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Abstract

A self-assembled monolayer of mercaptobenzoic acid (MBA) on Au(110) is investi-

gated with scanning tunneling and atomic force microscopy (STM, AFM) and density

functional calculations. High-resolution AFM images obtained with metallic tips show

clear contrasts between oxygen atoms and phenyl moieties. The contrast above the oxy-

gen atoms is due to attractive covalent interactions which is different from previously

reported high-resolution images where Pauli repulsion dominated the image contrast.

We show that the bonding of MBA to the substrate occurs mainly through disper-

sion interactions while the thiol-Au bond contributes only a quarter of the adsorption

energy. No indication of Au adatoms mediating the thiol-Au interaction was found

in contrast to other thiol-bonded systems. However, MBA lifts the Au(110)-(2 × 1)

reconstruction.
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Combined scanning tunneling and atomic force microscopy (STM and AFM) delivers

information on molecular structures and chemical interactions on the atomic scale. The

method was used for sub-molecular resolution imaging of pure hydrocarbons1–6 as well as

other carbon-based molecules like fullerenes7–10 or π-conjugated polymers.11 In nearly all of

these works, the tip of the scanning tunneling microscope was functionalized by a single CO

molecule. The observed sharply localized contrasts are interpreted in terms of Pauli repulsion

and the bendability of the bond between CO and the tip apex atom.12,13 Recently, molecules

comprising heteroatoms have been addressed.14–24 As soon as electrostatic dipoles in the

molecule or tip are present, the electrostatic force plays an important role in interpreting

the images.20,22,24–27

Thiols are of great interest owing to their capacity to self-assemble and to create various

structures thanks to their functionalizing groups.28 The adsorption of thiols on Au(111) has

been investigated over a range of coverages using a variety of methods including STM and

X-ray diffraction.29–34 There is consensus concerning the observed structural 2-dimensional

phases,35–41 but the discussion about involved Au adatoms at the S-Au interface is still

ongoing.42 Among the thiol-based molecules, 4-Mercaptobenzoic acid (MBA) has received

particular attention because it led to the unraveling of thiol-gold structures based on an

adatom model on gold nanoclusters.43–45 However, no adatoms appeared to be involved in

the formation MBA monolayers on Au(111).46 The structural phases of MBA monolayers

are similar as for other thiols according to X-ray photoelectron spectroscopy47,48 and STM

data.46,49 However, a recent STM study of a MBA related molecule (4-mercaptopyridine)

on Au(111) suggested an upright orientation at low coverages50 where other thiols lie flat

on the substrate. Indeed, MBA is an intriguing molecule despite its simple structure. It

consists of a phenyl ring with a π-electron system that gives rise to interesting van der

Waals interaction and molecular stacking in crystals. In addition, its carboxyl group leads

to hydrogen-bonding while the thiol group provides covalent binding to metal atoms.

Here, we use high-resolution AFM and STM to image arrays of MBA with metallic tips.

3



High-resolution images are obtained at tip–sample distances where the molecules cause an

increased attraction. The oxygen atoms appear as remarkably sharp features in frequency-

shift AFM images. This chemical contrast provided by metallic tips is different from the

results mentioned above that involved functionalized tips. Moreover, repulsive force con-

tributions were identified as the origin of the sub-molecular resolution. We disentangle the

various forces acting on MBA by means of density functional theory (DFT) calculations,

which show that a covalent interaction of the metallic tip with the oxygen atoms is predom-

inant. An electrostatic force is present but less important. Concerning the adsorption of

MBA on the Au(110) surface we find that the molecules form a zigzag pattern of dimers

that are due to hydrogen bonding of the carboxylic groups. Our calculations reveal that the

dispersion interaction of π-electrons of the phenyl ring with the metal substrate is essential

for the MBA-Au bond. The Au(110)-(2× 1) reconstruction is lifted. The experimental data

do not indicate an involvement of Au adatoms in binding the MBA molecules.

In constant-current STM images MBA molecules appear as elliptical protrusions on the

Au(110) surface (Fig. 1(a) and (h)). At coverages of ≈ 0.3 monolayers (one monolayer

being defined as a coverage of one molecule per five surface gold atoms) the molecules

aggregate into compact islands. Within these islands the long axes of the ellipses are aligned

along the [001] direction with spacings of (7.8 ± 0.3) Å and (12.3 ± 0.3) Å. A unit cell

comprising four MBA molecules is depicted by a white rectangle in Fig. 1(a). Its dimensions

of (20.1 ± 0.3) × (10 ± 1) Å2 correspond to a (5 × 4) overlayer. The distances, sizes and

corrugations in our measurements indicate that MBA molecules adsorb in a nearly planar

orientation on Au(110), contrary to what has been reported for other surfaces.46–50

Further details of the molecular structure are resolved in constant height measurements

of the tunneling current and the frequency shift. The tunneling-current map (Fig. 1(b))

shows an asymmetry of the molecular protrusions with maxima of the current localized close

to the phenyl rings. In the frequency-shift map of Fig. 1(c), each molecule gives rise to three

features. The frequency shift is negative in two well-defined spots and a more diffuse area.
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Figure 1: (a) STM topograph of an island of MBA molecules (structure model in the inset)
on Au(110) (9.9 nm × 8.3 nm, sample voltage V = 1 V, tunneling current I = 0.2 nA,
temperature 5.3 K). The white box indicates a unit cell. Maps of (b) the tunneling current
and (c) the frequency shift (2.6 nm × 2.6 nm, V = 15 mV) simultaneously acquired at a
constant tip height (piezo displacement ∆z = (−1.3 ± 0.2) Å). Colored dots indicate the
positions where the data shown in (g) was recorded. Structure models of MBA are overlaid
for clarity. (d), (e), and (f) Current and frequency shift maps simultaneously acquired at
different heights that are indicated in (g) (1.56 nm × 0.63 nm, V = 14 mV). (g) Short-range
force and instantaneous conductance measured on three positions defined in (c). ∆z = 0
Å corresponds to the tip–molecule distance above a benzene ring for an STM set-point of
I = 0.4 nA and V = 21 mV. (h) Overview image of MBA islands (8.6 nm × 18.7 nm,
V = 26 mV, I = 0.3 nA).

The distances between the sharp depressions are y = (2.1 ± 0.2) Å and x = (2.8 ± 0.2) Å.

y matches the oxygen-oxygen distance in MBA. x is consistent with hydrogen bonding
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between O atoms of adjacent molecules. Therefore, these spots are suggested to stem from

the oxygen atoms while the diffuse areas, corresponding to the maxima in the current, are

ascribed to the phenyl rings. The oxygen-induced features in the frequency shifts appear

surprisingly sharp. ∆f changes from ≈ −45 Hz to ≈ −23 Hz back to ≈ −40 Hz over a

lateral distance of only 2.1 Å. As discussed below, we attribute the high resolution to an

attractive interaction localized to the oxygen atoms.

As the tip approaches any part of the molecule, the force becomes increasingly attractive

(Fig. 1(g)). The maximal force above the phenyl ring occurs at a slightly smaller tip–molecule

distance (by ≈ 0.2 Å) than above or between the oxygen atoms. The absolute values of the

maximal forces vary somewhat depending on the tip (−0.8 . . . − 1.5 nN above the phenyl

ring, −0.5 . . .−1.1 nN and −0.3 . . .−0.8 nN, above and between O atoms, respectively), but

systematically the force above the phenyl ring is more attractive than at any other position.

Compared to forces obtained with CO tips, the present force values are roughly one order

of magnitude larger.1,27 The strong attractive forces are the origin of the sub molecular

resolution as further discussed below.

The conductances show the expected exponential distance dependence at large tip-

molecule distances until a change in the slope indicates the transition from the tunneling

range to contact (Fig. 1(g)). This transition occurs close to the maximal attractive force

as observed for single atoms and other molecules before.26,51–53 The conductance at contact

formation of ≈ 0.1 . . . 0.3G0 (G0 = 2e2/h) measured on the phenyl ring is an order of mag-

nitude larger than at other positions consistent with the larger electronic density of states

due to the phenyl π-orbitals.

Figures 1(d), (e), and (f) show constant-height maps of the current and the frequency-

shift for three tip heights. While the shape in the current maps is similar for all distances

probed, the frequency shift map evolves with decreasing tip–molecule distance. Sharp sub-

molecular features are due to increasingly negative frequency shifts. They are observed at

distances exceeding the distance of maximal attractive force as well as the maximal negative

6



frequency shift (Fig. S2(d)). This is different from previous works where the atomic resolution

was achieved at maximal negative frequency shift.1,8

To interpret the experimental findings, density functional theory (DFT) calculations

were performed (see section methods for more details). First, we focus on the adsorption

of MBA on the Au(110)-(1 × 1) surface. Other thiols are known to bind to gold surfaces

after dehydrogenation of the mercapto (–SH) group.42,54–57 We consider a single molecule

adsorbed on a position of the (5 × 4) unit cell. The adsorption energy without H at the

apical S is −1.75 eV, which is lower than that obtained for the intact molecule (−1.43 eV)

independent of the surface coverage. Therefore, our calculations indicate that MBA islands

are comprised of thiolate radicals.

The arrangement of molecules on the surface is displayed in Figs. 2(a) and (b). The

thiolate radical is adsorbed with the S-atom at a height h = 1.95 Å and with the phenyl

ring enclosing an angle 10◦ with the Au substrate. While the S-Au bond favors an upright

orientation, the van der Waals interaction is sufficiently strong to orient the molecule almost

parallel to the surface. The calculated tilt angle increases slightly (to 11◦) when dimers are

considered.

For one thiolate adsorbed on the surface we have analyzed configurations with the phenyl

ring parallel and perpendicular to the surface. In the case of four molecules adsorbed on the

surface we have considered lying-down configurations. Different adsorption geometries with

the S-head initially located on high-symmetry sites were explored. The total energy balance

shows that the thiol adsorption takes place by the dehydrogenated S atom of the molecule.

Table 1 summarizes the adsorption energies per molecule of an upright (vertical) and

a lying (horizontal) molecule, as well as of an adsorbed dimer. The van der Waals forces

between the phenyl ring and the surface are maximal in the lying geometry. Compared to

the upright orientation, the dispersion contribution to the adsorption energy, denoted vdW

in Table 1, is doubled. It is hardly changed in the adsorbed dimer, which adsorbs rather flat

on the surface.
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Table 1: Adsorption energies per molecule in eV. The different columns cor-
respond to the energies of an adsorbed molecule with an upright phenyl ring
(vertical), an adsorbed molecule with its phenyl ring parallel to the surface (hor-
izontal), and an adsorbed molecular dimer. The considered energies are the total
adsorption energy, Etotal, the contribution coming from the van der Waals inter-
action (vdW), the interaction energy between molecules due to the formation of
H-bonds (O··H··O), and the contribution of the S-metal bond (S–Au).

vertical horizontal in adsorbed dimer
Etotal –1.00 –1.75 –2.29
vdW –0.59 –1.20 –1.38
O··H··O – – –0.53
S–Au –0.57 –0.57 –0.57

In many thiols, the S-metal bonding largely drives the adsorption of molecules on gold.28,45,54,58

In the present case, however, this kind of bond accounts for only 25% of the molecular ad-

sorption energy in dimers. To first approximation, MBA is adsorbed via the dispersion

interaction while the S-metal bond introduces selectivity for a specific site. Indeed, the

S atoms are located close to the short-bridge site of Au(110) and 1.95 Å away from the

surface plane. This site specificity forces a zigzag structure of the aligning rows of dimers

because dimers can only form compact structures if their S atoms adsorb to adjacent Au

rows, Fig. 2(a). Otherwise, the steric repulsion between hydrogen atoms of adjacent MBA

molecules would be too large.

A further important contribution to the dimer stability is due to hydrogen bonding. In

gas phase, the formation energy of a dimer is −0.41 eV per molecule. It reduces to −0.55 eV

for the intramolecular coordinates frozen. This value is very close to the energy due to the

formation of H-bonds between molecules in adsorbed dimers, see Table 1, implying that the

intramolecular geometries are largely fixed by the adsorption to the substrate.

On the Au surface, the energy due to hydrogen bond formation in dimers is comparable

with that of the S-metal bond. As a result of these interactions the MBA molecules are fixed

on both sides. The sulfur side binds to the Au substrate while the carboxylic group causes

hydrogen bonding.
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(c)

(d)

(a)

(b)

h

Figure 2: (a) Top and (b) side views of a relaxed molecular adlayer. The separation h between
the S and Au atoms is indicated. (c) Simulated constant-current STM image (contours of
constant local density of states, electron density: 1.5 × 10−12 electrons per nm3), size: 2.1 nm
× 2.1 nm. A ball-and-stick model of the molecular adlayer is overlaid. The black and blue
boxes in (a) and (c) indicate the (5× 4) unit cell. (d) Experimental constant-current image
of an MBA island (2.1 nm × 1.8 nm, V = 15 mV, I = 0.3 nA) along with overlaid molecular
structures.

Next the structure of the underlying Au surface is discussed. Overview images show

dimer rows extending along the Au(110)-(2×1) rows (Fig. 1(h) and Fig. S1 of the Supporting

Information (SI)). Due to the site-specificity of the S-Au bonds and the steric forces between

MBA molecules, the dimers arrange themselves in a zigzag fashion, with adjacent dimers

shifted by the lattice parameter a. This arrangement of dimer rows is incompatible with

the (2 × 1) reconstruction of the Au substrate. We thus conclude that the reconstruction

is lifted underneath the molecular rows in favor of a (1 × 1) pattern. This analysis and

the above adsorption configuration are further supported by the good agreement between

simulated (Tersoff-Hamann59) and experimental STM constant-current images, Figs. 2 (c)

and (d), respectively. We suggest that the growth of MBA rows proceeds via the removal

of atomic Au rows from the Au(110)-(2× 1) reconstruction, which leads to the ideal (1× 1)

surface. This is consistent with the observations that fairly straight MBA dimer rows extend

far into well-ordered (2 × 1) terraces and that smaller clusters of MBA grow on the next
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higher Au terrace (Figs. 1(h) and S1). If the mechanism were the addition of Au adatoms

(so filling the existing missing-row reconstruction), the adatoms would stem from the step

edges and diffuse along the [1̄10] direction.60,61 In this case, the diffusion and addition of

adatoms would stop as soon as the first row of MBA pairs adsorbs to the step edges. Hence,

a large-island (as shown in Fig. S1) would not be expected. As described by Kühnle et

al.,62 the removal of a row atom becomes easier when an atom has already been extracted.

Consequently, continued growth of an existing dimer row is more likely than the creation of

new rows.

Single gold adatoms have been shown to direct the interaction between some thiol-based

molecules.54,56,58 In the present case, however, we did not observe evidence of adatom-

mediated interaction. Indeed, the frequent detection of single dimer rows (red boxes in

Fig. S1), which exhibit two S atoms per dimer at their sides, is difficult to reconcile with the

presence adatoms that sulfur atoms would bond to. Moreover, no variation of the frequency

shift is detected over the location of a hypothetical adatom (Figs. 1(c) and (f)). The STM

images do not suggest the presence of a Au adatom between the S atoms of adjacent MBA

molecules. However, image simulations based on the DFT calculations reveal that such an

adatom, if present, would hardly be visible in STM images due to the small contrast of a

gold adatom between two sulphur atoms. We therefore evaluated the energies of the (5× 4)

MBA overlayer with and without Au adatoms. Comparing the adsorption energy of MBA

dimers on the Au(110)-(1 × 1) surface and a Au(110) surface with adatoms near the edge

S-atom, we find the latter to be 0.37 eV/molecule less favorable. Our experimental data

and calculations therefore do not favor adatoms as driving the formation of the molecular

pattern.

To estimate the interactions due to covalent bonding between tip and molecule, we mod-

elled the tip by a (111) pyramid of 10 Au atoms (see methods). The tip-sample distance

was varied in steps of 0.5 Å and the molecules, the two topmost surface layers, and the tip

apex atom were relaxed. The other layers of the tip were used to determine the force on
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the tip. Furthermore, an electrostatic force between the electrical dipole of the tip63,64 and

the charge distribution of the molecules was taken into account. To evaluate the force on

the molecule we assumed a point-dipole D = 1 Debye oriented along the axis normal to the

surface.64 The vertical force component is

Fz(~r) = −D d2

dz2
V (~r), (1)

where V (~r) is the electrostatic potential of the full system comprising the molecule and the

surface.

Figure 3(a) shows the calculated forces between the pyramidal tip and the substrate at

three sites: at an O atom, between the O atoms, and at the phenyl ring. The high symmetry

of this model tip leads to a negligible dipolar moment in the tip, permitting us to isolate

the electrostatic interactions using expression Eq. (1). The maximum of the electrostatic

force on the oxygen atoms is also indicated for comparison.65 The largest attractive force is

exerted on the phenyl ring. The maximum occurs at a tip-sample distance of d ∼ 7.85 Å

i. e. ∼ 0.6 Å closer to the substrate than the attractive maximum on the O atoms. These

distances qualitatively agree with the experimental observation that the maximum attractive

force is larger on the phenyl than on the O atoms and that it occurs at a reduced tip-surface

distance d compared to the phenyl site (by 0.2 Å in the experimental data).

The force analysis shows that for d > 9 Å, the van der Waals interaction dominates the

force between the molecule and the model tip. In this range, the tip is largely insensitive

to the molecular structure. When the tip is brought closer to the molecule, the covalent

interaction first sets in over the O atoms. Our model tip reproduces the enhanced attractive

signal in AFM images over the oxygen atoms shown in Fig. 1(c) since the interaction is more

attractive on the oxygen atoms than in between (Fig. 3(a)). A significant contribution to the

signal over oxygen atoms comes from a mechanical deformation of the molecule, Fig. 3(b).

The relatively small interaction of the oxygen groups with the surface allows for a motion of
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Figure 3: (a) Perpendicular component of the force between the pyramidal gold tip and the
two MBA dimers on Au(111) versus the distance d between the top layer of the sample and
the unrelaxed second layer of the tip as marked in the inset. The force was evaluated at
three different sites: atop of an O atom (squares), between O atoms (triangles), and at the
phenyl ring (circles), cf. Fig. 1(c). The electrostatic force on one of the O atoms is shown for
comparison (diamonds). (b) Atomic displacement given by the distance between an oxygen
atom of the molecular dimer and the top-most surface layer d1 (red circles) or the tip apex
d2 (black squares). See inset for the definition of distances d, d1 and d2. The position of the
tip apex atom d3 varies less than 0.08 Å within the depicted distance range, starting at d3 =
2.19 Å for d =9.86 Å.
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the oxygen atoms to the tip (see also Fig. S5). At the largest attractive force (tip–surface

distance of ∼ 8.4 Å, red squares in Fig. 3(a)) the displacement of the oxygen atom to the

tip (black squares in Fig. 3(b)) is larger than the variation of d. This leads to a marked

non-linear behavior of the curves in Fig. 3(b). The oxygen distance to the tip decreases by

∼ 1 Å, roughly 0.5 Å more than expected from a rigid behavior following the motion of the

tip. In comparison, the tip-apex atom is stiffer, moving less than 0.08 Å from its equilibrium

distance, and basically following the variation of d. The oxygen motion towards the tip apex

takes place in a very narrow region of d ∼ 8.4 . . . 8.9 Å. Experimentally, we find a smoother

variation of the frequency shift between two oxygen atoms of different molecules than between

oxygen atoms of the same molecule (Fig. S4(b)). This indicates that relaxations are stronger

when the tip is positioned between oxygen atoms of the same molecule.

The sharp response of the O atoms to the position of the tip explains the enhanced

corrugation of over the O atoms. The contrast in AFM images (starting at ∆z = −0.8 Å,

Figs. 1(c) to (f)) is observed beyond the maximal attractive force above the oxygen atoms.

According to the calculated force curves in Fig. 3(b), ∆z = −0.8 Å corresponds to a tip–

molecule distance d ∼ 3.3 Å. This is similar to the distance reported for atomic resolution

imaging of C60 with a CO-functionalized tip.8 Given the absence of dipolar contributions

from our model tip, we conclude that the sharp features above the oxygen atoms in the AFM

images (Fig. 1(c)) are mainly due to the covalent interaction with the tip enhanced by the

motion of the carboxylic group during the approach of the tip. This is different compared

to a recent work that used a CO-functionalized tip to image a molecule with carboxylic

groups.24 Sub-molecular contrast is observed on the oxygen atoms, but it is due to the

repulsive electrostatic interaction between the partially negatively charged oxygen atoms of

both the CO and the carboxylic group. Although we cannot rule out some contribution from

electrostatic interactions between the oxygen atoms and metallic tips of more than 1 Debye

of dipolar moment, see diamonds in Fig. 3(a) and Fig. S6, our calculations show that the

covalent interaction is the dominating one.

13



As to the position above the phenyl rings, where the maximum force occurs (Fig.1(g)),

the calculations show that the electrostatic and van der Waals forces are outgrown by the

covalent contribution for distances shorter than 9 Å. Thus, the large contrast measured over

the phenyl ring is due to the covalent interaction between the metallic tip and the π-electron

system.

In conclusion, we combined STM and AFM measurements with DFT calculations aspects

of the geometry and interactions of self-assembled layer of MBA on Au(110) are unraveled.

The attractive interaction between MBA molecules and the metallic tip leads to remarkably

sharp features in frequency-shift AFM images above the oxygen atoms and also above the

phenyl ring. DFT simulations involving a reactive tip terminated in a single metallic atom

explain the results. The large effect of the phenyl ring is attributed to the covalent interaction

between the tip and the π-electron system of the molecule. The corrugation over the O atoms

has both electrostatic and covalent contribution with the latter being the dominating one.

In addition, relaxations of the oxygen atoms towards the tip by ∼ 0.5 Å are found due

to the weak oxygen-surface interaction. These results show the complementarity of STM

and AFM in analysing molecular structures, and highlight the usefulness of metallic tips to

obtain high-resolution frequency-shift maps.

MBA adsorbs almost flat (angle of 11◦) on Au(110) and forms dimers owing to hydrogen

bonding of the carboxylic groups. The Au(110)-(2× 1) reconstruction is lifted and we found

no evidence of Au adatoms being involved in binding the MBA molecules. Most of the

adsorption energy is due to the dispersion interaction of π-electrons of the phenyl ring with

the metal substrate while the thiol-Au bond contributes ≈ 25%, enough to pin the dimers

to short-bridge sites of the ideal Au(110) substrate. This adsorption site together with the

steric repulsion between molecular dimers leads to a zigzag pattern.
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Methods

STM and AFM measurements

Our measurements were performed in a combined STM/AFM setup in ultra-high vacuum

at 5 K. Au(110) surfaces were cleaned by Ar+ sputtering and annealing to 750 K. 4-

Mercaptobenzoic acid molecules (Sigma Aldrich, purity 99 %) were sublimated from a molyb-

denum crucible onto the Au(110) substrate that was kept at a slightly elevated temperature

(between 30 ◦C and 60 ◦C). STM tips were prepared by repeated indenting them into the

Au(110) substrate at elevated voltages. Whenever instabilities occurred during data acqui-

sition that suggested the presence of a molecule at the tip, the tip-shaping procedure was

repeated until stable conditions were obtained65 . For AFM measurements, a non-contact

frequency-modulation mode was used with a Q-plus sensor66 oscillating at its resonance

frequency of ≈ 23 kHz at a constant amplitude A = 0.4 Å. A W tip was attached to the

free prong of the tuning fork.65 The current and the frequency shift were simultaneously

measured. To approximately remove the van der Waals contribution of the bulk tip from

the frequency-shift data, distant-dependent measurements recorded on the bare Au(110)

surface were subtracted from those taken on MBA molecules. The short-range force and

instantaneous conductance and were obtained by deconvolution following Refs. 67 and 68,

respectively.65

DFT calculations

All calculations were carried out with the VASP69 code by solving the one-electron Kohn-

Sham equation within the generalized gradient approximation proposed by Perdew, Burke,

and Ernzerhof (PBE)70 to treat electronic exchange and correlation. Dispersion corrections

are included through the scheme proposed by Tkatchenko and Scheffler.71 We used a plane

wave basis set and the projected augmented wave (PAW) method72 implemented in VASP

with an energy cut-off of 400 eV. The Au(110) surface is represented by a five-layer slab and
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in all calculations we allowed the relaxation of the substrate atoms in the two top-most metal

layers as well as all the atoms of the adsorbates (the substrate atoms in the three bottom

layers were kept fixed in their bulk equilibrium positions). We assumed that adsorption

takes place on the perfect Au(110) surface due to the lower calculated adsorption energy

(notice that it is a negative quantity) compared to that on the reconstructed surface. All

geometry optimizations were carried out until the forces on every mobile atom were smaller

than 0.01 eV/Å. The Brillouin zone sampling was carried out according to the Monkhorst

and Pack method with a 3× 5× 1 mesh of the Brillouin zone.
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Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic

Force. Phys. Rev. Lett. 2016, 116, 096102.
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(52) Ternes, M.; González, C.; Lutz, C. P.; Hapala, P.; Giessibl, F. J.; Jeĺınek, P.; Hein-
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