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Abstract. Given asmooth projective algebraic surfage a point O € X
and a bigdivisorD on X, weconsiderthe set of allNewton—Okounkowodies
of D with respectto valuationsof the field ofrational function®f X certred
at O, or, equivalently,with respectto a flag (E,p) which isinfinitely near
O, in the sensdahat therds a sequencef blowupsX? — X, mapping the
smooth, irreducible rationalurve E € X% to O. The mainobjective of this
paperis to starta systematic studyf the variation of these infinitesimal
Newton—Okounkowodies as(E,p) varies,focusing on the case X P?.
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1. Introduction

The concept of Newton—Okounkov bodies originat@ Okounkov’'s work[25].
Relying on earlier work of Newton and KhovamskDkounkov associates o@x
bodies to ample line bundles on homogeneous sgeamsarepresetation-theoretic
point of view. In the generality we know them toddyewton—Okounkovbodies
have beerintroducedby Lazarsfeld-Musdta [24] and Kaveh—Khovanski[1g].

Given an irreducible normal projective varie¥ of dimensionr defined overan
algebraically closed field K afharacteristi@, a big divisor D and a maximakank
valuationv on the function field K (X) (orequivalently,an admissible/goodlag
of subvarieties on some propéirational model of X (see$2.1)), a convexbody
Ay (D) is attachedo these data which encodes in its convex geomstriucture the
asymptoticvanishing behaviour of the linear systefd®| for d 0 with regect
to v.

Newton—Okounkovbodies contain a lot of information: fromcanceptualpoint
of view, they serve as a set of ‘universal numéricavariants’according to a result of
Jow [17]. From a morepracticalangle, they reveainformationabout thestructure
of the Mori Cone of X or of its blowups, abougositivity properties oflivisors
(ampleness, nefness, and the like, seerfstamce Theoren?.22 Remark 2.23
and [2(]), and invariantslike the volume or Seshaddonstantgsee[20, 21]).

Not surprisingly, the determinationof Newton—Okounkovbodies isextremely
complicated in dimensions three and above.eyTlkan benon-polyhedraleven if
D is ample and X is a Mori dream space (s&d). We point out thatthe shape
of Ay(D) depends on the choice of v to a larggerd: anadequatechoice of
a valuation can guaranteea more regular Neton—Okounlov body [1]. The case
of surfaces, though not easy at all, is reably moretractable: the Newton—
Okounkov bodies are polygons wittationalslopes, and they can lm®mputed in
terms of Zariski decompositions (s&23).

In this paper we are mainlynterestedn infinitesimal Newton—Okounkowodies
which arise fromvaluations determinetly flags (E, p), with pe E, which are
infinitely near apoint of the surface X, i.e. there isbirationalmorphism X — X
mapping the smooth, irreducibleational curve E ¢ X% to O. TheseNewton—
Okounkov bodies have already been studied2iip 21], and their considerations
implicit in [11]. Here we intend to connect the discussion[lif} to infinitesimal
Newton—Okounkovbodies.

One of the main underlying ideas [6f] is to study theinvariart b (se¢ §3.4
for the definition), which is roughly speaking assymptotic multiplicityfor quasi-
monomial valuations.As such, it can bénterpretedas a function on théopological
spaceQM, the valuative tree ofuasi-monomialaluations. Spaces @fluations
were introducedby Zariski, and the topology we aiaterestedin was originally
considered in the celebrated work of Berkovich see alsq17. The treeQM is
rooted, and the root corresponds to the plidiiy valuation centred at Qwith
infinite maximal arcshomeomorphicto [1, ) starting from the root, andarcs
sproutingfrom vertices corresponding to integer poirgge(17] and Remark3.6).
The function f is continuous along the arcs @M. Interestinghyenough,infinites-
imal Newton—Okounkovbodies can beénterpretedas 2-dimensionalcourterparts
of b.

Here we will focus on the case X P?; the same questions on othsurfaces
(general surfaces of degree d i fBr instance)are likely to be equallyntereging,
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but we do nottreatthem in this work in the hopthatwe will come back tahem
in the future. A basigropertyof 4, pointed out if11], is that
b

V_
b(s) > s

assumingthats € [1, +o0) is an appropriatelychosenparametepn an arc ofQM.
Furthermoregquality holds unless there is a good geometrisoredor thecortrary,
in the form of a curveCs on Xg (for Xs the appropriateminimal blow-up ofX
where the related flag shows up) suttat the correspondingvaluationtakes a
value higher than déGs)- S. Such a curve is callesupraminimal(see §5.3).

Supraminimalcurves are geometrically venyarticular,and giveinformation on
the Mori cone ofXg; for instance, it isonjecturedn [11] (see alsaConjecture3.13
below) that along sufficiently general arcs @M, all supraminimalcurves are
(=2)-curves.If so,

V_
b(s) = s for every s> 8 1/36,

which among others implies Nagata’'s celehyatedjenttre claimingthatthe inverse
of the t-point Seshadriconstam of P> equals Tfort> 9.

In this paper we associate Newton—Okounkovbody to eachpoint of the val-
uative tree andnvestigatehow they change along the arcs @M. We startby
taking aquasimonomial valuation(C, s) € QM, where C is a curve definingn
arc inQM and se [1, =) defines gpoint on the arc, and associating with irank
2 valuation. We take v= (v1,V,), where ¥ = v(C, s) and ¥ is the right (or left)
derivative of v(C, s) with respect to s. Theogess is described i¥8.3 (preciely
in Proposition3.10. We obtain two valuations: v (C, s) andv_(C, s), bytaking
respectively theright or the leftderivative. Once we fix D to be a line in thplane
the two valuationslead to theNewton—Okounkovbodies Ac s, and Acs_. We
focus on describing the properties At s,, however the cases amwnceptually
very similar and many results aobtained simultaneousfgr both.

The study of thevariationof Newton—Okounkowodies is anaturalextension of

U. In particularthe projection ofAc s, to the first axis is [Qb )]
Moreover, the convex geometric behavior Af s, is essentially simple (it ia
certain triangle. whenever p has the expected value ($&el). Otherwise Ac s,
exhibits more complicated features. Timeresting phenomenamhich we study
is that while f is continuous oQM, the correspondingNewton—Okounkovbodies
are not. We explain the concept agfntinuity and discontinuity (i.e. mutation) of
Newton—Okounkovbodies in§5.3 (in particularDefinition 5.16).

Taking into accoun the relation betweemNewton—Okounkovbodies andvaria-
tion of Zariski decompositions (see Theorehil7 and [3, Theorem 1]), some dis-
continuity phenomenois not unexpectedrelated tonon-differentiabilityof Zariski
decompositions in the big cone (Rema2k2(0. We would also like tgoint out a
plausible alternative explanatiomrovided by higher rankionarchimedeaanalyti-
fications, which we however do not use at allthis work. Just a®QM parame-
terizes quasimonomial valuationgof rank 1), topological spacdbat parameterize
valuationsof arbitraryrank have beeintroducedin the literature, starting with
the Zariski Riemann spadeo, VI, §17] (whose topology is howevannrelated to
the Berkovich topology oQM and so not suitable for our purposes) andst
recently and notably the Hubemalytification[16] and the Hahnanalytification
[13] of P2 (which admit continuous maps to the Berkovihalytificationthat con-
tains QM). Assigning the rank Xaluationv,(C, s) to thepoint v(C, s) € QM
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determinesa map from the tree auasimonomial valuationso the higherrank

analytification, but this map turns out to be nowhere cowsu[8]. From this

point of view, discontinuitiesare unsurprising;what isremarkableis the piecewise
continuity described in85.3 and §5.4.

The main object of oumterestis the study ofnutationswhen the valuations
move away from the root @M along a fairly general route, and the resultshaee
been able to obtain are collected$8in Our results argartialin the sens¢hat there
are intervals in which we have been unable taiabtthe appropriate information
about mutationsoccurring there. Oumanuscripis far from conclusive, it isisply
devoted to lay the ground for future researchthe subject.

The paper is organized as follows. 8a we collect some basic definitionand
results aboutvaluationsand Newton—Okounkovbodies, which we recall here
make the paper as self damedas possible. 183 we focus on thawo dimensional
case, and specifically oguasi-monomial valuationgheir interpretationin terms of
the classicaNewton—Puiseux algorithmand the related clusters of centres. this
section (precisely in RemarB.6) we briefly recall thestructureof the valuation
tree QM. In 85 we provide ourcomputationsabout the infinitesimalNewton—
Okounkov bodies.

In what follows we will mainly work over the figlof complexnumbers.

Acknowledgemeis

This research wastartedduring the workshog'Recert advances in Linear ses
and Newton—Okounkowbodies”, which took place ifPadovaltaly, February9-14,
2015. Theauthorsenjoyed the lively andstimulating atmospheref thatevert.

2. Preliminaries

Newton—Okounkovbodies in the projective geometric setting haesntreated
in [24], hence this is the source we will primarily follow.

Let X be an irreducible normal projectivariety of dimensionr defined over
an algebraically closed field K aharacteristicO (we will usually have the case
K =C in mind), and let D be a biGartierdivisor (or line bundle; we magbuse
terminology and identify thdéwo concepts) on X

Although one first introducesNewton—Okounkowodies forCartierdivisors, the
notion is numerical, evebetter,it extends to big classes in'fX)r (see[24,
Proposition4.1]). Newton—Okounkovbodies are defined with respect to a rank
valuation of the field ofationalfunctions K (X) of X. We refer t¢30, Chapter VI
and Appendix 5] and9, Chapter8] for the general theory ofluations.

2.1. Basicson Valuations.

Definition 2.1. A valuation on K(X) isa map v : K(X)» G where G isan
ordered abelian group satisfying the followimgperties:

(1) v(fg)=v(f) +v(g), ¥f,ge K(X)",

(2) v(f +9g) =>min(v(f), v(9)), ¥f,ge K(X)",

(3) v issurjectiw,

(4) v(@=0,YVaeKr-.
G is called the value group of theluation. Two valuationsv, v’ with value groups
G, G respectively are said to be equivalent if thésean isomorphismm : G - G
of ordered groups such that VY = 1 v V.
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The subring
R, ={f e K(X)|v(f) >0}
is a valuation ring, i.e., for af € K(X), if f 6e R, then f~1 € R,; its
uniguemaximal ideal is m={f € K(X) |v(f) > 0} and the field K = R,/m,
is called the residue field of v. Twealuationsv, Vv’ are equivalen if and only if
Ry, = Ry [30, VI, §8].

Definition 2.2. The rank of aaluationv is the minimal non-negativeinteger r
such that the value group is isomorphic to an ordesdbgroup ofRl  (i.e. R"
with the lexicographic order). One can themite

v(f) = (va(f), va(f), ... ve(F))
with v;j : K(X)* — R for every integer i with 6i 6.
For every integer i with i 6 r,the i-th truncationof v is the rank waluation

vIi(F) = (v (F), va(F), ... vi(F)).

The trivial valuation, defined ag(f) =0 for all f = 0, has rank zero; it cabe
considered as the O-ttnuncationof all valuationsv.

Remark 2.3. The rank of evemaluationon K (X ) is bounded by =dim(X ), and
every valuation of maximal rank is discrete, i.d@t has a value groupomorphic
to Z,, ¢ R, [30, VI, 810 and §14]. Whenever v is aaluationof maximal rank,
one may assumehatthe value group of v equalg!,, up to equivalence unddhe

action of someorder-preservindi.e., lower-triangular)elemert of GL(r, R).

Remark 2.4. Theationalrank of thevaluationv is the dimension of th&€-vector
space G®z Q, where G is the value group of v; it is well kmothat the rational
rank is bounded below by the rank of v, andvabby the dimension of X (see
[30, VI, 810, p. 50]). Avaluationv can be of rank 1 andationalrank r > 1.
The standardexample is in[30, VI, §14, Example 1, p. 100] (see also Remaxis
below).

By [30, VI, §10, Theorem 15], the rank ofaluationv equals the Krulldimension
of its valuation ring R,. More precisely, the ideals in,Rare totally orderedby
inclusion, and if the rank is, then the prime ideals of,Rare

0=po Cpr C...Cpr=my, where pj={f €Ry|v|i(f)>0}.
The valuationrings of thetruncationssatisfy reverse inclusions

K(X) = Rv|0) Ry}, )..) Ry, = R

as they are the localizatioB,|; = (R )p; -

By the valuative criterion of properne$ss, I, 4.7], since X is projectivethere
is a (unique) morphism

Ox,v - Spec(Ry) — X

which, composed with Spec(K (X )} SpecR,), identifies Spec(K (X)) aghe
generic point of X. The image in X of thdosed point of SpecR,) (or the
irreducible subvarietywhich is its closure) is called the cented v in X, and
we denote it bycentrg (v). When the variety X isinderstood,we shall write
centre(v) = centre (v). A valuationv of rank r determines flag

() X=certre(v|g) ) certre(v|;) 2 ...2 certre(v|,) = certre(v),

and cemre(v|;) = ox.v(pi)- Note thatsome of the inclusions may legjualities.
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For avaluationof rank r > 1, the centre of the firdruncationv|, is calledthe
home of v, following|[6].

Example 2.5. (Divisorialvaluations)If centre(v) is a divisoV , then v isequivalett
to the valuation thatassigns to eachationalfunction its order of vanishing along.
Moreover, the residue fieldKis the function field of/ (see[30, VI, §14]).

Remark 2.6. Let L be a line bundle on X. @m affine neighborhood U dhe
centre of v (considered as a schematic poéguivalently,an affineneighorhood

of the generigooint of centre(v))L is trivial, and so any section sH9(X, L) - {0}
restrictedto U can be seen as a non-zero elénfere K(X), and one carset
v(s) = v(f). A differert choice of U would give arlemert in K (X ) differing by a
factor of value 0, so v(s) is well defined. Bytses v(D) = v(s) whenever D= (s),

s € HO(X, Ox (D)), valuationscan be considered to assume values on @&yiso
effective divisors takenonnegative values.

Example 2.7.(Valuation associated to an admissible flag) A full fl#g of irre-
ducible subvarieties

2) X YoD2Y1D...0Y—1DY,

is called admissible, ifodimy (Y;) =i forall 06i 6 dim(X ) = r,and Y; is nhormal
and smooth at theoint Y, for all 06i 6 r- 1. The flag is called good If; is
smooth for all i=0,...r.

Let ¢ € K(X) be a non-zeraationalfunction, andset

_0
vi(g) ®ordy,(9) and ¢y & 7

gl Y1
where g = 0 is a local equation of; in Yo in an open Zariski subset arountie
point Y,. Continuingthis way via

def def _Qj — .
vi(g) = ordy, (9i-1) , 0i = _(jS(ﬁi_l) forall i=2,...r,
Yi
whereg; =0 is a local equation of; on Yj_; around Y,, we arrive at dunction

07-v. © Ew ©. ... (@)

One verifiesthat vy. is avaluationof maximal rank, andhatthe flag (1) given by
the centres of theruncationsof vy_ coincides with the flag. in (2).

Proposition2.8. Let v be a valuation of maximal ramk= dim(X ) whose flag of
centresY. in (1) is admissible. Then v is equivalent to theyflaluation vy_.

Proof. Byinductionon r. For r =0 there is nothing to prove, so assume 1.
Remark 2.5 tells usthatv|; = vy_|; (up to equivalence), anthattheir common
residue field is K(Y,), with Y; = centre (v|1). The valuationv (resp. vy_) induces
a valuationv (resp.vy_) on K(Y1) = R,,/m,|, as follows. Forary

0= f_E RV|1/mV|1,

there is anf € K(X) sitting in R, whose class modulan,, is f. Then onesets
v(f) = v(f) (similarly forvy. ) and verifiegshat this is well defined. Thevalue
group of v is the subgroup of the value graiipv determinedby v = 0 (the
“maximal isolated subgroup” in the language[df, VI, §10]) and so it hagsank
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r - 1 (maximal forvaluationsof K (Y,)); it is easy to seéhatits flag of centres is
Y., with Yi =Yi+afori =0,...,r- 1. But vvy. has maximal rank - 1 and flag of
centres isY- as well, so byinductionv andvy_ are equivalef.

Finally, the valuationring of v (resp. ofy.) consists of thosé€ in K (X) with
V|1 (f) = vy_[1(f) > 0 and of thosef in K(X) with v|3(f) = vy_[2(f) = 0 and
v(f) >0 (resp. vy.(f) > 0). Now \1(f) = vy [1(F) =0 meansthatf € Ry|,\my|,,
so forf satisfying this equalityf € R|,/my, is well defined, andv(f) > 0 (resp.
vy_(f) > 0) is equivaleri to v(f) > 0 (resp. vy_(f) > 0). Since v andy are
equivalentthen thevaluationrings of v andvy. arethe same,asclaimed.

Valuationsof maximal rank are very well known (sg&, VI, §14],[29, Examples
5 and 6]) and Theoren2.9 below ispresumablyobvious for experts working ithe
area of resolution dfingularities.We include a proof as we lack a preciséerence

for it. For the case of surfaces, $&ebelow.

Theorem2.9. Let X be a normal projective variety, ané valuation of the field
K (X) of maximal rankr = dim(X ). There exist a propebirational morphism
n: X — X and a good flag
Y.:>?=Y03Y13 ...0 Yy
such that v is equivalent to the valuation asged toY..
Proof. Denote by € X the generic point, and set ¥ K ({) = K(X). Let
O=pocpic...cpr

be the maximal chain of prime ideals ip,Rand choosd,,... f, € R, ¢ K so
thateachf; € p \ pi—1. Fix projective coordinate$xp : ... :X,] in P{ ¢ P{ x X,
andlet E=[1:f,:...:f] € Pi. Let Xy be the Zariski closure & in Pk x X.
Since its generigoint is & (which is a closeK-point in PY), it has residue field
equal to K, and the induced projective morphi¥® — X is birational.

For i=1,...r, the restrictionof the rationalfunction x;/Xg to Xq is f;, which
has positive v-value. Therefore the centre @i Xg liesin[1:0:...0]x X, and
its local ring Ocemre(0 (v) contains f. , . . . , fr . Hence

fi e pi N Ocentr&o(v) \ Pi-1N Ocentre(O(v) ’

so that pi N Ocentre(O(v) = Pi-1 N Ocentre(O(v)- Sincepi n C)centre<0(v) = OXo,v (pi)
as schematic points ingXit follows thatthe centres of théruncationsof v are all
distinct. Since there are as marguncationsas the dimension of X, the flag)(in
Xy is a full flag, i.e.,dim(centrg,(v]i)) = r-i fori =0,...,r. Every birational
model of X dominatingXy will again have thisproperty.

The flag ofcentresof the truncationsin Xg is usually not good (or eveadmis-
sible), as X is not necessarily smooth (not even normal)cantre,(v). Using
Hironaka's resolution of singularities we kndWwatthere is abirational morphism
X1 — Xq, obtainedas a composition of blowups along smooth centiesh X; a
smooth projective variety. Oni;Xwe have a full flag like ) whose codimension 1
term, centre, (v|1), may be singular. But again there is a contpwsiof blowups
along smooth centregcontainedin centrg, (v|;)) thatdesingularizes it; wapply
these blowups to ¥ to obtain % — X;. Since the blowup of a smootariely
along a smooth centre is again smooth, skays smooth, and the divisorial part of
the full flag (1) in X, is now also smooth. By resolving sequencially #iegularities
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of centre, (v|2), ...,certrex,_,(v|r—1) we arrive at a modeX = X, where the
flag

Y. X =certreg(v|o) D certreg(v|1) ) ... certreg (v]r) = centreg (v),
is good. Now byProposition2.8, the valuationv is equivalett to vy_ asclaimed.

Remark 2.10. We work here gharacteristid, but a suitable (weaker) version of
Theorem 2.9 still holds in anycharacteristic.The same proof works, bgeplacing
Hironaka’s resolution with a sequence of blowupsnglnonsingular centres givéay
Urabe’s resolution of maximal rank valuatiofigg]. The members of theesulting
flag are not necessarily smooth, but they rmoe-singularat the cetre.

In the situationof Theorem 2.9, we call Y. the good flag associated to v the
model X. The choice of a flag is not unique, butr fwo models, theinduced
rationalmap between them maps the associated flagsoimecanother.

2.2. Newton—Okounkovwbodies.

Definition 2.11.Let X be an irreducible normal projective variefy, a bigdivisor
on X, and v avaluationof K (X ) of maximal rankr = dim(X ). Define the Newton—

Okounkov body of D with respect to Y as follows
] ]
L
3) AyD) %« convex huIIJ @ f e HO(X, Ox (kD)) - {0}
kEZ>0

The points inAy(D) n Q" of the formﬂ? with f € HO(X, Ox (kD)) - {0} for
some integer k= 0 are called valuative gints

Remark 2.12. The properties wdluationsyield thatif A, B are two distinct
valuative points, then ansational mint on the segmenjoining A and B isagain
a valuative point. This impliethat valuative points are dense in, (D) (see[19,
Corollary 2.10], for the surface case; the prafnalogous in general)Therefore
in (3) it suffices to take the closure in the Euclidetpology ofR".
Alternatively,one defines theNewton—Okounkowody of D with respect to &s

Ay(D) def, {D"| D" = D effective Q-divisor} ,
where = is the Q-linear equivalence relation. B¥, Proposition4.1], onecan
replace Q-linear equivalence by numerical equivede Hence, one can defing, (C)
for any numerical class in the big cone Big(X = N%(X)gr of X.

Our definition differs from the one if24] in thatwe usevaluationsof maximal
rank instead of those defined by admissidegsf on X. But, an admissible flag
on X gives rise to aaluation of maximal rank on K (X) by Exampl@.7 (see
also[1€g]). Conversely, by Theoren2.9, any valuationof maximal rank arisefrom
an admissible flag on a suitable progarational model of X; thus maximakank
valuationsare thebirational version of admissible flags. In conclusion, latiown
results forNewton—Okounkowodies defined in terms of flagiluationscarry overto
Newton—Okounkovbodies in terms ofaluationsof maximal rank, modulgassing
to some differetbirational model.

In [5, 18] one considerdNewton—Okounkowodies defined bwaluationsof max-
imal rationalrank, an even more genersituationwhich we will not considetere.
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2.3. Some propertienf Newton—Okounkov bodiesA very important fea-
ture of Newton—Okounkovbodies isthat they give riseto a ‘categorification’ of
various asymptotic invariantassociated to line bundles (see for instaht® The-
orem C] for the correspondingtatementfor moving Seshadriconstants). Recall
thatthe volume of aCartierdivisor D on an irreducible normal projectiwariety
X of dimensionr is definedas

def dim H (X,0x(mD))

vol(D) = Ilrrr?ﬁsgp mr/rl

Theorem2.13 (Lazarsfeld—Musita, [24, Theorem 2.3]). Let X be anirreducible
normal projective variety of dimension, let D be a big divisor on X, and let v be

a valuation of the field K (X) with value groupi,,. Then
1vol(Ay
(D)) =, vol(D),

where the volume on the left-hand side denotes lthbesgue measure iR".

Remark 2.14. Although the proof of Theorem 2.3 frdiY] takes theadmissible
flags viewpoint, thestatementemains valid foNewton—Okounkovbodies defined
in terms ofvaluationsof maximal rationalrank (with value group equal t@") by
the remark above (see algg Corollaire 3.9]).

Since the main focus of our work is on the stef@ase, we wilconcentrate on
surface-specific properties bfewton—Okounkowbodies.

Theorem2.15 (Kironya—Lozo/aru—MacLean,[27]). If dim(X ) = 2, then every
Newton—Okounkov body is a polygon.

If dim X = 2, then an admissible flag is given by a pdd, X), where C isa
curve, and x€ C a smooth point. If D is a big divisor on, Xhe corresponding
Newton—Okounkowody will be denoted by (D).

Remark 2.16. Ifact one can say somewhat more about the convex geonoé
Newton—Okounkovpolygons, seg22, Proposition2.2]. First, all the slopes dffs
edges aregational. Second, if one defines

Uc (D) def sup{t >0| D - tC is big ,
then all the vertices ol ,y(D) arerationalwith possiblytwo exceptions, i.ethe
points of this convex set lying on the ligpc(D)} x R.

Lazarsfeld andMustata observe in[24, Theorem 6.4that variatiorof Zariski
decomposition[3, Theorem 1] provides a recipe for computiddewton—Okounkv
bodies in the surface case. Let=DP + N be the Zariski decomposition &f
(for the definition and basic properties $eel4]), where the notation, here and
later, is thestandardone: P is the nef parNef(D) and N the negativeapt
Neg(D) of the decomposition. Denote byv = v(D, C) the coefficiert of C in N
and p= pc (D) whenever there is no danger of confusioet &also Null(D) behe
divisor (containingNeg(D)) given by the union of all irreducibleurges E onX
such that Nef(D) - E = 0. Note thatby Nakamaye’s theorenf23, 10.3], Null(D)
coincides with theaugmentedase locus of DB(D) = B(D - A) where A isary
ample divisor and is a sufficiently small pogti real number.



10 N EQIT BEFIND BRRONK BODRENSERQOZIDNA N, ROIE, WAIDUSHRAE DR E E 10

For anyt € [v,p], setDy = D - tC and letDy = P + N be the Zariski

decomposition oD:. Consider the functions, B : [v,1] = R* defined as follows
def

a() € ord(Ngc), B Ea®)+R-C.
Theorem2.17 (Lazarsfeld—Musdta, [24, Theorem 6.4]). If C is not a compnent
of Null(D), then

AcxD) = (L u)eR’|v6téy, a(t)6u6p(t)

Remark 2.18. Note¢hatall the results concerninfjlewton—Okounkovbodies use
Zariski decomposition in Fujita’s sense, i.e. pseudo-effectiveR-divisors.

As an immediate consequence have:

Corollary 2.19.In the above setting the lengths of the verticadesl of A ¢ (D)
are independenbf the (smooth) point > C.

Remark 2.20. (See2, proof of Proposition2.2]) In the above setting, tHenction
t = Nt is nondecreasingn [v, p], i.e. N, = Ny, is effective whenever 6 t; 6 t, 6
p. This impliesthata vertex (t, u) oA(c (D) may only occur for those € [v, Y]
where the ray D- tC crosses into a differezariski chamber, iparticular, where
a new curve appears MN.

Given three real numbers =0, b> 0, c> 0, we will denote by\, p, cthe triangle
with vertices (0, 0), (a, 0) and (b,c). We g&fc:= Azocand Ag a:= Aa Note
thatthe triangle A, b c degenerates into a segneéhc = O.

Example 2.21. In the above setting supptsatD is an ample divisor.Then,
by Theorem 2.17, the Newton—Okounkovbody A (D) contains thetriangle
Apc(p),p-c, and by Theoren2.13 one has

D2
D-C°

Equality holds if and only ifAc »)(D) = A, (p),p.c- In particular,if X =P2,C
is a curve of degree d, and D a line, thge »)(D) = Ay g

Hc (D) 6

Theorem2.22 (Kironya—Lozo/anu,[19, Theorem 2.4, Remark 2.5]). Let X ke
smooth projective surface, D be a big divisor rand x€ X a point. Then:

(i) x 6 Neg(D) if and only if for any admissible flag,(x) one has (0O, O¥
A(c,x(D);

(i) x 6e Null(D) if and only if for any admissible flag (&) there is a @sitive
number A such thatA, € Az (D).

Remark 2.23. The divisor D is nef (resp. amplfeand only if Neg(D)= @ (resp.
Null(D) = 0), sothatTheorem 2.22 provides nefness and ampleness criteria Cfor
detected fromNewton—Okounkowodies.

Note that Theorem 2.22 has a version in higher dimension (4&€]). The same
papers[19, 2(] explain how to read the moving Seshaatinstantof D at apoint
X 6e Neg(D) from Newton—Okounkov bodies.
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3. Valuationsin dimension 2

3.1. Quasimonomial valuationsie will mainly treatthe case X= P2 and D
a line, leaving tathereader to make the obviowaptationdor other surfaces.

Let O denote the origin (0, ® A% = Spec(K[x,y]) ¢ P> = Prg(K[X,Y,Z])
with x = X/Z, y=Y/Z, and let K= K (P?) = K(x, y) be the field ofrational
functions intwo variables. We will focus ofNewton—Okounkovbodies of D with
respect to rank Raluationsv = (vi,vy) with centre at O, with thedditional
condition thateither the home of v is a smooth cuteoughO, or it is equal tdO
(in which case we call the corresponding bodyirdimitesimal Newton—Okoundv
body) and v is aquasimonomial aluation.

Fix a smooth germ of curve €roughO; we can assumwithoutloss ofgener-
ality thatC istangentto the line y= 0; hence C can be locallyarameterizedby
x 7 (x, £(X)) € A2, where&(x) € K [[x]] with £(0) = &'(0) = 0.

Definition 3.1. Given a real number 1 and anyf € K*, set

(4) v1(C, s;f) = ordi(f (x, §(X) +0x9)) ,

where 8 is transcendentadver C. Equivalently,expand f as alLaurert series
®) fix, y)= x aj X' (y = §00)

One has

(6) v1(C, s;f) = min{i + sj|a; =0} .

Then f 7- v41(C, s;f) is a rank 1lvaluation which we denote bw,(C, s).
Sud valuationsare called monomial if C is the line 3 0 (i.e., & = 0), and
guasimonomiain general. Thepoint O is the centre of thealuation.

We call 6) the C-expansion of . Slightly abusing language, s will be calldte
characteristiexponent of/1(&, s) (even if it is arinteger).

Example 3.2. Thevaluationvg := vy(C, 1) is the O-adic valuation onultiplicity
valuation : iff is a non—-zero polynomial, theno@{f) is the multiplicity multo(f)
off =0 at O.

Remark 3.3. The value group wof(C, s) is:

. Z% c Q if s is arationalnumber s= g with gcd(p, q)=1;

» Z+Zs c R if s is anirrational rumber.
So the rank of;(C, s) is 1, but in theatter case thevaluationhas rationalrank 2.
We will be mostly concerned with theationalcase. Notethatvi(C, s) isdiscrete
if and only if s isrational.

Remark 3.4. Thevaluationv,(C, s) depends only on thesc-th jet of C, so for fixed
s the serieg can be assumed to be a polynomial; howevery late we shall lets
vary for a fixedC, so webetterkeep&(x) a series.

Example 3.5. Iff = 0 is the equation of C (supposed to be algeprailich, for
fixed s is norestrictionby Remark 3.4), then by plugging ¥ £(X) in (5) we have

® . a&0X = 0, henceap = 0, for all i > 0. Thenf(x,y) = (y - (X)) - g(X, y)
where g(0, 0)= 0. This impliesthatv,(C, s;f) = s, which can be alsdeduced
from (4) by expandingf (x, §(xX) + 6x5) in Taylor series with initialpoint (x, &(X)).
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Remark 3.6. (Segl?]) The setQM of all quasi-monomial valuationwith certre
at O has aaturaltopology, namely the coarsest topology sthlatfor all f € K*,
v 7— v(f) is a continuous ma@M — R. This is called the weak topologyor
afixed C, the map - vi(C, s) is continuous ifil, +o0).

There is however a finer topology bftereston the valuative tre€QM: the
finest topology suchthats 7— v;(C, s) is continuous ifjl, +oo) for all C.
This latter is called the strong topology. With the strorigpology, QM is a
profinite R-tree, rooted at the O-adic valoati (see[1”] for details). Toavoid
confusion with branches of curves, we will cale branches InQM ars
Maximal arcs of the valuative tree are homeghi to the interval [1, o),
parameterizedy s7— vi1(C, s) where C is a smooth branch of curveDat

The arcs ofQM share the segments given by coincidgts, andseparateat
integer values of s; these correspond tosdn&l valuationson an appropriate
birationalmodel.

Though we will not use this fact, nothat QM is a sub-tree of a largaR-tree
V with the same root, called the valuation tree, cwvhionsists of all realaluations
of K with centre O. Ramificationon V occurs at allrational points of thearcs,
ratherthan only at integer points, becausevaluationscorresponding taingular
branches. The tre€@M is obtainedfrom V by removing the arcs corresponding
singular branches and all ends (§&& Chapter4] for details).

3.2. Quasimonomial valuations and the Newton—Puiseusrdlgn. We
recall briefly the Newton—-Puiseux algorithm ($&eChapterl]for a full discussion).
Given f (X, y) € K(x, y)—{0} (we may in fact assumehat f belongs to K[x, y]]),

and a curve C as ifi3.1, we wart to investigatethe behavior of thdunction

vi(C;f):se[l,+) 7> vi(C, s;f) eR

Returningto (5), consider the convex hull NP(&,) in R2 (with (t, u) coordinates)
of all points (i,j) + v € R? suchthatg = 0, and veiR?. The boundary
of NP(C, f) consists oftwo half-lines parallel to thet and u axes, respectively,
alongwith a polygon NP(Cf), named the Newton polygon bfwith respect toC

We will denote by V(Cf) (resp. by E(Cf)) the set of vertices (resp. efiges)
of NP(C, f), ordered from left to rightj.e.,

VIC, f) = (vo,...,\ww), ECT)=(1,....}h),

where k is the segmemnjoining vk_; and v, for k=1,...,h, and w=(ix,jk)-
We will denote by the germ of the curvéd = 0. Then,

multo(V) = ming{ix +jk}, ordc (V) = jn, (V = jnC,C)o = in ,

where (V - jhC,C)o is the localintersectionnumber oftwo effective cycleswith
distinct supporty - jo,C and C at the origifD.

The numbers n := w(@,) := ip — ig and m := h(Cf) := jo — jn are usually
called the width and the height of NP, Analogously, one defines the width
ng := w(lx) and the height m:= h(ly) for any edgey in the obvious way, sthat
Ik has slope s:= sl(k) = - ,% fork=1,... h

Let B(V) be the set of branches W Then theNewton—Puiseux algorithm as
presentedn [9, §1.3] (with suitable modifications due to the tfabat(5) is not the
standarcexpansion of (x, y) as a power series in x and y) yields aestiye map

oy :B(V) - E(C,T)
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suchthatwhenevery is a branch of whose Puiseux expansion with respectCto
starts as

y-§&x) =axX+..., witht eQandt >1
(i.e., y is nottangento the x= 0 axis norcontainedn C) then the edge= ¢v (y)

has slope sl()= - Tl > -1. Moreover

_ 0.0
multo(y) ’

and ify € B(V) is the unique branch with &l{{ (y)) = —fl, then in fact hfy (y)) =
multo(y) is the multiplicity ofy (at O), whereas wW( (y)) = (v, C)o is the local
intersectionmultiplicity of y with C at O.

Consider now the linés with equationt +su = 0 and slope—gl. By (), the
valuationvy(C, s;f) is computed by those vertices in V{0, with the smallest
distance to's, i.e. for any such vertex = (i, j), one hasvy{(C, s;f) = i + sj.
Note thatthere will be only one such point, unlessis parallel to one of the edges
| € E(C, f) (hence s isational),in which case there will béwo: the vertices of,l
whose slope sl(IF= - 1.

From the above discussion its not hard to dedheefollowing statemeti

Proposition3.7. For any curve C smooth at O dnd K (X, y) - {0} regular
at O (i.e., f is defined at O) ondas:
(i) vi(C,-;f) : R—> R is continuous irnl,+c0), piecewise linear,non-dereasing,
concave and its graph consists of finitelany (one more than the number of
edges in E(Cf) with slope greater thamr1) linear arcs withrational slopes(i.e.,
v1(C, s;f) is a tropical polynomial irs);
(i) the points where the derivative of(C, -;f) is not definedar

1

&z—m, for k=1,...h;
(iii) if the curve V with equationf = 0 does not containC, then
) vi(C,s;f)=(V,C)o for s 1

Example 3.8. Let C be the conié x 2y = 0, sothat&(x) =x?/2, and let
f =02 +y?)?3 - 4dy?
The C-expansion of is then
15 x* (y—£(x))*
4

f=(y-&00)°+3% (y-&()°+ +3x2 (y - £(x))*

3 2 5 (y— 2
LSOO g gy 158 L0 908 (=200)
3 0 (v — 3 -
+3x (Y- ()2 - 4% (y - £ ()24 22 (\/16&00) L 3xAy &(Zx))
12 3510 38
3 (- 00) - 4X (V- E00) * gt et

The Newton polygon of with respect to C is depicted in Figufe It hasthree
sides and four vertices, corresponding to the ‘omaials” (y — £(X))®, X2 (y - £(x))?,
x*(y - &(x)) and ®. The curveV : f(x, y) = 0 has four brancheshroughO, all
smooth; two of them aretransverséo C and map to the first side of tidewton
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|
Vo 4+ s

P_P(C, f
2+2s

\

\

1\ \
/2 ‘

|

V3

Figure 1. The Newton polygon dExample3.8. Each dotrepresets

a “monomial” in the C-expansionof f; only four of them createver-

tices of the polygon.At the right-handside, thecorresponding function
v1(C, s;f) for s> 1. The threelinear piecescorrespondo the vertices

vi =(2,2), »w =(4,1),s = (8, 0), asdescribedn Proposition3.7.

polygon; one of them isangentto C with intersection multiplicity2, and maps
to the second side; the last ondasgentto C and hasntersection multiplicity4
with it, and maps to the thirdide.

3.3. Quasimonomial valuations and the associated eamkluations.We
keep the abovenotation.As we saw in§3.2, we have a finite sequence

S =1<5 <...<$< G +1.= +©
suchthatv,(C, s;f) is linear (hencdlifferentiable)in each of the intervals ($Sc+1),
for k =0,...,h. The derivative in these intervassconstam and integral. At s,
with k=0, ..., h1, there are theight and leftderivativesof v{(C, s;f) (at § =1
(resp. atsh+1 = +oo)there is only theright (resp. left)derivative). So wehave:

Corollary 3.9. For any curve C smooth at O ahc K (X, y) — {0} regular at
O, the functionv,(C, -;f) has everywhere in (#o0) (resp. in[1,+o0)) left (resp.
right) derivative. We will denote them By v,(C;f) (resp. 04vi(C;T)).

Proposition 3.10For any curve C smooth at O, everneg), s> 1 and every
f eK(x y)- {0} set

v_(C,s;f) = (w(C, s;f), —0-va(C;T)(9))
This defines two rank 2 valuations_(C, s) andv.(C, s) with home at O.For

s =1, the valuationv,.(C, s) defined as above is also a rank 2 valuatioth home
at O.

Proof. Letf € K[x,y] and let (x§(x)) be a localparametrizatiorof C. With
notationas in §), then 6) holds, thus
0-_v1(C;f)(s) =max{j|di:a; =0,i+ sj =v4(C, s;f)}
and
(8) 0+v1(C;f)(s) =min{j|3i : & =0 ,i+ sj =vi(C, s;f)}.
The fact that both v_(C, s),v+(C,s) : K — Q,Zex are valuationsfollows from

basic properties ahultiplication of Laurert series and min and is left to tmeader.
Furthermorejf f is regular at O therw,(C, s;f) > 0 if and only iff (O) = 0. This
implies that O is the home of v. (C, s) and vy (C, 9.



15 N EQIT BEFIND BRRONK BODRENSERQOZIDNA N, ROIE, WAIDUSHRAE DR E E 15

Obviously v_(C, s) andv.(C, s) have rank at most 2. We will shthat they
have rank greater than 1. Lk € K [x,y] be suchthat f, = 0 is an equation df
(this, for fixed s, is naestrictionby Remark 3.4). We havev. (C, s;fo) = (s, i%)
(see Example3.5. Moreover if s= g for coprime positive integers p, q arfid = )f(—g
then v.(C, s;f1) = (0, £q). Thus for every positive integer k \Wweve

(0, 0) < £kv4(C, s;f1) < v (C, siX),
which is impossible fora rank 1 valuation.

Remark 3.11. Foirrational s, the expressions_ and v4 (as defined inProposi-
tion 3.10), arevaluationswith home at O, but they are bo#imuivalert to v, (and
so have real rank 1 andationalrank 2). We will not need this fact, and lsawe
the proof to the interested reader.

Remark 3.12. Write s % with p, g coprime positive integers. There thalue

group ofv_(C, s) andv.(C, s) is (qu x Z)iex € QZ,. In this case, we willlenote
by

Acs, € R:, Acs S R+xR-
the Newton—Okounkowodies associated to the line bunddgz(1) with respectto
the valuationv_(C, s) andv.(C, s) respectiely.

Since v (C, s) have maximal rank but theirueagroups do not equal’Z, the
volumes ofNewton—Okounkowodies associated to thesaluationsneed notsatisfy
Theorem 2.13 However, there are order preserving elemeaft&L(2, Q) relating
the w valuationsto valuationswith values in Z,,. In §4.3below we computethese
lower triangularmatrices, which turn out to haweterminab 1, and sqresere
the volume. Therefore  Theorem 2.13 also applies tov. (C, s), and

vol(Op=(1 1
VOlAcs =VolAcs, = W = —2
3.4. Thep invariant. Let v; be a rank Valuationcentred at a smootpoint x of
a normalirreducible projective surface X, and let D be a l@@rtierdivisor on X.
Following [11], we set

(V1) ' max(us(f) | f € HOX, Ox (D)) - {01} , and pip(vy) & Jim Heela )

If v. = (vq,V2) is avaluationof rank 2 centred at X, then,(D) lies in thestrip
{(t,u) €R?|0 6 t 6pup(v1)} ;

and its projectionto the t-axislies theinterval [0, ub(v1)], coinciding with it ifand
only if x 6 Neg(D) (see Theoren?2.22.
In order to simplifynotation,we will set

Up(C, s) = Hp(v1(C, 9)).

If X =P?, x=0 and D is a line, we drop thgubscriptD for pp(C, s) and we
write Yq(C, s) instead ofigp(C, s) for anynon-negativanteger d
From [11] we knowthatthe functionfp : QM - R is lower semicontinuous for
theweaktopology andcortinuous forthe strongtopology; i.e., h,(C, s) is cotinuous
for s € [1, +o0) (see[l1, Proposition3.9]). Moreoveril{C, s)> s[11]. If B(C, s)=
s, thenvy(C, s) is said to be minimal (the concept ofimiad valuation ismore
general, se¢ll], but we will not need it here). We recall frgm!] the following:
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Conjecture3.13 ([.1, Conjecture 5.11]) If Cis suﬁ|C|entvageneraI (in aense
which is made preC|se in l.c.) and>8+ == 36, thenbu(C, s

Remark 3.14. According tpL1, Proposition5.4], this Conjecture (actuallp wealer
form of it, considering only & 9 and C any curve), implies Nagata®onjecture.

Remark 3.15. We recall froffil] some known values db u(G).
« If C is a line,then

ca= S if16s62
bC. )= 5 it26s
- If C is a conic,then
S if16s62
2 if 26s 64
C,s .
ol ) 3 if46s65
5/2 if56 s
c Ifs67+1/9 andJ deg(C > 3, then
a 2 g
O EF'I*ZS if;':2 636Eﬁ, i > 1 odd,
Y oRes Fros 7
pC, )= F if .- 6s6 . , i>1odd,
Ejl% if p* 6s 67,

g if76s 67+§1,
whereF_1=1, iy =0 and F.1 = I + F_; are the Fibonacchumters,
and

M+ Fl+l
-5 = Ilim

is the goldenratio.

The values of p above are computed using the series of Orevatonal
cuspidal curves (sgé6] and Proposition5.25below). There are a femore
sporadic values of s in the ranfge+ 1/9, 9] where the value db is known,
see[1]] for details.

V_
« If s is an integer §;1uare and C is a general cofwgegree at least s, then
one has p(C, s)=

4. Cluster of centres and associdtled)s

In this sectionthe main goal is to introduce the geometstructures related
to valuationsv,(C, s) andv.(C, s). We give a fulbdescriptionof how to find the
birationalmodel of X (the cluster of centres together hwilheir weights) on whic
thesetwo valuationsare equivalett to a flagvaluationon this malel.

4.1. Weighted clusteof centres.As usual, we will refer to the case
x=0eA?c P :=

Each valuationv with centre Oe P? determinesa cluster of centres as follows.
Let P = centrg,(v) = O. Consider the blowum; : X; — Xo of P, and let
E; c Xi be the corresponding exceptional divisor. Theemtre,(v) may either
be B or apoint P, € E; . Iteratively blowing up the centres.PP;, ... of v wemay
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end up, after k=1 steps, with a surface,XdominatingP?, where the centre of v
is the exceptional divisorE In this case v is discrete of rank 1, given hg order
of vanishing along E, by Remark2.5. Otherwise, this process goesiodefinitely.
In particular,for quasimonomial valuations, (C, s), the procesterminatesf and
only if the characteristiexponen s isrational.

Let v=(vy,V2) be now a rank 2aluationwhosetruncationv; is quasimonomial.
From Abhyankar’sinequalities, [12, p. 12], one concludethatv, hasrational ratk
1. Hence, by Remarl3.3, we have y = v;1(C, s) for some = Q. By the above
then, the sequence of centres of v is infinithemas the sequence Ibflimensional
homes (centres of;) terminatesat a blowup X where centrex, (v1) = Ex is an
exceptional divisor. Irparticular,v is equivalett to the valuationvy_, definedby
the flag

Y. : Xk D Ex o certrex, (V) = Px+1.

The punchline of all this ithatthe process of blowing up all 0-dimensional tces
of the truncationprovides an effective method to find a model whargiven rank 2
valuationbecomes a flagaluation. By Theorem 2.9, such a model exists for ery
valuation of maximal rank on a projective variety. Tlaove method works for
any valuationof rank 2 on any projective surface (i.e., notessarily P).

For each centre? of a valuationv, general curves oiXi_; through P and
smooth atP; have the same valug = v(E;), which we call the weight d?, for v.
Following [9, Chapter], we call the (possibly infinite) sequence ¥ (P, P52,..)
the weighted cluster of centres of v. In genexalequence like K (P, P$?,...) is
called a weighted cluster of points and supp&jP., P, ...) is called its sumpt.

If v is avaluationwith centre at O, then its weighted cluster of cemtompletely
determiness. Indeed, for every effective divisor Z orf,Ponehas

X
© WE e mults(®),

where & is the propertransformof Z on X;, whenever the sum on théght has
finitely many non-zero terms. This is always these unless v is a rankvaluation
with home at a curvdhroughO and Z contains this curve; particular, for
valuationsof rank 1, such ag;(C, s), formula §) always computes v(Z[p, §8.2].

As usual, with the aboveotation,we saythata curve Z passethrough an
infinitely near pointP; € X; if its proper transformZ on X; contains P;.

4.2. The cluster associated¥@(C, s). The descriptionof the clusterK g :=
Kv,(c,s) IS classical and we refer for complete proofs%p Here, we merelyfocus
on the constructionof the cluster of centres far(C, s) and its mairproperties
thatwill be used in the next section. The clustei ) is a very specific oneand
we will need the following definition to make tigi;g moreclear.

Definition 4.1. With notationas above, the centrB; € X;_; is called proximate
to P € X;, for 16 j <i 6k, (and one writesP, P;) if P belongs tothe
proper transformE;_1; on X;_1 of the exceptional divisoEj+1 := Ej+1, over
P; € Xj_1. For the clusteKc o, eachP;, with i > 2, isproximateto P,_; and to
at most one other centrg;, with 16 j <i - 1; in this caseP® = E_1; nEi_1
and P; is called a satellite point. Avoint which is not satellite is calledree
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We know thatthe supportof the clusterKc o = Ky,(c,s)is determinedoy the
continuedfraction expansion

1
s=9=[n1;n2,...,nr]=n1+—1— ,
q N+ o5 1

fua+ 1

r

where p, q are coprime amde Z~. Before moving forward, let’s fix someotation.
Let ki =n; +...+ n and k=k,. We denoteby

szg_i:[nl;nz,ng,...,ni], fori=1,...r
|

the partial fractions of s, wherg,p are coggme positivantegers.

First, the clusterKc s consists of k= n; centres (if s idrrational there
are infinitely manycentres). Set K= K, and for each i= 0,...,k- 1 let
7 . Xj+1 — X be the blow-up ofX; at the centrePi.1 with exceptional divisor
Ei+1. As usual westartwith Xo := P2. Denote X% := Xy and letn : Xg — X be
the composition of the k blaups.

With this in hand, we explain thalgorithmfor the constructionof K. If s = n,
(so that r =1), then the centrd?.1 is the point of intersectionof the proper
transformof C throughthe mapX; — Xo and the exceptional divisdg; of mj_1,
foreach i=1,...,3 -1. Whenr > 1, then the first p+1 (including R) centres of
K are obtainedas in the case when s was integral, i.e. thesatpaire chosen tbe
free. The rest are satellitestartingfrom P, +1 there are s+ 1 points proximate
to Py, , i.e. eachP; is the point of intersectionof the propertransformof E,, and
the exceptional divisoE;_1. Thus, En, plays the same role for these centresCas
did in the first step. Then, one choosgsHl points proximateto Pn,+n, and so
on. Sincer < oo, then the lasn, points (notn, +1) areproximateto Py, + . +n,_,-
The final space KX is wherev;(C, s) becomes a divisorialaluation,defined bythe
order of vanishing along the exceptional divilse € Xx. Finally notethat C
plays a role only in the choice of the first nentres. This is due to Remafk4,
saying thatthe valuationv,(C, s) depends only on thesc-th jet of C.

The weights inKc s are proportionalto the multiplicities of the curvewith
Puiseux series ¥ &(x)+0x®at the points ouppK(c,s). These and the ctinued
fraction expansion areomputedas follows. Consider the euclidean divisions

m; = Njz1Mjy1 + Miy> of m; by mjy,, for i=0,...r-1,
where my := p,my := g. Then the first npoints ofK ¢ have weight
m
e =e=...= e,h:_ql:]_,

the subsequeinn, points haveweight my/q, ..., the finaln, points haveweight
m,/q = 1/q. Therefore the proximity equality
X

(10) § = &

P P
holds for allj = 0,...,k- 1. Conversely, for every weighted cluster Khniftnite
support,in which everypoint is infinitely near the previous one, no satellpeint
precedes a free point, and the proximity equalitfds, there exist a smootturve
through O and a rational number s such that K = Kcg
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4.3. v4(C, s) and the associatdldg valuation.In order to describe the flag
valuationassociated tw.(C, s), it is necessary tonderstandirst the intersection
theory of all the proper and totatansformsof the exceptional divisors ongX

To easenotation,let A; (resp. Bj) be the proper (resptotal) transformof
Ei c Xjon Xk, fori €{0,...,k- 1}. Then:
Lemmad4.2. (i) A = Eg is the only curve with A= -1 for any i=1,...,k
(i)) Ak, =Bk, = Bk,+1— ...~ Bx,,,+1and A& = -2 - nj.q; for each 160 < r-1;
(i) Ak, =Bk, ~Bk,_y+1—...-Bcand A =-1-n;
(iv) Aj =Bj - Bj+1 and Af = -2 for everyj € {1,..., B\ {ky, ..., k}.

The sheafn*q._,adpz) is invertible on X% and defines thdundamentalcycle E

of t. Write E= 'leaAi. Then, making use of Lemma&a2, the multiplicities g
can be easilycomputedas follows:

Lemma4.3. If one assumesylk= ag =0 and a = 1, then the multiplicities athe
fundamentakycle E are computed by the followifmrmula

a=aG_,(i-ki-1-1)+a; ,+1, fork_1+26i6kj+ and 16 j6r

where =0 if j = rand =1 otherwise. Inparticular, A +1 = G tag for
16j6r-1.

Remark 4.4. By Lemma.3, one hasa, = njag_, +a;_, foranyj =2,...r,
where 3 =0 and g, = 1.

On the other hand, using thpartialfractions 5 = % ofs= cf, one has thesame
recursive relationsg; = njgj—1 + gj—2 for j = 2,...r, with g =0 and q = 1.
Thus, we gethata, =gq; for anyj =0,... r. In particular,we havea,, =g.

In the following the pair(pr-1,dr—1) of the partialfraction s_; = gr'fi will play

an importantrole, so we fix someotation. When s is not an integer (i.€.> 2),
we set

=}

PP=pr-1, ¢ =01 sothat $_1=

_QCJ o]

If s is an integer, i.ex =1, then we set'p=¢q’ = 1.

In order to find the flags onXassociated tw.(C, s), we need to have keetter
understandingf the cycle Ethroughits dual graph. The dual graph of Eais
chain, i.e. a tree with onltwo end points, corresponding to, And A, +1. If Ais
the propertransformof C on X, then AintersectsE only at onepoint on Aq, 4 1.
Thus the dual graph of A E is also a chain, with end points correspogdto
A; and A. The curve Aintersectexactly two other components &+E, precisely:

(a) if s is not an integer (shatr >2), then A intersects A1 and A, _,,
whosemultiplicities in the cycle A+E areax-1=q- ¢ and &,_, =q’;

(b) if s is an integer (sthats =k =n;), then A intersects A ; and A, both
having multiplicity one.
Note that A + E — A¢x has two connectedcomponentspnly one containing A
We denote thiscomponeh by A, and the other by A. We will denote byx. the
intersection point of A with A. , and by x the generalpoint of Ay .
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The total transformC* on X« of C has the samsupportas A+ E, but the
multiplicities are different. Inparticular, denoting

w_ P if r is odd w_ ¢ if r is odd

b= p-p if risewen = q-¢ if ris ewen
Lemmad4.5. (i) The divisorC* containsAx with multiplicity p and C* - pAg
passes througbx. (resp. x_) with multiplicity p(resp. p- pV).
(i) The total transformL of the line x=0 on X containsAy with multiplicity q
and L- gAx passes througlx. (resp. x_) with multiplicity ¢ (resp. o q%).

Proof. We prove only (i), the proof of (ii) beiranalogous.

When s is an integer the assertion is triviab, &sumethats is not aninteger
(i.,e. r > 2). We first showthatthe multiplicity of Ax in C* is equal to p. This is
done inductively on k=n; +...+n,. From thestandardproperties of cotinuous

fractions it is worth to notethatthe numeator of [ny;ny, ... ,n, — 1] is equalto
p - pPr-1, Where p_1 is the numeratorof the continued fraction
S-1 = Bro1 [N, ....Np-q] .
qr—l

The multiplicity of Ax in C* is the same as theultiplicity of Ax in By +...+Bn,+1.
So, using Lemmat.2 repeatedlythe statemenfollows easily

The multipliticies of C* - pAx at x+ and x_ equal themultiplicities in C* of
Ak,_, and ofAy_; respectively in this order if is odd, and reversed iifis even
(asr = 2). Arguing asbefore, onededucesasily alsathese statemets.
Example 4.6. Consider s 48/7. Its continuedfraction is[6;1,6] = 6 + 1+—11/6
. Therefore the cluster of centres of;(C, s) consists of 7 free points on C
followed
by six satellites; of these,gHs proximateto P; and B, and each off... Pi3
is proximateto its predecessor and tg.PSee Figure2, where the weight® are
printedin boldface: ¢e=1, & =6/7, e3 = 1/7.

The proximities mearthatthe exceptional components arg A Bg — (B7 +Bg),
A7 =By - (Bg +...+ B]_3), A3 = Bi3 and, for all i=6,7,13, A = Bj - Bj+1.
Solving for B = E one gets thdundamental cycle

E=A;1+A+A3+A,+A5+Ag+A;+2Ag +3Ag +4A 10 +5A11 +6A1> +T7A13.
Since C goeshroughPy, ..., B with multiplicity 1, its total transformon X is
C*=C+B,+...+B; =
C + A1 +2A, +3A3 +4A4 +5A5 + 6Ag + TA;+
13Ag + 20Ag + 27A 0 + 34A1; + 41A;, + 48A3.

Clusters are oftemepresentedby means of Enriques diagrams ($€ep.98]) as
explained in Figure? illustrating this example.

Proposition4.7. In the above setting, the flags associdtedhe rank 2valuations
v_(C, s) andv4(C, s) are

Y_: Xck DArDX_. and Yi: Xg DAk D X4

respectively
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Ps Pio P11 P2 P13

N
N
N
N
NS

Figure 2. The Enriques diagrani9, 3.9] of the cluster otertres
of Example4.6. Each vertex in theliagram corresponds one ofthe
points,with each vertex joined to itsnmediateprececessor by aedge;
edges are curved for frgmoints,and straightsegmentdor satellites, to
represehthe rigidity of their position. The segmentgoining a sequene
of satellites proximatéo the samepoint lie on the same lineprthogonal
to the immediatelypreceding edge.

Proof. The above discussion makes it cldsat A is the centre of(C, s). It
remains to proveahat x. are the centres af.(C, s). Letn =0 be a locakquation
of A on X« around x+. Considerf, = fy'/xP as in the proof oProposition3.10.
By Lemma4.5, the pull-back of; to Xk is not divisible byn. Again by Lemma4.5,
it vanishes atx, with multiplicity p®. Furthermoreby Proposition3.10, one has
v+(C, s;f;) > 0. By the same tokenfl‘1 is not divisible byn, it vanishes atx

andhasv_(C,s f; 1) > 0, proving the assertion.

Remark 4.8. Unless s is an integer and the sidholds, thevaluationsv.(C, s)
are not equal to thevalutationsassociated to the flags. (see Remark2.7), but
they areequivalert to them.

Let fo = 0 be an equation of C (which we may assume talpebraic, se¢he
proof of Proposition3.10) and notethatK [[x, y]] 2 K [[x, fo]]. One has
(11) V+(C,s:x)=(1,0), Vvi(C,s;fo) =(s,£1),

by the proof ofProposition3.10 By Lemma4.5 onehas
v, () =@.9"),  w.(fo) =(p. 7"
w_ () =(@@.a- ¢, vv_(fo) =(p.p- ") .
By standard propertiesf continuedfractions, one hagd - qp’ = (-1)". Thus

0
0 VY.

q

o QR

v.(C, s)=

[y

= 0

a v
™-a q
Remark 4.9. The same relations, given in Remagk hold for the corresponding
Newton—Okounkovbodies. It is worth to notéhatboth 2x 2 matricestransform
vertical line into vertical lines.Furthermore,any vertical segménin Ay, (D) is

translatednto a vertical segmérin Ac s Whose length is multiplied by factor
of g with respect to the initial one, where Dthe class of dine.

v_(C, s)= Y_-
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4.4. Zariski decompositiorof valuative divisorslin this subsection we will
describe, with few details, some of the prdpsrtof the valuationv; thatwill be

used in the next section. As before let=9/q > 1 be arationalnumber and K
the cluster of centres associated to the ramkldationv,(C, s), withm : Xx — P?

the sequence of blow-upsonstructedn the previous section where thaluatbon

v1(C, s) becomegquivalet to avaluationgiven by the order of vanishing alorg

exceptional curve on X We will denoteby

Bs def eB+ ... +e By,

where as usuaB; is the total transformof the exceptional divisoE; on Xx and
€ is the weight of the centerP;, whose blow-up is the curvi; (whereas Ais the
strict transformin Xy of Ej). Note thatthe proximity equalities 10) mean that
Bs-Aj =0forall 16i 6 k-1, and thatthe weights are alsdeterminedby
these equalities andq e= 1/q (see section 8.2 if¥]). Knowing this divisorBs we
usually know almost everything about thaluationv;. Using @) one deduceshe
following:

Lemma 4.10For a divisor Z on X not containingany of the exceptionaturves
Aj, one hasvy(C, s;n.(Z)) = Bs- Z.

For the computatiorof Newton—Okounkowodies, the followingropertiesof B
will also be useful.

Lemma 4.11() BZ=-s, org,.(Bs) =p, (Bs-Aj) =0for any i=1,...,k-1,
Ay) = -1/q.

(i) For every positive x€ Q such that the Q-divisoDx = D - xBg is pseudo-

effective (where D is the class of a line as usuéile Zariski decomposition @y

contain% Bs - xBg in its negative art.

Proof. The proof of (i) is done inductively ugirthe descriptionof the cluster of
centresobtainedpreviously, and we leave the details to teader.

Let us prove (ii). If k=1then s=p=1, Bs= Bx = B; and there is nothingo
prove; so assume %k 1. Since theintersectiormatrix of the coIIectign{Al, G AY
is negative definite, there exists a unique ¢iffecQ-divisor N, = vjA; with

(@ (Dx - Ng)-Aj>0forall 16i 6k,
(b) (Dx — Ny)-A; =0 for all i with v = 0.

The Zariski decomposition ddy relative ton is Dy = P, + N, (see[10, §8]). It
satisfies H(Xk , Ox, (MDy)) = H%Xk ,Ox, (mPy)) for all m suchthat mD; is a
Weil divisor, and the negative part of thislative Zariski decomposition is@art
of the full Zariski decomposition:N,;6 N.

We claimthat N, = gBS— xBy; to prove it, we need to shot:tnat%BS— XBy
is an effective divisor satisfying (a) and).(b A direct computationshows that

the coefficient v; of A;j in KpBS— XBy is positive for i=1,...,k- 1 and zero for
i =Kk, so it is an effective divisor. On the othkeand, (Dx - ﬁpBS+ xBk) - Aj =
(D - 3Bs) - Ai = - *Bs- A, which using (i) give{Dx - §Bs+ xBy) - Aj =0 for

i=1,...,k—-1,and(Dx - %Bs+ka)-Ak > 0, aswanted.
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5. Newton—Okounkov bodiean the treeQM

From now on we will mainlyconcentrateon the study oAc s, when svaries
in [1,+00). The case oAc s is not conceptuallydifferent and will be oftenleft
to the reader.

5.1. General facts.

Corollary 5.1. Let Cc P? be a curve of degree d. For any=sl, one hasthe
following inclusions
Al,g,i% € Acs. € A@,@i% ,
M= %(C, s). Equality for the first inclusionolds if and only if d= 1.

v_
Equality for the second one takes place if and @hi(C, s)= s.

Proof. For the first inclusion, notéhatby the proof ofProposition3.10 evaluating
an equation of C and the variable x, forbesh points (1,0) and §, + 1) to
be
containedn Ac,s_. The origin is als@ontainedn Ac s. since it is thdevaltcjationof
any line not passinghroughthe centre of thevaluation. For the equalitystatemen
one usedhatthe areaAcs_ is 3, by Theorem2.13and Remark3.12

For the second inclusion notice fitdtatby definition of p(C, s) froms3.4 one
has thatthe convex set?\c . sit to the left of the vertical line= . To prove
that Ac s, also lies above thé-axisand below the ling = su, we need to sho

v1(C, s;f) >s-04+v1(C, s;f) >0 ,VFf e K[x,y]\ {0} .
Assuming §) holds, this follows from&) and 8), as i+ sj > sj. The equaliy

statemenis again implied by the fadhatthe area ofAc s, is equalto % The
analogous facts foAc s areleft to thereader.

Remark 5.2. As a consequence of the above, then, sits above the axis and
below the line with equation s& tin the (t, u) plane. Also, noticéhat (0, 0)
and (d§,§) are valuative points, where thatteris given by thevaluationof a local
equation of C by Remark2(2. Thus, everypoint with rational coordinateson
the line su=t, lying between the origin and theoint (s/d, 1/d),s valuative. The
corresponding picture also holds fag s .

Remark 5.3. Thevaluationvye, associated to the generic flag
Ygen: Xk 2 Ax D X

has nothing to do withC. On X there is a smooth curvE transversallyinter-
secting A at x. Its image on X has local equatign=0 at R. Assume X= P?
and degf) =d. Then forf =0 a general linghroughP; one has yn(f) = (q,0)
and \gen(p) = (§,1). Thus Awgen(D), with D € [Oge(1)], containsAg g 1. Since
in general &> g (equality may hold only if & n;), then AWgen(D) is strictly larger
than this triangle by Theorerd.13

Remark 5.4. By Corollar.1, we seeghat Conjectur8.13is equivalet to asking
\{vhether for all =8+ .. and C general enough, ohas

Acs, = AVg V54, -

In particular,this implies Nagata'sConjectureand it shows how difficult it isto
compute Newton—Okounkovbodies.

Corollary5.5. Let C be a plane curve of degree d. Then e = Ay g.1-
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Proof. The cluster of centres wf(C, ) consists of P=0 and the next a1
points on C infinitely near O, i.eR; = E_1nCfori=2,...,& . If Ais thestrict
transformof C on X4z, then

X
A=dD-E -...-Eg=dD - iA;
i=1
where D is the pull back tX 4 of a line. Let Z := D- dAg, which can bewritten

i=1
Remark thatthis is actually 5[3; Zariski decomposition f because A is nef, as A

is irreducible and A= 0, and ,dl LA has clearly a negative definitatersection

form. Also, Z sits on théoundaryof the pseudo-effective cone, ag # 0. Thus,
Z - tA42 is not pseudo-effective fdr> 0.

Now the proof follows easily using Theoretl7. Alternatively,by Remark5.4, it
suffices to provethatp(C, &) =d. Since y = orde , asvaluations(by Remark4.8,
noting thats is an integer) one gets from the abgaragraph thap(c, &) 6 d.
The oppositeinequalily follows from Lemmab.1.

Corollary 5.6. Let C be a plane curve of degree |g. Fagryev> 0, there exists
a non-zerof € K|[x,y] whoseC-expansionf (x,y) = a;x'(y - g(x))! satisfies:
(i) va(C, &) = min{i + d?j|a; =0} >degf )-(d - ),

(i) 0+va(C, B;f ) =min{j|i:a =0 ,i+d?j =vy(C, s;f)} 6 deqf ) -

A similar statementolds foro_v;(C, &;f).

By Corollary 5.1, there exists a real numbar> 0 suchthat
(12) Ayax2 € Acs,:

This can be seen as an infinitesim@unter-parbf Theorem?2.22for X = P2. When
s=1and X is any smooth projective surface, thesaddeere also developed [i]
along with Theorem2.22 The largestA turnedout to be the Seshaddonstan of
the divisor. This connection can be seen clearlyhe followingproposition, where

the notationcomes fromg§4.4.

Proposition5.7. Let Cc P?> be a curve and s p/q > 1. Leta € Q be suchthat
the Q-divisoraD - Bgis nef. ThenA§ s.2 S Acgs, -

Proof. Let's check firsthat(2,0) € Acs,. By Remark4.8, this isequivaler to
showmgthat(D 0) € Ay, (D). SinceaD - Bgis nef, then there exists a sequence
of effective ample divisor#d,, n > 1, wherex, ¢ Supply), sothatD is the limit

of (—1XBS+ Hn. So, thepoint (2, 0) iscontainedn Ay, (D), as ord (Bs) = p.

By Remark 4.9, it remains to shovthatthe heigh of the slice ofAy, (D) with
first coordinatet = ? is equal to Té . For this, we apply Theorerd.17for t = 2.
Let Nt + P be the Zariski decomposition of BtBk. By Lemma4.11, we know
that 1

Nt - =Bs+ 7ka is effective.
o o

Thus, one ha¥; 6 D - (/a)Bg; but the latter Q-divisor is nef byhypothesis,
therefore Ny = (1/a)(Bs— pBx) and P = D - (/a)Bs. In particular,the height
of A}, att= _ is equalto (Va)P;- Bx = (/a)ex = 1/(qa).
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Based on the previoustatementit is naturalto introduce the followingonstam
MC, s) &

As mentioned before, when =s 1, the constamh A(C, s) is nothing else thathe
Seshadriconstan of D, the class of a line, at the origin O. Soe@xpectsi(C, S)
to encodeplenty of geometry also for & 1. Note that we have theinequalities

MC,s) 6 s 6 p(C,s),

where the left-hand side is an equality if andyahthe right-handside is alssud.
From Conjecture3.13this is expected to happen when s is large émoangd Ca
sufficiently generic choice of a curve. Thusbiecomesnaturalto ask aboutthe
shape of the convex s&c s, when W (C, s)=A(C, s)= s does nothappen.

maxr>0| A; 5 » € A5} -

Corollary 5.8. Unde(/theassumptionabove, one of the followingapgens:
(i) P(C, s)=MC, s)= s, in which caseAc s, = Ab,h,‘;" wherepb= p(C,s).
(i) b(C,s)> s = AMC, s), in which case(C, s) = s/h(Cs) and theconvex
polygonAc s, is the quadrilateral OABE where
0=(0,0), A=(C, s),0), B=(C, s),MC,s)/s), E=(h(C, s),c),

for some c= [O,"L(%é)]. Hence,Ac s, is a triangle if and only if & 0 or c= Q(%J

Proof. By definition ofou(C, s) and LemmalQ for any effective divisor Z in ¥,
not containing in itssupfort any of the exceptional curves; A , ohas

vi(Cs)(Z  Z-Bs
> = =
p(C, S) l Z . D .
Z-D

So, (H(C, s)D- Bg)-Z =0 for any such cycl&€. By Lemma4.11, we alreadyknow

H(C,s)D-Bg)-Aj >0 forany i=1,...,k. Thus, the divisot u(C, S)-D§§

HU(C, s). Whenbu(C,sr s

we land in case (i). Otherwise, b (U(C, s),&€)Ac s, for some c¢> O, then this
latter condition impliesthat Ac s, contains the convex hull of thpoints

s 0 S 1 c
b ’ ’ IJ(CH S) ? M ] (p( 1 S), C)
Note that such a ¢ must exist, since the projectionAefs, to the first axis is

[0,p(C, s)] as noted before. Since the area af ttunvex hull isl/2, it coincides
with Ac s,, and one hag(C, s)=s/M(C,s).

(0,0),

Remark 5.9. It is worth to notthat Corollary 5.8 takes place only becaussur
ambiert space is P, especially due to properties like the Ricagroup of P is
generatedy a single class, whose associated line bunsllglobally generated with
self-intersectiorequal to 1. One does not expect these phenomertapenwhen
we consider thevaluations v on any smooth projective surface X. But weakpect
thatsome parts of theonsiderationsbout the infinitesimal picture developéd
[19) to betruein this more general setup. For example, doastam A(C, s)should
in some ways encode manmgterestinglocal positivity properties of the divisor class
we are studying, apartially seen inProposition5.7.

Example 5.10.Continuingwith s = 48/7 as in Example4.6, and assuming O @&
general point of a curve C of degree & 3, we know from[11, Theorem Cland
Remark 3.1t that p(C, 48/7) = (1+48/7)/3 = 55/21 and there is a unique cur¥e
with v,(C, 48/7;V )/ degV = 55/21, namely the unique cubic nodal at O whids
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one of the brancheg at the node satisfying (@,)o= 7. Indeed,V hasmultiplicity

2 at O, and (its strictransform) multiplicityl at each centre,P..., B, whereas
it does not passhroughany of the remaining centres,P..,R3. So by 0) ore

has v,(C, 48/7;V) = 2+ 5+ 6/7 = 55/7, which divided by dd§) = 3 gives

b(C,48/7) = 55/21. The Newton polygon &f with respect to C has threeertices,

namely (0, 2), (1,1) and (8, 0), showitigat v;(C, s;V) = 1+ s for s< 7, and
so v (C, 48/7,V) = (55/7,1). Therefore, theightmostpoint of Ac4g/7, is the
valuative point (5521, 1/3). Alternatively, v.(C, 48/7;V) can becomputed from
the pullback ofV to Xk, which is

V*=V +2B; +B, +...+B; =
A+ 2A; +3A, +4A; +5A, + 6As + 7TAg + 8A;+
15Ag + 22Ag + 31A0 + 39A;; +47A 1, + 55A3.

Therefore the flagaluationapplied to V is vy, (V) = (55, 8) (recallthatone has
X+ = A7 n Aj3) and thecomputationfrom Remark 4.8 gives

L0 1 0 55 25
v+ (C,48/7)(V) = _qqo q w.(V)= 7 5 g = "1

consistebh with the computationusing the Newton polygon. By Corollary.8, the
remaining vertices olc 4g/7, are (0, 0), (14455,0) and (14455,21/55).
The samecomputationapplies to any = (¢*, 7), giving quadrilateral bdies
Ac,s, With vertices
3 3 3 s+1

0.0, 3~ 1% S gErs¥r 0 3

Wl =

We leave the easy details to theader.

5.2. Larges on curvesof fixed degree.As we have seen in Corollar$.8, the
convex setAcs, can be either aectangulartriangle or aquadrilateral,for
ary rational number s> 1 and any degree @& deg(C). Interestingly enough,
whens d one can say more. More precisely, we have tllewimg theorem:

Theorem 5.11Let C c P? be a plane curve of degree d and<CP? a line. Then
Acs, = Ags 1 for any s> d2. In particular,one has
— _ 0 1

(13) AcoD) = Aze = 7 _J Acs,
Proof. First, thepoint (0, 0) belongs toAc s, asit is given by thevaluation of
any polynomial not vanishing at O. Alsa§,}) € Ac.s,, being thevaluation of
an equation o€, as we saw in the proof Bfroposition3.10(see also Remark.8).
It remains to showthat(d, 0) € Ac,s,. This will be enough, since we will hatbe
cortainmernt Ag5,1 € Acs, and thetwo coincide because both have a2.

For the latter condition, fix any > 0 and letf be the polynomial asn
Corollary 5.6, satisfying (i) and (ii). Consider the furmti s7— v.(C, s;f) e
R? for s > d?. By Proposition3.7, the first coordinate of this function ison-
decreasingand concave. Thus, the second coordinate dsedsing by concavity
of the first. Now, thesdwo remarks, together with the propertiae know for v (C,
S; f ) when
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144 21
55 55
;7 551
L
Ac g7, ‘ 213
21 3
878
- 81
{ 8 1
lim Acs, 3’3
sS—7— !
21 3
88

Figure3. The Newton—Okounkowody computedin Example5.10,
on top. The difference 831 — 144/55 = 1/1155 is so smalthat the
quadrilaterallooks like atriangle. As s grows in theinterval (¢*,7),
the vertex (%151) sticks out further right from the two vertices with
first coordinate3— 225, sothat atthe limit, the quadrilateral nature is
clearly seen.At s =7 the quadrilateral mutatemto atriangle,shown
in the bottom picture.

s = d? from Corollary 5.6, imply thatthe limit

o Ve (Csif ) 2
ILrQO deqf) (ts, 0), for any s> d°

wherets > d. In particular,(ts, 0) € Ac s, and since the origin isontainedn this
convex set, then this implighat(d, 0) € Ac s,
By Example 2.21we haveAc o)(D) = Ay 4, thusthefinal assertiorfollows.

Remark 5.12. With similaargumentsas in the proof of Theorend.11, oneproves
thatAcs = Ags,-3 and

0 -1
Acc,0)= 1 s Acs

Corollary 5.13.1f C is a plane curve of degree then

p(C, s)= g vs>d? .
Hence v4(C, s) is minimal (resp. not minimal) fer= d? (resp. for s> d?)
(see §3.4 for definition).

Remark 5.14. Corollarp.13 seems to be iontrastwith Conjecture3.13 which
in reality is not the caseConjecture3.13 applies only for a sufficienthgeneral
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choice ofC. Given s, this requires the degree of C to bgeladnough withrespect
to s. In other words, if & d? then C is not sufficienthygeneral.

Remark 5.15. Lemma 8 frofid7] implies thatthe right-handside of (L3) conveges
to the left-hand side for s> +co. So, Theorem5.11 makes thisstatement more
precise, i.e., in fact théwo bodies are equal fors d?.

5.3. Mutations and supraminimal curveBy fixing C, the goal of thissection
is to study Ac s, as a function of & [1,+00), i.e. by walking along an arc @M
away from the root. By Theorerfi.1], the picture is wellinderstoodor s > d?, so
it remains to study the case where ¢1, ). Note thatthe origin (0, 0) is alays
a vertex ofAcs,. The remaining vertices @&c s, will be called proper andheir
behaviour is the focus of thisubsection.

Definition 5.16.We saythatAc s, is continuous atgse (1, ) if, for every >0
there exists & > 0 suchthatfor all s with |s - 5| <38, every vertex p oAcs, is
near theboundaryof Ac ., i.e. distance(pPAc s, ) <

If Ac.s, is not continuous for somg & (1, &), then we saghatAc s, presets
amutationat g (or mutates atq9. Also, Ac s, depends linearly on s in d@nterval
I € (1, &), if the number of proper vertices At s, is the same for all | and
the coordinates of the vertices A s, are affine functions of s ih.

As we will see, sstandardeason formutation,taking place between intervals of
linearity of Ac s, , is non-minimality of v1(C, s). Moreovermutationsmay behave
differently according to whether O is sufficigngeneral on C onot.

Definition 5.17.We saythatan irreducible curvé&/ containing O, withequation
H(C, s) viavi(C, s) ifvi(C, s;f) =dedf) - u(C,s).
If vi(C, s) isnon-minimal,there exists¥ computing u(Cs) viawv (C, s). Hee

v1(C, sif) = de((f) - W(C, s)>dedf)- s
(see[l11, Lemma 5.1]). Such curves are callsdpraminimalfor v41(C, s).

Remark 5.18. The proof ¢f1, Lemma 5.1] showshatif V computesbpu(C, s)in
particularif it is supraminimalfor v1(C, s), then there is no (othegupianinimal
curve ats.

If V, with equatior f =0, computes p(C, s), then the valuative pointswf(C, s)
corresponding tdf (i.e., the one-sided limits of.(C, s)(f) with respect to spare
rightmost vertices ofAcs,. Note thatthere aretwo such vertices, i®v,(C, -;f)
is not defined at s, in which case there iatationof Ac s, at s, or there isnly
one suchvertex.

Example 5.19. Corollarys.13 tells usthat C of degree d isupraminimalfor all
v1(C, s) with s> d?: we consider this as a trivial casesofpraminimaliy.

There is nosupraminimalcurve for the O-adiovaluationv,(C, 1). So, givercC,
non-trivial supraminimaturves forv,(C, s) may occur only for & (1, if).

Theorem 5.20Let C be a smooth curve through O andMebe a curve, diffent
from C, with equationf = 0. Then:

(i) the set of points & [1,+0o0) such thatV is supraminimalfor v,(C, s) is opn;
(ii) if V is supraminimalfor v,(C, s) for all se (a, b) but not at a and then

Aca, =AVaYay"a, Acb. =AYV V5
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and there is some point € (a, b) of discontinuity of the derivative ofv,(C, s).
Furthermore,there is some branclh € B(V) with Puiseux expansion startings
y = ax+..., such that- 3 =sl(l) with | = ¢y (y) € E(F);

(iif) Ac,s, mutates at the finitely many points € (a, b) as in(ii).

V_
Proof. Part(i) follows from the continuity of v{(C;f)(s) and s.

Let us prove (ii). There is nsupraminimalcurve forv;(C, a) andv,(C,b).
Indeed, suppose W isupraminimalfor v,(C, a) (the samergumem works for
v1(C, b)). Then, by part (i), W isupraminimafor v,(C, s) with s in aneighborood
of a. ButV is alsosupraminimafor v,(C, s) with s in aight neighborood of aBy
the uniqueness afupraminimalcurves, we have/ = W, against theassumption
thatV is not supramjnimalfor v,(C, a). Thusbu(C, sF s for s= a, b. Since
v1(C;f)(s) >dedqf)- sforse(a, b)and v (Cf)(s), as a function of & [1, +c0),
is a tropical polynomial (seleroposition3.7), certainly there is somgoint ¢ € (a, b)
of discontinuityfor its derivative. Moreover v,(C ;f)(s) =degf)- s fors=a,b.
The rest of (ii) follows from the discussion $3.2.

To show (iii) notethatthe mutationof Ac s, at the points € (a, b) as in(ii)
depends on the discontinuity of ovi (C ; f ) there (see Remark 5.18).

Proposition 5.21If W(C, ) = \/§ then Ac s, is continuous atgs

Proof. By Corollary5.8, for every s there are inclusions

C (-
i S) THE, Sy p(hj:'.s)_ Acs. €A p(C,s)Hg C,S)?%‘g

Sinceu(C, s) is a continuous function of s,alicivs thatfor every > 0 there
is 8 > 0 such thatfor |s - sg| <3,

- - YNg- CAcs SAV. v Ner
AV v —
So—, So— ., ¢ S+, S+, ¢

andthe claim follows, sinceAc g+ = AVg V1V s5-

The mutationsdescribed in Theorenb.2((iii), can be calledsupraminimality
mutations

Corollary 5.22.Any mutationof Ac s, iS supramnimal.

For general choices of O ar@, all known supraminimalkurves are(—1)-cunes.
It would beinterestingto explore the behavior okc s on surfaces differdn
from P2, or for non-quasimonomial aluations (i.e., allowing singulaC, and fol-
lowing arcs in the whole valuative tréé ratherthan onlyQM). It is tempting
to conjecture that mutationsn general should bsupraminimaland relatedto
extremal rays in (some) Mori cone.

5.4. Explicit computationslin this section we compute thdewton—Okounkv
bodies in the range¢ in which p(C, s) is known (sefl1] and §3.4).

5.4.1. The line case. This case is an immediaesequence of Theoret 11, which
we state here focompleteness.

Proposition 5.23If C is a line, then for every 3 1 onehas

Acs. = A1sy,
henceAc s, depends linearly on s and there arenmotations.
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5.4.2. The conicase.
Proposition 5.24If C is a conic,then

A1s1 f16s<2

A =
G T AL.. ifS>2.
2.3.2

So, there is only oneutationat s= 2, andv4(C, s) is minimal only when s 1,4.

Proof. The case s listrivial. So, assume firsghats € (1,2)nQ. By Remark4.8,
we knowthat(1, 0) € Acs, . It remains to showhat(s, 1) € Ac s,. Note that the
only free points in the cluster ¥ Ky, («c,syare R = O and B. The linethrough
P; and B, i.e., thetangentline to C, has equation % 0 and behaves exactly dik
C with respect to K. Thus, again by Remati8, we have

v.(C,S: y)
deg(y)
implying that(s, 1) Acs, .

Take now se [2,4) n Q and use thenotationof §4. By Remark 4.8, we have
that(3, %) € Acs., given by thevaluationof a local equation of. It remainsto
showthat(2,0) € Acs,. Let L on X% be the totaltransformof the tangent line
to C at O. NotethatL - B; — B, does not contain any of the otherceptional
curves. Thus, arguing as in Lemmnd&h(ii), it is easy to seehatL contains A
with multipliticy 2g and L- 2gA, passeshroughx., with multiplicity 2¢®. Hence
(29,29") € Ay, and, by Remark4.§ this impliesthat(2, 0) € Acs, -

Finally, by Theorem5.11, the as®rtion holdsfor s > 4.

=v+(C, s;y)=(s, 1),

5.4.3. The higher degree case. The case ichmtieg(C)> 3 is moreinteresting,
since it gives rise to infinitely manynutationsof the Newton—Okounkovbody.
Recall thenotation{F;}icz_,u(-1; for the sequence of the Fibonacci numbesd
¢ for the golden ratio (se¥3.4).

Proposition 5.25For each odd integer= 5, there exists sationalcurve C; € P2
of degreeF; with a single cuspidal (i.e.unibranch)singularity at O andcharacter-
istic exponentFF:—j € (6, 7), whose six free points infinitely near &e ingeneral
position. Let G be a line (of degreg F witharacteristiexponen E—il: 2) and
Cs be a conic (of degreezFwith characteristiexponeit E—i =5). All thesecurves
are (—1)-curvesin their embedded resolution (i.e., after blogvup theappropriate
points of the cluster of centredeterminedby the characteristic exponent).

If C is a general curve with deg(C 3 through the origin O, then the cur@,
with equationf; = 0, through O and the first six infinitely near pts to O alongC,

satisfies 0 i h .o
Cf)  He?s ifse o2
U(Cv S): ﬂMl — Fi hFizfz Ei2—2|
b E_ F
deqfl) Fi+2 i+2 i+2
e ifse o

Thus C; is supraminimalfor v1(C, s) for se and any odd & 1.

Ffo' F2

Proof. The existence result is [A6, Theorem C, (a) and (b)]. The restthé
assertionis [11, Proposition 5.5].
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Proposition 5.26If deg(C)> 3 and O C is a general pointthen:
(i) onehas

Il
JA]_’S’]_ f16s<2
(14) AC,S._ = Azs 1 |f26865
As 252 if5<s66+7,
2’5’5
henceAc s, mutates at s=2,s=05, and depends linearly on s betwepatations;
(i) for se[6+ %,(p“) one has
: Fi Fii>
= . oif s o
Acs SAE meeoR2llSE gl E

i.e., Ac,s, mutates at—'+2 for all odd integers & 5 (thesemutationsagree with

part (i) of Theorem5. 20) and depends linearly on s betweantations;
(i) for s € (¢*, 7), the Newton—Okounkov body is tligiadrilateralwith vertices

o, 0),(13;35’ 0)’(1+ > }) (1+ s 1i %

(iv) for s € (7, 7+ %) one has

Acs. = Aggs.s
Accordingly, there is anutationat s=7.

Proof. All the claims follow from Corollary5.8 taking into accourt the conputa-
tions of u(C, s) from/11], see Remark3.15 The only problem, wheapplying
b

Corollary 5.8, is to know where the vertefarthestto the right of Ac s, lies on
the linet = (C, s), i.e.,, we have to compute the numbeppearingin Corol-
lary 5.8(ii). This is given by thevaluationof the curve G or € in case (i), thfe
curve C; for any i > 5 in case (ii) (where both examples of cunas retrieved
from Proposition5.25, and the cubic curve ;Dfrom [11, Table 5.1] for both(iii)
and(iv).

Remark 5.27. If deg(C¥ d, Proposition5.25leaves an unkown intervel7 +g , %)
whereas for s [d?, +o0) the Newton—Okounkowody is known by Theorenbt.11
and there are nmutationsthere. Conjecturally,the same should happen for

1
>8+ —
s>8 3%

(seeConjecture3.13 if O is a generalpoint of C.

Corollary 5.28.Assume deg(C ) 3 and O is a general point & Then for
s 6 7, the Newton—Okounkov bod¥c s, lies in the half-plane+u 6 3. Moreover,

@) Ifs e[1,e*)u[7, 7+ %), thenAc s, is a triangle whose vertices araluative.
(i) If s € (¢*,7), thenAc s, is aquadrilaterawith at least one vertex beiray
non-valuative pint.

Proof. All claims follow fromProposition5.26 except the factthat Ac s, hasa
non-valuativevertex When s ((p4 7), andthat( 3, 3) is valuative when & [7,%}).

First, assumehat( 3%, =5-) is valuative for some s 7. This meanghat there
is a polynomialf of degree dwith

£\ _ 3S ] 3
vi(C, sif) = md, and 04+v1(C;f)(s) = md_
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As v,(C;f) is piecewise linear as a function of s, them §mall enough > O,
e 3 3 . _ 3
vi(C, s+ ;f) = md+ md , and 04+vi(C;f)(s+ )= md.
In particular,this impliesthat
3s 3

+ y
1+s 1+s1+s

€ Ac,(s+) -

But this contradicts thafor s+ <7, the Newton—Okounkowody Ac s, liesin
the half-planet +u 6 3. So, (32, ;%) is anon-valuativevertex.

Finally, (g—S,g) is valuative because there is a unique cutvef degree 24vhose
Newton polygon with respect to C has vegio®, 9) and (64, 0). Indeed, let K
be the cluster of centres wf(C, &), which consists of 8 free points followed by 8
satellites, eaclproximateto its predecessor and tg Pthe continuedfraction ofg—4
is [7;9]). Then V has multiplicity 9 at each of P,..., B and multiplicity 1 at
Pg,...,Re.

The curveV has genus 1 and abtainedin this way. Consider th€remona
transformationo determinedby the homaloidal system of curves of degrewiih
triple points at a cluster C of seven genenrdinitely near, free, base pointghis
Cremona transformationappears in theconstructionof the curvesC; in Proposi-
tion 5.25 see[26, proof of TheoremC]).

There is a unique cubic cuntewith a doublepoint at the firstpoint of C and
passing simplythroughthe remaining six points of C. This curvecisntracted to
a point by o.

Let x eI" be a general point. There is a perkilf cubics havingintersection
multiplicity 8 with T at x. ThenP has 9 baseoints, 8 are given by theluster
formed by x and by the 7 points infinitely near xaalongI', and there is &urther
basepoint y e I'. The general curve df is irreducible, and its image via is the
requiredcune V , which hasgerus 1.

Remark 5.29. It is somewhat mysteriotlsatin the case (ii) of Corollarys.28 one
has a vertex ofAc s, thatis not valuative,taking into accout thatfor s < 7,
s € Q, the Mori cone of X is polyhedral (se¢ll]).
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