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Abstract

We present two generalized conjugation schemes for lower semi-continous
functions de�ned on a real Banach space whose norm is Fréchet di¤eren-
tiable o¤ the origin, and sketch their applications to optimization duality
theory. Both approaches are based upon a new characterization of lower
semi-continuous functions as pointwise suprema of a special class of con-
tinuous functions.

Keywords: Lower semi-continuous function; generalized convex conjuga-
tion; optimization duality theory

1 Introduction

This paper elaborates on a conjugation theory for lower semi-continuous func-
tions introduced in a recent paper [1], in which, for functions de�ned on Rn;
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the authors present a conjugation scheme such that the second conjugate of any
function coincides with the pointwise supremum of its minorants of the type
x 7�! hx; p (x)i+r; with h�; �i ; p : Rn ! Rn and r denoting the Euclidean scalar
product, a continuous mapping, and a constant, respectively [1, Proposition
3.2(iii)]. To simplify that conjugation scheme, we �rst characterize this special
class of functions: In the case of a real Banach space X whose norm is Fréchet
di¤erentiable o¤ the origin, a function admits such a representation if, and only
if, it is continuous on X and Fréchet di¤erentiable at the origin (Theorem 4).
Thanks to this characterization, we can simplify the conjugation theory of [1] by
considering a �dual" space consisting of real valued functions on X rather than
continuous mappings p : X ! X; the latter being, in general, much more com-
plex mathematical objects than the former. Notice that a continuous mapping
p : X ! X yields a unique function of the type x 7�! hx; p (x)i ; but there are in
general in�nitely many such continuous mappings p yielding the same function.
Consequently, dealing with functions X ! R rather than mappings X ! X;
we drastically reduce the dimension of the �dual" space. We present two al-
ternative conjugation schemes. In the �rst one, the �dual" variables are pairs
consisting of continuous linear functionals and general continuous real valued
functions; the consideration of continuous linear functionals allows us to relate
our conjugation operator to classical convex conjugation. The second scheme is
simpler, in that the arguments of the conjugate functions are just continuous
real valued functions; however, since the dual space X� does not appear in the
picture, this second scheme is not directly related to Fenchel conjugation. We
brie�y sketch the application of our conjugation schemes to optimization duality
theorem.
The rest of the paper is organized as follows. Section 2 presents the fun-

damental results on which our conjugation approaches are based. One of its
main results states that every lower semi-continuous function is the pointwise
supremum of a collection of continuous functions which are Fréchet di¤eren-
tiable at the origin and whose gradients at that point are equal to 0: In Section
3 we develop our �rst conjugation scheme and show its relationship with classi-
cal convex conjugation as well as its application to optimization duality theory.
Section 4 presents our second approach to generalized conjugation for lower
semi-continuous functions and the duality theory based on it. In Section 5 we
illustrate both duality schemes by means of simple examples.

2 Preliminaries

Throughout this paper, we will assume that (X; k�k) is a real Banach space
whose norm is Fréchet di¤erentiable o¤ the origin: Hilbert spaces are examples
of such spaces; moreover, if (X; k�k) is of that type, � is a measure on X; and
p 2 (1;1) ; then the norm of Lp (X;�) has that di¤erentiability property, too
[3, Theorem 3.1]. We will denote by (X�; k�k�) the dual space of X; and by
h�; �i : X � X� ! R the duality pairing. We recall that the duality mapping
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J : X � X� is J := @

�
1
2 k�k

2
�
or, equivalently,

J(x) :=
n
x� 2 X� j kxk2 = hx; x�i = kx�k2�

o
(x 2 X) :

Since a convex function is Fréchet di¤erentiable precisely when its subdi¤erential
is single-valued and norm-to-norm continuous (see, e.g., [6, Introduction]), our
di¤erentiability assumption on k�k is equivalent to the single-valuedness and
norm-to-norm continuity of J . For the sake of notational simplicity, we will
identify the singleton J (x) with its element; under this identi�cation, J (x) is
characterized by the equalities

kxk2 = hx; J (x)i = kJ (x)k2� : (1)

The following classical theorem will play a key role in the generalized con-
jugation theory we will develop.

Theorem 1 [10, p. 133] If E is a metric space, f : E ! R [ f+1g is lsc,
g : E ! R [ f�1g is usc, and g � f; then there exists a continuous function
h : E ! R such that g � h � f .

The lsc hull (that is, the largest semi-continuous minorant) of a function
f will be denoted clf: As is well known, f is lsc at a point x if, and only if,
clf (x) = f (x) :

Corollary 2 Let E be a metric space, f : E ! R [ f+1g; and x 2 E: Then f
is lsc at x if, and only if,

f (x) = sup fh (x) j h : E ! R is continuous, h � fg ; (2)

and the supremum is attained if x 2 dom (f) :

Proof. Let as assume that f is lsc at x: We will prove that the inequality

f (x) � sup fh (x) j h : E ! R is continuous, h � fg

holds with the equal sign and the supremum in the right hand side of this
inequality is attained if x 2 dom (f) ; by showing that, for every real number
� � f (x) ; there exists a continuous function h� : E ! R satisfying h� � f and
h� (x) � �: De�ne g� : E ! R [ f�1g by g�(x) := � and g�(y) := �1 for
y 6= x. Note that g� is usc and satis�es g�(y) � clf(y) for all y 2 E, since we
have clf(x) = f (x) by the lower semi-continuity of f at x: Hence, by Theorem
1, there exists a continuous function h : E ! R such that

g�(y) � h�(y) � clf(y) for all y 2 E:

Therefore h� � f and � = g�(x) � h�(x):
Conversely, assume that (2) holds. Since the function

y 7�! sup fh (y) j h : E ! R is continuous, h � fg
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is an lsc minorant of f; it is a minorant of clf (y) ; too. Hence, by (2), we have

clf (x) = f (x) ;

that is, f is lsc at x:

The following theorem is a complement to the Fenchel-Moreau conjugation
theory developed in [1, Section 4]. It can be regarded as a generalized subdif-
ferentiability result.

Theorem 3 Let f : X ! R [ f+1g and x 2 dom (f) nf0g. Then f is lsc
at x if, and only if, there exists a continuous mapping p : X ! X� satisfying
p(0) = 0 and

f(y) � f(x) + hy; p(y)i � hx; p(x)i for all y 2 X: (3)

Proof. If f is lsc at x; then, by Corollary 2, there exists a continuous function
h : X ! R such that h � f and h (x) = f (x) : Let � := infkyk�kxk h(y): We
de�ne p : X ! X� by

p(y) :=
h(y)� �

(maxfkyk;kxkg)2 J(y):

Clearly, p is continuous and satis�es

hy; p(y)i = (h(y)� �)
�
min

�
kyk
kxk ; 1

��2
:

Therefore, hy; p(y)i � h(y)�� � f(y)�� for all y 2 X, which implies hy; p(y)i�
f(y) � �� for all y 2 X. Furthermore, hx; p(x)i = h(x) � � = f(x) � �.
Consequently, (3) holds.
Conversely, assume that (3) holds, and de�ne h0 : E ! R by

h0 (y) := f(x) + hy; p(y)i � hx; p(x)i :

Since h0 is continuous and, by (3), we have h0 � f; it turns out that

sup fh (x) j h : E ! R is continuous, h � fg � h0 (x) = f (x) :

Hence, (2) holds, and therefore the lower semi-continuity of f at x follows from
Corollary 2.

Theorem 3 shows the role of functions of the type x 7�! hx; p(x)i ; with p
continuous. In fact, the generalized conjugation theory developed in [1] is built
on such functions. Thanks to the following characterization, in the next section
we will present a new, simpli�ed version of that theory.

Theorem 4 Let f : X ! R be a function. The following statements are equiv-
alent:

4
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(i) There exists a continuous mapping p : X ! X� such that f(x) = hx; p(x)i

for every x 2 X.

(ii) The function f is continuous on X and Fréchet di¤erentiable at 0, and
satis�es f (0) = 0.

Proof. (i) ) (ii) Continuity and the equality f (0) = 0 are obvious, whereas
Fréchet di¤erentiability follows from the continuity of p; given that

0 � jf(x)� f(0)� hx; p (0)i j
kxk =

jhx; p(x)� p(0)ij
kxk � kp(x)� p(0)k� :

(ii)) (i) De�ne p : X ! X� by

p(x) =

(
rf(0) + f(x)�hx;rf(0)i

kxk2 J(x); if x 6= 0
rf(0); otherwise.

(4)

Since f is continuous, so is p on Xnf0g: Continuity at 0 also holds, in view of
(1):

lim
x!0

kp (x)� p (0)k� = lim
x!0

jf(x)� hx;rf(0)ij
kxk2

kJ(x)k�

= lim
x!0

jf(x)� hx;rf(0)ij
kxk = 0:

For x 2 X n f0g ; using again (1) we obtain

hx; p(x)i = hx;rf(0) + f(x)� hx;rf(0)i
kxk2

J(x)i

= hx;rf(0)i+ f(x)� hx;rf(0)i
kxk2

hx; J(x)i = f(x);

whereas the equality hx; p(x)i = f(x) also holds, obviously, for x = 0:

While preparing a revised version of this paper, we have learned that a
statement equivalent to Theorem 4 can be found in Theorem 3.11 of the very
recent article [5].

Corollary 5 Let f : X ! R [ f+1g and x 2 X. Then f is lsc at x if, and
only if,

f (x) = supfh (x) j h : X ! R is continuous on X and Fréchet
di¤erentiable at 0, rh(0) = 0; h � fg;

(5)
the supremum is attained if x 2 dom (f) nf0g:
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Proof. The �if" statement follows from the corresponding statement of Corol-
lary 2.
Conversely, assume that f is lsc at x: In view of Corollary 2, in order to

prove (5) we may assume, without loss of generality, that f is continuous on X:
Moreover, since f = sup�2R f�; with

f� := min ff; �g ;

we can further assume that f is �nite valued.
Let us consider �rst the case when x = 0: By the continuity of f at 0; if

� < f(0); the function f� takes the constant value � on a neigborhood of 0; and
hence f� is Fréchet di¤erentiable with rf� (0) = 0: Therefore, (5) follows from
the equality f (0) = sup ff� (0) j � < f (0)g :
If x 6= 0; then, taking p as in Theorem 3 and de�ning h : X ! R by

h (y) := hy; p(y)i + f(x) � hx; p(x)i ; from Theorem 4, implication (i) =) (ii),
it follows that h is continuous on X, Fréchet di¤erentiable at 0, and satis�es
rh(0) = 0; moreover, by (3), we have h � f: Therefore, since h (x) = f (x) ; this
proves that the supremum in (5) is attained at this precise h and that equality
(5) holds.

Remark 6 Notice that, when rf (0) = 0; the mapping p de�ned by (4) is
pointwise norm minimizing, that is, for every x 2 X the least norm solution of
the linear equation hx; y�i = f (x) is precisely p (x). This is obvious for x = 0;
whereas for x 6= 0 the assertion follows by observing that, for any solution y�;
in view of (1) one has

kp (x)k� =
jf (x)j
kxk2

kJ (x)k� =
jhx; y�ij
kxk � ky�k� :

When rf (0) 6= 0; the mapping p of (4) is obtained by adding the constant
mapping x 7�! rf (0) to the pointwise norm minimizing mapping corresponding
to g := f �rf (0) :

In view of Theorem 4, Corollary 5 may be regarded as a re�nement of [11,
Theorem 6.1] (see also [5, Theorem 3.11]), which characterizes lsc functions on
a Hilbert space as pointwise suprema of functions of the type x 7! hx; p(x)i+�;
with p : X ! X� continuous and � constant. Our set of minorants h is smaller,
since their gradients vanish at the origin, a condition which is absent in the
statement of [11, Theorem 6.1] (as well as in that of [5, Theorem 3.11]); indeed,
in the formulation of [11, Theorem 6.1], it would read p (0) = 0:
It is worth pointing out that the special role that the origin plays in Theorem

4 and (5) can be equally played by any other point y 2 X; as the next result
state. However, for the sake of simplicity, in the next sections we will state all
of our results only for the case when y := 0:

Corollary 7 Let f : X ! R be a continuous function and y 2 X: Then f is
Fréchet di¤erentiable at y and satis�es f (y) = 0 if, and only if, there exists a
continuous mapping p : X ! X� such that f(x) = hx�y; p(x)i for every x 2 X.

6
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Corollary 8 Let f : X ! R [ f+1g and x; y 2 X. Then f is lsc at x if, and
only if,

f (x) = supfh (x) j h : X ! R is continuous on X and Fréchet
di¤erentiable at y, rh(y) = 0; h � fg;

the supremum is attained if x 2 dom (f) nfyg:

The proofs of the two latter corollaries easily follow from Theorem 4 and
Corollary 5, replacing f by g := f (�+ y) in their statements.
In the case when X is a Hilbert space, after identifying it with its dual by

means of the Riesz-Fréchet Representation Theorem, it turns out that J is the
identity mapping. Therefore, by a straightforward modi�cation of the proof of
Theorem 4, we get the following result, which provides two characterizations of
everywhere di¤erentiable functions on Hilbert spaces.

Theorem 9 If H is a real Hilbert space and y 2 H, for f : H ! R the following
statements are equivalent:

(i) There exists a continuous mapping p : H ! H; Fréchet di¤erentiable on
Hnfyg; such that f(x) = hx� y; p(x)i for every x 2 H.

(ii) The function f is Fréchet di¤erentiable and satis�es f (y) = 0.

3 The �rst conjugation scheme

In this section we will develop our �rst conjugation theory for lsc functions.
We will follow the approach to generalized conjugation theory presented in [4,
Section 2].
We introduce the following set of functions

HX := fh : X ! R j h is continuous on X and Fréchet
di¤erentiable at 0, h(0) = 0; rh(0) = 0g

and the coupling function c : X � (X� �HX)! R de�ned by

c (x; (x�; h)) := hx; x�i+ h(x):

The c-conjugate function of f : X ! R is fc : X� �HX ! R; given by

fc(x�; h) = sup
x2X

fhx; x�i+ h(x)� f(x)g : (6)

Notice that the classical Fenchel conjugation operator � is related to c-conjugation
by the following formulas:

fc(x�; h) = (f � h)� (x�) ; f� (x�) = fc(x�; 0): (7)

7

URL: http:/mc.manuscriptcentral.com/gopt

Optimization



For Peer Review
 O

nly
The �inverse" conjugation operator corresponds to the coupling function c0 :

(X� �HX)�X ! R de�ned by

c0 ((x�; h) ; x) := c (x; (x�; h)) :

We say that f : X ! R is c-subdi¤erentiable at x 2 dom(f) if there exists
(x�; h) 2 X� �HX such that

f(y)� f(x) � hy � x; x�i+ h(y)� h(x) for all y 2 X: (8)

Then (x�; h) is said to be a c-subgradient of f at x. The set of all c-subgradients
of f at x, denoted @cf(x), is called the c-subdi¤erential of f at x. If f(x) =2 R, we
set @cf(x) := ;. The relationship between the c-subdi¤erential and the classical
Fenchel subdi¤erential @ is as follows:

(x�; h) 2 @cf(x)() x� 2 @ (f � h) (x) ; x� 2 @f (x)() (x�; 0) 2 @cf(x):
(9)

The c0-conjugate function 'c
0
: X ! R of ' : X� �HX ! R is de�ned by

'c
0
(x) = sup

(x�;h)2X��HX

fhx; x�i+ h(x)� ' (x�; h)g : (10)

This c0-conjugate function relates to Fenchel conjugation according to the fol-
lowing formula, which easily follows from (10):

'c
0
(x) = sup

h2HX

�
h(x) + ' (�; h)� (x)

	
: (11)

The biconjugate of f is fcc
0
:= (fc)c

0
. Combining (11) with (7), one gets

fcc
0
(x) = sup

h2HX

�
h(x) + (f � h)�� (x)

	
: (12)

For a full description of the generalized conjugation framework we are using,
we refer to [4]; more details on abstract convexity can be found in [8, 9].
The following result is an easy consequence of [4, Proposition 6.2].

Theorem 10 Let f : X ! R [ f+1g : Then

fcc
0
= supfg : X ! R j g is continuous on X and Fréchet

di¤erentiable at 0, g � fg:

Combining Theorem 10 with Corollary 5, we obtain the following result.

Corollary 11 Let f : X ! R [ f+1g and x 2 X. Then f is lsc at x if, and
only if, fcc

0
(x) = f(x). Moreover, if x 2 dom (f) nf0g and f is lsc at x; then

@cf(x) 6= ;.

8
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Combining Corollary 11 with (12), and using the well known fact that every

lsc proper convex function f coincides with its second Fenchel conjugate f��;
one immediately sees that the supremum in (12) is attained at h = 0:
The next proposition relates the c-subdi¤erential at the origin to the Fréchet

subdi¤erential. We recall that x� 2 X� is a Fréchet (or regular, following the
terminology of [7]) subgradient of f at x 2 dom (f) if

lim inf
y!x

f (y)� f (x)� hy � x; x�i
ky � xk � 0:

The set of all such Fréchet subgradients is called the Fréchet subdi¤erential of
f at x; we will denote this set by @F (x) :

Proposition 12 Let f : X ! R [ f+1g be such that 0 2 dom (f). Then the
projection of @cf(0) onto X� coincides with @F (0) :

Proof. If x� belongs to the projection of @cf(0) onto X�; then there exists
h 2 HX such that (8) holds for x = 0, which means that the function g :=
x� + h + f (0) is a minorant of f: Since g (0) = f (0) and rg (0) = x�; by [7,
Proposition 8.5] we have x� 2 @F f (0) :
Conversely, let x� 2 @F f (0) : Then, again by [7, Proposition 8.5], on some

closed neighborhhood V of 0 there is a smooth function g � f with g (0) = f (0)
and rg (0) = x�: We clearly have g � clf: We extend g to the whole of X by
setting g (y) := �1 for y 2 X nV: This preserves the upper semi-continuity of g
as well as the inequality g � clf: Hence, by Theorem 1, there exists a continuous
function h : X ! R such that g � h � clf: We now use the Tietze extension
theorem to prove the existence of a nonnegative continuous extension j : X ! R
of the restriction of h� g to V: Thus eg := h� j is a continuous extension of the
restriction of g to V; and we have eg � h � clf � f as well as eg (0) = g (0) = f (0)
and reg (0) = rg (0) = x�: Therefore, the function h := eg � x� � f (0) belongs
to HX : Since f � eg = f (0) + x� + h; it follows that (x�; h) 2 @cf(0); which
shows that x� belongs to the projection of @cf(0) onto X�:

Corollary 13 Let f : X ! R[f+1g be such that 0 2 dom (f). Then @cf(0) 6=
; if, and only if, @F (0) 6= ;:

In particular, from Corollary 13 it follows that if f is Fenchel subdi¤eren-
tiable or Fréchet di¤erentiable at the origin; then @cf(0) 6= ;.
We will now apply this generalized conjugation scheme to duality theory,

following the approach of [4, Section 3].
Let S be an arbitrary set, and let � : S �X ! R be a perturbed objective

function. The optimization problem under consideration is

(P) minimize � (s; 0) ; (13)

the perturbed problem corresponding to the perturbation parameter x 2 X is

(Px) minimize � (s; x) :

9
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The associated perturbation function is p : X ! R; de�ned by

p (x) := inf
s2S

� (s; x) :

The dual problem to (P) is

(Dc) maximize � pc (x�; h) :

A straightforward computation shows that the dual objective function is given
by

�pc (x�; h) = inf
x2X; s2S

f� (s; x)� hx; x�i � h(x)g :

From [4, Theorem 6.7] and Corollary 11, the following result follows.

Theorem 14 The optimal values of (P) and (Dc) coincide if, and only if, p is
lsc at 0:

The c-Lagrangian function Lc : S �X� �HX ! R is given by

Lc(s; x
�; h) = ��cs (x�; h) ;

with �s : X ! R denoting the partial mapping �s (x) := � (s; x) : We thus have

Lc(s; x
�; h) = inf

x2X
f� (s; x)� hx; x�i � h(x)g :

For a full description of generalized convex duality, we refer to [4, Section 3].

4 The second conjugation scheme

In this section we will present a conjugation scheme di¤erent from the one
developed in Section 3. It has the advantage of using a simpler �dual" space,
namely, HX instead of X� � HX ; but its disadvantage is that, unlike in the
case of (7), (9), (11) and (12), there is no direct relationship between this new
conjugation operator and classical convex conjugation.
We set d : X �HX ! R

d (x; h) := h(x)

and d0 : HX �X ! R
d0 (h; x) := d (x; h) :

The d-conjugate function of f : X ! R is fd : HX ! R; de�ned by

fd(h) = sup
x2X

fh(x)� f(x)g :

We say that f : X ! R is d-subdi¤erentiable at x 2 dom(f) if there exists
h 2 HX such that

f(y)� f(x) � h(y)� h(x) for all y 2 X:

10
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Then h is said to be a d-subgradient of f at x. The set of all d-subgradients of
f at x, denoted @df(x), is called the d-subdi¤erential of f at x. If f(x) =2 R, we
set @df(x) := ;.
The d0-conjugate function 'd

0
: X ! R of ' : HX ! R is de�ned by

'd
0
(x) = sup

h2HX

fh(x)� ' (h)g :

We say that ' : HX ! R is d0-subdi¤erentiable at h 2 dom(') if there exists
x 2 X such that

'(j)� '(h) � j (x)� h(x) for all j 2 HX :

Then x is said to be a d0-subgradient of ' at h. The set of all d0-subgradients of
' at h, denoted @d0'(h), is called the d0-subdi¤erential of ' at h. If '(h) =2 R,
we set @c0'(h) := ;.
The biconjugate of f is fdd

0
:= (fd)d

0
. The following result is an immediate

consequence of [4, Proposition 6.2].

Theorem 15 Let f : X ! R [ f+1g : Then

fdd
0
= supfg : X ! R j g is continuous on X and Fréchet

di¤erentiable at 0, rg(0) = 0; g � fg;

Corollary 16 Let f : X ! R [ f+1g and x 2 X. Then f is lsc at x if, and
only if, fdd

0
(x) = f(x). Moreover, if x 2 dom (f) nf0g and f is lsc at x; then

@df(x) 6= ;.
We now apply this conjugation scheme to construct a duality theory. We

will use the same approach as in Section 3, but with the coupling function d
instead of c: So, the dual problem to (13) is now

(Dd) maximize � pd (h) :
The dual objective function turns out to be

�pd (h) = inf
x2X; s2S

f� (s; x)� h(x)g :

Similarly to Theorem 14, using Corollary 16 we now obtain the following duality
theorem.

Theorem 17 The optimal values of (P) and (Dd) coincide if, and only if, p is
lsc at 0:

The d-Lagrangian function Ld : S �HX ! R is given by

Ld(s; h) = ��ds (h) :
A straightforward computation yields

Ld(s; h) = inf
x2X

f� (s; x)� h(x)g :

For more details on the relationship between (P ) and (Dd) and the way the
d-Lagrangian function links these two optimization problems, we again refer to
[4, Section 3].
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5 Examples

In this section we will use two optimization problems to illustrate the duality
schemes proposed in the preceding sections. The �rst one will be an inde�nite
quadratic problem (P) with linear constraints, in which the perturbation func-
tion is lower semi-continuous at 0 and hence the optimal values of (P), (Dc)
and (Dd) coincide. The second one will be an example given by Du¢ n [2] in
order to show that a duality gap may occur in convex duality when the Slater
condition does not hold; since in classical convex duality the absence of a duality
gap is equivalent to the lower semi-continuity of the perturbation function at
the origin, our dual problems will also exhibit a duality gap in this example.

Example 18 Consider the problem

minimize �s21 + s22 + s1s2
subject to s1 + s2 � 1

s1 � s2 � 0
s1 � 0; s2 � 0;

and let � : R4 ! R [ f+1g be the function de�ned by

�(s1; s2; x1; x2) :=

�
�s21 + s22 + s1s2; if (s1; s2; x1; x2) 2 
;

+1; otherwise,

where


 :=
�
(s1; s2; x1; x2) 2 R4+ : s1 + s2 + x1 � 1; s1 � s2 + x2 � 0; x1 + x2 � 1

	
:

Note that
(P) minimize � (s; 0)

is equivalent to the given problem. Since, for (s1; s2; x1; x2) 2 
; one has

�(s1; s2; x1; x2) = �s21 + s22 + s1s2 � �s21 + (s1 + x2)2 + s1(s1 + x2)
= s21 + 3x2s1 + x

2
2 � x22;

the associated perturbation function p satis�es

p(x1; x2) � x22 = �(0; x2; x1; x2) � p(x1; x2)

for every (x1; x2) 2 R2 such that x1 � 0; x2 � 0 and x1 + x2 � 1; hence

p(x1; x2) =

�
x22; if x1 � 0; x2 � 0; x1 + x2 � 1;
+1; otherwise.

Therefore, p(0) = 0 and, since p is lsc, we conclude that the duality gap must
be 0 for both dual problems (Dc) and (Dd). Indeed, in the case of (Dc); the
pair (0; h0); with h0(x1; x2) := x22; is an optimal solution, since �pc (0; h0) =
inf
�
�(s1; s2; x1; x2)� x22

	
= 0 (the in�mum is attained, e.g., at (s1; s2; x1; x2) :=
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(0; 0; 0; 0)), whereas in the case of (Dd); the same function h0 is an optimal so-
lution, since we also have �pd (h0) = �pc (0; h0) = 0:
Note that every continuous function r : R2 ! R2 satisfying hx; r(x)i = h0(x)

for all x 2 R2 is an optimal solution to the dual problem corresponding to the
coupling function considered in [1](de�ned following the standard duality scheme
of [4, Section 3]). One can take, for instance, r(x1; x2) := (0; x2); but, clearly,
for any continuous mapping w : R2 ! R2 satisfying hx;w(x)i = 0 for all x 2 R2;
the function r + w is an optimal solution, too: Thus, by means of this example
we also illustrate the fact that each optimal solution of either (Dc) or (Dd)
is associated, in a natural way, to in�nitely many optimal solutions to the dual
problem arising according to the conjugation scheme in [1]; therefore, the optimal
solution sets (as well as the feasible sets) of our dual problems are substantially
smaller than those of the equivalent (from the viewpoint of optimal values) dual
problem arising from [1].

Example 19 [2, Section 3] Consider the problem

minimize es2

subject to
q
s21 + s

2
2 � s1;

and let � : R3 ! R [ f+1g be the function de�ned by

�(s1; s2; x) :=

�
es2 ; if

p
s21 + s

2
2 � s1 � x;

+1; otherwise;

clearly,
(P) minimize � (s; 0)

is equivalent to the given problem. One can easily check that the associated
perturbation function p is given by

p(x) =

8<: 1; if x = 0
0; if x < 0
+1; if x > 0:

Therefore, p(0) = 1 and, since p is not lsc at 0, there exists a strictly positive
duality gap for both dual problems (Dc) and (Dd). We shall verify that the
optimal values of (Dc) and (Dd) are both 0; thus showing that the duality gap is
equal to 1: Indeed, for every (x�; h) 2 R�HR we have

�pc(x�; h) = inf
x2R

fp (x)� xx� � h(x)g � inf
x<0

fp (x)� xx� � h(x)g

= inf
x<0

f�xx� � h(x)g � 0;

the last inequality being a consequence of the continuity of h at 0; moreover,

�pd(h) = �pc(0; h) � 0:
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Since, for h0 � 0; we have

�pd(h0) = �pc(0; h0) = inf
x2R

p (x) = 0;

we conclude that (0; h0) and h0 are optimal soultions to (Dc) and (Dd); respec-
tively, and that the optimal values of these dual problems are both 0:
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