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1. Introduction 13 

A continuous increase of nitrophilous species of plants, lichens and mosses in the 14 

Iberian Peninsula (Ariño et al., 2011); an increase in the N content of bryophytes 15 

during the last half of the 20th century (Peñuelas and Filella, 2001); an increase in 16 

nitrate concentration in headwater streams (Àvila and Rodà, 2012; Camarero and 17 

Aniz, 2010); and nutritional imbalances in forests of Abies pinsapo and Pinus 18 

silvestris attributed to atmospheric N inputs (Blanes et al., 2013; Sardans et al., 2015). 19 

Furthermore, interactions of N enrichment with ozone, the most important air pollutant 20 

in the Mediterranean region, have been described for plant species in Spain (Calvete-21 

Sogo et al., 2014; Sanz et al., 2015).  22 

A recent model-based assessment of N deposition threats to habitats within the 23 

Spanish Natura 2000 network showed that the most threatened habitat-types were in 24 

mountainous and alpine areas ( natural grasslands and heathlands in the Pyrenees and 25 

Cantabrian Ranges, Pinus uncinata and Abies pinsapo forests), and in mountain 26 

forests and scrublands close to high emission sources such as the big cities  of Madrid 27 

and Barcelona, and sclerophyllous forests of Quercus ilex in NE Spain (García-Gómez 28 

et al., 2014). These high-altitude and orographically-complex areas are difficult to 29 
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access for monitoring purposes. Besides, current chemical transport models do not 30 

adequately simulate small-scale variations in deposition regimes in these areas (Boutin 31 

et al., 2015; García-Gómez et al., 2014; Simpson et al., 2006). Further monitoring 32 

efforts in such areas would be useful for ground validation of transport models and for 33 

ecosystem conservation assessments.. 34 

Although the use of automatic wet-only samplers is widely recommended for 35 

monitoring atmospheric wet deposition, the expansion of monitoring networks has 36 

been urged by using less expensive methods, easy to operate, and without requiring 37 

frequent visits to the field (Erisman et al., 2005; Clow et al., 2015). Throughfall or 38 

precipitation collectors using ion exchange resins (IER) combine all these conditions. 39 

They usually consist of a collector funnel connected to an IER-containing column 40 

instead of a collection bottle. Inside the tube, the precipitation flows through the resin 41 

during rain or snowmelt events and the ionic solutes are adsorbed to the resin. 42 

Collectors using IER have been employed to monitor atmospheric N input to forest 43 

ecosystems since the early 2000s (e.g. Fenn et al., 2002; Fenn et al., 2015). This 44 

technique appears highly suitable for the Mediterranean region where complex 45 

orography complicates field sampling. To our knowledge, there are not published 46 

studies applying this technique in Mediterranean forests of Europe. In this study, three 47 

monitoring sites in three Spanish forests of Q. ilex were equipped with conventional 48 

and IER collectors to monitor bulk and throughfall deposition of inorganic N (nitrate 49 

and ammonium) during two years. In addition, a review of the published works using 50 

IER for collecting N deposition was performed and compared with our results. This 51 

study was part of the EDEN project (Effects of nitrogen deposition in Mediterranean 52 

evergreen holm oak forests), for which one of the objectives was to evaluate different 53 

measurement methodologies for determining atmospheric N deposition.  54 

 55 

2. Methodology 56 

2.1. Study sites 57 

Three holm-oak (Q. ilex) forests in Spain, influenced by different pollution sources, 58 

soil and climatic conditions were selected for this study (Fig. 1). The Can Balasc (CB) 59 

site is in a forest located within a natural protected area 4 km from Barcelona. This site 60 
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is characterized by acidic soils and a Mediterranean sub-humid climate. The Carrascal 61 

site (CA) is located in an agricultural area close to Pamplona (15 km), with calcareous 62 

soil and a Mediterranean humid climate. This site is the most agriculturally-influenced 63 

among the three forests. The Tres Cantos site (TC) is a forest located in a natural 64 

protected area 9 km from Madrid, growing on acidic sandy soil and with a 65 

Mediterranean semi-arid climate. The vegetation at TC was historically managed as a 66 

traditional dehesa (a savannah-like agrosilvopastoral system) of Q. ilex, but the low 67 

management intensity during the last decades has allowed vegetation to grow as a 68 

moderately open forest. Meteorological variables were monitored in the CB and TC 69 

sites, and data from the closest meteorological station were collected for the CA site. 70 

Further information on the monitoring sites can be found in García-Gómez et al. 71 

(2015). 72 

2.2. Sampling and analytical methodologies 73 

Atmospheric deposition of ammonium (NH4
+) and nitrate (NO3

-) was monitored for 74 

two years (spring 2011 – winter 2013) in open-field plots (bulk deposition) and below 75 

the forest canopy (throughfall deposition) by means of IER collectors (IECs). These 76 

collectors were manufactured following Fenn and Poth (2004), and consisted of a 77 

funnel (10 cm radius; NILU - Norwegian Institute for Air Research, Kjeller, Norway) 78 

attached to a PVC tube with an inner diameter of 15 mm filled with a mixed-bed IER 79 

(Amberlite™ IRN150) and a valve at the bottom for drainage (Fig. A1). Generic 80 

residue-free synthetic filter wool was inserted in both ends of the resin tube. Replicate 81 

IECs were placed in the field with the collection surface at 1.5 m height during periods 82 

of 3 to 5 months. For bulk deposition measurements, 4 collectors were deployed in TC 83 

and CA, and 2 collectors in CB, in open-field locations; for throughfall deposition 84 

measurements, 12 collectors were deployed in TC and CA, and 8 collectors in CB, 85 

below the forest canopy. The entire collector devices were replaced in the field at the 86 

end of each sampling period, and visually inspected for signs of bird fouling or other 87 

potential contaminations of the sample. Once in the laboratory, the columns were pre-88 

rinsed with 100 ml of deionized water and the ions extracted by percolating 200 ml 89 

aliquotes of 2M solution of KCl two times, representing two consecutive extractions. 90 

Extracts were measured for pH as an additional quality control of this methodology 91 

since liquid samples can lose NH4
+ via NH3 volatilization as the pH increases (Vlek 92 
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and Stumpe, 1978). Background levels of NO3
- and NH4

+ in resin columns unexposed 93 

to atmospheric deposition and stored at room temperature were also determined and 94 

used as blanks. Finally, a set of IECs were spiked with known quantities of NO3
- and 95 

NH4
+ in laboratory conditions and were extracted and analysed following the same 96 

procedure to determine the adsorption and recovery efficiencies of the IECs for this 97 

experiment (Table 1).  98 

Available published studies using similar IECs (or at least applying similar laboratory 99 

tests to them) were collected, and their methodological data (when available) were 100 

recorded or estimated from tables or figures. Results from this methodological review 101 

are presented in Table A-1. 102 

Nitrogen deposition was additionally monitored by means of conventional collectors 103 

using bottles instead of resin tubes (conventional bottle collectors; CBCs). These 104 

CBCs were collocated with the IECs, applying the same replication, funnel type and 105 

height. The CBC samples were collected on a weekly-basis by replacing the collection 106 

bottle. During periods without rain, the CBC funnels were rinsed with 100 ml of 107 

deionised water every two weeks before replacing the bottle, in order to collect and 108 

measure the dry deposition into the funnel. The sampling procedure, storage, analysis 109 

by ion chromatography (Dionex, Sunnyvale, USA) and quality control of the 110 

analytical results of the CBC samples were performed following the recommendations 111 

of the ICP Forests Manual (Clarke et al. 2010), and it is further described in Izquieta-112 

Rojano et al. (2016).  113 

For both measurement methodologies, a filter mesh was fixed on top of the funnel 114 

walls  to prevent the accumulation of litterfall in the funnels and a bug-sieve (NILU, 115 

Kjeller, Norway)was placed at the bottom the funnel to protect the resins from further 116 

small particle contamination. The upper edges of the funnels were equipped with an 117 

external metal ring to prevent birds from perching on the tube perimeter (Fig. A1).  118 

2.3. Calculations and statistical analysis 119 

Nitrogen deposition in each IEC was calculated multiplying the concentration of 120 

nitrate-N (NO3-N) and ammonium-N (NH4-N) by the volume of the extracting 121 

solution and adding the results from the two extractions. Then the background levels 122 

measured in the unexposed blank IER tubes were subtracted, and the result divided by 123 
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the collection surface. Finally, these results were corrected by the recovery efficiency 124 

factor. For the CBCs, the deposition was calculated for each collection bottle by 125 

multiplying the sample concentration by the volume collected (or the rinsing volume 126 

for the rainless periods). Deposition values from the replicated samples were then 127 

averaged for each period and plot for both methodologies. Deposition of total 128 

inorganic nitrogen (TIN) was calculated by adding NO3-N and NH4-N deposition 129 

values. Annual deposition values were calculated as the sum of the sampling period 130 

values during the year. When the sum of periods did not exactly match with the 131 

duration of a natural year, values were weighted by their added-up sampling time. 132 

Deposition values (means and standard deviations) of the CBC periods were combined 133 

to match the IEC periods for comparison purposes, and also grouped and combined on 134 

a monthly basis to summarize and describe the intra-annual variability of the N 135 

deposition. Net throughfall deposition was calculated subtracting bulk deposition 136 

values from throughfall deposition values for every period and methodology. 137 

To compare the two methods, the Pearson correlation coefficient (r) was calculated for 138 

NO3-N, NH4-N and TIN deposition data from both methods. Correlation between 139 

variables was tested using Statistica version 12 (StatSoft, Inc. Tule, OK, USA) with 140 

the Pearson correlation coefficient, and with Spearman rank order correlation when the 141 

data were not normal. Alpha level was set at 0.05. Additionally, two metrics 142 

commonly used in model evaluation (García-Gómez et al., 2014; Boylan and Russell, 143 

2006), the mean fractional bias (MFB) and root mean square error (RMSE), were 144 

calculated following eq.1 and eq. 2, respectively. 145 

eq. 1      𝑀𝐹𝐵 =
1

𝑁
∑ (

  𝐼𝐸𝐶𝑖−𝐶𝐵𝐶𝑖  
𝐼𝐸𝐶𝑖+𝐶𝐵𝐶𝑖

2

) 146 

eq. 2      𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝐼𝐸𝐶𝑖 − 𝐶𝐵𝐶𝑖)

2]

1

2
 147 

,where N is the number of data pairs from the IEC and CBC methods, and the index i 148 

is over the time series, and including all the monitoring sites for each method. 149 

Variability of deposition values among collectors (referred herein as precision of the 150 

method) was calculated as the coefficient of variation (CV = standard deviation / 151 

mean) for every plot and period with two or more sampling data available.  152 



6 
 

3. Results and Discussion 153 

3.1. Laboratory testing of ion-exchange resin collectors 154 

The values of nitrate obtained in blank unexposed IECs were 0.001 - 0.006 mg NO3-N 155 

per gram of resin. These values were similar to previously reported ones (Table 1). In 156 

the case of ammonium, mean values of 0.048; 0.060 and 0.074 mg NH4-N per gram of 157 

resin were obtained. This blank correction was higher than those shown in Table 1, 158 

which were  0.001 mg NH4-N g-1, except   for Boutin et al. (2015) who nonetheless 159 

reported a blank value aat least 4 times lower.. Resins made of quaternary ammonium 160 

compounds, like the one use in this study, can release NH4
+ (Hansen 2012; Langlois et 161 

al., 2003), which could explain the relatively high NH4
+ found in the blanks. Although 162 

having such high blank values is not expected to cause accuracy problems, it could 163 

contribute to a decrease in the precision of the measurement of low deposition values. 164 

The adsorption efficiency of the IER tubes was close to 100% for both ions, the same 165 

as in most of the reviewed experiments from the literature (Table 1). The recovery 166 

efficiency for NO3
- was comparable to that reported in other studies, but the recovery 167 

efficiency was higher for NH4
+. In this case, more NH4

+ was recovered from the 168 

spiked resins than the quantity previously added, giving a recovery factor of 112%. 169 

Recovery factors above 100 % have been previously described using the same IER 170 

(Fenn et al., 2002; Table 1). These results highlight the importance of lab tests to 171 

explore the performance of the resin used and to provide with suitable correction 172 

factors. 173 

3.2. Comparison of methods 174 

The comparison metrics and graphics were performed only for bulk deposition values, 175 

since throughfall deposition is subjected to a higher variability due to canopy 176 

interactions with atmospheric N, canopy heterogeneity, and biochemical 177 

transformations provoked by litterfall or algae in the collectors (Bleeker et al., 2003; 178 

Fenn and Poth, 2004).  179 

In our study, a considerable number of the IEC extracts from CA exhibited a high pH 180 

(mean of 4.9, maximum of 13.1), while for the other two sites a mean pH of 3.6 and a 181 

maximum value of 6.3 were found. Significant negative correlations were found 182 

between the pH of the extracts and NH4
+ concentrations within some periods at CA 183 
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(data not shown) and a remarkable reduction in NH4
+ concentration occurred generally 184 

at pH values higher than 5.5. Because of this, ammonium values from extracts with a 185 

pH value higher than 5 (34% of 246 extracted samples) were removed from the dataset 186 

before deposition calculations, which reduced the replication of measurements (Table 187 

2). The precipitation in CA was much more alkaline (with a mean pH of 7.3 and a 188 

mean alkalinity of 1411 µeq l-1) than in CB or TC (with mean pH of 6.3 and 6.0; and 189 

mean alkalinity of 67.6 and 27.5 µeq l-1, respectively) during the study period 190 

(Aguillaume, 2015). It may therefore be that carbonates and bicarbonates present in 191 

the rain at this site increased the pH of the extracts provoking the loss of NH4
+ via 192 

volatilization of NH3 before the analysis (Cape et al., 2012; Izquieta-Rojano et al., 193 

2016).  194 

Variability among IEC samplers for bulk deposition was lower in TC (mean CV of 195 

12% and 11% for NO3-N and NH4-N, respectively) than in the other two sites: mean 196 

CV of 22% and 35% for NO3-N
 and 79% and 22% for NH4-N in CB and CA, 197 

respectively. These high values are similar to the highest reported ones in Table 1 and 198 

they may be caused by a low replication in these sites. In CB, only two IECs were 199 

installed in the open, while in CA the above-mentioned reduction in the dataset 200 

provoked a drastic reduction in the actual replication. In the present study, the intra-201 

plot variability of the IEC methodology for bulk deposition measurements was in a 202 

similar range to the set of previous experiments shown in Table 1. The variability 203 

found with IECs was similar to that found using CBCs, with the exception of NH4-N 204 

in CB (79%), which was largely higher (29% using CBCs). It might indicate that a 205 

higher replication than two funnels is needed in this type of forests when IER are used 206 

to measure NH4-N deposition. Moreover, the higher replication allows detecting and 207 

removing questionable data, as was done for the CA dataset.  208 

Comparison of IEC and CBC measurements of N bulk deposition showed a good 209 

agreement for NO3-N and acceptable for NH4-N and TIN (Fig. 2). Nitrate deposition 210 

estimations showed lower error (RMSE = 0.15 kg N ha-1) and a better fit to the 1:1 line 211 

than NH4-N measurements. Ammonium measurements with IECs tended to 212 

overestimate the lowest range and underestimate the highest ones, in relation with the 213 

CBC values. The bias for NH4-N deposition was low and positive (MFB = 6% for the 214 

entire dataset) and the error was about 0.56 kg N ha-1. In consequence, TIN 215 
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measurements showed an acceptable accuracy between methods (Fig. 2) but a lower 216 

precision (RMSE = 0.63). This comparison was performed using the CBC results as 217 

the reference for assessing the IEC results, but it must be taken into account that the 218 

former methodology is not free of uncertainty (Bleeker et al. 2003; Dämmgen et al., 219 

2005). Moreover, there are also differences in the quality control of the data, since a 220 

thorough validation of the analytical results was not possible for IEC data (because 221 

only NO3
- and NH4

+ were analyzed in these samples). 222 

Fig. 2 shows a very good performance of IEC method for NO3-N measurements, with 223 

only one period slightly out of the ±50% lines. In the case of NH4-N deposition, the 224 

values with the highest deviation were from two sampling periods during the second 225 

year in CA, with exceptionally low values in the IECs (2.12 and 1.54 kg NH4-N ha-1) 226 

compared to the CBC values (3.15 and 3.29 kg NH4-N ha-1). These two periods 227 

showed the highest mean hourly precipitation of the entire study (0.11 and 0.17 mm h-228 

1) and an elevated maxima hourly precipitation (9.9 and 18.2 mm h-1).  The lower 229 

deposition values could be therefore related to collection problems during those heavy 230 

rains To protect the resins IECs have additional filters and stoppers that may impede  231 

the rainwater flux during very intense storms and  rainwater may temporarily 232 

accumulate in the funnel, exposing a relatively large surface of sample to the 233 

atmosphere. This could provoke a loss of NH4
+ via volatilization of NH3, particularly 234 

from rain samples with high alkalinity and pH like those found in CA. Hourly 235 

averaged rainfall showed a slight positive correlation with the differences found for 236 

NH4
+ concentration at CA (r = -0.48; p = 0.059), which totally disappeared once the 237 

two above-mentioned periods from CA were removed, suggesting that only during 238 

these two periods the measurements were affected by heavy rains. When excluding 239 

these two sampling periods at CA, the deposition of NH4-N estimated with the IEC 240 

method was generally higher (59%) than with the CBC method.  241 

Previous studies have reported that NH4
+ in bulk deposition tends to be greater in IECs 242 

than in CBCs (Clow, et al, 2015; Fenn and Poth, 2004; Hansen, 2012; Langlois et. al., 243 

2003). There are three processes that could account for this discrepancy: 1) release of 244 

NH4
+ from the amine groups of the IER, 2) nitrification in the CBC samped solution 245 

and 3) volatilization losses of NH3 in the CBC liquid samples (Fenn and Poth, 2004). 246 

The high temperatures that are common in the Mediterranean climate could favor any 247 
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of the three potential processes (Fenn and Poth, 2004) and, in fact, there was a positive 248 

relationship between the mean temperature of the sampling periods and positive 249 

discrepancies of IEC over CBC for NH4-N deposition (n = 11; r = 0.66).  250 

Field blanks are recommended to correct for ammonium release from the IER (Fenn 251 

and Poth, 2004). However, we used laboratory blanks (i.e. IER tubes not exposed to 252 

field condition), which may  release less amount of NH4
+ than field blanks because 253 

they are not submitted to the stronger temperature oscillations experienced in the field 254 

that may enhance NH4 release from resins. This could account for part of the 255 

overestimation of NH4
+ deposition of IECs at low concentrations.. After the study 256 

period, two sealed IECs (field control) were deployed in TC during 6 months, one 257 

under the canopy and the other in the open. The blank NH4
+ value from the field 258 

control in the open-field plot was the only one showing a clear difference with the 259 

laboratory control for the same period, being 29% higher which corresponds to an 260 

overestimation of 0.23 kg NH4-N
 ha-1 for bulk deposition for that period and site. 261 

Regarding the other two processes, nitrification is not expected to occur in the open-262 

field CBCs, since the bottles are protected from solar radiation by PVC tubes , but this 263 

possibility cannot be totally discarded. Secondly, the volatilization of NH3 from liquid 264 

samples in open field is highly possible in this warm climate, although the narrow 265 

passage through the bug-sieve  in the funnel neck is expected to meaningfully reduce 266 

the rate of ammonia volatilization, since this process is known to be severely restricted 267 

by limiting the movement of air above the water (Vlek and Stumpe, 1978). 268 

3.3. Annual nitrogen deposition to holm oak forests 269 

Mean annual N deposition estimated with IECs and CBCs is presented in Fig. 3. TIN 270 

bulk deposition ranged from 2.42–3.85 and 3.09–5.41 kg N ha-1 among the sites 271 

according to CBC and IEC methodologies respectively. TIN in throughfall ranged 272 

from 2.33–8.20 and 4.52–8.91 kg N ha-1 among the sites with CBC and IEC 273 

respectively. The highest N bulk deposition occurred in CA, with an annual average of 274 

2.69 kg NO3-N ha-1 and 4.15 kg NH4-N ha-1 according to the CBC method and 2.60 kg 275 

NO3-N ha-1 and 2.81 kg NH4-N ha-1according to IECs. Throughfall deposition, on the 276 

other hand, was the highest in CB, with an annual average of 5.83 kg NO3-N ha-1 and 277 
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2.36 kg NH4-N ha-1 according to CBC method and 5.50 kg NO3-N ha-1 and 3.41 kg 278 

NH4-N ha-1, according to IECs.  279 

The IEC method estimated on average a bulk deposition 0.20 kg NO3-N ha-1 y-1 and 280 

0.17 kg NH4-N ha-1 y-1 lower than the CBC method, representing a MFB of -9% and -281 

5%, respectively. The comparison of annual values for throughfall showed a marked 282 

difference for NH4
+ in TC, where the IEC method estimated 2.25 kg NH4-N ha-1 y-1 283 

more than the CBC method. This discrepancy could be related to the high uncertainty 284 

of the CBC method when concentrations are close to or below detection limits 285 

(Köhler, et al., 2012), as was here the case with 30% of NH4
+ throughfall samples 286 

below the detection limit. Besides, the open structure of this dehesa forest enhances 287 

the heating of the collectors through direct radiation and, therefore, biological 288 

processes in the liquid samples (nitrification) or in the accumulated debris at the 289 

bottom of the IEC funnels (decomposition). Both possibilities are equally possible, 290 

although collectors are shaded by PVC tubes and no correlation was found between 291 

mean temperature and the discrepancies between methods for throughfall deposition at 292 

this site. Despite bird dropping cannot be totally disregarded, the largest discrepancy 293 

was found in spring of 2011, the period in which more inflorescences were collected 294 

in litterfall samplers (55.2 g m-2). Inflorescences of Q. ilex are the smallest and most 295 

easily decomposable part of the litterfall with a high N content (close to 1.5 %; Bellot 296 

et al., 1999). Thus, inflorescence can mean a high return of N to the soil in the years 297 

with high production of flowers (Escarré et al., 1999), such as 2011. It is therefore 298 

recommended to clean or change the funnels when this situation occurs. On the other 299 

hand, some of the CBC samples at TC which stood uncollected in field for 2-3 days 300 

after summer rains showed algal growth in the below-canopy plot but not in the open-301 

field one. The use of biocide in the collection bottles (faltan 2 refs) is therefore 302 

recommended under Mediterranean conditions, particularly under semi-arid regimes 303 

like at TC site and in throughfall deposition collectors. Besides, further quality control 304 

can be included by analyzing phosphates in the IEC samples to identify bird-fouling 305 

contamination (Fenn et al., 2015). All these results show that, IECs seem a suitable 306 

method for monitoring annual deposition in this type of forest with lower cost and 307 

effort than CBC methods, once precautions mentioned above are considered. 308 



11 
 

The difference between throughfall and bulk deposition (net throughfall) reflects the 309 

interaction between the atmosphere and the canopy including both the wash-off of dry 310 

deposited N and the exchange with the leaf surfaces, which in the case of  N iscan 311 

have an important adsorption component (Lindberg et al., 1986). Negative values of 312 

net throughfall indicate that at least part of the wet deposited N is being effectively 313 

retained in the canopy, while positive values indicate that at least part of the dry 314 

deposited N is reaching the forest floor. Annual net throughfall values were positive 315 

for NO3-N with the two measurement methods at all sites (Fig. 3). This result indicates 316 

a net flux of oxidized N to the forest soil at all sites coming from dry deposition, even 317 

though some canopy nitrate retention could be occurring. This input of dry deposited 318 

NO3-N is very high at CB, the most urban-influenced site wich experiences the highest 319 

concentrations of gaseous oxidized-N compounds (García-Gómez et al., 2015). On the 320 

other hand, net throughfall values for NH4-N were only clearly positive in CB and 321 

negative in CA, while in TC depended on the method used and could be considered 322 

close to zero. The forest canopy at CB seems to be retaining less NH4
+ than CA, even 323 

though dry deposition of reduced N is expected to be lower at this site than in CA 324 

which is a highly agriculture-influenced site with higher NH3 concentrations (García-325 

Gómez et al., 2015). Canopy uptake of NH4
+ has been described to be larger at lower 326 

nitrogen foliar content (de Vries et al., 2001), which is coincident with the 327 

stoichiometry of these sites, since CA showed the lowest leaf N content (1.44%) and 328 

CB the highest one (1.61%). On the other hand, the apparent retention of N by the 329 

canopy of Q. ilex forest needs further investigation, particularly for NH4
+. The fact that 330 

the forest canopy at CB seems to retain less deposited N than the other two sites, 331 

together with the observation of lower retention of atmospheric gaseous N (García-332 

Gómez et al., 2015) could indicate that the Q. ilex trees in this forest cannot retain as 333 

much N as the other sites. Interestingly, Q. ilex forests close to this experimental site 334 

and with similar deposition load have experienced rises of NO3
- concentration in 335 

headwater streams considered as a sign of the onset of eutrophication (Àvila and Rodà, 336 

2012). 337 

Seasonality 338 

In Mediterranean areas, the seasonal variability of N deposition is expected to be high 339 

because of the particularities of the Mediterranean precipitation regime, in which 340 
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rainfall is not equally distributed over the year. IEC data showed seasonal variations 341 

(Table 2), such as  higher deposition in spring and autumn (the wettest periods), and a 342 

lower deposition during the rest of the year. Data from CBCs can be better used for 343 

studying intra-annual variability in detail because deposition can be presented 344 

monthly; Fig. 4 and A2). Negative values for net throughfall were most commonly 345 

observed with NH4
+ (Fig. 4), indicating that canopy retention occurred more often in 346 

the reduced form, as usually found in the literature. Relatively high positive values of 347 

net throughfall can be noticed in TC during September and October in 2011 and 2012, 348 

during the first rains after the summer droughts occurred, and also in March 2012, 349 

after a particularly dry winter (Fig. 4). These values of positive net throughfall imply 350 

relatively large and ephemeral pulses of N into the soil after the first rainfall events, as 351 

those previously described in other semi-arid Mediterranean ecosystems (e.g. Meixner 352 

and Fenn, 2004; Vourlitis et al., 2009). These pulses can be noticed also in CB, but 353 

they rarely occurred in the CA site (Fig. A2). These ephemeral inputs, among others 354 

effects, can trigger pulses of NO emissions from soil (Homyak and Sickman; 2004) 355 

which can affect the atmospheric photochemistry of the forest, involved in ozone (O3) 356 

and nitric acid formation (HNO3). Besides, they can provoke a flushing of inorganic N 357 

to groundwater if the pulse occurs when plants and soil communities are not able to 358 

use this dissolved N (like at the end of the summer, when they are withstanding 359 

drought stress). This effect, known as the asynchrony hypothesis (Meixner and Fenn, 360 

2004), is corroborated in TC, where high concentrations of NO3
- in the soil water (up 361 

to 2.01 and 0.35 mg NO3
- l-1 at 20 and 40 cm depth, respectively) have been found 362 

after pulses of N during late-summer and early-autumn, but not during early spring, 363 

when understory annual pastures were emerged and growing and soil communities 364 

were active. 365 

3.4. Summary of methodological considerations 366 

Some methodological recommendations on the IEC method arising from the present 367 

study (some of them have been already reported in previous works) must be taken into 368 

consideration. Preliminary laboratory tests on adsorption and recovery efficiency need 369 

to be done in order to know the performance of the resin. The IEC method poses a 370 

potential overestimation of NH4
+ deposition due to the release of ammonium from the 371 
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amine groups of the IER. To avoid that, field blanks consisting of sealed IECs 372 

deployed in the field are recommended over unexposed laboratory blanks in 373 

Mediterranean conditions. An overestimation of NH4
+ deposition could also occur 374 

when a large amount of leachable debris is accumulated during the long sampling 375 

periods of IECs. In Q. ilex forests it could particularly occur during the flowering 376 

period and/or in open forests, like dehesas, because the structure of the canopy allows 377 

high radiation exposure and heating of the collectors. Periodic cleaning of sampling 378 

devices is advised during those sensitive periods. On the other hand, NH4
+ deposition 379 

could be underestimated when rain flow across the different parts of the IECs during 380 

heavy rains is made difficult (e.g. by small nominative diameter of any part of the 381 

collector, or very dense filters or sieves). A modification in the design could be studied 382 

in those areas withstanding intermittent heavy rains. It is recommended to deploy at 383 

least three replicate IECs at every bulk deposition sampling plot, so questionable 384 

samples can be removed if necessary. There would not be a recommended replication 385 

for throughfall measurements, since it may vary depending on the vegetation cover 386 

type, canopy characteristics and its distribution throughout the stand; however, based 387 

on the intra-site variability found in this study, at least ten replicates are recommended 388 

in this kind of forest stands. Finally, we also recommend to measure the pH of the 389 

sample IEC extracts, and to acidify the extract if the pH is too high. Regarding the 390 

CBC method, it has proven useful for studying the temporal variability of N 391 

deposition, and the use of biocides is recommended in these climatic conditions and 392 

especially for throughfall measurements. An additional quality control method for IEC 393 

by analysing phosphates in the extracts is also recommended. 394 

4. Conclusions 395 

The results of the present study show that collection methods for N deposition based 396 

on ion-exchange resins can be recommended for long-term studies in the 397 

Mediterranean region, since its measuring good performance was found for NO3
- 398 

deposition and an acceptable for NH4
+ and TIN, in comparison with conventional 399 

methods. This methodology is particularly recommended in remote areas and when the 400 

nitrogen concentration in rain is low. However, throughfall measurements of 401 

ammonium in low density forests (like dehesas) or any measurement with alkaline rain 402 
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should be considered with caution. Besides, possible contamination from the 403 

accumulation of debris in the funnels must be contemplated when planning the 404 

duration of the different sampling periods along the year. Absorption and recovery 405 

efficiencies from the IER need to be tested in the lab to derive possible correction 406 

factors needed. 407 

Mean annual bulk deposition of TIN in Holm oak forests ranged from 2.42–3.85 and 408 

3.09–5.41 kg N ha-1 according to CBC and IEC methodologies, respectively.  409 

Analogous throughfall deposition fluxes of TIN ranged from 2.33–8.20 and 4.52–8.91 410 

kg N ha-1. On average, bulk deposition estimated by the IEC method was 0.20 kg NO3-411 

N ha-1 y-1 and 0.17 kg NH4-N ha-1 y-1 lower than the CBC method. Intra-annual 412 

variability studied with the CBC data showed significant input pulses of N into the 413 

forest soil after dry periods. These pulses presumably originated from the washing of 414 

dry deposition accumulated in the canopy and were particularly noticeable in the forest 415 

site with a semiarid climate. The implication of these nutrient pulses for ecosystem 416 

functioning, atmospheric chemistry and N leaching should be further investigated. 417 
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Table 1. Compilaton of data from different studies reporting field blanks, field sampling 616 

details and laboratory tests of performance for ion exchange resins collectors.  617 

Study 
Ion exchange 

resin 

Number and 

type of blanks 

NO3
- NH4

+ 

Blank 

correction 

(mg N g-1) b 

Intra-site 

variability 

(CV) 

Adsorption 

effiency 

Recovery 

efficiency 

Blank 

correction 

(mg N g-1)b 

Intra-site 

variability 

(CV) 

Adsorption 

effiency 

Recovery 

efficiency 

Boutin et al., 2015 

Mixed-bed 

IONAC® NM-

60 

3 in total; field 

blanks 
Non detected 12 % a   

0.014 ± 
0.006 

19 % a   

Brumbaugh et al., 

2012 
2-stage columns 9; field blanks 

Near 

detection 
limits 

8–10 %  106 ± 7 % 

Near 

detection 
limits 

5–10 %  101 ± 3 % 

Cerón et al., 2015 

Mixed bed 

Amberlite™ 

IRN150 

3; field blanks    98.6 %    98.6 % 

Clow et al., 2015 

Mixed bed 

Amberlite™ 

IRN150 

1 per site; field 

blank 
< 0.003 16 % a  100 % < 0.003 21 % a  88 % 

Fang et al., 2011 

Mixed bed 

201x7[717] & 

001x7[732] 

2 per site; field 

blank 
0.003–0.028 9–34 % 90–99 % 90 % < 0.001 5–23 % 94–100 % 97 % 

Fenn et al., 2002 

Mixed bed 

Amberlite™ 

IRN150 

5; lab. blanks < 0.001   104.4 % 0.001   104.5 % 

Fenn and Poth, 

2004 

Mixed bed 

Amberlite™ 

IRN150 

Lab. blanks < 0.001 1–16 %   0.001 13–27 %   

Hansen, 2012 
mixed bed 

Rexin® 

1 per plot; field 

blanks 
< 0.001    < 0.001    

Köhler et al., 2012 

Mixed bed 

Amberlite™ 

MB 20 

1; lab. blank 0.001   95%     

Sheibley et al., 2014 

Mixed bed 

Amberlite™ 

IRN150 

1 field blank 

(per site) and 3 

lab. blanks 
0.001–0.003 9–36 % 

Approx. 

100 % 
90 - 91 % ≤ 0.001 7–89 % 

Approx. 

100 % 
74–96 % 

Simkin et al., 2004 

Anion-exchange 

DowexTM 

Monosphere 

550-A 

3; lab. blanks < DL  100  % 
93.9 - 

100.4 % 
    

Tuloss and 

Cadenasso, 2015 

Mixed bed 

Amberlite™ 

IRN150 

    90 - 95 %    90–95 % 

van Dam et al., 

1991 

Mixed bed 

DowexTM 1-X8 

and 50W-X8 

  18 %    8 %   

Wieder et al., 2010 

Mixed bed 

Amberlite™ 

IRN150 

3–5 per period; 

lab. blank 
        

Yamashita et al., 

2014 

Mixed bed 

Amberlite™ 

MB-1 

1 per period; 

field blank 
 

< 10–50 

% 
   < 8–25 %   

Zhan et al., 2015 

Mixed bed of 

#717 anion and 

#732 cation 

2 field blanks   > 99 % 
90.3 - 95.5 

% 
  > 99 % 90.9–100 % 

 
          

Present work (CB) 

Mixed bed 

Amberlite™ 

IRN150 

1–3; lab. blanks < 0.001–0.002 2–66 %   0.024–0.061 0–141 %   

Present work (CA) 

Mixed bed 

Amberlite™ 

IRN150 

2; lab. blanks < 0.001–0.006 5–67 %   0.039–0.071 22 %   

Present work (TC) 

Mixed bed 

Amberlite™ 

IRN150 

1; lab. blanks 0.001–0.004 2–20 % 100 % 99 % 0.054–0.103 4–27 % 100 % 112 % 

a: not CV 618 
b: milligram of N released per gram of resin  619 
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 620 

Table 2. Bulk and throughfall deposition (kg N ha-1) using ion-exchange resin collectors. 621 

    Bulk  Throughfall 

 Start date End date Season1  n2 NO3
- NH4

+  n NO3
- NH4

+ 

CB 05/04/11 28/06/11 SPR 2 0.54 0.33  8 1.66 2.01 

 05/07/11 27/09/11 SUM 2 0.42 0.86  8 1.22 0.94 

 04/10/11 10/01/12 AUT 2 0.43 1.03  8 1.35 0.81 

 17/01/12 18/04/12 WIN-SPR 2 0.39 0.01  7 1.40 0.85 

 14/05/12 03/07/12 SPR 2 0.49 0.43  8 1.92 0.59 

 11/07/12 01/10/12 SUM-AUT 2 0.29 0.01  7 1.01 0.30 

 16/10/12 25/02/13 AUT-WIN 2 0.30 0.61  7 0.86 0.65 

CA 31/05/11 31/08/11 SUM 1 0.67 0.50  8 0.50 0.15 

 31/08/11 13/12/11 AUT 1 0.35 0.26  1 0.80 0.27 

 13/12/11 13/03/12 WIN 3 0.58 0.37  7 0.67 0.12 

 13/03/12 19/06/12 SPR 1 1.07 2.12  1 1.37 0.76 

 19/06/12 25/09/12 SUM 2 0.58 0.39  11 0.92 0.49 

 25/09/12 06/03/13 AUT-WIN 1 1.41 1.54  2 1.29 0.49 

TC 23/03/11 21/06/11 SPR 3 0.73 1.03  11 0.54 1.55 

 28/06/11 27/09/11 SUM 4 0.16 0.16  12 0.80 0.28 

 11/10/11 21/02/12 AUT-WIN 4 0.36 0.49  12 0.85 0.71 

 06/03/12 21/06/12 WIN-SPR 4 0.37 0.76  12 0.64 0.77 

 26/06/12 23/10/12 SUM-AUT 4 0.32 0.42  11 1.69 1.12 

 30/10/12 25/03/13 AUT-WIN 4 0.38 0.57  12 0.22 0.65 

 622 
1 : SPR: spring; SUM: summer; AUT: autumn; WIN: winter 623 
2 : number of collectors used to calculate the mean deposition value 624 

  625 
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FIGURES 626 

 627 

Fig. 1. Location of the study sites: CB, Can Balasc (Barcelona); CA, Carrascal (Pamplona); 628 
TC, Tres Cantos (Madrid). Distribution of Q. ilex habitats in Spain is added.  629 
  630 
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 631 

Fig. 2. Comparison of bulk deposition values of nitrate, ammonium and their sum (total 632 
inorganic nitrogen; TIN) measured with conventional bulk water collectors (CBC) and ion-633 
exchange resin collectors (IEC). Data from all sites and sampling periods included. 634 
Comparison metrics are added in the graphic: mean fractional bias (MFB), root mean square 635 
error (RMSE) and Pearson correlation coefficient (r). Dashed lines represent the line 1:1 636 
(perfect fit) and lines 1:1.5 and 1:0.5 (±50%). Error bars correspond to standard deviation of 637 
the period mean. 638 
  639 
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Fig. 3. Mean annual bulk, throughfall and net throughfall (throughfall minus bulk) deposition 640 

of nitrogen (N) compounds for the 2-year sampling period (2011-2013). Measurements of N 641 

deposition are represented for the two methodologies: conventional bottle collector (CBC) and 642 

ion-exchange resin collector (IEC). Error bars represents the standard error of the mean (n = 2 643 

for CBC and IEC; n = 3 for EMEP).  644 
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Fig. 4. Net throughfall deposition of N and precipitation on a monthly basis at the Tres Cantos 645 

(TC) site. *: bars not shown because of the presence of missing data for this month. 646 

 647 


