
 1

Ultraviolet pulsed laser crystallization of Ba0.8Sr0.2TiO3 

films on LaNiO3-coated silicon substrates 

Albert Queraltó*,a,b, Angel Pérez del Pinoa, María de la Mataa,c, Mar Tristanya, Xavier 

Obradorsa, Teresa Puiga, and Susan Trolier-McKinstryb 

aInstitut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas 

(ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain. 

bMaterials Research Institute and Materials Science and Engineering Department, The 

Pennsylvania State University, University Park, Pennsylvania 16802, USA 

cInstitut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, 

Catalonia, Spain 

 

CORRESPONDING AUTHOR INFORMATION 

* Dr. Albert Queraltó 

ICMAB – CSIC, Campus UAB, 08193 Bellaterra, Catalonia, Spain 

Tel. +34 935 801 853 

Fax. +34 935 805 729 

E-mail: albert.queralto.lopez@gmail.com 

This is the accepted version of the following article: 

Queraltó, A.; Pérez Del Pino, A.; De La Mata, M.; [et al.] Ultraviolet pulsed laser crystallization of Ba0.8Sr0.2TiO3 films on LaNiO3-coated silicon substrates. Ceramics International,42(3), 2016. pp 4039-4047, 

which has been published in final form at https://doi.org/10.1016/j.ceramint.2015.11.075

 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 


  



 2

ABSTRACT: In this work, Ba0.8Sr0.2TiO3 (BST) films on LaNiO3-buffered SiO2/Si 

(LNO/SiO2/Si) substrates were crystallized by pulsed laser irradiation. Solution-derived 

amorphous barium-strontium-titanate precursor layers were crystallized with a KrF excimer laser 

in oxygen ambient at fluences ranging from 50 to 75 mJ cm-2. With the substrate temperature set 

to 500 ºC, the number of pulses and film thickness were varied until high-quality crystallinity 

could be achieved.   It was found that films with a thickness of 40 nm are fully crystallized with 

a uniaxial {00l} orientation which is predetermined by the LaNiO3 orientation. On the other 

hand, for 160 nanometer thick films, crystallization was observed after 12000 pulses in the 70 

nm close to the surface, while the rest of the film remained amorphous. The large temperature 

difference between the film surface and interface due to the low thermal conductivity of the 

amorphous BST is suggested as the origin of this behavior. Films thicker than 80 nm cracked on 

crystallization due to the stress caused by the different thermal expansion coefficients of film and 

substrate, as well as the large temperature variations within the BST film. 
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INTRODUCTION 

Perovskite oxide films are being explored for numerous functional electronic devices [1-4]. As 

one example, there is on-going interest in barium strontium titanate (Ba1-xSrxTiO3 or BST) for 

tunable radio-frequency (RF) and microwave components, flexoelectrics, pyroelectrics, and 

capacitors [4-9]. The dielectric and ferroelectric properties of BST can be tuned through 

variations in composition, stress, temperature or applied dc electric field [10-13]. Furthermore, 



 3

the high dielectric permittivity of BST is suitable for capacitors where high storage densities and 

low leakage currents are needed [9, 14, 15]. Finally, the high pyroelectric coefficients of BST 

have also attracted much attention for room temperature infrared detectors and thermal imaging 

devices [8, 16].  

Among the techniques that have been employed to produce BST films [17-19], chemical solution 

deposition (CSD) is a simple, versatile and low-cost methodology for the development and large-

scale implementation of BST films, providing good control over film homogeneity and 

stoichiometry [10, 20]. Typically, high temperature thermal treatments in conventional furnaces 

or rapid thermal annealers are used to induce film crystallization. Nevertheless, this methodology 

cannot be used in applications as wearable electronics which often requires the growth of oxides 

on temperature sensitive substrates such as polymers. In this sense, photo-irradiation techniques 

appear as a novel strategy for low-temperature processing due to the photo-induced heating 

being highly confined in depth [21]. For instance, ultraviolet (UV) lamps have been employed 

directly or assisting rapid thermal annealing for the crystallization of oxides such as SiO2, TiO2 

or PbTiO3-based compounds at low temperatures [22-24]. Although UV lamps ensure the growth 

at temperatures lower than only-thermal treatments, the process is still time consuming requiring 

tens of minutes to hours of irradiation. In pulsed laser annealing (PLA) of CSD deposited layers, 

the use of a pulsed source delivers a large amount of energy in a very short time (i.e. 

nanoseconds) allowing a significantly fast crystallization as recently demonstrated  with 

numerous oxide materials such as epitaxial VO2, Ce0.9Zr0.1O2-y, Ba0.8Sr0.2TiO3 and perovskite 

manganites (LMO, LSMO) [25-30], or polycrystalline TiO2, In2O3, Ba0.7Sr0.3TiO3 and 

(Pb,La)(Zr,Ti)O3 [31-34]. Moreover, the spatially-localized heating effect of lasers enables high 

temperature crystallization of materials such as BaTiO3, silicon or MoS2 with a minimal 
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temperature increase on the polymeric substrates below. The resulting materials have good 

properties and show great potential for the development of flexible electronic devices at large 

scales [35-37]. PLA can also be readily incorporated into industrial fabrication processes 

confering this technique a high interest for emerging technologies as macroelectronics. Despite 

these promising benefits, the use of highly energetic laser sources requires a careful control over 

different processing parameters to prevent damaging (e.g. amorphization, ablation, etc) the 

constitutive materials [38]. The precursor film thickness also plays a crucial role in PLA since 

photo-induced heating is generally highly confined in depth. Thus, the non-homogeneous 

temperature distribution inside thick film material can provoke its partial crystallization and the 

development of high thermal stress leading to cracking [33]. In contrast, too thin precursor films 

or coatings that are transparent to the laser radiation do not develop the needed temperature for 

initiating crystallization. Therefore, specific photothermal considerations should be taken into 

account in the design of the treatments. 

Laser crystallization of BST deposited by CSD has been reported previously on Pt/Ti/SiO2/Si 

substrates [33, 39]. Platinum electrodes have a good electrical conductivity, excellent oxidation 

resistance, and allow the integration of different oxides with silicon [18, 40]. However, use of 

LaNiO3 (LNO) enables a cost-effective route for texture control on wide variety of substrates 

[41]. In this article, an in-depth analysis of the crystallization process of Ba0.8Sr0.2TiO3 films by 

PLA on LaNiO3 bottom electrodes was performed. The influence of different experimental 

parameters on crystallization, such as the fluence, number of pulses and film thickness was 

investigated to develop optimized conditions. Solid-state crystallization was prioritized, in order 

to avoid melting and resolidification phenomena by using lower fluences. Also, a substrate 

temperature above room temperature and larger number of pulses were used to decrease 
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temperature variations between film surface and interface, and to improve film crystallization. 

Systematic investigations including two-dimensional X-ray diffraction (2D-XRD) were used to 

further analyze the crystallization process. Numerical simulations based on finite element 

methods were employed to support the experimental results, providing insight on the thermal 

evolution of the system and a better appreciation of the photoinduced effects involved during 

laser crystallization. Finally, efforts were made to evaluate film cracking at high film thicknesses 

and expand the current understanding about their origin. 

 

MATERIALS AND METHODS 

The thin films in this work were prepared using chemical solution deposition (CSD) on oxidized 

Si wafers.  The thickness of the SiO2 layer was ~1 m.  Firstly, 0.2 M LaNiO3 (LNO) precursor 

solutions, prepared as described in ref [27], were deposited by spin-coating at 6000 rpm for 2 

min on thoroughly cleaned 4-inch SiO2/Si wafers (NOVA Electronic Materials, LLC). Each 

layer was pyrolyzed at 350 ºC for 10 min on a hot-plate and crystallized at 700 ºC for 1 min, with 

a heating ramp of 20 ºC s-1 in oxygen ambient using a rapid thermal annealer (RTP-600S, 

Modular Process Technology Corp.).  Four repetitions were needed to reach a thickness of ~150 

nm. The final LNO films had a root mean square (RMS) roughness of ~0.8 nm, and some 

uniaxial texture with the (00l) orientation as shown in the Supporting Information (Figures S1 

and S2). In particular, LNO buffer layers have a uniaxial fraction of 61±8 %. The LNO-coated 

wafers were cut into pieces of approximately 5×5 mm2. 

Stoichiometric Ba0.8Sr0.2TiO3 (BST) precursor solutions with a 0.3 M concentration were 

prepared as described elsewhere [27]. These solutions were spun onto the LaNiO3-coated 
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substrate using the same conditions as for the LaNiO3, and were fully decomposed at 450 ºC for 

10 min on a hot-plate after each coating. The thickness of the amorphous pyrolyzed film was 

varied between 40 and 160 nm by repeating the deposition and pyrolysis steps.  

Pulsed laser annealing of the BST films was carried out using a KrF excimer laser (COMPex Pro 

102, Coherent Inc.) working at 248 nm with pulses of 20 ns in duration and a repetition rate of 

20 Hz. The energy density at the film surface was controlled by adjusting the incoming laser 

energy, and varying the spot size with a plano-convex lens. Films were irradiated inside a 

vacuum chamber brought down to a residual pressure of 10-7 Torr, which was then filled with 

pure oxygen at a pressure of 0.1 Torr. Samples were mounted on a substrate heater using silver 

paint. The substrate temperature was controlled within ±3 ºC by employing a Eurotherm Digital 

Temperature Controller 847. 

The morphological characterization of film surfaces was conducted using an Agilent 5100 

atomic force microscope (AFM) and a FEI NanoSEM 630 scanning electron microscope (SEM). 

The micrographs were analyzed with the MountainsMap 7.0 software (Digital Surf). The 

crystallographic structure of the films was measured by X-ray diffraction (XRD) using a Cu-K 

radiation source with a PANalytical X’Pert Pro MPD diffractometer and a Bruker GADDS 

system equipped with a 2-dimensional detector. More detailed analysis of the film crystallization 

was attained by means of high resolution transmission electron microscopy (HRTEM) of cross-

sectional specimens produced by mechanical polishing and ion milling. The HRTEM images 

were acquired with FEI Tecnai F20 and JEOL J2010F microscopes both equipped with field-

emission guns working at 200 kV and achieving lateral resolutions of 0.14 nm. Electron energy 

loss spectroscopy (EELS) analyses were conducted in a FEI Tecnai F20 and FEI Titan S/TEM 

both equipped with post-column Gatan Image Filter energy spectrometers.  
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Finally, the laser-induced thermal behaviour in the samples were simulated by solving the 

transient heat equation with the finite element method by employing COMSOL 4.4 Multiphysics 

software [26]. Additional information on simulations can be found in the supporting information. 

The optical and thermophysical properties of films and substrate used in the calculations were 

reported in refs [21, 27, 42-45] and are summarized in the Supporting Information (Table S1). 

 

RESULTS AND DISCUSSION 

1. Study at different fluences and number of pulses 

Numerical simulations were used to estimate appropriate irradiation conditions. The amount of 

radiation absorbed is characterized by the optical absorption coefficient, α, as described by the 

Beer-Lambert law. In particular, amorphous BST has an optical absorption coefficient αBST at 

λ=248 nm of 28.1×106 m-1 [27], which corresponds to an optical penetration length of lαBST~36 

nm. Thus, a film with a thickness of 40 nm will absorb about a 68% of the incoming radiation, 

and the remaining intensity will be absorbed through the 150 nm thick LNO buffer layer 

(αLNO=23.6×106 m-1 and lαLNO~42 nm at λ=248 nm) [27].  

It can be assumed that the amorphous BST film is mostly composed of Ba-O, Sr-O and Ti-O 

bonds with dissociation energies between 454 and 662 kJ mol-1 (4.7 and 6.9 eV/bond) [46], 

whereas the laser photon energy is ~5 eV at 248 nm.  Two major phenomena can be induced 

upon absorption of the laser radiation, i.e. photochemical and photothermal interactions. 

Photochemical mechanisms associated with the direct dissociation of chemical bonds may occur 

given that the laser photon energy is slightly higher than the lower limit for bond dissociation 
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energies. However, photothermal effects have been reported to be predominant for nanosecond-

pulsed lasers [21]. Thus, for the sake of simplicity, it has been assumed that the interaction 

between laser radiation and films is essentially photothermal. The film pyrolysis procedure 

followed in the experimental section ensured the elimination of organic residues as reported for 

other propionate derived films within a detection limit of approximately 0.8 wt% [47, 48]. If any 

C-C, C-O and C-H bonds remained, they would be photochemically decomposed during initial 

stages of irradiation since their energies are significantly lower than the laser photon energy (3.6-

4.3 eV/bond) [48].  

Figure 1a shows the temperature profiles obtained from photothermal simulations of 40 

nanometer thick BST films on LNO/SiO2/Si substrates for fluences of 50, 65 and 75 mJ cm-2, a 

substrate temperature of 500 ºC and a single laser pulse. The chosen conditions allow similar 

maximum temperatures to the ones reported in ref [27], i.e. between ~1100-1450 ºC. According 

to simulations, laser pulses provoke rapid thermal cycles without exceeding the melting point of 

the system constituents - (Supporting Information, Table S1). The high temperatures induced 

lead to heating/cooling rates up to 109 ºC s-1. The temperature profiles developed in the BST film 

last from hundreds to thousands of nanoseconds. As a result, large temperature differences are 

induced between the film surface and the BST/LNO interface. These variations lead to maximum 

temperature gradients inside the film of 108-109 ºC m-1 during tens of nanoseconds. Additionally, 

the effective heating time for a single pulse teff (here defined as the time the film is above 600 ºC, 

which is used as the minimum temperature needed for BST crystallization [49]) can be extracted. 

In particular, it can be seen that teff increases with the fluence from approximately 0.8 (50 mJ cm-

2) to 1.1 μs (75 mJ cm-2). It is also important to highlight that these values of effective heating 

time are one to two orders of magnitude longer than those reported elsewhere [26, 27, 39, 50]. 
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These differences mainly arise due to the different laser systems employed, experimental 

conditions (fluence and substrate temperature) and thermophysical parameters of the constituent 

materials. 

Laser irradiation of amorphous BST (after the pyrolysis of the precursors) on LNO/SiO2/Si was 

performed at fluences of 50, 65 and 75 mJ cm-2; samples were irradiated with 12000 pulses while 

held at a substrate temperature of 500 ºC. XRD diffractograms in Figure 1b show the peaks 

corresponding to the silicon substrate and LNO buffer layer. Also, the BST (001) and (002) 

peaks are identified at ~22.2º and ~45.4º, respectively, and the polycrystalline BST (011) 

reflection is found at ~31.7º. No crystallization of BST is detected at 50 mJ cm-2, whereas BST 

peaks are observed at 65 and 75 mJ cm-2. These results indicate that the temperature reached at 

50 mJ cm-2 (Figure 1a) may be insufficient to promote crystallization for the very short laser 

annealing times employed. Thus, either higher fluences or larger number of pulses should be 

used.  

Figure 2 shows the percentage of {100} texture fraction for BST films with thicknesses of 40 

and 160 nm, fluences of 65 and 75 mJ cm-2, and number of pulses between 1200 and 72000, as 

indicated. The methodology used (Supporting Information) is an improvement from semi-

quantitative methods like the Lotgering factor [51]. The values for 40 nm-thick BST samples 

treated at 65 and 75 mJ cm-2 after 12000 pulses (substrate at 500 ºC) obtained from the Lotgering 

factor method would have been 0.63±0.03 and 0.77±0.04, respectively. In contrast, the proposed 

quantification methodology shows uniaxial fractions of 21±7 % and 26±5 %, respectively. 

Therefore, these films essentially have a random orientation although some degree of texture is 

detected along the {00l} orientation, which seems to increase slightly with the laser fluence. The 

same method has been previously employed to evaluate the epitaxial content of ceria thin films 



 10

produced by laser annealing, giving epitaxial fraction values close to 100 % [26]. The surface 

morphology of films irradiated at 50 and 65 mJ cm-2 as shown in Figures 1c and d, reveals 

granular and porous surfaces. Furthermore, grains with tens of nanometers in size are also seen, 

which led to RMS roughnesses of 3.0 and 5.2 nm, respectively. The sample irradiated at 75 mJ 

cm-2 (Figure 1e) has a RMS roughness of 8.3 nm and displays larger groups of grains with sizes 

of hundreds of nanometers. Moreover, the grains are separated by boundaries that could be 

associated with grain boundary grooving, similar to those reported in ref [26]. 

A fluence of 65 mJ cm-2 was selected for a substrate temperature of 500 ºC since those 

conditions allow laser crystallization of BST with a rather homogeneous surface with low 

roughness. To investigate how the film surface morphology and crystallization is affected, the 

number of laser pulses was varied between 1200 and 72000 pulses. After accumulating 1200 

pulses (Figure 3a), the surface shows two sets of features, one with compact grains smaller than 

100 nm and the other larger than ~300 nm. The RMS roughness of the film is ~3.5 nm. The 

larger features could be associated with residual amorphous material, as they seem to disappear 

as the number of pulses increases to 12000 and 72000 (Figures 1d and 3b).  The RMS roughness 

increased to 5.2 and 6.9 nm, respectively, because the smaller grains enlarge and the surface 

morphology becomes porous as mentioned earlier. XRD analyses of films irradiated for 1200, 

12000 and 72000 pulses (Figure 3c) illustrate the presence of (00l) and (011) orientations of 

BST, as reported previously. Based on the increase in the BST (002) peak area, the degree of 

crystallization increases with the number of pulses. Presumably, this is caused by the longer 

cumulative heating time achieved at higher number of pulses as it has been reported for other 

oxide films on different substrate architectures [26, 27, 33, 50]. Accordingly, longer heating 

times would allow the film constituents to rearrange into the final phase and also form larger 
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crystallites through grain coarsening, which should lead to sharper and more intense XRD peaks. 

The 2D-XRD pattern of a film irradiated at 65 mJ cm-2, a substrate temperature of 500 ºC and 

72000 pulses (Figure 3d) reveals that the BST film has some {00l} oriented material, as 

evidenced by the higher peak intensity for values close to χ=0º (depicted with a dashed white 

line). The percentages of {100} orientation for films irradiated with 1200, 12000 and 72000 

pulses at 65 mJ cm-2 are 13±5 %, 21±7 % and 35±6 %, respectively, as shown in Figure 2. The 

degree of orientation increases with the number of pulses, suggesting that the BST is trying to 

mimic the (001) texture of the LNO buffer layer (uniaxial fraction of 61±8 %) as more pulses are 

applied. 

 

2. Effect of film thickness on crystallization 

Usually, the strategy followed for the fabrication of BST devices from chemical solutions is 

based on the deposition of multiple coatings until the desired thickness is reached [4, 13, 16]. In 

this section, laser crystallization of films with thicknesses between 40 and 160 nm is described. 

The methodology followed to obtain thicker films is based on several deposition and pyrolysis 

steps, as described in the experimental section. 

SEM analyses in Figures 4a and b illustrate the resulting surface morphologies for films (laser 

annealed at 65 mJ cm-2 with a substrate temperature of 500ºC for 72000 pulses). It was found 

that the sample with a thickness of 40 nm is homogeneous with grains/pores of 100 nm in size 

and a RMS roughness of 6.9 nm, as already described. On the other hand, the film with a 

thickness of 160 nm presents a heterogeneous surface with lateral grain sizes exceeding 1 μm, 

resulting in a RMS roughness of 18.9 nm. Cracks also appear. Figure 4c depicts the XRD 
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measurements of BST films with thicknesses of 40 and 160 nm. Particularly, the -2 scans 

reveal the increasing intensity of the BST reflections with the film thickness because of the 

larger sampled volume. The uniaxial fraction values for films with thicknesses of 40 and 160 nm 

and irradiated at 65 mJ cm-2 and 72000 pulses are 35±6 % and 29±7 %, respectively, revealing 

the presence of a large amount of polycrystalline material in the films. 

HRTEM investigations of BST films after laser treatment at 65 mJ cm-2 for 12000 pulses at a 

substrate temperature of 500ºC were conducted. Figures 5a and b show a STEM image 

(performed under Annular Dark Field, ADF, conditions) and the corresponding intensity profile 

of the sample. The 40 nanometer thick BST film can be identified along with the LNO 

multilayered film and the amorphous SiO2 layer. Figure 5b depicts an HRTEM image and power 

spectrum (fast Fourier transform, FFT) of a zoomed area into the square in Figure 5a, showing 

two different BST grains with different in-plane orientations. In contrast, Figure 5c shows the 

TEM characterization of a ~160 nm thick BST film, depicting a partially crystallized layer. More 

precisely, Figures 5d and e show a ~70 nanometer thick region close to the surface comprised of 

polycrystalline (randomly oriented) material, whereas the remaining film closer to the interface 

with the LNO (Figure 5f) is amorphous. The percentage of uniaxial fraction in this sample is 

around 15-30 % (Figure 2). 

The transfer of texture from the LNO layer seems improbable provided nucleation is induced 

from their surface. Despite that, the homogeneity of this crystalline/amorphous layer cannot be 

completely evaluated due to the local nature of TEM. Thus, thicker films could present areas 

with a tendency to crystallize down to the interface, while other regions may have amorphous 

regions like the one depicted in Figure 5f. In addition, ab initio calculations of the surface 

energies for BaTiO3 indicate that a lower energy is required to form a {00l} oriented surface [52, 
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53]. Therefore, it could also be more favorable thermodynamically to form grains with a {00l} 

orientation. The differences observed between the two samples can be explained in terms of the 

absorbed radiation intensity, which is higher at the surface and decays exponentially inside the 

film as described by the Beer-Lambert law. As mentioned before, the heating process depends to 

a great extent on the optical penetration depth lα of each material. It should be remembered that 

68% of the incoming radiation is absorbed through the 40 nanometer BST film (lα
BST~36 nm at 

λ~248 nm). The rest of the radiation is transmitted to (and absorbed in) the LNO buffer layer. In 

contrast, the laser radiation is completely absorbed in the 160 nanometer thick BST layer. As a 

result, the temperature profiles extracted from simulations for 40 and 160 nanometer thick BST 

films on LNO/SiO2/Si substrates (Figure 6a) reveal comparable temperature profiles at the film 

surface. However, there is a large difference in the temperature reached at the interface with 

LNO, i.e. the surface-interface temperature differences are around 50 and 300 ºC for 40 and 160 

nm thick films, respectively. These results are similar to those reported previously [39, 50]. It is 

notable that the interface temperature for the 160 nm film, around 1000 ºC, may be insufficient 

to promote the laser crystallization for a limited number of short pulses (Figure 5c). These results 

are in agreement with previous observations for 40 nanometer films where it was shown that 

crystallization is not detected for laser fluences as low as 50 mJ cm-2 (equivalent to temperatures 

of ~1100 ºC). 

Cracks were observed in 160 nm thick films after being irradiated at 65 mJ cm-2 for 72000 pulses 

at a substrate temperature of 500 ºC. Comparable reports of the presence of cracks for laser-

crystallized BST films on Pt/SiO2/Si substrates have been given elsewhere [33, 39]. Specifically, 

it was determined that cracks appeared for thicknesses above 130 nm, even for laser energy 

densities as low as 50 mJ cm-2. In the same way, in this work, cracking was observed for films 
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with thicknesses of ~160 nm even after laser annealing at 50 mJ cm-2, 72000 pulses and a 

substrate temperature of 500 ºC (Figure S4). No cracks could be observed for a thickness of 80 

nm. Film cracking is a form of stress relaxation that occurs when elastic energy accumulates in 

the film until it exceeds a critical value. There are several physical mechanisms that lead to stress 

accumulation and crack formation. First, we considered the thermal stress derived from different 

thermal expansion coefficients (TECs) of the materials forming the system. The respective TECs 

of BST and LNO are approximately 12.9×10-6 K-1 and 8.2×10-6 K-1 [54, 55], and even a larger 

difference is attained between these values and the thermal expansion coefficient of SiO2 

(0.5×10-6 K-1 [56]), which will certainly lead to stress development in the system. Temperature 

simulations in Figure 6b indicate that the silicon (1.4×10-6 K-1 [55]) is at the initial substrate 

temperature.  

Because of its thickness, it is expected to impose stress on the whole BST/LNO/SiO2/Si 

structure. Also, there is the large temperature gradients associated laser heating/cooling. 

Simulations in Figure 6 show a temperature variation of ~300ºC between the surface and 

interface for 160 nanometer thick BST films giving rise to a temperature gradient of ~2×109 ºC 

m-1. This film cracks. However, the temperature gradient is reduced down to 1x109 ºC m-1 for the 

40 nm films, which did not crack. Therefore, the film thickness seems to be a critical parameter 

controlling crack formation in the current system as stress builds up with the increase in 

thickness. Finally, it is important to note that different degrees of crystallization exist between 

the surface and interface in thick films, i.e. the film is polycrystalline at the surface and still 

amorphous at the interface (Figure 5c-f). Thus, stress may be generated during film growth 

related to the densification process occurring during the transformation from amorphous to 

crystalline material, as reported previously [33]. The stress caused by lattice mismatch is 
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irrelevant here since there is no epitaxial growth. The results provided here would suggest that 

either films with thicknesses below 160 nm should be grown or, instead, a strategy with 

consecutive pyrolysis and crystallization steps should be followed until the desired thickness is 

reached. This should prevent excessively large temperature differences and film densification, 

hence diminishing the development of cracks. 

 

CONCLUSIONS 

Solution-derived amorphous BST films were crystallized on LNO-coated silicon wafers at low 

substrate temperatures mainly due to photothermal interactions derived from the absorption of 

laser radiation. The experimental conditions lead to a solid state crystallization, i.e. the maximum 

simulated temperatures in the BST layer are below the melting point. The films have a certain 

degree of uniaxial {00l} crystalline texture that could be attributed to the lower surface energy 

needed to form these grains, as well as the presence of some crystalline regions that reach the 

interface in thicker films. Moreover, the amount of crystalline material increased with the 

fluence and number of pulses since higher temperatures and longer cumulative annealing times 

are developed in the system. Temperature simulations point toward cumulative effective heating 

times in the range of milliseconds. Careful control of the thickness is mandatory since it has also 

been found to affect the crystallinity. In particular, layers with a thickness of 40 nm are fully 

crystallized, while only a ~70 nm depth near the surface is crystallized in 160 nanometer thick 

films. Temperature inhomogeneity through the thickness coupled with the very short effective 

heating times of the laser treatments are proposed as the main sources for partially crystallized 

layers. Additionally, these phenomena together with the different thermal expansion coefficients 
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of materials and film thickness can generate stress in the system that result in the formation of 

cracks. Consequently, careful control of the processing parameters must be done to prevent 

noncrystallized areas and crack formation from hindering the functionality of the films. 
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FIGURE CAPTIONS 

Figure 1. Analysis of 40 nm thick BST films on LNO/SiO2/Si substrates irradiated with 12000 

pulses at different laser fluences with a substrate temperature of 500ºC. (a) Numerical 

simulations illustrating the temporal evolution of temperature at the BST film after irradiation at 

50, 65 and 75 mJ cm-2. The laser pulse dependence with time is also given for comparison 

purposes. The black-dotted line corresponds to the minimum temperature used to define the 

effective heating time. (b) XRD measurements of BST films treated at 50, 65 and 75 mJ cm-2. 

AFM images for samples irradiated at (c) 50, (d) 65, and (e) 75 mJ cm-2. 

Figure 2. Percentage of {100} texture present in BST films (thicknesses of 40 and 160 nm) laser 

crystallized on LNO/SiO2/Si. Fluences of 65 and 75 mJ cm-2 were used during irradiation while 

the substrate was held at a temperature of 500 ºC, and the pulses applied were set to 1200, 12000 

and 72000. 
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Figure 3. 40nm thick BST films on LNO/SiO2/Si irradiated at 65 mJ cm-2 at a substrate 

temperature of 500ºC. AFM characterization after (a) 1200 and (b) 72000 pulses. (c) -2 scans 

of the BST films presented in (a) and (b). (d) 2D-XRD analysis of a BST film laser treated at 65 

mJ cm-2, a substrate temperature of 500ºC and 72000 pulses. 

Figure 4. BST films on LNO/SiO2/Si with different thicknesses irradiated at 65 mJ cm-2 for 

72000 pulses at a substrate temperature of 500ºC. SEM images of BST films with thicknesses of 

(a) 40 nm and (b) 160 nm. (c) XRD measurements of the BST films described in (a) and (b). 

Figure 5. (S)TEM characterization of BST films with different thicknesses on LNO/SiO2/Si 

substrates after laser irradiation at 65 mJ cm-2, 12000 pulses and a substrate temperature of 

500ºC.  BST film with a thickness of 40 nm: (a) low magnification cross-sectional ADF STEM 

image, and (b) HRTEM image of the orange framed region in (a) and its FFT. BST film with a 

thickness of 160 nm: (c) low magnification cross-sectional TEM image, (d) HRTEM detail 

corresponding to polycrystalline grains (blue indicated in (c)) and (e) the associated power 

spectrum, and (f) HRTEM image of an area close to the interface with LNO (indicated by the 

green rectangle in (c)) depicting amorphous BST. 

Figure 6. Temperature simulations of amorphous BST films on LNO/SiO2/Si substrates for a 

fluence of 65 mJ cm-2, and a substrate temperature of 500ºC. (a) Temperature evolution with 

time for BST films with thicknesses of 40 and 160 nm. The solid and dashed lines are 

representative of the surface and interface temperature profiles, respectively. (b) Temperature 

distribution with depth inside the heterostructure for BST films with thicknesses of 40 and 160 

nm at 30 ns. 
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