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ABSTRACT  

Ultra-narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing 

advanced nanoelectronics, thermoelectrics, infra-red photodetection and quantum transport 

physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb 

nanostructures exhibiting superior electronic performance. Through careful morphological and 

crystallographic characterization we show how this unique geometry is the result of a single 

twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements 

performed in both the Hall and van der Pauw configurations reveal a room temperature electron 

mobility greater than 12,000 cm2.V-1.s-1. Quantized conductance in a quantum point contact 

processed with a split-gate configuration is also demonstrated. We thus introduce InSb 

‘nanosails’ as a versatile and convenient platform for realizing new device and physics 

experiments with a strong interplay between electronic and spin degrees of freedom. 

KEYWORDS III-V Semiconductor, Nanowires, Molecular Beam Epitaxy, Hall measurements, 

Quantum Point Contact, Cs-corrected Scanning Transmission Electron Microscopy. 

 

High-quality narrow bandgap III-V semiconductor nanostructures hold promise for applications 

in infra-red optoelectronics1,2, low-power nanoelectronics3, 4 and quantum physics5. Until now, 
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reports have focused on the nanowire geometry which has been used to demonstrate direct 

integration on silicon6, gate-all-around (tunnel) field effect transistors7-9, efficient IR 

photodetection,10, 11 lasing12-14 and enhanced thermoelectric performance15-20.  

With the narrowest bandgap among the III-V semiconductors, InSb is characterized by an 

extremely low effective carrier mass and therefore has the potential to realize some of the highest 

values of electron mobility among all semiconductors. Coupled with the largest Landé g-factor 

of all semiconductors,21 and the fact that peak electron velocity occurs at relatively low electric 

fields, InSb is an ideal material for high speed and low power nanoelectronics22 and 0D/1D 

electron or hole systems for quantum transport physics23-25. High quality InSb nanowires have 

already been shown to enable fast manipulation of spin-orbit qubits 24, 26 and have played a key 

role in the search for the elusive Majorana fermion27-29. 

The epitaxial growth conditions and crystal quality of antimonide nanostructures differ 

significantly from those of all other III-Vs due to both the low vapor pressure of Sb and its action 

as a surfactant30. On one hand, these specificities make growth of InSb free-standing 

nanostructures challenging due to the necessity of providing nanowire ‘stems’ to nucleate them 

away from the substrate31, impractically slow growth rates in the axial direction32, and the 

existence of very narrow ‘sweet spot’ in the growth parameter space33. On the other hand, these 

special growth conditions guarantee a perfect crystal structure independently of the growth 

technique34-37 a total absence of tapering for nanowires thanks to a very low nucleation 

probability on their {110}sidewalls and the opportunity to tailor the morphology, to deliver 

geometries such as diamond-shaped free-standing 3D nanostructures33, 38, or nanocrosses39, 40. 

While antimonide nanocrystals usually lack planar defects perpendicular to the growth direction, 

the appearance of crystallographic defects in other directions can induce changes in the geometry 
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of the overall system rather than promoting a crystal phase transition, explaining the formation of 

tilted nanowires41, branched nanostructures42 or kinking phenomena43.  Despite these 

achievements, the nanowire geometry has proven impractical for the realization of multi-terminal 

devices such as Hall bars44, 45, quantum point contacts or Aharonov-Bohm rings46. Realizing 

nanosheets of this material while keeping the advantages already demonstrated by nanowires 

would thus open the way to more advanced device geometries47, still enable advanced 

heterostructures48, while also significantly easing the device fabrication process49. There are 

currently however few reports of free-standing III-V nano-sheets and the majority of these 

examples contain at least a few stacking defects perpendicular to their vertical growth axis 50-54. 

Here we show that InSb nanosheets in the form of a vertical nanosail can be grown epitaxially 

from an InAs ‘mast’ acting as a stem, with a thickness controlled by the seed particle, two large 

atomically flat {110}surfaces and a highly facetted geometry. Growth is possible using the two 

main epitaxy techniques, i.e. metalorganic vapour phase epitaxy (MOVPE) and molecular beam 

epitaxy (MBE), but only the latter is detailed here. The nanosail crystal structure grown by MBE 

is confirmed to be pure zinc blende with only a single isolated twin boundary event on the lateral 

side. It is found that the single twin drives the crystal to change its geometry and expand to 

create the observed 2D-like morphology. We then proceed with studying its key electronic 

figures of merit such as mobility and carrier concentration using a multi-terminal device 

configuration. A very high mobility above 12 000 cm2.V-1s-1 is unambiguously determined both 

at low temperature and room temperature. Finally, we demonstrate for the first time quantized 

conductance in a bottom-up InSb nanomembrane in a quantum point contact (QPC)55, 56, in the 

absence of an in-plane applied magnetic field57.  
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The InAs/InSb nanowire/nanosail heterostructures were grown on InP (111)B via a gold-

assisted vapor-liquid-solid mechanism in a Riber 32-P gas-source molecular beam epitaxy 

(MBE) system following a methodology very similar to that reported by Thelander et al.
37. The 

structure consists, from bottom to top, of a short InP/InAs stem followed by the InSb segment. 

The general morphology and faceting was evaluated using a Zeiss Ultra 55 SEM while 

mechanically detached nanostructures were studied by atomic resolution high angle angular 

dark-field scanning transmission electron microscopy (HAADF-STEM) using a probe corrected 

FEI Titan 60−300 equipped with a high brightness field emission gun (XFEG) and a CETCOR 

corrector from CEOS. All the 3D atomic models here presented have been created using the 

Rhodius software58,59. Back-gated devices where fabricated by transferring the nanosails onto a 

thermally oxidized highly-doped Si substrate. Low resistive ohmic contacts were then defined by 

electron beam lithography on ammonium sulphide passivated nanostructures. For the quantum 

point contact (QPC) device, two ohmic contacts are realized, followed by the deposition of a 10 

nm HfO2 conformal gate dielectric layer by atomic layer deposition, and two split gates defined 

by electronic lithography. Variable temperature magneto-transport experiments were performed 

in a helium cryostat with a variable temperature insert allowing measurements from 2.1 to 300 

K, and magnetic field up to 7 T. The Hall and van der Pauw measurements were performed using 

the lock-in technique. The quantum point contact measurements were performed with a constant 

d.c. bias voltage. Full growth, characterization and processing details are given in Supporting 

Information SA. 

Figure 1(a) presents an as-grown InAs/InSb nanowire ensemble containing nanosails 

structures. Growth here consisted of axial InP/InAs heterostructure stems topped with an InSb 

segment. Only the bottom InAs stem and InSb sections are visible in this scanning electron 
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microscopy (SEM) image. It is clear that while some InAs/InSb heterostructures remain in the 

shape of standard nanowires35 or even diamond-shaped crystallites33, 38, a significant proportion 

of the InSb segments form flat sail-like nanosheets, which we henceforth refer to as ‘nanosails’. 

The variation observed here may be related to the stochastic nature of the Au dewetting process 

which produces a distribution of seed diameters and areal densities and the extreme sensitivity of 

free-standing InSb nanostructures to local growth conditions31-33. An illustration of this intrinsic 

sensitivity of InSb to local growth conditions is illustrated in Supporting Figure S1. It can 

therefore be inferred that the specific nucleation event leading to this original InSb nanosail 

morphology has a small probability of occurrence under the studied growth conditions. The 

percentage of nanosails to nanowires is measured to be  5.6% (see Supporting Figure S3). The 

ease of obtaining the nanosail geometry is further confirmed in Supporting Figure S2 where the 

same nanostructures are grown by MOVPE (see Supporting Figure S2).  
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Figure 1. General morphology and crystal structure. (a) SEM image (30° tilt) showing a 

representative overview of an as-grown InAs/InSb ensemble containing nanosails. (b) Low 

magnification HAADF image of a nanosail with the regions magnified in c-h indicated by 

colored squares (c) Atomic resolution HAADF image of the base of the nanosail (growth 

direction is vertical) showing both WZ InAs and ZB InSb. Red, blue and green curves 
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correspond to intensity profiles taken along individual dumbbells in order to determine polarity, 

which was found to be B-polar for both InAs and InSb. (d,e) High resolution images of the twin 

boundary extending parallel to the {111} lateral facet, from the base (d) to its termination (e), 

where the twinned segment is of constant width (highlighted by the red arrow). (f) Z-contrast 

image of the nanosail’s tip, showing the facets of the AuIn2 seed particle. A fast Fourier 

transform (FFT) of the InSb nanosail structure is inset (g) Atomically resolved image of the 

interphase between the InAs nanosail structure (darker) and the AuIn2 single crystalline seed 

particle (brighter) (h) Atomic resolution image of the AuIn2 structure with FFT inset. Note that 

the white arrow points indicate the [1�11] growth direction.  

After mechanical dispersion on a holey carbon grid, the nanosails facets were indexed using 

atomically resolved High Angle Annular Dark Field (HAADF) Scanning Transmission Electron 

Microscopy (STEM). The primary facets were determined to be {110} type bordered by facets of 

mostly of {111} type (Figure 1(b)). Considering the base of the nanosail, Figure 1(c), we observe 

that the narrow InAs ‘mast’ segment below the InSb section crystallizes in the wurtzite (WZ) 

structure while the rest of the sail (composed of pure InSb) presents a pure zinc-blende (ZB) 

structure (Figure 1(c)). The polarity of the growth direction is further confirmed to be anionic or 

‘B’ type by measuring the intensity profile along dumbbells (colored curves in Figure 1(c))60. 

This analysis also reveals the presence of As in the first nanometers of the InSb ZB base. Indeed 

the relative intensity inversion observed (i.e., InAs shows As polarity, being In the heavier 

constituent, red plot in Figure1(c); while InSb presents Sb polarity being Sb the heavier, green 

plot in Figure 1(c)) demonstrates that the interface between materials is not abrupt, as reported 

previously for InAs/InSb nanowires61. Further strain analysis shown in Supporting Figure S4 

along with EELS measurements confirm the alloying at the InAs/InSb interface over a few 
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nanometers. Focusing now on the InSb nanosail itself, all investigated samples were 

characterized by a pristine ZB structure with the exception of a single longitudinal twin boundary 

located at the base (see Figure 1(e)) and extending parallel to one of the {111} lateral facets of 

the structures, disappearing at the corner (Figure 1(f)) where the new facet shrinking the 

structure starts to develop. This single structural defect will be discussed in details in the 

following and in Supporting Information..  

Post-growth, the seed particles were found to be single AuIn2 crystals with a cubic Fm3-m 

structure (Figure 1 (g,h)), and perfectly lattice-matched to the nanosail: (-11-1) [110] AuIn2 || (-

111)[110] InSb. The AuIn2 composition is in agreement with the pseudo binary eutectic region 

of the Au-In-Sb ternary phase diagram, as discussed in previous works35, 36, 62. The interface 

between the sail and the alloy metal particle is atomically flat, and there is no evidence of gold 

diffusion within the nanosail structure. The particle exhibits low-index facets, as shown Figure 

1(d), similar to those previously reported for InSb NWs 61. 
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Figure 2. 3D facet structure and growth scenario. (a-d) Various SEM images of nanosails 

either lying flat on a silicon host substrate (a,b) or free-standing (c,d), revealing the general 

geometry and small variations in shape. Scale bars are 200 nm for (a-d). (e) Atomic 3D model of 

the nanosail illustrating its main facets and geometry. (f) Evolution of the nanosail geometry. 
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Having established that our nanostructures were of the highest crystalline quality we then 

further investigate their faceting and 3D geometry using both experimental data and 3D atomistic 

modelling. From the analysis of a combination of SEM images taken with both titled view and 

plane view together with STEM images in different zone axes, a precise 3D atomistic model was 

built. The final nanosail geometry was found to vary slightly depending on its development stage 

(Figure 2 (a)-(d) and Supporting Figure S7) but all nanosails were characterized by several 

common features, discussed below. Similarities among nanowires and nanosails cannot be 

neglected and, indeed, as well as growing along the same direction, i.e., [-111], both 

architectures shown a partial common faceting based on {110} planes. For the nanosails, the 

frontal and back facets always correspond to {110} planes, i.e., (110) and (-1-10), as illustrated 

in the [110] front view in Figure 2(e), but also the vertical side of the nanosail is composed by 

two different {110} planes (i.e., (01-1) and (-10-1)). The bottom lateral side expanding outwards 

and running parallel to the observed twin boundary, belongs to the (-11-1) plane, as well as the 

upper parallel facet. It is noteworthy that the width of the twinned section is constant along its 

length. The twin boundary is found to be an orthotwin63, 64 (see Supporting Figure S5) and more 

details about its position and propagation are given in Supporting Figure S6.Two additional 

{10l} planes (usually {103}) complete the faceting of the whole morphology. In contrast to the 

complex higher index facets present where the lateral twin terminates on the top left hand side of 

the droplet, the {111} and {110} facets are all atomically flat. A root mean square roughness of 

3.5Å has been extracted using atomic force microscopy (AFM). 

In terms of the formation mechanism, a few observations should be made prior to describing a 

growth scenario. First the nanosails retain two small {110} facets (extending directly from the 

InAs “mast”) and two very large {110} facets of the original six {110} planes completing the 
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perfectly hexagonal shape of an InSb nanowire. Secondly, all nanosails possess the same pure 

zinc blende crystal structure topped by a AuIn2 alloy particle showing post-growth perfect strain-

free epitaxial relationship with the semiconductor, exactly as InSb nanowires do61. Finally the 

growth conditions leading to the nanosail formation are obviously very close to those favorable 

for the growth of InSb nanowires since they both grow simultaneously, sometimes within sub-

micron distances from each other, independently of the growth technique (MOVPE or MBE). 

Therefore, the nanosail formation clearly shares very strong links to the metal-assisted nanowire 

vapor liquid solid growth mechanism. In the same way, it was shown by several authors that 

under certain conditions, III-V nanowires can kink to other crystallographic directions65, 66, 

including to other polarities67 or contain internal twins non-perpendicular to their elongation 

axis68, 69. In all the above examples it was either demonstrated or at least inferred that the alloyed 

seed particle was allowed to unpin from its standard {111} growth plane to wet more than one 

planes (multiple surfaces)70, including the nanowire sidewalls. Even during standard growth of 

diamond cubic or zinc blende nanowire crystals a corner oscillation has been confirmed by in-

situ growth inside TEMs 71-73.  

Keeping in mind these considerations, Figure 2(f) illustrates our suggested phenomenological 

growth scenario to account for the formation of the InSb nanosails. When switching from As to 

Sb the droplet composition, phases and surface energy balance are changed dramatically. An 

increase in diameter occurs immediately after the introduction of Sb in the alloyed In(As,Sb) 

region a few nanometers above the InAs stem61. In agreement with a large set of published 

experimental results39, 70, the seed droplet is therefore allowed to unpin slightly from its position 

lying on the (-111) InSb plane to wet the sidewalls. Such a configuration has been shown to 

allow for new nucleation sites, and if two nuclei originating from two adjacent corners merge 
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together, a grain boundary/twin can easily form. Illustrations of the morphological and structural 

signatures of this defect are shown in Supporting Figure S6. Once the inclined twin is formed the 

droplet wets multiple facets: the usual (-111) facet and a new {110} facet or ensemble of 

connected facets on its outer region (on the left, yellow pointed in Figure 2(f)). As the growth 

proceeds along the directions indicated in blue, the droplet will be stretched until the limit of its 

acceptable deformation in view of its surface tension. Such a dynamic modification of the 

surface area under the droplet has been described and modelled in detail in the case of twinning 

superlattices74, 75, where a further conceptual similarity lies in growth occurring on planes not 

perpendicular to the growth axis.  After reaching its maximal surface tension the droplet will 

eventually unpin from the inclined lateral facet(s) pointed in yellow in Figure 2(f), resulting in 

the creation of the new facets that narrow the system. The situation shown in Figure 2(f) likely 

occurs at a very early stage of the nanosails formation, where its lateral extent does not differ 

much from that of a nanowire diameter. These sets of facets ({103} in the 3D model shown in 

Figure 2(e)) will depend on growth kinetics and adapt accordingly. As growth proceeds under 

the droplet, it may become more favorable for the droplet to stick to the {103}/(-111) triple 

phase boundary instead at the edge formed by the {110}/(-111) planes depicted on the right hand 

side in figure 2(f), leading to the creation of a new {-11-1} facet, exactly parallel to the bottom 

left one. An animated movie on the formation of the nanosails, based on atomic 3D models, can 

be found on-line76. Now that all of the key facets have been formed, the miniature nanosail 

grows via both vertical VLS and lateral Vapor Solid (VS) epitaxy to create the large surface area 

nanosheets observed. Future in-situ TEM growth studies could refine our understanding of the 

formation of such an original geometry77. 
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Figure 3: Hall measurements on InSb nanosails. (a) Hall voltage VH as a function of the 

magnetic field applied perpendicular to the nanosail surface B for different voltages VBG applied 

on the back-gate (values given in the legend) at a temperature of 2.1 K. Inset: AFM image of the 

four-terminal nanosail device (scale bar 500 nm). (b) Sheet electron density ns as deduced from 

the Hall measurements using the single carrier model as a function of the back-gate voltage VBG 

(a) (b) 

(c) (d) 
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and for different temperatures (values given in the legend). (c) Electron mobility µ as a function 

of the back-gate voltage VBG. The mobility is calculated from the sheet resistance measured in 

the van der Pauw configuration and from the electron sheet density presented in panel (c). (d) 

Elastic mean free path le as a function of the bulk carrier density n assuming a homogeneous 

carrier distribution over the 70 nm thickness of the nanosail. 

In order to assess the electronic quality of the InSb nanosails, we performed electrical 

measurements in the van der Pauw geometry, as shown inset of Figure 3(a), using a highly 

conductive n+ Si substrate covered by 225 nm thermal SiO2 oxide as a back gate to allow for 

tuning of the carrier density. This geometry allows direct access to the carrier density through the 

Hall effect, and to the intrinsic conductivity and carrier mobility through four-point 

measurements. Figure 3(a) shows the Hall voltage measured as a function of the magnetic field 

applied perpendicular to the nanosail surface. It follows the expected linear dependence with a 

negative sign corresponding to electrons. In the following the Hall voltage has been measured at 

+0.5 T and -0.5 T as a function of the gate voltage and temperature. 

At high temperature, the dependence of the Hall voltage on the back gate voltage is non 

monotonous, which is the signature of both electron and hole transport in a low band-gap 

material (see Supporting Information Figure S8). At lower temperature and positive gate voltage, 

only electrons participate in carrier transport, and we can therefore apply a single carrier model 

to determine the sheet electron density ns, which is plotted as a function of the back gate voltage 

for different temperatures in Figure 3(b). At low temperature, the carrier density shows a 

threshold and linear variation for a limited range of gate voltages. A fit of the linear region (gate 

voltage range from +5 to +10 V) at 40 K gives a slope of (1.36±0.13)×10-4 C.cm-2 and a 
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threshold voltage of VT = 0.3±0.5 V. The slope is close to the expected value of 1.5×10-4 C.cm-2 

calculated from a plane capacitor model with the dielectric thickness of 225 nm. 

We have measured the conductivity σ as a function of gate voltage and temperature using the 

van der Pauw method78 (see Supporting Information Section SF). Similar to the Hall voltage, the 

conductivity at high temperature is a non-monotonous function of the gate voltage due to mixed 

electron and hole transport. At positive gate voltage, however the conductivity is dominated by 

electron transport due to the low mobility and density of holes. The electron mobility extracted in 

the single-carrier model is plotted as a function of the gate voltage for different temperatures in 

Figure 3(c). At room-temperature we find the mobility in our 70 nm-thick InSb nanosails to be 

1.25×104 cm2V-1.s-1, a value less than that of bulk InSb (7.7×104 cm2V-1.s-1), but four times 

larger than 70 nm-thick InSb layers grown on GaAs, and equal to that of 300 nm thick InSb 

layers79, 80. This improvement relative to the best values for an InSb layer of similar thickness 

may be attributed to the absence of strain and dislocations that are inherent to the growth on 

substrate with large lattice mismatch, and demonstrates the significant potential of the nanosail 

geometry in realizing planar devices. 

The mobility is weakly dependent on temperature (see Supporting Information SF.3), and is 

therefore most probably limited by defect scattering. Due to the absence of structural defects in 

the nanosail (apart from the single twin as discussed above), we attribute the origin of the 

scattering to defects close to the InSb surface, either traps in the SiO2 dielectrics, at the 

SiO2/InSb interface or the top surface22. We have also deduced the electron mean free path le = 

vFτe from the average scattering time τe = m
*
µ/e, and the 3D Fermi velocity vF = ħkF/m

*
 = 

(ħ/m
*
)(3π

2
n)

1/3, where n is the electron density. le is plotted as a function of n for different 

temperatures in Figure 3(d). That the mobility shows a weak temperature dependence suggests a 
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scattering mechanism other than phonon scattering dominates. Previous work has shown 

passivation to improve the mobility and mean-free path of nanostructures81-83. The relatively 

large values of le found here holds realistic promise for the realization of ballistic transport in 

future nanosail devices. 

In order to test the possibility of realizing ballistic quantum devices from our InSb nanosails, 

we have fabricated a constriction on a nanosail by depositing two top gates as shown in the inset 

of Figure 4(a). Such a constriction, also known as quantum point contact55, 56, is expected to lead 

to quasi-1D electronic transport. We emphasize here that such quasi-1D transport was expected 

in InSb nanowires, but was only demonstrated at high magnetic field because back-scattering at 

the contacts leads to a destruction of the signatures of 1D transport57. Up until now 1D transport 

in InSb was only demonstrated in 2D electron gases formed in InSb heterostructures84, or in InSb 

nanowires in the presence of an in-plane magnetic field57. 

The device with top gates showed a strong increase in resistance compared to devices without 

top gates at zero applied top-gate voltage, which is presumably due to a depletion of the nanosail 

below the top gates. We further observed that the resistance did not significantly vary with 

application of top-gate voltage, giving further indication of this total depletion. 

The conductance of a quasi-1D constriction is expected to be tuned either by changing the 

width W of the constriction, or by changing the electron wave vector by changing the electron 

density. In the following we have chosen to tune the carrier density in the constriction by using 

the back gate instead of tuning the width of the constriction by using the top gate voltage due to 

instabilities appearing when tuning the top gate, probably due to traps in the dielectric layer. 
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Figure 4. Top-gated quantum point contact to an InSb nanosail. (a) Two-point source-

drain resistance of the device as a function of the back-gate voltage VBG for a fixed voltage 

applied to the top-gates VTG = +0.68 V and measured at T = 6 K. Inset: image of the top-gated 

quantum point contact device showing source and drain contacts, and two top gates electrically 

isolated from the nanosail by 10 nm of HfO2 deposited by atomic layer deposition. (b) Corrected 

conductance of the device obtained after removing a 2 kΩ series resistance from the two-

terminal resistance, corresponding to the contact resistance (see main text), as a function of the 

back-gate voltage and varying the parallel magnetic field in steps of 0.1 T from 0 to 2 T. The 

measurement has been performed at T = 6 K, and the curves have been laterally shifted by 0.1 V 

for clarity. The arrows emphasize the steps corresponding to conductance quantization. (c)  

Color map of G = dISD/dVBG as a function of the parallel magnetic field and the back-gate voltage 

emphasizing the conductance steps. The green dashed lines show the splitting of the two first 

conductance steps measured at T = 2.1 K. (d) Color-map of dG/dVBG as a function of the source-

(a) (b)

(c) (d
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drain bias voltage VSD and the back-gate voltage VBG for VTG = +0.68 V and T = 6 K. The green 

dashed lines show the edge of the conduction steps. 

The two-terminal resistance of the top-gated device is shown as a function of the back-gate 

voltage for a fixed top-gate voltage Vtg = + 0.68 V in Figure 4(a). This curve, obtained at zero 

magnetic field, clearly shows two plateaux at about 15 kΩ (instead of h/2e2 = 12.9 kΩ) and 8.5 

kΩ (instead of h/4e2 = 6.5 kΩ) respectively. For quasi-1D electronic transport at zero magnetic 

field such plateaux are expected as h/2e2 = 12.9 kΩ and h/4e2 = 6.5 kΩ. We attribute the constant 

difference to a contact series resistance of about 2 kΩ, as well as the resistance of the nanosail 

outside the constriction. This resistance is compatible with the two-terminal resistance obtained 

in a device with no top gate (such as the one investigated in Figure 3). In order to emphasize 

further the quantification of the conductance in units of 2e2/h, as expected for a quantum point 

contact, we have plotted the two-terminal conductance corrected by the series resistance of 2 kΩ 

in Figure 4(b). Here a magnetic field parallel to the plane of the nanosail is applied in order to 

split the 1D subbands. We see in this plot that the two plateaux at 2e2/h and 4e2/h disappear at a 

magnetic field of 2 T and give rise to plateaux at e2/h, 3e2/h and 5e2/h. Such behaviour can be 

explain by the splitting of the 1D sub-bands as a function of the magnetic field, and further 

confirms that the plateaux are related to 1D transport.  

We also investigated the splitting of the 1D sub-bands quantitatively as a function of applied 

magnetic field. In Figure 4(c) we plot the differential conductance G = dISD/dVBG in order to 

emphasize the edges of the plateaux. In this plot we clearly observe the splitting of the two first 

sub-bands. This splitting should occur at a rate of g*
µBB. In our case the splitting is 0.146 V/T for 

both sub-bands. In order to determine the lever arm of the back-gate (the change in Fermi energy 

as a function of the back-gate voltage), we have measured the non-linear conductance, i.e. the 
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change in the conductance as a function of the source-drain bias voltage. We see in Figure 4(d) 

that the edges of the plateaux split at finite source-drain bias voltage with a rate corresponding to 

a lever arm of 19.6 meV/V. We then determine a magnetic field splitting of 2.86 meV/T, and a 

Landé g-factor |g*| = 49, which is close to the expected bulk value of 51. 

Finally, we investigated the effect of the top-gate voltage on the level spacing. From non-linear 

conductance measurements, we have determined the level spacing between the first two sub-

bands at zero magnetic field (Supporting Information section SF.4). The energy for a top-gate 

voltage VTG = +0.68 V is E2-E1 = 8.7 meV, corresponding to a constriction of width 80 nm (for 

an infinite 1D square potential, with an electron effective mass m* = m0). The level spacing for 

VTG = -1 V is E2-E1 = 11.1 meV, corresponding to a constriction of width 70 nm. This 

dependence further confirms that the quasi-1D channel is formed in-between the two top-gates. 

In conclusion we synthesized free-standing, high performance InSb nanostructures with a 

sheet-like morphology. This novel morphology is characterized by large atomically flat {110} 

surfaces and results from a single lateral twinning event. We measure a high electron mobility 

which is promising for both low power nanoelectronics and low temperature transport physics. 

Demonstration of quantized conductance in a quantum point contact at zero in-plane magnetic 

field further attests to material quality and the potential for spin-orbit quantum physics 

applications. We expect that the outlined growth mechanism may be generalized to other 

materials grown by VLS delivering a readily contacted 2D-like geometry for complex radial 

heterostructures and topological quantum physics experiments85. Future work on more advanced 

device geometries such as suspended nanomembrane devices86, 87 or using dielectric/chemical 

passivation schemes81-83, 88 could enhance their promising transport figures of merit even further. 
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