefore P= P’. m

Lemmall. Let D andD’ be bigCartierdivisors withrefined Zariski decompsitions
D=P+No +Ng&, D'=P'+N’4N,
and assume that for all proper admissible flagh center O,Ay_(D) = Ay (DY). Then Ny =N&.

Proof. Let C be @omponent of No, andlet = : X — X be a propetbirationalmorphism suctthat the
strict transformC of C isnonsingularat 1=1(0); let p be gooint in Cnx~1(0), andY. =peC c X,
which is a proper admissible flag with center at The first coordinate of the leftmogtoint in Ay (D)
is the coefficiert of C in Ny by the proof off11, Theorem 6.4], so this is also tlefficiert of C in
N&. Doing this for eacrcomponentwe obtain N =NJ asclaimed. O

This finishes the proof ofj = (1) in theorem1; to conclude with §) = (1) in theorem2 we need
another lemma:

Lemmal2. Fix Oe X a smooth point. Let DD be bigCartierdivisors on X, withrefined Zariski
decompsitions

D=P+N§i”g+N8m+Ng, D0=P0+N0%ing+NOSTCT)1+N0c,

and assume that for all smooth admissible flagh wénter OAy_(D) = Ay (D"). Then Ng™= N'E"
and FNéing = FNgsigg.



Proof. The equality §™= N'3" follows with the same proof dhe previous Iemma Let us noghav
that FNS.ng = FNOS.ng Wlthout loss of generality we may assurtieatNS™=N $™=0.

For eachpomt p e Fy sina, let G, be a smooth curve gowtjnroughp and m|ssmg all pointsn
Fy sine U Fy osing infinitely near to p, and leY. = {X o> C > {O}. By [11, Theorem 6.4], the least

suchthat(0,a) € Ay. is orch (Ngi”g|cp. So the hypothesis tells what

ordo (NS¢, = ordo (NS¢, (®)

If p = O, then thetwo sides of the precedingnequality equal the weights of O iENsoing and FNgsinog
respectiely.

If p =0, let q be thepoint preceding p and {the corresponding curve. The weights of fFigsing
and FNogng now equal the differences ©

m(p) = ordo (N§"c,) - ordo (N 3" )
m’(p) = ordo (N'3"9c,) - ordo (N'3"™c,)

respectively so they also coincide.
We have provedhatevery point of the cIusterFNgng appears irFNgsing with the same weightby
symmetry,we concludethatboth weighted clusters are in fasual. O
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