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Abstract. Given  a  smooth projective algebraic surface X ,  a  point  O  ∈ X 

and  a big divisor D on X , we consider the  set  of all Newton–Okounkov bodies 
of D  with  respect to  valuations of the  field of rational functions of X  centred 
at O,  or,  equivalently, with  respect to  a  flag  (E, p)  which  is  infinitely near 
O,  in  the  sense  that there is a  sequence of blowups X 0   → X ,  mapping the 
smooth, irreducible rational curve  E ⊂ X 0   to  O.  The  main  objective of this 
paper is  to  start a  systematic study of  the   variation of  these   infinitesimal 
Newton–Okounkov bodies  as (E, p) varies, focusing  on the  case  X  = P2 . 
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µ (see §3.4 

The function  b 

 
1.  Introduction 

 

The  concept  of Newton–Okounkov  bodies  originates  in  Okounkov’s  work  [25]. 
Relying  on earlier  work of Newton  and  Khovanskii,  Okounkov  associates  convex 
bodies to ample line bundles on homogeneous spaces from a representation-theoretic 
point  of view.  In the  generality  we know them  today,  Newton–Okounkov bodies 
have been introduced by Lazarsfeld–Musta̧tă [24] and Kaveh–Khovanskii [18]. 

Given an irreducible  normal  projective  variety  X of dimension  r defined over an 
algebraically  closed field K of characteristic 0, a big divisor D and a maximal  rank 
valuation v on the  function  field K (X ) (or,  equivalently, an  admissible/good flag 
of subvarieties  on some proper  birational model of X  (see §2.1)),  a convex body 
∆v (D) is attached to these data  which encodes in its convex geometric structure the 
asymptotic vanishing  behaviour  of the  linear  systems  |dD| for d      0 with  respect 
to v. 

Newton–Okounkov bodies contain  a lot of information:  from a conceptual point 
of view, they serve as a set of ‘universal numerical  invariants’ according to a result of 
Jow [17]. From a more practical angle, they reveal information about  the structure 
of the  Mori Cone  of X  or of its  blowups,  about  positivity  properties  of divisors 
(ampleness,   nefness,  and  the  like,  see for  instance   Theorem  2.22,  Remark  2.23 
and [20]), and invariants like the volume or Seshadri  constants (see [20, 21]). 

Not  surprisingly, the  determination of Newton–Okounkov bodies  is extremely 
complicated  in dimensions  three  and  above.   They  can be non-polyhedral even if 
D is ample  and  X  is a Mori  dream  space  (see [22]).  We point out  that the  shape 
of ∆v (D)  depends  on  the  choice  of v to  a  large  extent:    an  adequate choice  of 
a valuation can  guarantee a more  regular  Newton–Okounkov  body  [1].  The  case 
of surfaces,  though  not  easy  at  all,  is reasonably  more  tractable:  the  Newton– 
Okounkov  bodies are polygons with rational slopes, and  they  can be computed in 
terms  of Zariski decompositions  (see §2.3). 

In this paper  we are mainly interested in infinitesimal Newton–Okounkov bodies, 
which  arise  from  valuations determined by  flags (E, p),  with  p  ∈ E,  which  are 
infinitely near  a point of the surface X , i.e. there is a birational morphism  X 0  → X 
mapping  the  smooth,  irreducible  rational curve  E  ⊂ X 0    to  O.   These  Newton– 
Okounkov  bodies have already  been studied  in [20, 21], and  their  consideration is 
implicit  in [11].  Here we intend  to  connect  the  discussion  in [11] to  infinitesimal 
Newton–Okounkov bodies. 

One  of the  main  underlying  ideas  of [11] is to  study  the  invariant  b 
for the definition),  which is roughly speaking an asymptotic multiplicity for quasi- 
monomial valuations. As such, it can be interpreted as a function on the topological 
space QM, the  valuative  tree  of quasi-monomial valuations.   Spaces of valuations 
were introduced by Zariski,  and  the  topology  we are  interested in was originally 
considered  in the  celebrated  work of Berkovich  [4], see also [12].  The  tree  QM is 
rooted,  and  the  root  corresponds  to the  multiplicity  valuation  centred  at  O, with 
infinite  maximal  arcs  homeomorphic to  [1, ∞)  starting from  the  root,  and  arcs 
sprouting from vertices  corresponding  to integer  points  (see [12] and Remark  3.6). 

µ is continuous  along the arcs of QM.  Interestingly enough, infinites- 
imal  Newton–Okounkov bodies  can  be interpreted as 2-dimensional  counterparts 
of b 

Here we will focus on the  case X  = P2 ; the  same  questions  on other  surfaces 
(general  surfaces of degree d in P3  for instance) are likely to be equally interesting,
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is that, while b 

certain  triangle) whenever  b 

−

 
but  we do not treat them  in this work in the hope that we will come back to them 
in the future.  A basic property of µ, pointed  out in [11], is that 

b 

µ(s)       
√

s b 
 

assuming that s ∈ [1, +∞) is an appropriately chosen parameter on an arc of QM. 
Furthermore, equality holds unless there is a good geometric reason for the contrary, 
in the  form of a curve  Cs  on Xs  (for Xs  the  appropriate minimal  blow-up  of X 
where  the  related  flag shows up)  such  that the  corresponding  valuation takes  a 
value  higher  than  deg(Cs ) · 

√
s.   Such  a curve  is called  supraminimal  (see §5.3). 

Supraminimal curves  are  geometrically  very  particular, and  give information on 
the Mori cone of Xs ; for instance,  it is conjectured in [11] (see also Conjecture 3.13 
below)  that along  sufficiently  general  arcs  of QM, all  supraminimal curves  are 
(−1)-curves. If so, 

µ(s)  = 
√

s  for every s     8 + 1/36, b 
 which among others implies Nagata’s celebrated  conjecture  claiming that the inverse 

of the t-point Seshadri  constant of P2  equals 
√

t for t > 9. 
In this  paper  we associate  a Newton–Okounkov body to each point of the  val- 

uative  tree  and  investigate how they  change  along the  arcs  of QM.  We start by 
taking  a quasimonomial valuation v(C, s) ∈ QM, where C is a curve defining an 
arc in QM and s ∈ [1, ∞) defines a point on the arc, and associating  with it a rank 
2 valuation.  We take  v = (v1 , v2 ), where v1  = v(C, s) and  v2  is the  right (or left) 
derivative  of v(C, s) with  respect  to s.  The  process is described  in §3.3 (precisely 
in Proposition 3.10).  We obtain  two valuations:  v+ (C, s) and  v− (C, s),  by taking 
respectively  the right or the left derivative. Once we fix D to be a line in the plane
the  two  valuations lead  to  the  Newton–Okounkov bodies  ∆C,s+    and  ∆C,s .  We
focus on describing  the  properties  of ∆C,s+ ,  however  the  cases are  conceptually 
very similar and many  results  are obtained simultaneously for both. 

The study  of the variation of Newton–Okounkov bodies is a natural extension  of 
µ. In particular the projection  of ∆C,s+   to the first axis is [0, b C, s)]. 

Moreover,  the  convex  geometric  behavior  of ∆C,s+     is essentially  simple  (it  is a 
µ has  the  expected  value  (see §5.1).  Otherwise  ∆C,s+ 

exhibits  more complicated  features.   The  interesting phenomenon which we study 
µ is continuous  on QM, the corresponding  Newton–Okounkov bodies 

are not.  We explain  the  concept  of continuity and discontinuity (i.e.  mutation ) of 
Newton–Okounkov bodies in §5.3 (in particular Definition 5.16). 

Taking  into  account the  relation  between  Newton–Okounkov bodies and  varia- 
tion  of Zariski  decompositions  (see Theorem  2.17 and  [3, Theorem  1]), some dis- 
continuity phenomenon is not unexpected, related  to non-differentiability of Zariski 
decompositions  in the  big cone (Remark  2.20).  We would also like to point out  a 
plausible alternative explanation, provided by higher rank nonarchimedean analyti- 
fications,  which we however do not  use at  all in this  work.  Just  as QM parame- 
terizes quasimonomial valuations (of rank  1), topological  spaces that parameterize 
valuations of arbitrary rank  have  been introduced in the  literature, starting with 
the  Zariski  Riemann  space [30, VI, §17] (whose topology  is however  unrelated to 
the  Berkovich  topology  of QM and  so not  suitable  for our  purposes)  and  most 
recently  and  notably  the  Huber  analytification [16] and  the  Hahn  analytification 
[13] of P2  (which admit  continuous  maps to the Berkovich analytification that con- 
tains  QM).  Assigning  the  rank  2 valuation v+ (C, s)  to the  point  v(C, s)  ∈ QM
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determines a map  from the  tree  of quasimonomial valuations  to  the  higher  rank 
analytification, but  this  map  turns  out  to  be nowhere  continuous  [8].   From  this 
point of view, discontinuities are unsurprising; what  is remarkable is the piecewise 
continuity described  in §5.3 and §5.4. 

The  main  object  of our interest is the  study  of mutations when the  valuations 
move away from the root of QM along a fairly general route, and the results we have 
been able to obtain are collected in §5. Our results are partial in the sense that there 
are intervals  in which we have been unable  to obtain  the  appropriate information 
about  mutations occurring there.  Our manuscript is far from conclusive, it is simply 
devoted  to lay the ground  for future  research  on the subject. 

The  paper  is organized  as follows.  In §2 we collect some basic  definitions  and 
results  about  valuations and  Newton–Okounkov  bodies,  which  we recall  here  to 
make the paper as self contained as possible.  In §3 we focus on the two dimensional 
case, and specifically on quasi-monomial valuations, their interpretation in terms of 
the classical Newton–Puiseux algorithm, and the related  clusters  of centres.  In this 
section  (precisely  in Remark  3.6) we briefly recall  the  structure of the  valuation 
tree  QM.  In  §5 we provide  our  computations about  the  infinitesimal  Newton– 
Okounkov  bodies. 

In what  follows we will mainly  work over the field of complex numbers. 
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2.  Preliminaries 

 

Newton–Okounkov bodies in the projective  geometric  setting  have been treated 
in [24], hence this is the source we will primarily  follow. 

Let  X  be an  irreducible  normal  projective  variety  of dimension  r defined over 
an  algebraically  closed field K  of characteristic 0 (we will usually  have  the  case 
K = C in mind),  and let D be a big Cartier divisor (or line bundle;  we may abuse 
terminology  and identify  the two concepts)  on X . 

Although  one first introduces  Newton–Okounkov bodies for Cartier divisors, the 
notion  is numerical,   even  better, it  extends  to  big  classes  in  N 1 (X )R   (see  [24, 
Proposition 4.1]).  Newton–Okounkov bodies are defined with  respect  to a rank  r 
valuation  of the field of rational functions  K (X ) of X . We refer to [30, Chapter VI 
and Appendix  5] and [9, Chapter 8] for the general theory  of valuations. 

 

2.1.  Basics on  Valuations. 

Definition 2.1.   A valuation  on K (X ) is a map  v : K (X )∗  → G where G is an 
ordered  abelian  group satisfying  the following properties: 

(1)  v(f g) = v(f ) + v(g), ∀f , g ∈ K (X )∗ , 
(2)  v(f + g) > min(v(f ), v(g)), ∀f , g ∈ K (X )∗ , 
(3)  v is surjective, 
(4)  v(a) = 0, ∀a ∈ K ∗ . 

G is called the value group of the valuation. Two valuations v, v0  with value groups 
G, G0  respectively  are said to be equivalent  if there  is an isomorphism  ι : G → G0 

of ordered  groups such that v0  = ι ◦ v.
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lex

to Z ⊂ R

lex

The subring  
Rv  = {f ∈ K (X ) | v(f ) > 0}

is a valuation  ring,  i.e.,  for all f ∈ K (X ),  if f 6∈ Rv   then  f −1  ∈ Rv ; its  
unique maximal  ideal is mv  = {f ∈ K (X ) | v(f ) > 0} and  the  field Kv   = Rv /mv  

is called the  residue  field of v.  Two valuations v, v0  are equivalent if and  only if 
Rv  = Rv0 [30, VI, §8]. 

 

Definition 2.2.   The  rank  of a valuation v is the  minimal  non-negative integer  r
such  that the  value  group  is isomorphic  to  an  ordered  subgroup  of Rr (i.e.   Rr

with the lexicographic  order).  One can then  write 

v(f ) = (v1 (f ), v2 (f ), . . . , vr (f )) 

with vi  : K (X )∗  → R for every integer  i with 1 6 i 6 r. 
For every integer i with 1 6 i 6 r, the i-th truncation of v is the rank i valuation 

v|i  (f ) = (v1 (f ), v2 (f ), . . . , vi  (f )). 

The trivial  valuation,  defined as v(f ) = 0 for all f = 0, has rank  zero; it can be 
considered  as the 0-th truncation of all valuations v. 

 

Remark  2.3.  The rank of every valuation on K (X ) is bounded  by r = dim(X ), and 
every valuation of maximal  rank  is discrete,  i.e., it  has  a value  group  isomorphic

r 
lex 

r 
lex [30, VI, §10 and  §14]. Whenever  v is a valuation of maximal  rank,

one may assume that the value group of v equals Zr up to equivalence  under  the
action  of some order-preserving (i.e., lower-triangular) element of GL(r, R). 

 

Remark  2.4.  The rational rank  of the valuation v is the dimension  of the Q-vector 
space G ⊗Z Q, where G is the  value group of v; it is well known that the rational 
rank  is bounded  below by the  rank  of v, and  above  by the  dimension  of X  (see 
[30, VI, §10, p.   50]).  A valuation v can  be of rank  1 and  rational rank  r > 1. 
The  standard example  is in [30, VI, §14, Example  1, p.  100] (see also Remark  3.3 
below). 

 

By [30, VI, §10, Theorem 15], the rank of a valuation v equals the Krull dimension 
of its  valuation ring  Rv .  More precisely,  the  ideals  in Rv   are  totally  ordered  by 
inclusion, and if the rank  is r, then  the prime ideals of Rv   are 

0 = p0  ( p1  ( . . . ( pr  = mv ,    where    pi   = {f ∈ Rv  | v|i (f ) > 0}. 

The valuation rings of the truncations satisfy reverse inclusions 

K (X ) = Rv|0 
) Rv|1  

) . . . ) Rv|r   
= Rv 

as they  are the localizations  Rv|i    
= (Rv )pi  . 

By the valuative  criterion  of properness  [15, II, 4.7], since X  is projective,  there 
is a (unique)  morphism 

σX,v : Spec(Rv ) → X 
which,  composed  with  Spec(K (X ))  →  Spec(Rv ),  identifies  Spec(K (X ))  as  the 
generic  point  of X .   The  image  in  X  of the  closed  point  of Spec(Rv )  (or  the 
irreducible   subvariety which  is  its  closure)  is  called  the  centre   of v  in  X ,  and 
we denote  it  by  centreX (v).   When  the  variety  X  is understood, we shall  write 
centre(v)  = centreX (v).  A valuation v of rank  r determines a flag 

(1)             X = centre(v|0 ) ) centre(v|1 ) ⊇ . . . ⊇ centre(v|r ) = centre(v), 

and centre(v|i ) = σX,v (pi ).  Note that some of the inclusions may be equalities.
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−       
 

Y•                                1                       r 

•

Y

Y

Y

 
For a valuation of rank  r > 1, the centre  of the first truncation v|1  is called the 

home of v, following [6]. 
 

Example 2.5.  (Divisorial  valuations) If centre(v)  is a divisor V , then v is equivalent 
to the valuation that assigns to each rational function its order of vanishing along V . 
Moreover, the residue field Kv   is the function  field of V  (see [30, VI, §14]). 

 

Remark  2.6.  Let  L be a line bundle  on X .  On  an  affine neighborhood  U of the 
centre  of v (considered  as a schematic  point;  equivalently, an affine neighborhood 
of the generic point of centre(v)) L is trivial,  and so any section s ∈ H 0 (X, L) − {0} 
restricted to  U  can  be  seen  as  a  non-zero  element  f ∈ K (X ),  and  one can  set 
v(s) = v(f ).  A different choice of U would give an element in K (X ) differing by a 
factor of value 0, so v(s) is well defined.  By setting  v(D) = v(s) whenever D = (s), 
s  ∈ H 0 (X, OX (D)),   valuations can  be  considered  to  assume  values  on  divisors; 
effective divisors take  nonnegative values. 

 

Example  2.7.  (Valuation associated  to  an  admissible  flag) A full flag Y•  of irre- 
ducible subvarieties 

(2)                                      X  = Y0  ⊃ Y1  ⊃ . . . ⊃ Yr−1  ⊃ Yr 

is called admissible, if codimX (Yi  ) = i for all 0 6 i 6 dim(X ) = r, and Yi  is normal 
and  smooth  at  the  point Yr , for all 0 6 i 6 r − 1.  The  flag is called good if Yi  is 
smooth  for all i = 0, . . . , r. 

Let φ ∈ K (X ) be a non-zero rational function,  and set
 

def 
 
def 

 

  φ   
 

ν1 (φ)  = ordY1 (φ)    and    φ1  = 
  

gν1 (φ)  
1       

 
Y1 

where g1  = 0 is a local equation  of Y1  in Y0  in an open Zariski subset  around  the 
point Yr . Continuing this way via

 
def 

 
def 

 

  φi    1      

 

νi  (φ)  = ordYi  (φi−1 ) ,  φi    = 
  

gνi  (φi−1 ) 
  for all    i = 2, . . . , r,

i        
 
Yi  

where gi   = 0 is a local equation  of Yi  on Yi−1  around  Yr , we arrive  at a function 

φ 7→ ν   (φ) d=ef  (ν  (φ), . . . , ν (φ)) 
.

One verifies that ν • is a valuation of maximal  rank,  and that the flag (1) given by
the centres  of the truncations of ν • 

coincides with the flag Y•  in (2).
 

Proposition 2.8.   Let v be a valuation  of maximal rank r = dim(X ) whose flag of 
centres  Y•  in  (1) is admissible.  Then  v is equivalent  to the flag valuation  νY• . 

Proof.  By induction on r. For  r = 0 there  is nothing  to prove,  so assume  r > 1. 
Remark  2.5 tells us that v|1  = νY• |1  (up  to equivalence),  and  that their  common 
residue field is K (Y1 ), with Y1  = centreX (v|1 ).  The valuation v (resp.  νY• ) induces
a valuation v̄  (resp.  ν̄Y  ) on K (Y1 ) = R v|1 

/mv|1 
as follows. For any

0 = f̄  ∈ Rv|1 
/mv|1 

, 

there  is an f ∈ K (X ) sitting  in Rv|1   
whose class modulo mv|1    

is f̄ .  Then  one sets 
v̄(f̄ )  = v(f ) (similarly  for ν̄    ) and  verifies that this  is well defined.   The  value • 

group  of v̄  is the  subgroup  of the  value  group  of v determined by  v1   = 0 (the 
“maximal  isolated  subgroup”  in the  language  of [30, VI, §10]) and  so it has rank
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• Y

Y

• •

K

•

Y

,

 
r − 1 (maximal  for valuations of K (Y1 )); it is easy to see that its flag of centres  is
Ȳ  , with Ȳ   = Y for i = 0, . . . , r − 1. But  ν̄ has maximal  rank r − 1 and flag of•            i       i+1                                              Y•

centres  is Ȳ  as well, so by induction v̄  and ν̄ • are equivalent.
Finally,  the  valuation ring of v (resp.  of ν   ) consists  of those  f in K (X ) with 

• 

v|1 (f ) = νY• |1 (f ) > 0 and  of those  f in K (X ) with  v|1 (f ) = νY• |1 (f ) = 0 and
v(f ) > 0 (resp.  νY  (f ) > 0). Now v|1 (f ) = νY  |1 (f ) = 0 means that f ∈ R \ mv|  ,•                                           •                                             v|1            1 

so for f satisfying  this  equality,  f̄  ∈ Rv|1 /mv|1    is well defined, and  v(f ) > 0 (resp.
νY  (f ) > 0) is equivalent  to  v̄(f̄ )  > 0 (resp. ν̄Y  (f̄ )  > 0).   Since v̄  and  ν̄Y are
equivalent, then  the valuation rings of v and ν • are the same, as claimed.            

Valuations of maximal rank are very well known (see [30, VI, §14], [29, Examples 
5 and 6]) and Theorem  2.9 below is presumably obvious for experts  working in the 
area of resolution  of singularities. We include a proof as we lack a precise reference 
for it.  For the case of surfaces, see §4 below. 

 

Theorem 2.9.  Let X  be a normal  projective  variety,  and v a valuation  of the field 
K (X )  of maximal  rank  r = dim(X ).   There  exist  a  proper  birational  morphism 
π : X̃  → X  and a good flag 

Y•  : X̃  = Y0  ⊃ Y1  ⊃ . . . ⊃ Yr 

such that  v is equivalent to the valuation  associated  to Y• . 

Proof.  Denote  by ζ ∈ X  the generic point,  and set K = K (ζ ) = K (X ).  Let 

0 = p0  ⊂ p1  ⊂ . . . ⊂ pr 

be the  maximal  chain  of prime  ideals  in Rv , and  choose f1 , . . . , fr ∈ Rv   ⊂ K so 
r       r

 
that each f i ∈ pi   \ pi−1 . Fix projective  coordinates  [x0  : . . . : xr ] in PK  ⊂ PK × X ,
and  let ξ = [1 : f1 : . . . : fr ] ∈ Pr .  Let X0   be the  Zariski closure of ξ in Pr × X .K                                                                                                      K 

Since its generic point  is ξ (which  is a closed K-point  in Pr ), it  has  residue  field 
equal to K, and the induced  projective  morphism  X0  → X  is birational. 

For i = 1, . . . , r, the restriction of the rational function  xi /x0 to X0   is f i  , which 
has positive v-value.  Therefore  the centre  of v in X0  lies in [1 : 0 : . . . : 0] × X , and 
its local ring OcentreX0 (v) contains  f1 , . . . , fr . Hence

 

f i ∈ 
 

pi  ∩ OcentreX0 (v) 

  
\  pi−1 ∩ OcentreX0 (v)

so that pi  ∩ OcentreX0 (v) = pi−1 ∩ OcentreX0 (v) .  Since pi   ∩ OcentreX0 (v) = σX0 ,v (pi  ) 
as schematic  points  in X0 , it follows that the centres  of the truncations of v are all 
distinct. Since there are as many truncations as the dimension  of X , the flag (1) in 
X1   is a full flag, i.e., dim(centreX0 (v|i  )) = r − i for i = 0, . . . , r. Every  birational 
model of X  dominating X0   will again have this property. 

The flag of centres of the truncations in X0   is usually  not good (or even admis- 
sible),  as X0   is not  necessarily  smooth  (not  even normal)  at  centreX0 (v).   Using 
Hironaka’s  resolution  of singularities  we know that there  is a birational morphism 
X1  → X0 , obtained as a composition  of blowups along smooth  centres,  with X1   a 
smooth  projective  variety.  On X1   we have a full flag like (1) whose codimension  1 
term,  centreX1 (v|1 ), may be singular.  But  again there  is a composition  of blowups 
along smooth  centres  (contained in centreX1 (v|1 )) that desingularizes  it; we apply 
these  blowups  to X1 , to obtain  X2   → X1 .  Since the  blowup  of a smooth  variety 
along a smooth  centre  is again smooth,  X2  stays smooth,  and the divisorial part  of 
the full flag (1) in X2  is now also smooth.  By resolving sequencially the singularities
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v
  
f ∈ H

 

k

Y

 

of centreX2 (v|2 ),  . . . , centreXr    1 (v|r−1 ) we arrive  at  a model X̃  = Xr   where  the 
flag 

Y•  : X̃  = centreX̃ (v|0 ) ) centreX̃ (v|1 ) ) . . . ) centreX̃ (v|r ) = centreX̃ (v),

is good. Now by Proposition 2.8, the valuation v is equivalent to ν • as claimed.     
 

Remark  2.10.  We work here in characteristic 0, but  a suitable  (weaker)  version of 
Theorem  2.9 still holds in any characteristic. The  same proof works, by replacing 
Hironaka’s resolution with a sequence of blowups along nonsingular  centres given by 
Urabe’s resolution  of maximal  rank  valuations  [28].  The  members  of the  resulting 
flag are not necessarily  smooth,  but  they  are non-singular at the centre. 

 

In the  situation of Theorem  2.9, we call Y•  the  good flag associated  to v in the 
model  X̃ .   The  choice of a  flag is not  unique,  but  for two  models,  the  induced 
rational map between  them  maps the associated  flags into one another. 

 
2.2.  Newton–Okounkov bodies. 

 

Definition 2.11. Let X be an irreducible  normal projective variety,  D a big divisor 
on X , and v a valuation of K (X ) of maximal rank r = dim(X ). Define the Newton– 
Okounkov body of D with respect  to v as follows

 

(3)      ∆ (D) d=ef   convex hull
   [  

   
v(f ) 

 
   

 

0 (X, OX (kD))  − {0}   


.


k∈Z>0               
k                                                       

 

The  points  in ∆v (D) ∩ Qr   of the  form   v(f )
 

 

with  f ∈ H 0 (X, OX (kD))  − {0}  for
some integer  k > 0 are called valuative  points. 

 

Remark   2.12.  The  properties   of valuations yield  that if A,  B  are  two distinct 
valuative  points,  then  any rational point on the  segment joining A and  B is again 
a valuative  point.  This  implies that valuative  points  are dense in ∆v (D)  (see [19, 
Corollary  2.10], for the  surface case; the  proof is analogous  in general).  Therefore 
in (3) it suffices to take  the closure in the Euclidean  topology of Rr . 

Alternatively, one defines the Newton–Okounkov body of D with respect  to v as 
 

def
 

∆v (D)  = v
 
{D0  | D0  ≡ D effective Q-divisor}  , 

where  ≡ is the  Q-linear  equivalence  relation.    By  [24, Proposition 4.1], one can 
replace Q-linear equivalence by numerical  equivalence.  Hence, one can define ∆v (ζ ) 
for any numerical  class ζ in the big cone Big(X ) ⊂ N 1 (X )R  of X . 

 

Our  definition  differs from the  one in [24] in that we use valuations of maximal 
rank  instead  of those  defined  by  admissible  flags on X .   But,  an  admissible  flag 
on  X  gives rise  to  a  valuation of maximal  rank  on  K (X )  by  Example  2.7 (see 
also [18]). Conversely,  by Theorem  2.9, any valuation of maximal  rank  arises from 
an admissible  flag on a suitable  proper  birational model of X ; thus  maximal  rank 
valuations are the  birational version  of admissible  flags.  In conclusion,  all known 
results for Newton–Okounkov bodies defined in terms of flag valuations carry over to 
Newton–Okounkov bodies in terms  of valuations of maximal  rank,  modulo passing 
to some different birational model. 

In [5, 18] one considers Newton–Okounkov bodies defined by valuations of max- 
imal rational rank,  an even more general situation which we will not consider here.
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lex

def

 
2.3.  Some properties  of  Newton–Okounkov  bodies. A very  important fea- 
ture  of Newton–Okounkov bodies  is that they  give rise  to a ‘categorification’  of 
various asymptotic invariants associated  to line bundles  (see for instance  [19, The- 
orem  C] for the  corresponding  statement for moving  Seshadri  constants).   Recall 
that the volume of a Cartier divisor D on an irreducible  normal  projective  variety 
X  of dimension  r is defined as 

0
 

vol(D)  d=ef  lim sup 
 dim   H (X, OX (mD))   

.
m→∞ mr /r!

 

Theorem 2.13  (Lazarsfeld–Musta̧ta, [24, Theorem  2.3]). Let X  be an irreducible 
normal  projective  variety  of dimension  r, let D be a big divisor on X , and let v be
a valuation  of the field K (X ) with value group Zr .  Then

 
1 vol(∆v 

(D))  = 
r! 

vol(D), 

where the volume on the left-hand  side denotes  the Lebesgue measure  in Rr . 

Remark  2.14.  Although  the  proof of Theorem  2.3 from [24] takes  the  admissible 
flags viewpoint,  the statement remains  valid for Newton–Okounkov bodies defined 
in terms  of valuations of maximal  rational rank  (with  value group equal to Zr ) by 
the remark  above (see also [5, Corollaire  3.9]). 

 
Since the  main  focus of our work is on the  surface case, we will concentrate on 

surface-specific properties  of Newton–Okounkov bodies. 
 

Theorem 2.15  (Küronya–Lozovanu–MacLean,  [22]).  If dim(X ) = 2, then  every 
Newton–Okounkov body is a polygon. 

 

If dim X  = 2, then  an  admissible  flag is given by a pair  (C, x),  where  C  is a 
curve,  and  x ∈ C  a smooth  point.   If D  is a big divisor  on X , the  corresponding 
Newton–Okounkov body will be denoted  by ∆(C,x) (D). 

 
Remark  2.16.  In fact one can say somewhat  more about  the  convex geometry  of 
Newton–Okounkov polygons,  see [22, Proposition 2.2].  First,  all the  slopes of its 
edges are rational. Second, if one defines 

 

µC (D)  = sup {t > 0 | D − tC  is big}  , 
 

then all the vertices of ∆(C,x) (D) are rational with possibly two exceptions,  i.e. the 
points  of this convex set lying on the line {µC (D)} × R. 

 

Lazarsfeld  and  Musta̧tă  observe  in [24, Theorem  6.4] that variation of Zariski 
decomposition  [3, Theorem  1] provides  a recipe for computing  Newton–Okounkov 
bodies  in the  surface  case.   Let  D  = P  + N  be the  Zariski  decomposition  of D 
(for the  definition  and  basic properties  see [2, 14]), where the  notation, here and 
later,   is the  standard one:   P  is the  nef  part   Nef (D)  and  N  the  negative  part 
Neg(D)  of the  decomposition.  Denote  by ν  = ν (D, C ) the  coefficient  of C  in N 
and µ = µC (D)  whenever there  is no danger  of confusion.  Let also Null(D)  be the 
divisor  (containing Neg(D))  given by the  union  of all irreducible  curves  E  on X 
such that Nef (D) · E  = 0.  Note  that by Nakamaye’s  theorem  [23, 10.3], Null(D) 
coincides with the augmented base locus of D, B+ (D) = B(D −  A) where A is any 
ample divisor and    is a sufficiently small positive  real number.
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,d

x t

 
For  any  t ∈ [ν, µ],  set  Dt   = D − tC  and  let  Dt   = Pt + Nt   be  the  Zariski 

decomposition  of Dt . Consider  the functions  α, β : [ν, µ] → R+ defined as follows 

α(t) d=ef  ord (Nt|C ),    β(t) d=ef  α(t) + P · C .
 

Theorem 2.17  (Lazarsfeld–Musta̧ta, [24, Theorem  6.4]). If C is not a component 
of Null(D), then 

 

∆(C,x) (D)  = 
 
(t, u) ∈ R2 | ν 6 t 6 µ,  α(t) 6 u 6 β(t)

   
. 

 
Remark  2.18.  Note  that all the  results  concerning  Newton–Okounkov bodies use 
Zariski decomposition  in Fujita’s  sense, i.e. for pseudo-effective  R-divisors. 

 
As an immediate  consequence we have: 

 
Corollary 2.19. In the above setting the lengths of the vertical slices of ∆(C,x) (D) 
are  independent of the (smooth)  point x ∈ C . 

 
Remark  2.20.  (See [22, proof of Proposition 2.2]) In the above setting,  the function 
t → Nt  is nondecreasing on [ν, µ], i.e. Nt2  − Nt1   is effective whenever ν 6 t1 6 t2 6 
µ. This implies that a vertex  (t, u) of ∆(C,x) (D)  may only occur for those t ∈ [ν, µ] 
where the ray D − tC  crosses into a different Zariski chamber,  in particular, where 
a new curve appears  in Nt . 

 

Given three real numbers  a > 0, b > 0, c > 0, we will denote by ∆a,b,c the triangle 
with  vertices  (0, 0), (a, 0) and  (b, c).  We set ∆a,c :=  ∆a,0,c and  ∆a,a :=  ∆a .  Note 
that the triangle  ∆a,b,c degenerates  into a segment if c = 0. 

 
Example  2.21.  In  the  above  setting  suppose  that D  is an  ample  divisor.   Then, 
by  Theorem  2.17,  the  Newton–Okounkov  body  ∆(C,x) (D)  contains  the  triangle 
∆µC (D),D·C , and by Theorem  2.13 one has 

 
D2 

µC (D) 6 
D · C  

.
 

 
2

 
Equality holds if and only if ∆(C,x) (D) = ∆µC (D),D·C . In particular, if X = P , C 
is a curve of degree d, and D a line, then  ∆(C,x) (D) = ∆ 1     . 

d 
 

Theorem 2.22  (Küronya–Lozovanu, [19, Theorem  2.4, Remark  2.5]). Let X  be a 
smooth projective  surface,  D be a big divisor on X  and x ∈ X  a point.  Then: 

(i)  x 6∈ Neg(D)  if and  only if for any  admissible  flag (C, x)  one has (0, 0) ∈ 
∆(C,x) (D); 

(ii)  x 6∈ Null(D)  if and only if for any admissible flag (C, x) there  is a positive 
number  λ such that  ∆λ ⊆ ∆(C,x) (D). 

 

Remark  2.23.  The  divisor D is nef (resp.  ample)  if and  only if Neg(D)  = ∅  (resp. 
Null(D)  = ∅), so that Theorem  2.22 provides  nefness and ampleness  criteria  for D 
detected  from Newton–Okounkov bodies. 

Note that Theorem  2.22 has a version in higher dimension  (see [20]). The same 
papers  [19, 20] explain  how to read  the  moving Seshardi  constant of D at  a point 
x 6∈ Neg(D)  from Newton–Okounkov bodies.
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3.  Valuations in  dimension  2 

 

3.1.  Quasimonomial valuations.  We will mainly  treat the  case X = P2  and  D 
a line, leaving to the reader  to make the obvious adaptations for other  surfaces. 

Let  O denote  the  origin  (0, 0) ∈ A2  = Spec(K [x, y]) ⊂ P2   = Proj(K [X, Y, Z ]) 
with  x = X/Z , y = Y /Z , and  let  K = K (P2 ) = K (x, y) be the  field of rational 
functions  in two variables.   We will focus on Newton–Okounkov bodies of D  with 
respect  to  rank  2 valuations v = (v1 , v2 )  with  centre  at  O,  with  the  additional 
condition  that either the home of v is a smooth curve through O, or it is equal to O 
(in which case we call the corresponding  body an infinitesimal Newton–Okounkov 
body) and v1  is a quasimonomial valuation. 

Fix a smooth  germ of curve C through O; we can assume without loss of gener- 
ality  that C is tangent to the  line y = 0; hence C can be locally parameterized by 
x 7→ (x, ξ(x)) ∈ A2 , where ξ(x) ∈ K [[x]]  with ξ(0) = ξ0 (0) = 0. 

 

Definition 3.1.   Given a real number  s > 1 and any f ∈ K∗ , set 
 

(4)                                  v1 (C, s; f ) := ordx (f (x, ξ(x) + θxs )) , 
 

where θ is transcendental over C.  Equivalently, expand  f as a Laurent series 

(5)                                        f (x, y) = 
X 

aij  xi  (y − ξ(x))j   . 
 

One has 
 

(6)                                     v1 (C, s; f ) = min{i + sj|aij = 0} . 

Then  f 7→  v1 (C, s; f )  is a  rank  1 valuation which  we denote  by  v1 (C, s).   
Such valuations are called monomial  if C is the line y = 0 (i.e., ξ = 0), and 
quasimonomial in general.  The point O is the centre  of the valuation. 

We call (5) the C -expansion  of f . Slightly abusing language,  s will be called the 
characteristic exponent  of v1 (ξ, s) (even if it is an integer). 

 

Example  3.2.  The  valuation vO  :=  v1 (C, 1) is the  O-adic  valuation  or multiplicity 
valuation :  if f is a non–zero  polynomial,  then  vO (f ) is the  multiplicity  multO (f ) 
of f = 0 at O. 

 
Remark  3.3.  The value group of v1 (C, s) is: 

•  Z 1  ⊂ Q if s is a rational number  s = p  with gcd(p, q) = 1; q                                                                                        q 
•  Z + Zs ⊂ R if s is an irrational number. 

So the rank of v1 (C, s) is 1, but  in the latter case the valuation has rational rank 2. 
We will be mostly  concerned  with the  rational case.  Note that v1 (C, s) is discrete 
if and only if s is rational. 

 

Remark  3.4.  The valuation v1 (C, s) depends only on the bsc-th jet of C , so for fixed 
s the  series ξ can be assumed  to be a polynomial;  however, later  on we shall let s 
vary for a fixed C , so we better keep ξ(x) a series. 

 
Example  3.5.  If f = 0 is the  equation  of C (supposed  to be algebraic,  which,  for 
fixed s is no restriction by Remark  3.4), then  by plugging y = ξ(x)  in (5) we have 

i=1 ai0 xi  ≡ 0, hence ai0 = 0, for all i > 0.  Then  f (x, y) = (y − ξ(x)) · g(x, y) 
where  g(0, 0) = 0.  This  implies  that v1 (C, s; f ) = s,  which  can  be also deduced 
from (4) by expanding  f (x, ξ(x) + θxs ) in Taylor  series with initial  point (x, ξ(x)).



CILIBERTO, FARNIK, KÜ RONYA, LOZOVANU, ROÉ , AND SHRAMOV 12 NEWTON–OKOUNKOV BODIES SPROUTING  ON   THE VALUATIVE TREE 12  
 
 

+

nk 

 
Remark  3.6.  (See [12]) The  set QM of all quasi-monomial valuations with  centre 
at O has a natural topology, namely the coarsest topology such that for all f ∈ K∗ , 
v 7→  v(f ) is a continuous  map  QM → R.  This  is called the  weak topology.  For 
a fixed C , the map s 7→ v1 (C, s) is continuous  in [1, +∞). 

There  is however  a finer topology  of interest on  the  valuative  tree  QM:  the 
finest  topology  such  that s  7→  v1 (C, s)  is continuous  in [1, +∞) for all C .   
This latter is called the  strong  topology.  With  the  strong  topology,  QM is a  
profinite R-tree,  rooted  at  the  O-adic  valuation  (see [12] for details).    To  avoid  
confusion with  branches  of curves,  we will call  the  branches  in  QM arcs.   
Maximal  arcs of the  valuative  tree  are  homeomorphic  to  the  interval  [1, ∞),  
parameterized by s 7→ v1 (C, s) where C is a smooth  branch  of curve at O. 

The  arcs  of QM share  the  segments  given by coincident jets,  and  separate at 
integer  values  of s;  these  correspond  to  divisorial  valuations on  an  appropriate 
birational model. 

Though  we will not use this fact, note that QM is a sub-tree  of a larger  R-tree 
V with the same root, called the valuation  tree, which consists of all real valuations 
of K with  centre  O.  Ramification on V occurs  at  all rational points  of the  arcs, 
rather than  only at integer  points,  because of valuations corresponding  to singular 
branches.  The tree QM is obtained from V by removing the arcs corresponding  to 
singular  branches  and all ends (see [12, Chapter 4] for details). 

 

3.2.  Quasimonomial valuations and the Newton–Puiseux algorithm. We 
recall briefly the Newton–Puiseux  algorithm  (see [9, Chapter 1] for a full discussion). 

Given f (x, y) ∈ K (x, y)−{0} (we may in fact assume that f belongs to K [[x, y]]), 
and a curve C as in §3.1, we want to investigate the behavior  of the function 

v1 (C ; f ) : s ∈ [1, +∞) 7→ v1 (C, s; f ) ∈ R 
. 

Returning to (5), consider the convex hull NP(C, f ) in R2  (with  (t, u) coordinates) 
of  all points  (i, j) + v  ∈ R2   such  that aij  = 0, and  v  ∈ R2  .   The  boundary 
of NP(C, f ) consists  of two half-lines parallel  to the  t and  u axes, respectively,  
along with a polygon NP(C, f ), named  the Newton polygon of f with respect  to C 
. 

We will denote  by V(C, f ) (resp.  by E(C, f )) the set of vertices  (resp.  of edges) 
of NP(C, f ), ordered  from left to right,  i.e., 

 

V(C, f ) = (v0 , . . . , vh ) ,      E(C, f ) = (l1 , . . . , lh ) , 

where lk  is the segment joining vk−1 and vk , for k = 1, . . . , h, and vk  = (ik , jk ). 
We will denote  by V  the germ of the curve f = 0. Then, 

multO (V ) = mink {ik + jk },  ordC (V ) = jh ,  (V  − jh C, C )O   =  ih  , 

where (V  − jh C, C )O   is the  local intersection number  of two  effective cycles with 
distinct support V  − jh C and C at the origin O. 

The  numbers  n :=  w(C, f ) :=  ih − i0   and  m :=  h(C, f ) :=  j0 − jh are usually 
called  the  width  and  the  height  of NP(C, f ).   Analogously,  one defines the  width 
nk  := w(lk ) and the height mk  := h(lk ) for any edge lk  in the obvious way, so that 
lk  has slope sk  := sl(lk ) = − mk , for k = 1, . . . , h. 

Let B(V ) be the  set of branches  of V .  Then  the  Newton–Puiseux algorithm as 
presented in [9, §1.3] (with  suitable  modifications  due to the fact that (5) is not the 
standard expansion  of f (x, y) as a power series in x and y) yields a surjective  map 

ϕV   : B(V ) → E(C, f )
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such that whenever γ is a branch  of V  whose Puiseux  expansion  with respect  to C 
starts as 

y − ξ(x) = axτ + . . . ,  with τ ∈ Q and τ > 1 

(i.e., γ is not tangent to the x = 0 axis nor contained in C ) then the edge l = ϕV (γ) 
has slope sl(l) = − 1  > −1.  Moreover 

τ = 
 (γ, C )O     , 
multO (γ) 

and if γ ∈ B(V ) is the unique branch  with sl(ϕV  (γ))  = − 1 , then in fact h(ϕV  (γ))  = 
multO (γ)  is the  multiplicity  of γ (at  O), whereas  w(ϕV (γ))  = (γ, C )O   is the  local 
intersection multiplicity  of γ with C at O. 

Consider  now the  line `s with  equation  t + su  = 0 and  slope − 1 .  By (6),  the 
valuation v1 (C, s; f )  is computed  by  those  vertices  in V(C, f )  with  the  smallest 
distance  to  ̀s , i.e.   for any  such  vertex  v = (i, j), one has  v1 (C, s; f )  = i + sj. 
Note that there  will be only one such point,  unless `s is parallel  to one of the edges 
l ∈ E(C, f ) (hence s is rational), in which case there  will be two:  the  vertices  of l, 
whose slope sl(l) = − 1 . 

From  the above discussion its not hard  to deduce the following statement: 
 

Proposition 3.7.   For  any  curve  C  smooth  at  O and  f ∈ K (x, y) − {0}  regular 
at O (i.e.,  f is defined at O) one has: 
(i)  v1 (C, · ; f ) : R → R is continuous  in [1, +∞), piecewise linear,  non-decreasing, 
concave  and  its  graph  consists  of  finitely  many  (one  more  than  the  number  of 
edges in E(C, f ) with slope greater  than  −1)  linear  arcs  with rational slopes (i.e., 
v1 (C, s; f ) is a tropical  polynomial  in s); 
(ii)  the points  where the derivative  of v1 (C, · ; f ) is not defined are 

1 
sk  = − 

sl(l  ) 
,    for    k = 1, . . . , h;

 
 

(iii)  if the curve V  with equation  f = 0 does not contain  C , then 

(7)                                    v1 (C, s; f ) = (V, C )O       for    s     1. 

Example  3.8.  Let C be the conic x2  − 2y = 0, so that ξ(x) = x2 /2, and let 

f = (x2  + y2 )3  − 4x2 y2 . 

The C -expansion  of f is then
 

f = (y − ξ (x)) 
 
+ 3 x2  (y − ξ (x))5

 

 

15 x 4   (y − ξ (x))4
 

4 

 
+ 3 x2  (y − ξ (x))4

5 x6   (y − ξ (x))3
 

2 

 

+ 6 x4  (y − ξ (x))3 + 
15 x8   (y − ξ (x))2

 

16 
10

 

9 x6   (y − ξ (x))2
 

2 
8

+ 3 x4  (y − ξ (x))2 
− 4 x2  (y − ξ (x))2 + 

 3 x    (y − ξ (x))  
+ 

 3 x  (y − ξ (x)) 
16                             2 

12                10                8
 

+ 3 x6  (y − ξ (x)) − 4 x4  (y − ξ (x)) + 
 x    

+ 
 3 x    

+ 
 3 x 

64        16          4 
The  Newton  polygon of f with  respect  to C is depicted  in Figure  1.  It  has three 
sides and four vertices, corresponding  to the “monomials”  (y − ξ(x))6 , x2 (y − ξ(x))2 , 
x4 (y − ξ(x))  and  x8 .  The  curve V  : f (x, y) = 0 has four branches  through O, all 
smooth;  two of them  are transverse to C and  map  to the  first side of the  Newton
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Figure 1.  The Newton  polygon  of Example 3.8.  Each  dot represents 
a “monomial” in  the  C -expansion of f ; only  four  of them  create  ver- 
tices of the  polygon.  At the  right-hand side, the  corresponding function 
v1 (C, s; f ) for s > 1.  The  three linear  pieces correspond to the  vertices 
v1  = (2, 2), v2  = (4, 1), v3  = (8, 0), as described in Proposition 3.7. 

 
polygon;  one of them  is tangent to  C  with  intersection multiplicity 2, and  maps 
to the  second side; the  last  one is tangent to C and  has intersection multiplicity 4 
with it, and maps to the third  side. 

 

3.3.  Quasimonomial valuations and the associated rank 2 valuations. We 
keep the above notation. As we saw in §3.2, we have a finite sequence 

s0  := 1 < s1  < . . . < sh < sh+1 := +∞ 

such that v1 (C, s; f ) is linear (hence differentiable) in each of the intervals  (sk , sk+1 ), 
for k = 0, . . . , h.  The  derivative  in these  intervals  is constant and  integral.   At sk , 
with k = 0, . . . , h + 1, there are the right and left derivatives of v1 (C, s; f ) (at s0  = 1 
(resp.  at sh+1  = +∞) there  is only the right (resp.  left) derivative). So we have: 

 

Corollary 3.9.   For  any  curve  C  smooth  at  O and  f ∈ K (x, y) − {0}  regular  at 
O, the function  v1 (C, · ; f ) has everywhere in (1, +∞) (resp.  in [1, +∞)) left (resp. 
right)  derivative.  We will denote  them by ∂− v1 (C ; f ) (resp.  ∂+ v1 (C ; f )). 

Proposition  3.10. For  any curve C smooth at  O, every s ∈ Q, s > 1 and  every 
f ∈ K (x, y) − {0} set 

v− (C, s; f )  :=   (v1 (C, s; f ), −∂− v1 (C ; f )(s)) 

v+ (C, s; f )  :=   (v1 (C, s; f ), ∂+ v1 (C ; f )(s)). 

This  defines  two rank  2 valuations  v− (C, s)  and  v+ (C, s)  with home  at  O.   For 
s = 1, the valuation  v+ (C, s) defined as above is also a rank  2 valuation  with home 
at O. 

Proof.  Let  f ∈ K [x, y] and  let  (x, ξ(x))  be a local parametrization of C .   With 
notation as in (5), then  (6) holds, thus 

∂− v1 (C ; f )(s)  = max{j |∃i : aij = 0 , i + sj = v1 (C, s; f )} 

and 

(8)                 ∂+ v1 (C ; f )(s)  = min{j |∃i : aij = 0 , i + sj = v1 (C, s; f )}. 

The  fact  that both  v− (C, s), v+ (C, s)  : K∗   −→  Qlex   are  valuations follows from 
basic properties  of multiplication of Laurent series and min and is left to the reader. 
Furthermore, if f is regular  at O then  v1 (C, s; f ) > 0 if and only if f (O) = 0. This 
implies that O is the home of v− (C, s) and v+ (C, s).
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q

q

∆C,s             
2                    

C,s             + 

±                                                                                                                       lex

±                                                                            lex

irreducible

b

b

µD

−

 
Obviously  v− (C, s)  and  v+ (C, s)  have rank  at  most  2.  We will show that they 

have rank  greater  than  1. Let f0 ∈ K [x, y] be such that f0 = 0 is an equation  of C 
(this,  for fixed s, is no restriction by Remark  3.4).  We have v± (C, s; f0 ) = (s, ±1) 
(see Example  3.5).  Moreover if s = p  for coprime positive integers p, q and f1 = f0

 q                                                                                                            xp
 

then  v± (C, s; f1 ) = (0, ±q).  Thus  for every positive  integer  k we have 

(0, 0) < ±kv± (C, s; f1 ) < v± (C, s; x), 

which is impossible for a rank 1 valuation.                                                                    
 

Remark  3.11.  For  irrational s, the  expressions  v−  and  v+  (as defined in Proposi- 
tion 3.10), are valuations with home at O, but  they are both  equivalent to v1  (and 
so have real rank  1 and  rational rank  2).  We will not  need this  fact,  and  we leave 
the proof to the interested reader.

Remark   3.12.  Write  s  =  p
 

 

with  p, q coprime  positive  integers.    Then  the  value
1                                2

 
group of v− (C, s) and  v+ (C, s) is (Z q  × Z)lex ⊂ Qlex .  In this  case, we will denote 
by 

+  ⊆ R+ ,        ∆  −   ⊆ R   × R− 

the Newton–Okounkov bodies associated  to the line bundle  OP2 (1) with respect  to 
the valuation v− (C, s) and v+ (C, s) respectively. 

Since v  (C, s) have maximal  rank  but  their  value groups do not equal Z2    , the 
volumes of Newton–Okounkov bodies associated to these valuations need not satisfy 
Theorem  2.13.  However, there  are order  preserving  elements  of GL(2, Q) relating 
the v   valuations to valuations with values in Z2    . In §4.3 below we compute  these 
lower triangular matrices,  which turn  out  to have determinant  1, and  so preserve 
the volume.  Therefore  Theorem  2.13 also applies to v± (C, s), and

 
vol ∆C,s 

 
= vol ∆C,s+   = 

vol(OP2 (1))  
= 

1 
. 

2               2
3.4.  The µ invariant. Let v1  be a rank 1 valuation centred  at a smooth point x of 
a normal  

b                
projective  surface X , and let D be a big Cartier divisor on X . 

Following [11], we set
 

def
  

def
 µkD (v1  )µD (v1 ) = max{v1 (f ) | f ∈ H 0 (X, OX (D)) − {0}} ,  and µD (v1 ) =  lim                  . b                
k→∞        k 

If v = (v1 , v2 ) is a valuation of rank  2 centred  at x, then  ∆v (D)  lies in the strip 

{(t, u) ∈ R2 |0 6 t 6 µD (v1 )} ; 

and its projection  to the t-axis lies the interval  [0, µD (v1 )], coinciding with it if and 
only if x 6∈ Neg(D)  (see Theorem  2.22).                  

b
 

In order to simplify notation, we will set 
 

µD (C, s) = µD (v1 (C, s)).

If X  = P2 , x = O and  D  is a line, we drop  the  subscript D  for b (C, s)  and  we
write µd (C, s) instead  of µdD (C, s) for any non-negative integer  d. 

µ : QM → R is lower semicontinuous  forFrom  [11] we know that the  function  b  
µ(C, s) is continuousthe weak topology and continuous for the strong topology, i.e., b   

µ(C, s) > 
√

s [11]. If b C, s) =
 

for s ∈ [1, +∞) (see [11, Proposition 3.9]). Moreover b                                  µ( √
s, then  v1 (C, s) is said to be minimal  (the  concept  of minimal  valuation  is more 

general, see [11], but  we will not need it here).  We recall from [11] the following:
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s

F  

−
2

one has

µ is known,

The values of

i

 
 Conjecture 3.13  ([11, Conjecture 5.11]). If C  is  sufficiently general  (in  a sense 

which is made precise  in l.c.)  and s > 8 +  1  , then µ(C, s) = 
√

s. 36                 b 
Remark  3.14. According to [11, Proposition 5.4], this Conjecture (actually a weaker 
form of it, considering  only s > 9 and C any curve),  implies Nagata’s  Conjecture. 

 

Remark  3.15.  We recall from [11] some known values of µ(C, s). b 
•  If C is a line, then

 
µ(C, s) = b 

 
•  If C is a conic, then 

(
s    if 1 6 s 6 2 

2   if 2 6 s

 

 
 

µ(C, s) = b 


s        if 1 6 s 6 2 

2       if 2 6 s 6 4 

 2           if 4 6 s 6 5 
5/2    if 5 6 s

•  If s 6 7 + 1/9 and deg(C ) > 3, then
  

Fi  2
 

 F 2   
 

Fi+2  Fi       
s    if F 2

 
6 s 6 F

 
,  i > 1 odd,

− 

   
Fi+2

 

i  

i−2 

Fi+2
 

 
i−2 
2 
i+2

µ(C, s) = Fi                   
if Fi     2  

6 s 6  F ,  i > 1 odd,b                   
1+s  if φ4  6 s 6 7,3  8                                                      1

 

3                 if 7 6 s 6 7 + 9 , 

where F−1 = 1, F0  = 0 and  Fi+1 = Fi + Fi−1 are the  Fibonacci  numbers, 
and

 
 

is the golden ratio. 

1 + √
5 

φ = 
2 

 

=  lim 
i→∞ 

Fi+1 

Fi

µ above are computed  using the series of Orevkov rational b 
cuspidal curves (see [26] and Proposition 5.25 below).  There are a few more 
sporadic  values of s in the range [7 + 1/9, 9] where the value of b 
see [11] for details. 

•  If s is an integer square and C is a general curve of degree at least 
√

s, then 
µ(C, s) = 

√
s. b 

 
4.  Cluster of centres and associated flags 

 

In  this  section  the main  goal is to  introduce  the  geometric  structures related 
to valuations v1 (C, s)  and  v± (C, s).  We give a full description of how to find the 
birational model of X (the  cluster  of centres  together  with their  weights)  on which 
these two valuations are equivalent to a flag valuation on this model. 

 

4.1.  Weighted cluster of centres. As usual,  we will refer to the case 

x = O ∈ A2  ⊂ P2  := X0 . 

Each  valuation v with centre  O ∈ P2  determines a cluster  of centres  as follows. 
Let  P1   =  centreX0 (v)  = O.   Consider  the  blowup  π1   : X1   →  X0   of P1   and  let 
E1   ⊂ X1   be the  corresponding  exceptional  divisor.   Then  centreX1 (v) may  either 
be E1  or a point P2  ∈ E1 . Iteratively blowing up the centres P1 , P2 , . . . of v we may
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Y

i

 
end up, after  k > 1 steps,  with a surface Xk   dominating P2 , where the  centre  of v 
is the exceptional  divisor Ek . In this case v is discrete  of rank 1, given by the order 
of vanishing  along Ek , by Remark  2.5. Otherwise,  this process goes on indefinitely. 
In particular, for quasimonomial valuations v1 (C, s), the process terminates if and 
only if the characteristic exponent s is rational. 

Let v = (v1 , v2 ) be now a rank 2 valuation whose truncation v1 is quasimonomial. 
From Abhyankar’s inequalities,  [12, p.  12], one concludes that v1  has rational rank 
1.  Hence,  by Remark  3.3, we have  v1  = v1 (C, s)  for some s ∈ Q.  By the  above 
then,  the sequence of centres  of v is infinite, whereas the sequence of 1-dimensional 
homes (centres  of v1 ) terminates at  a blowup  Xk   where centreXk (v1 ) = Ek   is an 
exceptional  divisor.  In particular, v is equivalent to the  valuation ν   , defined by •

the flag  
Y•  : Xk  ⊃ Ek   ⊃ centreXk (v) = Pk+1 .

 

The punchline  of all this is that the process of blowing up all 0-dimensional  centres 
of the truncation provides an effective method  to find a model where a given rank 2 
valuation becomes a flag valuation. By Theorem  2.9, such a model exists for every 
valuation of maximal  rank  on a projective  variety.   The  above  method  works for 
any valuation of rank  2 on any projective  surface (i.e., not necessarily  P2 ). 

For  each  centre  Pi  of a  valuation v,  general  curves  on  X i−1   through Pi  and 
smooth  at Pi have the same value ei = v(Ei ), which we call the weight of Pi for v. 
Following [9, Chapter 4], we call the (possibly infinite) sequence Kv = (P e1 , P e2 , . . .) 1         2 

the weighted cluster  of centres  of v. In general a sequence like K = (P e1 , P e2 , . . .) is 1         2 
called a weighted cluster  of points  and supp(K) = (P1 , P2 , . . .) is called its support. 

If v is a valuation with centre at O, then its weighted cluster of centres completely 
determines v. Indeed,  for every effective divisor Z on P2 , one has 

(9)                                            v(Z ) = 
X 

ei · multP (Zei  ), 
i  

 
where Zei  is the  proper  transform of Z  on Xi  , whenever  the  sum on the  right has 
finitely many non-zero terms.  This is always the case unless v is a rank 2 valuation 
with  home  at  a  curve  through O  and  Z  contains  this  curve;  in  particular,  for 
valuations of rank  1, such as v1 (C, s), formula  (9) always computes  v(Z ) [9, §8.2]. 

As usual,  with  the  above  notation, we say  that a curve  Z  passes  through an 
infinitely  near  point  Pi ∈ X i if its proper  transform Zei   on X i contains  Pi . 

 

 
4.2.  The cluster associated to v1 (C, s). The description of the cluster  K(C,s)  := 
Kv1 (C,s) is classical and  we refer for complete  proofs to [9].  Here, we merely focus 
on the  construction of the  cluster  of centres  for v1 (C, s)  and  its  main  properties 
that will be used in the next  section.  The cluster  K(C,s)  is a very specific one, and 
we will need the following definition  to make things  more clear. 

 
Definition 4.1.   With  notation as above, the centre  Pi ∈ X i−1 is called proximate 
to  Pj   ∈ Xj  , for 1 6 j < i  6 k,  (and  one writes  Pi    Pj  ) if Pi  belongs  to  the 
proper  transform Ei−1,j  on X i−1  of the  exceptional  divisor  Ej+1   :=  Ej+1,j  over 
Pj   ∈ Xj−1 . For the cluster  K(C,s) , each Pi , with i > 2, is proximate to Pi−1 and to 
at  most  one other  centre  Pj , with  1 6 j < i − 1; in this  case Pi = Ei−1,j ∩ Ei−1 

and Pi is called a satellite  point.  A point which is not satellite  is called free.
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+  1

n2  +

q

 
We know that the  support of the  cluster  K(C,s)  = Kv1 (C,s) is determined by the 

continued fraction  expansion

p 
s = 

q 
= [n1 ; n2 , . . . , nr ] = n1  + 

1 
           1               , 
n3 +     1 

. . .      
nr

where p, q are coprime and r ∈ Z>0 . Before moving forward, let’s fix some notation. 
Let ki   = n1  + . . . + ni and k = kr . We denote  by 

pisi = 
i  

= [n1 ; n2 , n3 , . . . , ni  ],  for  i = 1, . . . , r

the partial  fractions  of s, where pi  , qi  are coprime positive  integers. 
First,   the  cluster  K(C,s)   consists  of k  = 

P 
ni  centres  (if s  is irrational there 

are  infinitely  many  centres).   Set  K = K(C,s)   and  for each  i  = 0, . . . , k − 1 let 
πi : X i+1 → X i  be the  blow-up of X i  at  the  centre  Pi+1 with  exceptional  divisor 
Ei+1 . As usual we start with X0  := P2 . Denote  XK  := Xk   and let π : XR → X  be 
the composition  of the k blowups. 

With  this in hand,  we explain the algorithm for the construction of K. If s = n1 

(so that r = 1),  then  the  centre  Pi+1  is the  point  of intersection of the  proper 
transform of C through the  map X i → X0   and  the  exceptional  divisor Ei of πi−1 , 
for each i = 1, . . . , n1 − 1. When r > 1, then the first n1 + 1 (including  P1 ) centres of 
K are obtained as in the case when s was integral,  i.e. these points are chosen to be 
free. The rest are satellites:  starting from Pn1 +1 there  are n2  + 1 points  proximate 
to Pn1 , i.e. each Pj   is the point of intersection of the proper  transform of En1   and 
the exceptional  divisor Ej−1 . Thus,  En1  plays the same role for these centres  as C 
did in the  first step.  Then,  one chooses n3  + 1 points  proximate to Pn1 +n2  and  so 
on.  Since r < ∞, then the last nr points (not nr + 1) are proximate to Pn1 +...+nr−1 . 
The final space XK  is where v1 (C, s) becomes a divisorial valuation, defined by the 
order  of vanishing  along  the  exceptional  divisor  Ek    ⊆ XK .   Finally  note  that C 
plays a role only in the  choice of the  first n1   centres.   This  is due to Remark  3.4, 
saying that the valuation v1 (C, s) depends  only on the bsc-th jet of C . 

The  weights  in K(C,s)  are  proportional to  the  multiplicities of the  curve  with 
Puiseux  series y = ξ(x)+θxs at the points of supp(K(C,s) ). These and the continued 
fraction  expansion  are computed as follows. Consider  the euclidean  divisions 

 

mi = ni+1 mi+1 + mi+2    of    mi     by    mi+1 ,    for    i = 0, . . . , r − 1 , 
 

where m0  := p, m1  := q. Then  the first n1  points  of K(C,s)  have weight 

m1e1  = e2  = . . . = en1  = = 1, 
q

 

the  subsequent  n2   points  have  weight  m2 /q,  ...,  the  final nr  points  have  weight 
mr /q = 1/q.  Therefore  the proximity  equality 

(10)                                                    ej    = 
X  

ei  

Pi   Pj  

holds for all j = 0, . . . , k − 1.  Conversely,  for every weighted  cluster  K with  finite 
support, in which every point is infinitely near the previous  one, no satellite  point 
precedes a free point,  and the proximity  equality  holds, there  exist a smooth  curve 
through O and a rational number  s such that K = K(C,s) .
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4.3.  v± (C, s)  and the associated flag  valuation. In order  to describe  the  flag 
valuation associated  to v± (C, s), it is necessary  to understand first the intersection 
theory  of all the proper  and total  transforms of the exceptional  divisors on XK . 

To  ease  notation, let  Ai    (resp.   Bi  )  be the  proper  (resp.   total) transform of 
Ei ⊂ X i on XK , for i ∈ {0, . . . , k − 1}.  Then: 

 

Lemma 4.2.   (i)  Ak  = Ek   is the only curve with A2  = −1 for any i = 1, . . . , k; 
(ii)  A k    = Bk   − Bk  +1 − . . . − Bk       +1 and A2    = −2 − ni+1 ; for each 1 6 i < r − 1; 

2(iii)  A kr 1  = Bk 
 
r−1 − Bk  r−1 +1 − . . . − Bk   and A kr−1 

= −1 − nr ;
(iv) A j   = Bj   − Bj+1  and A2  = −2 for every j ∈ {1, . . . , k} \ {k1 , . . . , kr }. 

 

The  sheaf π∗ (IP1 |P2 ) is invertible  on XK   and  defines the  fundamental cycle E

of π.  Write  E = 
Pk

 ai A i  . Then,  making  use of Lemma 4.2, the multiplicities ai

can be easily computed as follows: 
 

Lemma 4.3.  If one assumes  k0  = a0  = 0 and a1  = 1, then the multiplicities  of the 
fundamental cycle E  are  computed  by the following formula

 

ai = akj  

 

−1 (i − kj−1  − 1) + ak 
 
j−1 

 

+1 ,  for kj−1  + 2 6 i 6 kj   +   and 1 6 j 6 r
 

where    = 0 if j = r and    = 1 otherwise.   In  particular, akj  +1 = akj    + akj  

1 6 j 6 r − 1. 

 

for −

 

Remark  4.4.  By Lemma  4.3, one has akj     = nj  akj  

where a0  = 0 and ak1  = 1. 

 

1  + ak 
 
j−2 

 
for any  j = 2, . . . , r,

On the other hand,  using the partial fractions  si = pi     of s = p , one has the same qi                             q 
recursive  relations  qj    = nj  qj−1  + qj−2   for j = 2, . . . , r, with  q0  = 0 and  q1  = 1. 
Thus,  we get that akj    = qj   for any j = 0, . . . , r. In particular, we have akr   = q. 

pr−1In the following the pair (pr−1 , qr−1 ) of the partial fraction sr−1 = qr 
will play 

−1

an important role, so we fix some notation. When  s is not  an integer  (i.e.  r > 2), 
we set 

p0 
p0  = pr−1 ,    q0  = qr−1   so that sr−1 = 

q
 0 

 

If s is an integer,  i.e., r = 1, then  we set p0  = q0  = 1. 
In order to find the flags on XK  associated  to v± (C, s), we need to have a better 

understanding of the  cycle E  through its  dual  graph.   The  dual  graph  of E  is a 
chain,  i.e. a tree with only two end points,  corresponding  to A1  and An1 +1 . If A is 
the proper  transform of C on XK , then  A intersects E only at one point on An1 +1 . 
Thus  the  dual  graph  of A + E  is also a chain,  with  end  points  corresponding  to 
A1 and A. The curve Ak  intersects exactly two other components  of A+E, precisely: 

 

 
(a)  if s is not  an integer  (so that r > 2), then  Ak   intersects Ak−1  and  Akr−1 ,

whose multiplicities in the cycle A + E  are ak−1 = q − q0  and akr = q0 ; −

 
(b)  if s is an integer (so that s = k = n1 ), then Ak  intersects Ak−1  and A, both 

having  multiplicity one. 

Note that A + E − Ak   has two  connected  components, only one containing  A. 
We denote  this component by A+  and the other  by A− . We will denote  by x± the 
intersection point of Ak  with A± , and by x the general point of Ak .
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1+1/6

 
The  total  transform C ∗  on XK   of C  has  the  same  support as A + E,  but  the 

multiplicities are different.  In particular, denoting
 

p00  = 
(

p0              if r is odd 

p − p0     if r is even 

 
q00  = 

(
q0              if r is odd 

q − q0     if r is even
 

Lemma 4.5.   (i)  The  divisor  C ∗  contains Ak   with multiplicity  p and  C ∗ − pAk 

passes through x+ (resp.  x− ) with multiplicity  p00 (resp.  p − p00 ). 
(ii)  The total  transform L of the line x = 0 on XK   contains Ak  with multiplicity  q 
and L − qAk  passes through  x+ (resp.  x− ) with multiplicity  q00   (resp.  q − q00 ). 

 

Proof.  We prove only (i), the proof of (ii) being analogous. 
When s is an integer  the assertion  is trivial.  So, assume that s is not an integer 

(i.e.  r > 2).  We first show that the  multiplicity of Ak  in C ∗  is equal to p.  This  is 
done inductively  on k = n1  + . . . + nr . From  the standard properties  of continuous 
fractions  it  is worth  to note  that the  numerator  of [n1 ; n2 , . . . , nr − 1] is equal  to 
p − pr−1 , where pr−1  is the numerator of the continued fraction 

pr−1sr−1  = 
q 
 
r−1 

= [n1 ; n2 , . . . , nr−1 ] .

The multiplicity of Ak  in C ∗ is the same as the multiplicity of Ak  in B1 +. . .+Bn1 +1 . 
So, using Lemma 4.2 repeatedly, the statement follows easily. 

The  multipliticies of C ∗ − pAk   at  x+ and  x− equal  the  multiplicities in C ∗  of
Akr −1    and  of Ak−1  respectively  in this  order  if r is odd,  and  reversed  if r is even
(as r > 2).  Arguing as before, one deduces easily also these statements.                  

 
Example  4.6.  Consider  s  = 48/7.   Its  continued fraction  is [6; 1, 6] = 6 +     1       

. Therefore  the cluster  of centres  of v1 (C, s)  consists  of 7 free points  on C 

followed 
by six satellites;  of these,  P8   is proximate to  P6   and  P7 , and  each  of P9 , . . . , P13 

is proximate to its predecessor  and  to P7 .  See Figure  2, where the  weights  ei  are 
printed in boldface:  e1  = 1, e2  = 6/7, e3  = 1/7. 

The proximities  mean that the exceptional  components  are A6  = B6 − (B7 + B8 ), 
A7  = B7  − (B8  + . . . + B13 ), A13  = B13   and,  for all i = 6, 7, 13, Ai  = Bi − Bi+1 . 
Solving for B1  = E  one gets the fundamental  cycle 

 

E = A1 + A2 + A3 + A4 + A5 + A6 + A7 + 2A8 + 3A9 + 4A10 + 5A11 + 6A12 + 7A13 . 
 

Since C goes through P1 , . . . , P7  with multiplicity 1, its total  transform on XK  is 
 

C ∗ = C̃ + B1  + . . . + B7  = 

C̃ + A1 + 2A2 + 3A3 + 4A4 + 5A5 + 6A6 + 7A7 + 

13A8 + 20A9 + 27A10  + 34A11  + 41A12  + 48A13 . 
 

Clusters  are  often  represented by  means  of Enriques  diagrams   (see [9, p.98]) as 
explained  in Figure  2 illustrating this example. 

 

Proposition 4.7.  In the above setting,  the flags associated  to the rank 2 valuations 
v− (C, s) and v+ (C, s) are 

Y−  :     XK  ⊃ Ak  ⊃ x−    and    Y+  :     XK  ⊃ Ak  ⊃ x+ 
 

respectively.
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1
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P1  = O    1 

 

 
Figure 2.     The  Enriques diagram [9, 3.9] of the  cluster  of centres 
of Example 4.6.  Each  vertex  in the  diagram corresponds to  one of the 
points, with  each vertex  joined  to its immediate prececessor  by an edge; 
edges are curved  for free points, and  straight segments for satellites, to 
represent the rigidity of their  position. The  segments joining a sequence 
of satellites proximate to the same point lie on the same line, orthogonal 
to the  immediately preceding  edge. 

 
 

Proof.  The  above  discussion  makes  it  clear  that Ak   is the  centre  of v1 (C, s).   It 
remains to prove that x± are the centres  of v± (C, s).  Let η = 0 be a local equation 
of Ak  on XK   around  x+ . Consider  f1 = f q /xp as in the proof of Proposition 3.10. 
By Lemma 4.5, the pull-back of f1 to XK  is not divisible by η. Again by Lemma 4.5, 
it vanishes  at  x+ with  multiplicity p00 .  Furthermore, by Proposition 3.10, one has 
v+ (C, s; f1 ) > 0.  By the  same token,  f −1  is not  divisible by η, it vanishes  at  x 

1                                                                                                    − 
1 

and has v− (C, s; f −  ) > 0, proving the assertion.                                                         
 

Remark  4.8.  Unless s is an integer  and  the  sign + holds,  the  valuations v± (C, s) 
are not  equal to the  evalutations associated  to the  flags Y±  (see Remark  2.7), but 
they  are equivalent to them. 

Let f0 = 0 be an equation  of C (which we may assume  to be algebraic,  see the 
proof of Proposition 3.10) and note that K [[x, y]] ∼= K [[x, f0 ]]. One has 

 

(11)                            v± (C, s; x) = (1, 0),    v± (C, s; f0 ) = (s, ±1) , 
 

by the proof of Proposition 3.10. By Lemma 4.5, one has 
 

νY+ (x) = (q, q00 ),    νY+ (f0 ) = (p, p00 ) 
ν    (x) = (q, q − q00 ),    νY (f0 ) = (p, p − p00 ) .

By standard properties of continued fractions,  one has pq0 − qp0  = (−1)r . Thus
     1 

v+ (C, s) =    q 

 

0
 

 
νY   ,

 
 
 

v− (C, s) = 

−q00      q       + 

       1                 
q                    νY   .q00  − q   q       − 

 

Remark  4.9.  The  same relations,  given in Remark  4.8, hold for the  corresponding 
Newton–Okounkov bodies.  It is worth  to note that both  2 × 2 matrices  transform
vertical  line into  vertical  lines.   Furthermore, any  vertical  segment  in ∆ 

± (D)  is
translated into  a vertical  segment in ∆C,s whose length  is multiplied  by a factor
of q with respect  to the initial  one, where D is the class of a line.
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4.4.  Zariski decomposition of  valuative divisors. In this  subsection  we will 
describe,  with  few details,  some of the  properties  of the  valuation v1  that will be 
used in the  next  section.   As before let s = p/q  > 1 be a rational number  and  K 
the cluster  of centres  associated  to the rank 1 valuation v1 (C, s), with π : XK  → P2 

the  sequence of blow-ups  constructed in the  previous  section  where the  valuation 
v1 (C, s) becomes equivalent to a valuation given by the order of vanishing  along an 
exceptional  curve on XK . We will denote  by 

 

B    d=ef   e B   + . . .  + e  B   , 
 

where as usual  Bi  is the  total  transform of the  exceptional  divisor Ei on XK   and 
ei is the weight of the center  Pi  , whose blow-up is the curve Ei (whereas  Ai  is the 
strict  transform in XK   of Ei ).  Note that the  proximity  equalities  (10) mean  that 
Bs · A i    = 0 for all 1 6 i 6 k − 1, and  that the  weights  are  also determined by 
these  equalities  and  ek  = 1/q  (see section  8.2 in [9]).  Knowing this  divisor Bs we 
usually know almost  everything  about  the valuation v1 . Using (9) one deduces the 
following: 

 
Lemma 4.10. For  a divisor Z on XK  not containing any of the exceptional curves 
A i  , one has v1 (C, s; π∗ (Z )) = Bs · Z . 

 
For the computation of Newton–Okounkov bodies, the following properties of Bs 

will also be useful. 
 

Lemma 4.11. (i)  B2  = −s,  ordA   (Bs ) = p, (Bs · A i  ) = 0 for any i = 1, . . . , k − 1,
Ak ) = − 

s                    k 

1/q.
(ii)  For  every positive  x ∈ Q such  that  the  Q-divisor  Dx = D − xBk  is pseudo- 
effective (where D is the class of a line as usual),  the Zariski  decomposition  of Dx 

contains x Bs − xBk  in its negative part. 
 

Proof.  The  proof of (i) is done inductively  using the  description of the  cluster  of 
centres  obtained previously,  and we leave the details  to the reader. 

Let us prove (ii).  If k = 1 then  s = p = 1, Bs = Bk  = B1  and there  is nothing  to 
prove; so assume k > 1. Since the intersection matrix  of the collection {A1 , . . . , Ak } 
is negative  definite, there  exists a unique effective Q-divisor  Nπ = 

P 
νi A i   with 

(a)  (Dx − Nπ ) · A i  > 0 for all 1 6 i 6 k, 
(b)  (Dx − Nπ ) · A i   = 0 for all i with νi = 0. 

The  Zariski decomposition  of Dx  relative  to π is Dx = Pπ + Nπ (see [10, §8]).  It
satisfies H 0 (XK , OX (mDx )) ∼= H 0 (XK , OX (mPπ )) for all m such that mDx is a
Weil divisor,  and  the  negative  part  of this  relative  Zariski decomposition  is a part 
of the full Zariski decomposition:  Nπ 6 N . 

We claim that Nπ = x Bs − xBk ; to prove it, we need to show that x Bs − xBk
 

p                                                                                                                  p 
is an  effective  divisor  satisfying  (a)  and  (b).    A direct  computation shows  that 
the  coefficient  νi  of Ai   in   x Bs − xBk  is positive  for i = 1, . . . , k − 1 and  zero for 
i = k, so it is an effective divisor.   On the  other  hand,  (Dx −  x Bs + xBk ) · A i   = 
(D −  x Bs ) · A i   = − x Bs · A i , which using (i) gives (Dx −  x Bs + xBk ) · A i   = 0 for p                                 p                                                                                            p 

i = 1, . . . , k − 1, and (Dx  − x Bs  + xBk ) · Ak  > 0, as wanted.                                    
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5.  Newton–Okounkov bodies on  the tree QM 

 

From  now on we will mainly  concentrate on the  study  of ∆C,s+    when s varies 
in [1, +∞).  The  case of ∆C,s−    is not  conceptually different  and  will be often  left 
to the reader. 

 

5.1.  General facts. 

Corollary 5.1.   Let C ⊆ P2   be a curve  of degree d.  For  any  s > 1, one has the 
following inclusions 

∆1, s ,± 1  ⊆ ∆C,s±   ⊆ ∆µ,µ,± 
b   , 

d      d                                     b b    s 

µ  = µ(C, s).    Equality  for  the  first  inclusion  holds  if and  only if d  = 1. 
b 

Equality for the second one takes place if and only if µ(C, s) = 
√

s. b 
 

Proof.  For the first inclusion, note that by the proof of Proposition 3.10 evaluating 
an  equation  of C  and  the  variable  x,  forces both  points  (1, 0) and  ( s , ± 1 ) to  
be d        d
contained in ∆C,s . The origin is also contained in ∆C,s since it is the valuation of
any line not passing through the centre of the valuation. For the equality  statement
one uses that the area ∆C,s is 1 , by Theorem  2.13 and Remark  3.12.

For  the  second inclusion  notice  first that by definition  of µ(C, s) from   3.4 one b
has that the  convex sets ∆C,s sit to the  left of the  vertical  line t = µ.  To prove b
that ∆C,s+   also lies above the t-axis and below the line t = su,  we need to show 

v1 (C, s; f ) > s · ∂+ v1 (C, s; f ) > 0 , ∀f  ∈ K [x, y] \ {0} . 

Assuming  (5)  holds,  this  follows from (6)  and  (8),  as i + sj > sj. The  equality 
1statement is again  implied  by the  fact  that the  area  of ∆C,s+    is equal  to 2 .  The

analogous  facts for ∆C,s are left to the reader.                                                          
 

Remark  5.2.  As a consequence  of the  above, then  ∆C,s+   sits above the  t axis and 
below the  line with  equation  su  = t in the  (t, u)  plane.   Also, notice  that (0, 0) 
and ( s ,  1 ) are valuative  points,  where the latter is given by the valuation of a local d    d 
equation  of C  by Remark  (2.12).   Thus,  every point  with  rational coordinates  on 
the line su = t, lying between the origin and the point (s/d, 1/d), is valuative. The 
corresponding  picture  also holds for ∆C,s   . 

 

Remark  5.3.  The valuation vgen   associated  to the generic  flag 

Ygen  :     XK  ⊃ Ak  ⊃ x 

has nothing  to do with  C .  On XK   there  is a smooth  curve  Γ transversally inter- 
secting Ak  at  x.  Its image on X  has local equation  φ = 0 at  P1 .  Assume X = P2 

and deg(φ) = d. Then  for f = 0 a general line through P1  one has vgen (f ) = (q, 0)
and  vgen (φ) = ( q ,  1 ).  Thus  ∆ν (D),  with D ∈ |OP2 (1)|,  contains  ∆q, q

 
1 .  Sinced    d                             Ygen d , d

in general d > q (equality  may hold only if s = n1 ), then ∆νYgen 
(D) is strictly  larger 

than  this triangle  by Theorem  2.13. 
 

Remark  5.4.  By Corollary  5.1, we see that Conjecture 3.13 is equivalent to asking
whether  for all s > 8 +   
1 

and C general enough, one has

∆C,s+   = ∆√
s,

√
s,  1    . 

 

In particular, this  implies Nagata’s  Conjecture and  it  shows how difficult it  is to 
compute  Newton–Okounkov bodies.

 

Corollary 5.5.   Let C be a plane curve of degree d.  Then  ∆C,d2 
± 

 

= ∆d,d,± 1 .
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2

2

b

s

−  1

α

p

≡ 

d2

+

 
Proof.  The  cluster  of centres  of v1 (C, d2 ) consists  of P1   = O and  the  next  d2  − 1 
points on C infinitely near O, i.e., Pi = Ei−1 ∩ C̃ for i = 2, . . . , d . If A is the strict
transform of C on Xd2 , then 

d2

A ≡ dD − E1  − . . . − Ed2 = dD − 
X 

iA i  

i=1 

where D is the pull back to Xd2  of a line. Let Z := D − dAd2 , which can be written 
2 

A     d  −1 i
        X   

Z             + 
d 

i=1 

A i   . d

Remark  that this is actually  the Zariski decomposition  of Z , because A is nef, as A 
is irreducible  and A2  = 0, and 

Pd  −1  i A i   has clearly a negative definite intersection i=1     d 

form.  Also, Z sits on the boundary of the pseudo-effective  cone, as A2  = 0. Thus, 
Z − tAd2   is not pseudo-effective  for t > 0. 

Now the proof follows easily using Theorem 2.17. Alternatively, by Remark 5.4, it
suffices to prove that µ(C, d2 ) = d. Since v1  = ordE as valuations (by Remark  4.8, 

µ(C, d2 ) 6 d.noting  that s is an integer)  one gets from the  above paragraph that b 
The opposite inequality follows from Lemma 5.1.                                                         

 
Corollary 5.6.   Let C be a plane curve of degree d.  For  every    > 0, there  exists 
a non-zero  f  ∈ K [x, y] whose C -expansion  f (x, y) = 

P 
aij  xi (y − ξ(x))j    satisfies: 

(i)  v1 (C, d2 ; f ) = min{i  + d2 j |aij = 0} > deg(f  ) · (d −  ), 
(ii)  ∂+ v1 (C, d2 ; f ) = min{j |∃i : aij = 0 , i + d2 j = v1 (C, s; f )} 6 deg(f  ) ·  . 
A similar  statement holds for ∂  v (C, d2 ; f ). 

 

By Corollary  5.1, there  exists a real number  λ > 0 such that 

(12)                                                 ∆λ,λ,± λ  ⊂ ∆C,s± . 

This can be seen as an infinitesimal counter-part of Theorem 2.22 for X = P2 . When 
s = 1 and X is any smooth projective surface, these ideas were also developed in [19] 
along with Theorem  2.22. The largest  λ turned out to be the Seshadri  constant of 
the divisor.  This connection  can be seen clearly in the following proposition, where 
the notation comes from §4.4. 

Proposition 5.7.  Let C ⊂ P2  be a curve and s = p/q > 1. Let α ∈ Q be such that
the Q-divisor  αD − Bs is nef.  Then  ∆ s 

s   1  ⊆ ∆C,s+ .α , α , α

Proof.  Let’s check first that ( s , 0) ∈ ∆C,s
 .  By Remark  4.8, this  is equivalent toα                   +

showing that ( p , 0) ∈ ∆Y (D).  Since αD − Bs is nef, then  there  exists a sequence
of effective ample divisors Hn , n > 1, where x+ ∈/ Supp(Hn ), so that D is the limit
of  1 Bs + Hn . So, the point ( p , 0) is contained in ∆Y

 (D),  as ordA   (Bs ) = p.α                                         α                                    +                             k 

By Remark  4.9, it remains  to show that the  height of the  slice of ∆Y+ (D)  with
first coordinate  t = p is equal to     1  .  For this,  we apply  Theorem  2.17 for t = p .α                         qα                                                                                       α 
Let Nt  + Pt be the  Zariski decomposition  of D − tBk .  By Lemma  4.11, we know 
that 

1           p 
Nt  − 

α 
Bs + 

α 
Bk   is effective.

 
Thus,  one has  Pt 6 D − (1/α)Bs ; but  the  latter Q-divisor  is nef by hypothesis, 
therefore  Nt  = (1/α)(Bs − pBk ) and  Pt = D − (1/α)Bs .  In particular, the  height 

of ∆Y+   at t =  α   is equal to (1/α)Pt  · Bk  = (1/α)ek  = 1/(qα).                                  
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s

+             b

b 
s                               + 

µ(

supp                                                              i 

>

b
b

b                        C,s+                                            > 0,

µ(C, s).                                                                

Remark  3.15 that 

.

 
Based on the previous statement, it is natural to introduce  the following constant

λ(C, s)  d=ef
 

 

max{λ > 0 | ∆λ,λ,  λ  ⊂ ∆ 
 

C,s+ } .

As mentioned  before,  when  s  = 1, the  constant λ(C, s)  is nothing  else than  the 
Seshadri  constant of D, the class of a line, at the origin O.  So, one expects  λ(C, s) 
to encode plenty of geometry  also for s > 1. Note that we have the inequalities

λ(C, s)  6 
√

s  6 µ(C, s) , b

where the left-hand  side is an equality  if and only if the right-hand side is also such. 
From  Conjecture 3.13 this  is expected  to happen  when s is large enough  and  C a 
sufficiently  generic  choice of a curve.   Thus  it  becomes  natural to  ask  about  the 
shape of the convex set ∆C,s    when µ(C, s) = λ(C, s) = 

√
s does not happen. 

 

Corollary 5.8.   Under  the assumptions above, one of the following happens:
µ(C, s) = λ(C, s) = 

√
s, in which case ∆C,s

 
= ∆µ,µ, µ , where b = b C, s).(i)  b 

µ(C, s)  > 
√ +                    b b b s 

µ     µ(

(ii)  b s  > λ(C, s),  in  which case  λ(C, s)  =  s/µ(C, s)  and  the  convex b
polygon ∆C,s+    is the quadrilateral OABE, where  

 
µ(C, s), c) ,O = (0, 0),     A = (λ(C, s), 0),     B = (λ(C, s), λ(C, s)/s),   E = (b 

for some c ∈ [0,  µ(C,s) ]. Hence, ∆C,s   is a triangle  if and only if c = 0 or c = 
 
b C,s) 

s

Proof.  By definition  of µ(C, s) and Lemma 4.10, for any effective divisor Z in XK , 
not containing  in its      

b 
ort any of the exceptional  curves A , one has

 
µ(C, s) b 

v1 (C, s)(Z    
) 

Z · D 

= 
Z · Bs  . 
Z · D

So, (µ(C, s)D − Bs ) · Z > 0 for any such cycle Z . By Lemma 4.11, we already  know 
µ(C, s)D − Bs ) · A i   > 0 for any i = 1, . . . , k. Thus,  the divisor µ(C, s)D − Bs 

µ(C, s).  When  µ(C, s) = 
√

s 
we land  in case (i).   Otherwise,  if (µ(C, s), c) ∈ ∆      for some c    

b    
then  this 

latter condition  implies that ∆C,s+   contains  the convex hull of the points
       

s 
(0, 0), b 

  
, 0   , 

       
s 

, 
µ(C, s) 

1 

µ(C, s) b 

 
,    (µ(C, s), c) . b

Note  that such  a c must  exist,  since the  projection  of ∆C,s+    to  the  first  axis  is 
[0, µ(C, s)] as noted  before.  Since the  area  of this  convex hull is 1/2,  it coincides b 
with ∆C,s+ , and one has λ(C, s) = s/b 

 

Remark  5.9.  It  is worth  to  note  that Corollary  5.8 takes  place  only because  our 
ambient  space  is P2 ,  especially  due  to  properties   like the  Picard  group  of P2   is 
generated by a single class, whose associated  line bundle  is globally generated with 
self-intersection equal to 1. One does not expect these phenomena  to happen  when 
we consider the valuations v± on any smooth projective surface X . But we do expect 
that some parts  of the  considerations about  the  infinitesimal  picture  developed  in 
[19] to be true in this more general setup.  For example, the constant λ(C, s) should 
in some ways encode many interesting local positivity properties  of the divisor class 
we are studying,  as partially seen in Proposition 5.7. 

 

Example  5.10.  Continuing with s = 48/7 as in Example  4.6, and  assuming  O is a 
general  point  of a curve  C  of degree d > 3, we know from [11, Theorem  C] and 

µ(C, 48/7) = (1 + 48/7)/3 = 55/21 and there is a unique curve V b 
with v1 (C, 48/7; V )/ deg V  = 55/21, namely the unique cubic nodal at O which has
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,d

 
one of the branches  γ at the node satisfying (C, γ)O = 7. Indeed, V  has multiplicity 
2 at O, and (its strict  transform) multiplicity 1 at each centre  P2 , . . . , P7 , whereas 
it does not  pass through any  of the  remaining  centres  P8 , . . . , P13 .  So by (9) one 
has  v1 (C, 48/7; V )  = 2 + 5 + 6/7  = 55/7,  which  divided  by  deg(V )  = 3 gives 
µ(C, 48/7) = 55/21.  The Newton polygon of V  with respect to C has three vertices, b 
namely  (0, 2),  (1, 1) and  (8, 0),  showing  that v1 (C, s; V ) = 1 + s  for s  < 7, and 
so v+ (C, 48/7; V ) = (55/7, 1).   Therefore,  the  rightmost point  of ∆C,48/7+    

is the 
valuative  point (55/21, 1/3).  Alternatively, v+ (C, 48/7; V ) can be computed from 
the pullback  of V  to XK , which is 

 

V ∗ = Ṽ  + 2B1  + B2  + . . . + B7  = 

A + 2A1 + 3A2 + 4A3 + 5A4 + 6A5 + 7A6 + 8A7 + 

15A8 + 22A9 + 31A10  + 39A11  + 47A12  + 55A13 . 
 

Therefore  the  flag valuation applied  to V  is νY+ (V ) = (55, 8) (recall  that one has 
x+ = A7 ∩ A13 ) and the computation from Remark  4.8 gives

    1         0
                          

1
    

55 
 

v+ (C, 48/7)(V ) = q 
−q0      q 

νY+ 
(V ) = 7        0 

−1    7 
55   

=   7       , 8             1
 

consistent with the computation using the Newton polygon.  By Corollary  5.8, the 
remaining  vertices  of ∆C,48/7+   

are (0, 0), (144/55, 0) and (144/55, 21/55). 
The  same  computation applies  to  any  s  ∈ (φ4 , 7),  giving quadrilateral bodies 

∆C,s+   with vertices
 

3                              3         3 
   

s + 1   1 
 

(0, 0), 3 − 
s + 1 

, 0   ,
 3 − 

s + 1 
, 

s + 1    
,           

3   
, 

3    
.

 

We leave the easy details  to the reader. 
 

5.2.  Large s on  curves of fixed degree. As we have seen in Corollary  5.8, the 
convex set  ∆C,s+    can  be either  a rectangular triangle  or a quadrilateral, for 
any rational number  s > 1 and  any  degree  d = deg(C ).   Interestingly enough,  
when s     d one can say more.  More precisely, we have the following theorem: 

 

Theorem 5.11. Let C ⊂ P2  be a plane curve of degree d and D ⊆ P2  a line.  Then 
2∆C,s+   = ∆d, s , 1 for any s > d .  In particular, one has 

  
0     1 

 
(13)                             ∆(C,O) (D)   = ∆ 1        = 

d 1   −s 
∆C,s+

 

Proof.  First,  the  point  (0, 0) belongs to  ∆C,s+ , as it  is given by the  valuation of
any  polynomial  not  vanishing  at  O.  Also, ( s ,  1 ) ∈ ∆C,s

 , being the  valuation ofd    d                      + 

an equation  of C , as we saw in the proof of Proposition 3.10 (see also Remark  4.8). 
It remains  to show that (d, 0) ∈ ∆C,s+ . This will be enough, since we will have the
containment ∆d, s

 
1  ⊆ ∆C,s+   and the two coincide because both  have area 1/2.

d , d 

For  the  latter condition,   fix any      > 0  and  let  f   be  the  polynomial  as  in 
Corollary  5.6, satisfying  (i) and  (ii).  Consider  the  function  s 7→  v+ (C, s; f ) ∈ 
R2 for s > d2 . By Proposition 3.7, the first coordinate  of this function is non-
decreasing and  concave.  Thus,  the  second coordinate  is decreasing  by  concavity  
of the  first. Now, these two remarks,  together  with the properties  we know for v+ (C, 
s; f ) when
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8

s+1

,d

∀

 
  

144    21
 

55  , 55 

 
 

      
55    1

 

∆C,48/7+ 
21 , 3 

 

 
 
 

 
  

21    3
 

8  , 8 

 
       

8    1

lim 
s→7− 

∆C,s+ 
3 , 3 

 

 
 
 
 

  
21    3

 
 

∆C,7+ 

8  , 8 

 
 

 
 
 

3 , 0

 
Figure 3.    The  Newton–Okounkov body  computed in Example 5.10, 
on top.   The  difference  55/21 − 144/55  = 1/1155  is so small  that the 
quadrilateral looks  like  a  triangle.  As s  grows  in  the  interval (φ4 , 7), 
the  vertex  ( s+1 , 1 ) sticks  out  further right  from  the  two  vertices  with 3       3 
first coordinate 3 −   3    , so that at the  limit,  the  quadrilateral nature is 
clearly  seen.  At s = 7 the  quadrilateral mutates into  a triangle, shown 
in the  bottom picture. 

 

 
s = d2  from Corollary  5.6, imply that the limit  

v+ (C, s; f  )lim 
 →∞ 

 

deg(f  ) 
= (ts , 0),  for any s > d2  ,

where ts > d. In particular, (ts , 0) ∈ ∆C,s+   and since the origin is contained in this 
convex set, then  this implies that (d, 0) ∈ ∆C,s+ .

By Example  2.21 we have ∆(C,O) (D) = ∆ 1 
d 

, thus the final assertion follows.     

Remark  5.12.  With  similar arguments as in the proof of Theorem  5.11, one proves
that ∆C,s

 = ∆  s
 

1   and−         d, d ,− d  
 
∆(C,O) = 

  
0   −1

   

∆ 
1     s 

 
 
C,s−

 

Corollary 5.13. If C is a plane curve of degree d, then 
s

µ(C, s) = b ,       s > d2  . 
d

Hence  v1 (C, s)  is  minimal  (resp.    not  minimal)   for  s  = d2   (resp.    for  s  > d2 ) 
(see §3.4 for definition). 

 

Remark  5.14.  Corollary  5.13 seems to be in contrast with  Conjecture 3.13, which 
in reality  is not  the  case.   Conjecture 3.13 applies  only  for a sufficiently  general
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+

+                                                                                                                      +

+

1                                                                                                                         b      s)          1
b

b

1                                                                              supram 

If  V , with equation  f = 0, computes  b 

 
choice of C . Given s, this requires the degree of C to be large enough with respect 
to s.  In other  words, if s > d2  then  C is not sufficiently general. 

 

Remark  5.15.  Lemma 8 from [27] implies that the right-hand side of (13) converges 
to the  left-hand  side for s → +∞.  So, Theorem  5.11 makes  this  statement more 
precise, i.e., in fact the two bodies are equal for s > d2 . 

 

5.3.  Mutations and supraminimal curves. By fixing C , the goal of this section 
is to study  ∆C,s+   as a function  of s ∈ [1, +∞), i.e. by walking along an arc of QM 

away from the root.  By Theorem  5.11, the picture  is well understood for s > d2 , so 
it remains  to study  the  case when s ∈ (1, d2 ).  Note that the  origin (0, 0) is always 
a vertex  of ∆C,s+ . The remaining  vertices  of ∆C,s+   will be called proper  and their 
behaviour  is the focus of this subsection. 

 

Definition 5.16. We say that ∆C,s    is continuous  at s0  ∈ (1, d2 ) if, for every    > 0 
there  exists a δ > 0 such that for all s with |s − s0 | < δ, every vertex  p of ∆C,s+   is 
near the boundary of ∆C,s0+ , i.e. distance(p, ∂∆C,s0+ ) <  . 

If ∆C,s   is not continuous  for some s0  ∈ (1, d2 ), then we say that ∆C,s    presents 
a mutation at s0  (or mutates  at s0 ). Also, ∆C,s+   depends linearly on s in an interval
I ⊆ (1, d2 ), if the  number  of proper  vertices  of ∆C,s is the  same for all s ∈ I and
the coordinates  of the vertices  of ∆C,s+   are affine functions  of s in I . 

 

As we will see, a standard reason for mutation, taking  place between intervals  of 
linearity  of ∆C,s+ , is non-minimality of v1 (C, s).  Moreover mutations may behave 
differently  according  to whether  O is sufficiently general on C or not. 

 

Definition 5.17. We say that an irreducible  curve V  containing  O, with equation 
µ(C, s) via v1 (C, s) if v1 (C, s; f ) = deg(f ) · µ(C, s). 

If v (C, s) is non-minimal, there  exists V  computing  µ(C,     via v (C, s).  Hence   

v1 (C, s; f ) = deg(f ) · µ(C, s) > deg(f ) · 
√

s 

(see [11, Lemma 5.1]). Such curves are called supraminimal for v1 (C, s). 
 

Remark  5.18.  The  proof of [11, Lemma  5.1] shows that if V  computes  µ(C, s),  in 
particular if it is supraminimal for v (C, s), then  there  is no (other)        

b    
inimal 

curve at s. 
µ(C, s), then the valuative  points of v+ (C, s) 

corresponding  to f (i.e., the  one-sided  limits  of v+ (C, s)(f ) with  respect  to s) are 
rightmost  vertices  of ∆C,s+ .  Note that there  are two such vertices,  if ∂v1 (C, · ; f ) 
is not defined at s, in which case there  is a mutation of ∆C,s+   at s, or there  is only 
one such vertex. 

 

Example  5.19.  Corollary  5.13 tells  us that C  of degree d is supraminimal for all 
v1 (C, s) with s > d2 : we consider this as a trivial  case of supraminimality. 

There  is no supraminimal curve for the  O-adic valuation v1 (C, 1).  So, given C , 
non-trivial supraminimal curves for v1 (C, s) may occur only for s ∈ (1, d2 ). 

 

Theorem 5.20. Let C be a smooth curve through O and let V  be a curve, different 
from C , with equation  f = 0.  Then: 
(i)  the set of points  s ∈ [1, +∞) such that  V  is supraminimal for v1 (C, s) is open; 
(ii)  if V  is supraminimal for v1 (C, s) for all s ∈ (a, b) but not at a and b, then 

∆C,a+   = ∆√
a,

√
a,1/

√
a  ,    ∆C,b+   = ∆√

b,
√

b,1/
√

b  ,
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σ

1                                                                                                       1         f )(

b

µ

suc                            0

±

bodies in the range in which b 

+

s

 
and  there  is  some  point  σ  ∈ (a, b) of discontinuity of the  derivative  of v1 (C, s). 
Furthermore, there  is some branch  γ  ∈ B(V ) with Puiseux  expansion  starting  as 
y = axσ + . . ., such that  − 1  = sl(l) with l = ϕV (γ) ∈ E(f ); 
(iii)  ∆C,s+    mutates  at the finitely many points  σ ∈ (a, b) as in (ii). 

Proof.  Part (i) follows from the continuity of v1 (C ; f )(s)  and 
√

s. 

Let  us  prove  (ii).   There  is no  supraminimal curve  for v1 (C, a)  and  v1 (C, b). 
Indeed,  suppose  W  is supraminimal for v1 (C, a)  (the  same  argument  works  for 
v1 (C, b)). Then,  by part  (i), W is supraminimal for v1 (C, s) with s in a neighborood 
of a.  But V  is also supraminimal for v1 (C, s) with s in a right neighborood of a.  By 
the  uniqueness  of supraminimal curves,  we have  V  = W , against  the  assumption 
that V   is not  supraminimal for v1 (C, a).   Thus  µ(C, s)  = 

√
s for s = a, b.  Since 

v (C ; f )(s)  > deg(f ) · 
√

s for s ∈ (a, b) and v (C ;  
b 

s), as a function of s ∈ [1, +∞), 
is a tropical polynomial (see Proposition 3.7), certainly  there is some point σ ∈ (a, b) 
of discontinuity for its derivative. Moreover v1 (C ; f )(s)  = deg(f ) · 

√
s for s = a, b. 

The rest of (ii) follows from the discussion in §3.2. 

To show (iii) note  that the  mutation of ∆C,s+    at  the  points  s ∈ (a, b) as in (ii)  
depends on the discontinuity of ∂v1 (C ; f ) there (see Remark 5.18).                         

Proposition 5.21. If µ(C, s0 ) = 
√

s0  then ∆C,s 
 

is continuous  at s0 .
 

Proof.  By Corollary  5.8, for every s there  are inclusions 

∆   s        s         1      ⊆ ∆C,s+   ⊆ ∆ 

 
 
 
b (C,s)

µ(C,s) , µ(C,s) , µ(C,s)
 

µ(C,s),b C,s),    sb             b             b b         µ(

Since µ(C, s) is a continuous  function  of s, it follows that for every    > 0 there 
is δ > 0  

b  
h that for |s − s  | < δ,

                             √s0 −     ⊆ ∆C,s+   ⊆ ∆√       √ 
  

√
s0 + 

∆√
s0 − ,

√
s0 − , 

 

s0 + , 
 

s0 + ,   s

and the claim follows, since ∆C,s0 +  = ∆√
s0 ,

√
s0 ,1/

√
s0 

.                                                 
 

The  mutations described  in  Theorem  5.20(iii),  can  be  called  supraminimality 
mutations. 

 

Corollary 5.22. Any mutation of ∆C,s+    is supraminimal. 

For general choices of O and C , all known supraminimal curves are (−1)-curves.
It  would  be  interesting  to  explore  the  behavior  of ∆C,s on  surfaces  different
from P2 , or for non-quasimonomial valuations  (i.e.,  allowing singular  C , and  fol- 
lowing arcs  in the  whole valuative  tree  V rather than  only QM).  It  is tempting 
to  conjecture   that mutations in  general  should  be  supraminimal and  related  to 
extremal  rays in (some) Mori cone. 

 

5.4.  Explicit computations. In this section we compute  the Newton–Okounkov 
µ(C, s) is known (see [11] and §3.4). 

 

5.4.1.  The line case.  This case is an immediate  consequence of Theorem 5.11, which 
we state  here for completeness. 

 

Proposition 5.23. If C is a line, then for every s > 1 one has 
 

∆C,s+   = ∆1,s,1 , 

hence ∆C,s+    depends linearly  on s and there  are  no mutations.
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2  2

1                                                       1

F1

F

i

F
F        

 

,

i

 
5.4.2.  The conic case. 

 
Proposition 5.24. If C is a conic,  then 

(
∆1,s,1        if 1 6 s < 2

∆C,s+   =  

∆2, s , 1 

 

if s > 2 .

So, there is only one mutation at s = 2, and v1 (C, s) is minimal  only when s = 1, 4. 

Proof.  The case s = 1 is trivial.  So, assume first that s ∈ (1, 2) ∩ Q. By Remark  4.8, 
we know that (1, 0) ∈ ∆C,s+ . It remains to show that (s, 1) ∈ ∆C,s+ . Note that the 
only free points  in the  cluster  K = Kv+ (C,s) are P1  = O and  P2 .  The  line through 
P1  and P2 , i.e., the tangent line to C , has equation  y = 0 and behaves  exactly  like 
C with respect  to K. Thus,  again by Remark  4.8, we have

 

v+ (C, s; y) 
= v 

deg(y)           + 

implying that (s, 1) ∈ ∆C,s+ . 

 
(C, s; y) = (s, 1) ,

Take  now s ∈ [2, 4) ∩ Q and  use the  notation of §4.  By Remark  4.8, we have
that ( s , 1 ) ∈ ∆C,s

 , given by the valuation of a local equation  of C . It remains  to2    2                     + 

show that (2, 0) ∈ ∆C,s+ .  Let L on XK   be the  total  transform of the  tangent line 
to C at  O.  Note that L − B1  − B2   does not  contain  any of the  other  exceptional 
curves.   Thus,  arguing  as in Lemma  4.5(ii),  it  is easy to  see that L contains  Ak 

with multipliticy 2q and L − 2qAk  passes through x+ with multiplicity 2q00 . Hence 
(2q, 2q0 ) ∈ ∆Y+   and,  by Remark  4.8, this implies that (2, 0) ∈ ∆C,s+ . 

Finally, by Theorem 5.11, the assertion holds for s > 4.                                         
 

5.4.3.  The  higher  degree case.  The  case in which deg(C ) > 3 is more interesting, 
since  it  gives rise  to  infinitely  many  mutations of the  Newton–Okounkov  body. 
Recall the notation {Fi  }i∈Z>0 ∪{−1}  for the sequence of the Fibonacci  numbers,  and 
φ for the golden ratio  (see §3.4). 

 

Proposition 5.25. For each odd integer i > 5, there exists a rational curve Ci   ⊆ P2 

of degree Fi with a single cuspidal (i.e.,  unibranch) singularity  at O and character-
istic  exponent   Fi+2 

Fi−2 
∈ (6, 7),  whose six free points  infinitely  near  O are  in general

position.  Let C   be a line (of degree F   with characteristic exponent   F3   = 2) and F−1 

C3  be a conic (of degree F3   with characteristic exponent  F5  = 5).  All these curves 
are (−1)-curves in their  embedded resolution  (i.e.,  after  blowing up the appropriate 
points  of the cluster  of centres  determined by the characteristic exponent). 

If C is a general curve with deg(C ) > 3 through the origin O, then the curve Ci  , 
with equation f i = 0, through O and the first six infinitely near  points to O along C , 
satisfies   

Fi−2
 h 

 F 2
 

Fi+2 

 
 

µ(C, s) = v1 (C, s; f i  ) = 


 Fi      
s    if s ∈ 

i 
F 2 
i−2 

h 
F  

 

Fi−2       
, 

F 2     i

b                  
deg(f i  )

 Fi+2 

 
i+2

 
i+2   .

Fi                  
if s ∈ Fi−2 

,     2
 

Thus  Ci   is supraminimal for v1 (C, s) for s ∈ 

   
 F 2   

F 2      , 
i−2 

2   
i+2 

2 
i  

 
and any odd i > 1.

 

Proof.  The  existence  result  is in [26, Theorem  C,  (a)  and  (b)].   The  rest  of the 
assertion is [11, Proposition 5.5].                                                                                    
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2 , 2

4

4

9

9

This                                                                       1             3

9

+

+

 
Proposition 5.26. If deg(C ) > 3 and O ∈ C is a general  point,  then: 
(i)  one has 


∆1,s,1         if 1 6 s < 2 

(14)                               ∆C,s+   = ∆2, s  1 

∆ 5  2s  2 
2   5   5 

if 2 6 s 6 5 

if 5 < s 6 6 + 1 ,

hence ∆C,s+    mutates  at s = 2, s = 5, and depends linearly  on s between mutations; 
(ii)  for s ∈ [6 + 1 , φ4 ) one has

 
∆C,s+   = ∆  Fi   Fi−2

 

 
Fi−2  if s ∈ 

  
 Fi  

, 
Fi+2 

 
 
;

 
Fi+2

 

Fi−2 
, Fi   

s, Fi Fi−4 Fi−2

i.e.,  ∆C,s+    mutates  at  Fi  
, for all odd integers  i > 5 (these  mutations agree with 

−2

part  (ii)  of Theorem  5.20),  and depends linearly  on s between mutations; 
(iii)  for s ∈ (φ4 , 7), the Newton–Okounkov body is the quadrilateral with vertices

 
(0, 0), ( 

3s 
1 + s 

 
, 0), ( 

1 + s 
, 

3 
1 

), ( 
3 

3s 
, 

1 + s 
3 

); 
1 + s

(iv) for s ∈ (7, 7 + 1 ) one has  
 
∆C,s+   = ∆ 8   3     3 .

 
Accordingly,  there  is a mutation at s = 7. 

3 , 8 s, 8

 

Proof.  All the  claims follow from Corollary  5.8 taking  into  account the  computa- 
tions  of µ(C, s)  from  [11],  see Remark  3.15.   The  only  problem,  when  applying 

b 
Corollary  5.8, is to  know where  the  vertex  farthest to  the  right  of ∆C,s+    lies on 
the  line t = µ(C, s),  i.e.,  we have  to  compute  the  number  c appearing in Corol- 
lary 5.8(ii).    

b     
is given by the valuation of the curve C   or C   in case (i), of the 

curve  Ci    for any  i > 5 in case (ii)  (where  both  examples  of curves  are  retrieved 
from Proposition 5.25), and  the  cubic curve D1   from [11, Table  5.1] for both  (iii) 
and (iv).                                                                                                                               

 

Remark  5.27.  If deg(C ) = d, Proposition 5.25 leaves an unkown interval  [7 + 1 , d2 ) 
whereas  for s ∈ [d2 , +∞) the  Newton–Okounkov body is known by Theorem  5.11 
and there  are no mutations there.  Conjecturally, the same should happen  for 

1 
s > 8 + 

36 
(see Conjecture 3.13) if O is a general point of C . 

 

Corollary  5.28. Assume  deg(C ) > 3 and  O is a general  point  of C .  Then  for 
s 6 7, the Newton–Okounkov body ∆C,s+   lies in the half-plane t + u 6 3. Moreover,

(i)  If s ∈ [1, φ4 )∪[7, 7+ 1 ), then ∆C,s is a triangle  whose vertices are valuative.
(ii)  If s ∈ (φ4 , 7), then ∆C,s is a quadrilateral with at least one vertex being a

non-valuative  point. 
 

Proof.  All claims  follow from Proposition 5.26, except  the  fact  that ∆C,s+    has  a 
non-valuative vertex when s ∈ (φ4 , 7), and that ( 3s , 3 ) is valuative  when s ∈ [7,  64 ). 8     8                                                                  9 

First,  assume that (  3s  ,    3     ) is valuative  for some s < 7. This means that there1+s 1+s
is a polynomial  f of degree d with 

3s                                                      3 
v1 (C, s; f ) = 

1 + s 
d,    and    ∂+ v1 (C ; f )(s)  = 

1 + s 
d.
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9

9

 
As v1 (C ; f ) is piecewise linear as a function  of s, then  for small enough    > 0, 

3s             3                                                               3 
v1 (C, s +  ; f ) = 

1 + s 
d + 

1 + s 
d ,    and    ∂+ v1 (C ; f )(s +  ) = 

1 + s 
d.

 

In particular, this implies that
    

3s 
1 + s 

3  +          , 
1 + s 

3 
1 + s 

 
∈ ∆C,(s+ )+ 

.

But  this  contradicts that for s +   < 7, the  Newton–Okounkov body ∆C,s+    lies in 
the half-plane  t + u 6 3. So, (  3s  ,    3     ) is a non-valuative vertex.1+s 1+s

Finally,  ( 3s , 3 ) is valuative  because there is a unique curve V  of degree 24 whose 8     8 
Newton  polygon  with  respect  to  C  has  vertices  (0, 9) and  (64, 0).   Indeed,  let  K 
be the  cluster  of centres  of v1 (C,  64 ), which consists  of 8 free points  followed by 8 
satellites,  each proximate to its predecessor and to P7  (the  continued fraction  of 64 

is [7; 9]).   Then  V   has  multiplicity 9 at  each  of P1 , . . . , P7   and  multiplicity 1 at 
P8 , . . . , P16 . 

The  curve  V   has  genus  1 and  is obtained in this  way.   Consider  the  Cremona 
transformation ω determined by the  homaloidal  system  of curves of degree 8 with 
triple  points  at  a cluster  C of seven general  infinitely  near,  free, base points  (this 
Cremona  transformation appears  in the  construction of the  curves Ci   in Proposi- 
tion 5.25, see [26, proof of Theorem  C]). 

There  is a unique  cubic curve Γ with a double point at  the  first point of C and 
passing  simply through the  remaining  six points  of C. This  curve is contracted to 
a point by ω. 

Let x ∈ Γ be a general  point.  There  is a pencil P  of cubics having  intersection 
multiplicity 8 with  Γ at  x.  Then  P  has 9 base points,  8 are given by the  cluster 
formed by x and by the 7 points  infinitely near to x along Γ, and there  is a further 
base point y ∈ Γ.  The general curve of P  is irreducible,  and its image via ω is the 
required curve V , which has genus 1.                                                                              

 

Remark  5.29.  It is somewhat  mysterious  that in the case (ii)  of Corollary  5.28 one 
has  a vertex  of ∆C,s+    that is not  valuative, taking  into  account  that for s  < 7, 
s ∈ Q, the Mori cone of XK  is polyhedral  (see [11]). 
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3.  Bauer, Th., Küronya,  A.,  Szemberg, T.,   Zariski  chambers,  volumes, and   stable   base  loci, 

Journal für die reine  und  angewandte Mathematik 576 (2004),  209–233.  1, 2.3 
4.  Berkovich, V. G.,  Spectral theory and  analytic geometry over  non-Archimedean fields. Mathe- 

matical Surveys and  Monographs, 33. American Mathematical Society, Providence, RI,  1990. 
x+169 pp.  ISBN:  0-8218-1534-2. 1

5.  Boucksom,   S.,    Corps   d’Okounkov  [d’apr̀es   Okounkov,   Lazarsfeld–Musta̧tă 
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24.  Lazarsfeld, R.,  and  Musta̧tă,  M.,  Convex   bodies  associated to  linear series. Ann.   Sci.  É c. 
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Côte  de  Nacre, Boulevard du  Maréchal Juin, 14032, Caen, France 
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