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1 Introduction

This paper deals with monotonicity in the context of a reflexive Banach space X . Mono-
tonicity for set valued operators and bifunctions appear in the literature as an elegant and
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useful mathematical notion. Monotone bifunctions have been extensively studied since the
following equilibrium problem appeared in the seminal work of Blum and Oettli [3]: given a
bifunction F : X×X →R=R∪{+∞,−∞} and a set K ⊆ X such that F(x,x) = 0 for every
x ∈ K, find x ∈ K such that F(x,y)= 0 for all y ∈ K.

The aim of this paper is to present some necessary and sufficient conditions for a mono-
tone bifunction to be maximal in the pointwise sense. The conditions we will present are
equivalent to the existence of solutions to a class of equilibrium problems obtained by per-
turbing a given bifunction in a suitable way.

The paper is organized as follows. In the next section, we begin fixing notations and
reviewing some important points of monotone operator theory. Notation not explicitly de-
fined there is standard and as in [11]. Based on the definitions in [1] and [5], we introduce
suitable notions of monotone and maximally monotone bifunctions and show that there is
a bijection between special classes of monotone bifunctions and monotone operators. We
finish the section by introducing pointwise maximal monotonicity. In Section 3, we use a
recent characterization of maximally monotone operators due to the third author [9], in order
to characterize maximally monotone bifunctions in terms of the solution sets of equilibrium
problems. We also get a generalization of the following characterization of maximality: a
monotone operator A is maximally monotone if and only if for each x∈X , there exists x′ ∈X
such that 0 ∈ J(x′−x)+A(x′), with J denoting the duality mapping (see, for instance, [6, p.
324]). Our last result extends [5, Proposition 2.6].

2 Notation and Preliminary Results

In the following, X is a reflexive Banach space, X∗ its dual and 〈·, ·〉 : X ×X∗ → R is the
duality pairing. The indicator function of a set C ⊆ X is the function δC : X → R∪{+∞}
defined by

δC(x) =
{

0, if x ∈C,
+∞, if x /∈C.

Given a multivalued operator T : X ⇒ X∗, its domain and graph are, respectivelly, the
sets

D(T ) = {x ∈ X : T (x) 6= /0}
Graph(T ) = {(x,x∗) ∈ X×X∗ : x∗ ∈ T (x)}.

The operator is called monotone if for every x,y ∈ X and x∗ ∈ T (x), y∗ ∈ T (y),

〈x− y,x∗− y∗〉 ≥ 0.

It is called maximally monotone if it is monotone and its graph is not properly included in
the graph of any other monotone operator. If the inequality is strict whenever x 6= y, we say
that T is strictly monotone. The inverse of T is the operator T−1 : X∗⇒ X defined by

T−1(x∗) = {x ∈ X : x∗ ∈ T (x)}

Given a proper convex function f : X→R∪{+∞}, its Fenchel conjugate is the function
f ∗ : X∗→ R∪{+∞} defined by

f ∗(x∗) = sup
x∈X
{〈x,x∗〉− f (x)}.
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The subdifferential of a l.s.c. proper convex function f at a point x ∈ X is the set

∂ f (x) = {x∗ ∈ X∗ : f (y)≥ f (x)+ 〈y− x,x∗〉 , ∀y ∈ X}.

This defines an operator ∂ f : X ⇒ X∗ which is maximally monotone [12]. If we take f
to be the function 1

2 ‖·‖
2, then its subdifferential operator is a maximally monotone operator

called the duality mapping of X ; it is denoted by J, and satisfies

J(x) = {x∗ ∈ X∗ : 〈x,x∗〉= ‖x‖2 = ‖x∗‖2}; (1)

thus, J(−x) =−J(x) for all x ∈ X .
For any operator T : X⇒ X∗ with D(T ) 6= /0, the Fitzpatrick function of T is the function

ϕT : X×X∗→ R∪{+∞} defined by

ϕT (x,x∗) = 〈x,x∗〉− inf
(y,y∗)∈Graph(T )

〈x− y,x∗− y∗〉 .

If T is maximally monotone, then ϕT ≥ 〈·, ·〉 with equality exactly on GraphT ; moreover, it
is the smallest convex function having this property.

Given (x0,x∗0) ∈ X×X∗, the translation τ(x0,x∗0)
(T ) of T is the operator defined by

τ(x0,x∗0)
(T )(x) = T (x+ x0)− x∗0.

Monotonicity and maximal monotonicity is preserved by the translation. In addition,

ϕτ(x0 ,x
∗
0)
(T )(x,x

∗) = ϕT (x+ x0,x∗+ x∗0)− [〈x,x∗0〉+ 〈x0,x∗〉+ 〈x0,x∗0〉] (2)

(see Section 3.1 in [10]).
We will make use of the following result from [9]:

Theorem 1 For every monotone operator T : X ⇒ X∗, the following statements are equiv-
alent:

(a) T is maximally monotone;
(b) Graph(T )+Graph(−B) = X ×X∗ for every maximally monotone operator B : X ⇒

X∗ such that ϕB is finite-valued.
(c) There exists a maximally monotone operator B : X ⇒ X∗ such that ϕB is finite-

valued and Graph(T )+Graph(−B) = X×X∗, and there exists (p, p∗)∈Graph(B) such that
〈p− y, p∗− y∗〉> 0 for every (y,y∗) ∈ Graph(B)\{(p, p∗)}.

Remark 1 As it is obvious from the proof of the above theorem in [9], the assumptions that
B is monotone (and in particular maximally monotone) and ϕB is finite-valued, are not used
in the proof of the implication (c) ⇒ (a). Hence, if there exists an operator B : X ⇒ X∗

such that Graph(T )+Graph(−B) = X ×X∗ and there exists (p, p∗) ∈ Graph(B) such that
〈p− y, p∗− y∗〉> 0 for every (y,y∗) ∈Graph(B)\{(p, p∗)}, then T is maximally monotone.

A bifunction is, by definition, any function F : X×X→R=R∪{+∞,−∞}. The domain
of a bifunction F is defined to be the set

domF = {x ∈ X : ∀y ∈ X , F(x,y)>−∞}.

Definition 1 A bifunction F : X×X → R is called monotone if

F(x,y)≤−F(y,x), ∀x,y ∈ X .



4 Nicolas Hadjisavvas et al.

If F is monotone, then for every x,y ∈ domF one will have

−∞ < F(x,y)≤−F(y,x)<+∞

so F(x,y), F(y,x)∈R and F(x,y)+F(y,x)≤ 0. Further, for every x∈ X , F(x,x)≤−F(x,x)
implies that F(x,x)≤ 0 since F(x,x) = +∞ is impossible.

Given any bifunction F : X×X → R one defines the operator AF : X ⇒ X∗ by

AF(x) = {x∗ ∈ X∗ : 〈y− x,x∗〉 ≤ F(x,y), ∀y ∈ X}.

It is obvious that D(AF) ⊆ domF . As it is clear from its definition, if F(x,x) = 0 then
AF(x) = ∂F(x, ·)(x) (the Fenchel subdifferential of the function F(x, ·) at the point x). This
happens in particular whenever x ∈ D(AF) and F is monotone; indeed, in this case for any
x∗ ∈ AF(x) we have F(x,x)≥ 〈x− x,x∗〉= 0. Since F(x,x)≤ 0 by monotonicity, we deduce
F(x,x) = 0.

AF corresponds to one of the two “diagonal subdifferential operators” introduced in [7],
see also [8].

Remark 2 It is easy to check that whenever a bifunction F is monotone, the operator AF is
also monotone. The converse is not true, as can be seen by the following example. Define F :
X×X→R by F(x,y) = ‖y− x‖2. Then F is not monotone, and it is easy to show that AF = 0
so it is monotone. This leads to other examples, by taking the sum of the above bifunction
with another monotone bifunction. For instance, if T : X → X∗ is any monotone, bounded
linear operator, then the bifunction G(x,y) = 〈T x,y− x〉+‖T‖‖y− x‖2 is not monotone and
AG = T .

For every operator T : X ⇒ X∗ one defines the bifunction GT by

GT (x,y) = sup
x∗∈T (x)

〈y− x,x∗〉 .

Obviously, GT (x,y) =−∞ if and only if T (x) = /0. Thus, D(T ) = domGT .
The mappings T 7→GT and F 7→ AF are not one-to-one [5]; however, if we restrict their

domain and range, they become bijections as we shall see. We introduce first the following
notation:

– C (X∗) := {C∗ ⊆ X∗ : C∗ is a closed convex set}
– O(X) := {T : X ⇒ X∗ : T (x) ∈ C (X∗), ∀x ∈ X}
– Om(X) := {T ∈ O(X) : T is monotone}
– S (X) := {s : X → R : s ≡ −∞, or s(0) = 0 and s is l.s.c., convex and positively

homogenous}
– Bs(X) := {F : X×X → R : F(x,x+ ·) ∈S (X), ∀x ∈ X}
– Bm(X) := {F ∈Bs(X) : F is monotone}.

Note that for every s ∈S (X), either s≡−∞ or s(x)>−∞ for all x ∈ X .
If T is a maximally monotone operator, then T ∈ Om(X). Also, if F is a monotone

bifunction, then AF ∈ Om(X).
For every C∗ ∈ C (X∗), recall that its support function is

σC∗ := δ
∗
C∗ .
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It is easy to check that σC∗ ∈ S (X). The mapping C (X∗) 3 C∗ 7→ σC∗ ∈ S (X) so
defined is a bijection; its inverse is the mapping ψ : S (X) 7→ C (X∗) defined by

ψ(s) = {x∗ : 〈x,x∗〉 ≤ s(x), ∀x ∈ X}.

This means that

ψ(δ ∗C∗) =C∗ and δ
∗
ψ(s) = s, ∀C∗ ∈ C (X∗), ∀s ∈S (X). (3)

This bijection satisfies ψ(−∞) = /0.
For every T ∈ O(X) one has

GT (x,x+ ·) = sup
x∗∈T (x)

〈·,x∗〉= δ
∗
T (x) (4)

so GT ∈Bs(X). Conversely, for every F ∈Bs(X), it is clear that AF ∈ O(X). Note that

AF(x) = {x∗ ∈ X∗ : 〈d,x∗〉 ≤ F(x,x+d), ∀d ∈ X}= ψ (F(x,x+ ·)) . (5)

The following simple proposition holds:

Proposition 1 For every T ∈O(X), we have AGT = T . Also, for every F ∈Bs(X), we have
GAF = F. Consequently, the mapping

O(X) 3 T 7→ GT ∈Bs(X)

is a bijection, whose inverse is the mapping

Bs(X) 3 F 7→ AF ∈ O(X).

The restriction of this mapping to Om(X) is a bijection between Om(X) and Bm(X).

Proof For every T ∈ O(X) and x ∈ X we have, using successively (5), (4) and (3):

AGT (x) = ψ(GT (x,x+ ·)) = ψ(δ ∗T (x)) = T (x).

Similarly, for every F ∈Bs(X) and x ∈ X we obtain:

GAF (x,x+ ·) = δ
∗
AF (x) = δ

∗
ψ(F(x,x+·)) = F(x,x+ ·).

Thus, GAF = F . The remaining assertions follow immediately. ut

A usual definition of maximal monotonicity for bifunctions is the following:

Definition 2 A monotone bifunction F : X ×X → R is said to be a maximally monotone
bifunction (MMB) if the operator AF is maximally monotone.

We also introduce another definition, on a more restricted class of bifunctions:

Definition 3 A bifunction F ∈Bm(X) is said to be a pointwise maximally monotone bi-
function (PMMB) if F is pointwise maximal in Bm(X), that is,

∀H ∈Bm(X), F ≤ H⇒ F = H

The following proposition shows the relation between the two notions:



6 Nicolas Hadjisavvas et al.

Proposition 2 Let F ∈Bm(X). Then F is an MMB if and only if F is a PMMB.

Proof Let F ∈Bm(X) be a PMMB, and let T be a maximally monotone extension of AF .
Then AF(x) ⊆ T (x) for all x ∈ X , hence GAF ≤ GT . By Proposition 1, F = GAF , thus F ≤
GT . Since F is a PMMB and GT ∈Bm(X), we obtain F = GT . Hence, AF = AGT = T by
Proposition 1. Hence AF is maximally monotone and F is an MMB.

Conversely, let F ∈Bm(X) be an MMB. Assume that H ∈Bm(X) satisfies F ≤H. Then
AF(x)⊆ AH(x) for all x ∈ X . Since AF is a maximally monotone operator, AF = AH . In view
of Proposition 1, this implies that

F = GAF = GAH = H.

Hence, F is a PMMB. ut

Given any bifunction F , its Fitzpatrick transform [1,2] is defined as the function
ΦF : X×X∗→ R given by

ΦF(x,x∗) = (−F(·,x))∗(x∗) = sup
y∈X
{〈y,x∗〉+F(y,x)}.

If T is any operator, then ΦGT = ϕT [1]. Consequently, if F ∈Bs(X), then ΦF = ϕAF

since F = GAF .
Now we show the following useful proposition:

Proposition 3 Let A : X ⇒ X∗ be monotone and B : X ⇒ X∗ be maximally monotone and
such that ϕB is finite-valued. Consider the following statements:

1) A is maximally monotone
2) For every x ∈ X, it holds that R(A+B(·− x)) = X∗

3) For every x ∈ X, there exists x′ ∈ X such that

0 ∈ A(x)+B(x′− x).

Then the following implications hold true: 1)⇒ 2)⇒ 3). If, moreover, B is single-valued
and strictly monotone, then these statements are equivalent.

Proof 1)⇒ 2) Let us define T := B(·− x) = τ(−x,0)B. Then T is a monotone operator and
by relation (2), ϕT is finite-valued.

By using the first part of the Corollary 2.7 of [9] we obtain that for each x ∈ X , it holds
R(A+B(·− x)) = X∗.

2)⇒ 3) is obvious.
Now assume that B is also single-valued and strictly monotone. Define B1 by B1(x) =

−B(−x). It is easy to see that B1 is maximally monotone, single-valued, strictly mono-
tone, and ϕB1(x,x

∗) = ϕB(−x,−x∗) < +∞. Also, B−1
1 is maximally monotone, single val-

ued, strictly monotone and such that ϕB−1
1
(x∗,x) = ϕB1(x,x

∗) < +∞. From the assumption
we infer that for each x ∈ X , ∃x′ ∈ X and ∃x∗ ∈ X∗ such that x∗ ∈ A(x′)∩ (−B(x′−x)), that
is, x∗ ∈ A(x′) and x∗ ∈ −B(x′− x) = B1(x− x′). This implies x ∈ (A−1 +B−1

1 )(x∗). Accord-
ingly, R(A−1 +B−1

1 ) = X . By using Corollary 2.7 of [9] we deduce that A−1 is maximally
monotone, hence A is maximally monotone. ut
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Remark 3 The implication 3)⇒ 1) does not hold in general if the operator B is not single-
valued. For example, consider the operators A and B defined on R by

A(x) =


{1}, x > 0
{0}, x = 0
{−1}, x < 0

B(x) =


{x+1}, x > 0
[−1,1], x = 0
{x−1}, x < 0

.

Then A is monotone but not maximally monotone, B is maximally monotone and strictly
monotone, with ϕB finite-valued. To see this, it is enough to show that for given (x,x∗) ∈
R2 it holds inf(y,y∗)∈Graph(B)(x− y)(x∗ − y∗) > −∞. For this to hold, it is enough to have
infy∈R\{0}(x− y)(x∗+ s− y) > −∞, for s ∈ {−1,1} . The latter is obviously true since we
have the infimum of a quadratic function in y with positive leading coefficient. Hence ϕB is
finite-valued. For every x ∈ R we set x′ = x. We see that statement 3) holds since B(0) =
[−1,1] while A(x) is one of the sets {−1}, {0} and {1}. However, statement 1) does not
hold.

The equivalence 1)⇐⇒ 3) in Proposition 3 generalizes the following characterization
of maximality: a monotone operator A is maximally monotone if and only if for each x ∈ X ,
there exists x′ ∈ X such that 0 ∈ J(x′− x)+A(x′). See for instance [6, p. 324].

3 Main Results

Our first main result gives conditions for a bifunction to be maximally monotone.

Theorem 2 Let F be a monotone bifunction such that F(x, ·) is convex and l.s.c., for each
x ∈ X. Then the following statements are equivalent.

1) F is an MMB.
2) GAF is a PMMB.
3) For every PMMB H ∈Bm(X) such that ΦH is finite-valued, there exists xH ∈ X such

that
F(xH ,y)+H(xH ,y)≥ 0, ∀y ∈ X .

4) There exist a finite-valued H ∈Bs(X) and p ∈ X such that
(a) H(p, ·) is continuous affine,
(b) H(p,z)+H(z, p)< 0, ∀z ∈ X\{p},
(c) For every (x0,x∗0) ∈ X×X∗ there exists x̃ ∈ X satisfying

F(x̃,y)+H(x0− x̃,x0− y)−〈y− x̃,x∗0〉 ≥ 0, ∀y ∈ X .

Proof 1)⇒ 2) Let F be an MMB. If we set F1 = GAF , then F1 ∈Bm(X). By Proposition 1,
AF1 = AF , thus F1 is an MMB. By Proposition 2, F1 is a PMMB.

2)⇒ 3) Let H be as in statement 3). Setting again F1 = GAF , by Proposition 2 both F1
and H are MMB. Since AF1 = AF , the operators AF and AH are maximally monotone. In
addition, ϕAH = ΦH is finite-valued.

Let B be the operator defined by B(x) =−AH(−x). It can be easily seen that B is max-
imally monotone, and ϕB(x,x∗) = ϕAH (−x,−x∗). Using implication a)⇒ b) of Theorem 1
we obtain that

(0,0) = (w,w∗)+(v,v∗)
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for some (w,w∗)∈Graph(AF) and (v,v∗)∈Graph(−B). Then w∗+v∗= 0, with w∗ ∈AF(w),
v∗ ∈ AH(−v) and w =−v. Thus,

〈y−w,w∗〉 ≤ F(w,y), ∀y ∈ X

〈y− (−v) ,v∗〉 ≤ H(−v,y), ∀y ∈ X .

Adding the two inequalities and setting xH = w we obtain

F(xH ,y)+H(xH ,y)≥ 〈y− xH ,w∗+ v∗〉= 0, ∀y ∈ X .

3)⇒ 4) We take p = 0 and H = GJ , where J is the duality mapping. We will show that H
satisfies all conditions of 4).

By Proposition 1, H ∈Bs(X). Since

H(x,y) = GJ(x,y) = sup
x∗∈J(x)

〈y− x,x∗〉

and the set J(x) is nonempty and bounded, H is obviously finite-valued. Moreover, for all
y ∈ X the definition of GJ and (1) imply that GJ(0,y) = 0 and GJ(y,0) =−‖y‖2. Hence, for
y 6= 0,

H(0,y)+H(y,0) = GJ(0,y)+GJ(y,0)< 0.

Given that GJ (0, ·) = 0, both conditions 4(a) and 4(b) are satisfied. In order to obtain that H
satisfies also condition 4(c), given (x0,x∗0) ∈ X×X∗, let us consider T : X ⇒ X∗ defined by

T (x) = J(x+ x0)− x∗0 = τ(x0,x∗0)
(J)(x)

and set H̃ = GT . Then T is a maximally monotone operator, so H̃ is a PMMB. We know
that ΦH̃ = ΦGT = ϕT . Hence, by relation (2), ΦH̃ is finite-valued.

From 3) we obtain that there exists x̃ ∈ X such that

F(x̃,y)+ H̃(x̃,y)≥ 0, ∀y ∈ X . (6)

To conclude, let us calculate H̃(x,y) for (x,y) ∈ X×X∗. Since J(−x) =−J(x) for all x ∈ X ,
we obtain T (x) =−J(x0− x)− x∗0. It follows that

H̃(x,y) = sup
v∗∈T (x)

〈y− x,v∗〉= sup
v∗∈−J(x0−x)−x∗0

〈y− x,v∗〉 . (7)

We set x∗ = −v∗− x∗0. Then v∗ ∈ −J(x0− x)− x∗0 if and only if x∗ ∈ J(x0− x). Hence (7)
gives

H̃(x,y) = sup
x∗∈J(x0−x)

〈y− x,−x∗− x∗0〉

= sup
x∗∈J(x0−x)

〈(x0− y)− (x0− x),x∗〉−〈y− x,x∗0〉

= GJ(x0− x,x0− y)−〈y− x,x∗0〉 .

Then (6) becomes

F(x̃,y)+GJ(x0− x̃,x0− y)−〈y− x̃,x∗0〉 ≥ 0, ∀y ∈ X ,

that is, 4) holds.



Some conditions for maximal monotonicity of bifunctions 9

4) ⇒ 1) Let H and p be as in 4). Since H(p, ·) : X → R is continuous affine, we have
that AH(p) is singleton. By setting {p∗}= AH(p), for every (y,y∗) ∈Graph(AH)\{(p, p∗)},
it holds that y 6= p so

〈p− y, p∗− y∗〉=−〈y− p, p∗〉−〈p− y,y∗〉 ≥ −[H(p,y)+H(y, p)]> 0. (8)

On the other hand, given (x0,x∗0) ∈ X×X∗, by considering x̃ as in statement 4(c) we have

F(x̃,y)+H(x0− x̃,x0− y)−〈y− x̃,x∗0〉 ≥ 0, ∀y ∈ X .

We define the function g on X by g(y) = H(x0− x̃,x0−y)−
〈
y− x̃,x∗0

〉
. Since H ∈Bs(X), g

is convex and l.s.c.; it is also finite-valued by assumption 4). Obviously it satisfies F(x̃,y)+
g(y) ≥ 0 for all y ∈ X , and F(x̃, x̃)+g(x̃) = 0. Hence, 0 ∈ ∂ (F(x̃, ·)+g(·))(x̃). By the sub-
differential sum rule (see for instance [6]), 0 ∈ ∂F(x̃, ·)(x̃)+ ∂g(·)(x̃). Hence, there exists
x∗ ∈ X∗ such that x∗ ∈ ∂F(x̃, ·)(x̃) = AF(x̃) and −x∗ ∈ ∂g(x̃). The last inclusion yields for
every y ∈ X ,

H(x0− x̃,x0− y)−〈y− x̃,x∗0〉 ≥ 〈y− x̃,−x∗〉

or
H(x0− x̃,x0− y)≥ 〈(x0− y)− (x0− x̃) ,x∗− x∗0〉 .

Thus, x∗− x∗0 ∈ AH(x0− x̃). Consequently,

(x0,x∗0) = (x̃,x∗)+(x0− x̃,x∗0− x∗) ∈ Graph(AF)+Graph(−AH). (9)

Therefore, in view of Remark 1, we have obtained that AF and AH satisfy all assumptions
(see (8) and (9) above) necessary to conclude that AF is a maximally monotone operator.
This is equivalent to saying that F is an MMB, so 1) holds. ut

From the previous results we obtain the following.

Corollary 1 Let F : X×X→R be a monotone bifunction and let B : X→X∗ be a maximally
monotone, single-valued and strictly monotone operator such that ϕB is finite-valued. Then
F is maximally monotone if, and only if, for every λ > 0 and for every x0 ∈ X, there exists
xλ ∈ X such that

λF(xλ ,y)+ 〈y− xλ ,B(xλ − x0)〉 ≥ 0, ∀y ∈ X . (10)

Proof (⇒) Suppose that F is an MMB. Given x0 ∈X fixed, consider the bifunction H(x,y)=
〈y− x,B(x− x0)〉. It is clear that H ∈ Bm(X). Also, AH(x) = {B(x− x0)} = τ(−x0,0)B(x).
Accordingly, AH is a maximally monotone operator, so H is a PMMB. In addition, from
ΦH = ϕAH = ϕτ(−x0,0)B and relation (2) we deduce that ΦH is finite-valued.

Set F1 = GAF . Then F1 ∈Bm(X) and AF1 = AF , so F1 is maximally monotone. For each
λ > 0, from the equivalence (2)⇔ (3) of the Theorem 2 applied to the bifunctions λF1 and
H, we deduce that there exists xλ ∈ X such that

λF1(xλ ,y)+H(xλ ,y)≥ 0, ∀y ∈ X ,

that is,
λF1(xλ ,y)+ 〈y− xλ ,B(xλ − x0)〉 ≥ 0, ∀y ∈ X .

On the other hand, it is easy to see that F1 ≤ F . Therefore, for each λ > 0 we obtain that

λF(xλ ,y)+ 〈y− xλ ,B(xλ − x0)〉 ≥ 0, ∀y ∈ X .
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(⇐) The inequality (10) is equivalent to −B(xλ − x) ∈ AλF(xλ ). Hence, given λ > 0, for
each x∈ X there exists xλ ∈ X such that 0∈ AλF(xλ )+B(xλ −x). By the implication 3) =⇒
1) of Proposition 3, we have that λF is an MMB, for each λ > 0 fixed. In particular, F is an
MMB. ut

Corollary 1 is a generalization of Proposition 2.6 obtained in [5].

We finish by observing that the statements 3) and 4) of the Theorem 2 and the Corollary
1 establish the existence of solutions to equilibrium problems obtained by perturbing the
bifunction F according to a choice of a suitable bifunction H for each case.
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