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Manually engineered self-assembled structures have for many years been investigated under 

equilibrium conditions so that their most stable forms are reached [1-5], until recently. There 

has been a growing interest in obtaining and studying non-equilibrium self-assembled structures 

[6-9]. The primary reason for this is that non-equilibrium structures (which are typically formed 

transiently under a constant influx of energy)[10] can offer a broad number of intriguing 

opportunities in the development of novel materials and systems with advanced functionalities 

[11]. For example, transient and/or steady-state self-assembled structures generated far from 

equilibrium are the basis of many sophisticated functions observed in living systems, e.g. DNA 

replication and/or cell division [10]. Nonetheless, the controlled synthesis and study of 

intermediate, self-assembled structures is still a major challenge, which currently limits 

advancements in materials development and technology.  

Crystals are an important type of self-assembled structures, where both long range order 

and control at the molecular level are central characteristics [12,13]. In contrast to living 

systems, where energy dissipating processes allow the appearance of adaptive and emergent 

functionalities, crystalline ensembles are frequently studied in their thermodynamically stable 

forms, where final structures are ultimately determined by chemical equilibria, diffusion and 

mass transport processes [14]. Even though crystals, once formed, are static structures that can 

be investigated at the atomic scale, it has proved difficult to establish methods that can precisely 

�uncover� their self-assembly process into the most thermodynamic stable forms [15,16]. The 

most frequent approach employed to understand and control the self-organization of crystalline 

matter involves varying the functional groups incorporated within their constituent units [17]. 

This heuristic approach (based on crystal engineering) has proved efficient in controlling, to 

some extent, the self-assembly of molecular components into intricate functional structures [18]. 

While there is a tremendous interest in rationalizing the crystallization process through the 
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modification of the functional groups present in the molecular building blocks, there is a 

recognized dearth of methods and processes which allow the isolation and study of out-of-

equilibrium species. In this respect, it is important to note that non-equilibrium crystal forms 

are not only useful in �uncovering� the self-assembly process of crystalline matter, but valuable 

in rationalizing new artificial materials and systems with advanced functionalities. 

As crystallization is inherently a kinetic self-assembly process [15,19-21], dynamic 

processing technologies such as microfluidics - where molecules can react under diffusion-

controlled conditions[22-24] - can be used to control and investigate out-of-equilibrium 

processes. For example, controlled reaction-diffusion systems (such as those encountered in 

hydrodynamic flow focusing mixers)[25] can be utilized in this respect due to the precise spatial 

and temporal control over concentration profiles and mass transport [26,27]. That is, under 

hydrodynamic flow focusing conditions, the average residence time and the width of the 

reaction zone formed between two-reagent streams (where the diffusive mixing occurs) can be 

precisely controlled [28,29]. Herein, we show for the first time that reaction and/or diffusion-

limited (microfluidic) environments can induce concentration gradients that facilitate the 

formation of novel and exceptionally ordered out-of-equilibrium structures during the 

crystallization of a coordination polymer (CP). In contrast to macroscopic reaction 

environments, we prove (both experimentally and through numerical simulations) that dynamic 

microfluidic conditions allow the isolation of out-of-equilibrium crystal states through the fine-

tuning of reaction times and reagent concentration profiles. We focus our studies on the 

crystallization process of a CP because of the broad number of applications that these materials 

have brought onto the scene of crystalline matter [30,31].  

From the vast number of CPs that could be employed in our investigations, we 

demonstrate the above concept by adopting a two-dimensional CP having the formula [Cu(4,4’-
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bpy)](NO3)2 (hereafter 1; where 4,4’-bpy is 4,4’-bipyridine), which is constructed by 

connecting � 2-oxo-bridged and � 2-NO3-bridged Cu(II) chains through 4,4’-bpy linkers (Fig. 1a 

and Table SI.1). 1 is particularly well-suited to the current investigation since it is easily 

crystallized (by diffusion of an ethanolic solution of 4,4’-bpy into an aqueous solution of 

Cu(NO3)2·6H2O or by mixing the two solutions with or without stirring), and crystallizes in the 

form of plate-like crystals (Fig. 1b); a common crystal habit and one whose self-assembly and 

crystal growth development are unexplored [32].  

 

- Insert Figure 1 - 

  

Figure 2a shows the planar microfluidic device employed in the current investigations. 

This comprises four input channels and one outlet channel (see Methods Section in SI for 

further details). Two inlet channels are used to inject a pair of sheath flows (Q1 and Q4) with 

the two other channels being used to supply the reagent solutions; one containing 

Cu(NO3)2·6H2O (Q2) and the other containing 4,4’-bpy linker (Q3). The microfluidic device 

was fabricated in polydimethylsiloxane (PDMS) using standard soft-lithographic methods and 

was covered by a glass cover slide (see Methods Section in SI for further details). We defined 

the four input channels and corresponding flow rates (in µL/min) as: [flow (1): Q1, flow (2): Q2, 

flow (3): Q3, flow 4: Q4]. Reactions were formed by hydrodynamically injecting a water (Q1), 

a 100 mM aqueous solution of Cu(NO3)2·6H2O (Q2), a 100 mM ethanolic solution of 4,4’-bpy 

(Q3), and an ethanol flow (Q4). The reactant concentrations were optimized to guarantee rapid 

crystallization whilst ensuring that microfluidic channels do not block. In initial studies, we 

investigated the crystallization of 1 by varying the flow-rate ratio (FRR), whilst keeping the 

reagent reagents flow rates (Q2 and Q3) constant. The FRR is defined as the ratio of flow 
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between the focusing streams and the reagent fluids (i.e. FRR = (Q1+Q4)/(Q2+Q3)). In all cases, 

crystals of 1 were immediately formed at the interface between the Cu(II) ion and 4,4’-bpy 

streams after injection. The resulting crystals were collected on transmission electron 

microscopy grids, filter paper and/or diluted on ethanol at the end of the main channel to avoid 

off-chip reactions. Subsequently, the crystals formed were further characterized by Field-

Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy 

(TEM), Polarising Optical Microscopy (POM), and X-Ray Powder Diffraction (XRPD).  

 

- Insert Figure 2- 

 

Figures 1c, 2c (right) and 3b (right) show typical TEM and FE-SEM images of crystals 

of 1 prepared at a FRR of 0.1. These crystals that have a square plate-like habit are 

representative of those synthesized either by conventional diffusion or simple mixing in a 

macroscopic vessel (Figure 1b). This is expected since as the FRR decreases at a constant 

overall flow rate, the width of the diffusive mixing zone at the interface between the two reagent 

streams increases as a function of distance along the channel (i.e. a non-sharp concentration 

gradient is generated). Accordingly, the reaction zone in which the structures assemble is 

enlarged, thus mimics to some extent conventional diffusion on the macroscale, and assembly 

of the most thermodynamic stable structures will be favored. Finite element simulations 

strongly support the idea that a decrease in the FRR prompts an increase in the reaction-

diffusion zone present along the length of the main microfluidic channel where crystallization 

takes place (Fig. SI.1). Crystals of 1 prepared at a FRR of 0.1 had average dimensions of 2.80 

± 0.52 µm. In addition, both the simulated (derived from the single crystal structure of 1) and 

experimental (resulting from the crystals synthesized at a FRR of 0.1) XRPD patterns are 
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consistent (Fig. 2b and Fig. SI.2), confirming that crystals synthesized in the microfluidic 

system are structurally identical to crystals prepared through conventional methods. 

Additionally, it is note that 1 can be obtained as phase pure; even though the precipitation of a 

small amount of free 4,4’-bpy ligand is detected.  

As shown in Figure 2c, we then varied the FRR from 0.1 to 5 and observed the formation 

of numerous and unprecedented non-equilibrium crystal morphologies. In contrast to previous 

studies, where blocking agents are used to study intermediate states during a crystal growth 

process [33], in the current investigations the ultimate shape of all generated structures solely 

depends upon the conditions established within the diffusive mixing zone. Increasing the FRR 

whilst keeping the reagent flow rates constant, a rationalized reduction of the diffusive mixing 

zone can be achieved (i.e. a sharp concentration gradient is generated, see Fig. SI.1), which 

leads to diffusion-limited and kinetically-controlled environments in which the formation of the 

most thermodynamic stable crystal forms can be avoided to some extent [34,35]. For example, 

we observed the formation of needles at a FRR of 5; needles that start to orthogonally connect 

through their edges at a FRR of 4; hollow frames at a FRR of 2; frames partially filled with a 

thinner layer at a FRR of 1; and the above-mentioned square plate-like filled crystals at a FRR 

of 0.1. Importantly, varying the total flow-rate (TFR) without varying the FRR provides a direct 

way of controlling the average residence (reaction) time for crystallization and thus throughput, 

but has no significant effect on the habits and structures generated (Fig. SI.3). To further 

understand these experimental results, numerical simulations were performed. Finite element 

data show that the overall concentration profiles of the reagents do not change drastically when 

modifying the TFR for a given FRR, but do change remarkably when varying the FRR for a 

given TFR. In this case, the overall concentration profiles of the reagents become narrower and 

the maximum concentration is reduced with increasing FRR (Fig. SI.4). This observation 
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implies that the concentration of reagents present within the microfluidic channel (and which 

are consumed during the formation of crystals) is reduced at higher FRRs for all TFRs 

considered, and thus provides for precise control of crystallization kinetics and crystal growth. 

The isolated needles obtained when performing crystallization at a FRR of 5 had an 

average length of 500 nm and a diameter of 20 nm. At a lower FRR of 4, we detected the 

coexistence of identical needles with some structures comprising two or three needles 

perpendicularly connected at their edges. Interestingly, at a FRR of 2, hollow frames, with 

average side dimensions of 2.95 ± 0.71 µm and edge thicknesses of 200 nm, were found to be 

predominate. Further decreasing the FRR to 1 resulted in a partial filling of these hollow frames, 

finally forming the previously described plate-like crystals seen when a FRR of 0.1 was used. 

 Moreover, in contrast to other mechanistic studies where amorphous intermediate states 

of CPs are simply investigated by time-lapse SEM imaging analysis [36-39], in the current 

investigation all structures generated are crystalline. Accordingly, XRPD studies can provide 

valuable insights in better understanding and characterizing nanoscale self-organization of the 

building blocks in their isolated, non-equilibrium forms. XRPD studies were essential to 

confirm that all crystals generated under diffusion-limited and kinetically-controlled 

microfluidic environments corresponded to 1. Indeed, as shown in Figure 2b, the XRPD 

patterns of all crystals obtained at different FRRs perfectly matched that simulated from the 

crystal structure of 1. It should be noted that XRPD patterns of the needles obtained at FRRs of 

5 and 4 show broad peaks, which are attributed to their lower crystallinity. 

To shed light on the growth mechanism that transforms the hollow frames (FRR = 2) to 

plate-like crystals (FRR = 0.1) (Fig. 3a,b), we further analyzed various non-equilibrium crystal 

forms of 1 using Atomic Force Microscopy (AFM) and POM. In the early stages of frame 

formation, we were able to confirm that the frames are completely hollow, with no evidence of 
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residues inside the frames (Fig. SI.5). At the vertices of the frames, the perpendicular needles 

do not overlap but instead completely interpenetrate (Fig. SI.6). Additionally, POM indicates 

that the optical axis is the same in all sides of the frame (Fig. SI.7). The progressive filling of 

the internal area of the frames typically occurs by parallel needle growth, as observed in Figure 

3c. For higher degrees of filling (Fig. 3d), precise observation of the filling fractions shows that 

needles tend to organize orthogonally in alternative growth levels. Some degree of interweaving 

occurs in areas where full coverage has yet to be achieved, with the needles at subsequent levels 

filling the gaps. Finally, at some point, needle coalescence occurs and the surface of the area 

inside the frames becomes uniform, ultimately forming the plate-like crystals.  

 

- Insert Figure 3 - 

 

The detailed mechanism leading to the formation of these ordered out-of-equilibrium 

structures remains unclear at the current time, however, the process seems to occur so as to 

lower and/or eliminate high-energy facets in the generated structures; an idea that has 

previously been suggested by others in regard to the shape-controlled growth of inorganic 

crystals [15]. Based on these previous studies with inorganic crystals and consideration of the 

results presented herein, we propose a dynamic crystal growth process as shown in the idealized 

sequence of Figure 2c. It is likely that needles isolated at a high FFR can act as seeds for the 

assembly of the non-equilibrium trapped intermediate states, which then evolve towards a final 

thermodynamic stable form: plate-like crystal structures. This proposal is supported by XRPD 

studies, which prove that all the structures generated have an identical chemical connectivity. 

Furthermore, the AFM studies support our hypothesis by confirming that growth of 1 is 

dynamic and that the agglomeration and progressive filling of non-equilibrium forms can occur 
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due to a parallel growth of needle-based structures. The AFM results therefore suggest that the 

early stage isolated seeds organize at a single level and in a perpendicular fashion, leading to 

the final plate-like crystalline morphologies observed in bulk and at a FFR of 0.1 (Fig. 1b and 

1c, respectively). 

 In summary, we have shown that diffusion-limited and kinetically-controlled growth 

regimes occurring in microfluidic devices can provide valuable insights into crystallization 

processes. In contrast to other methods where trapping of the structures generated during a 

polymerization process is achieved by taking aliquots in a controlled solvent-induced 

precipitation regime [40], we show, for first time, that hydrodynamic flow-focusing condition 

provided by the adoption of a continuous-flow microfluidic scheme can be a powerful 

experimental tool for the generation and isolation of non-equilibrium forms. We believe that 

the microfluidic-based approach presented here circumvents limitations generally ascribed to 

the isolation and study of transient forms during crystallization processes. We have 

demonstrated that microfluidic dynamic processing provides an accessible range of non-

equilibrium structures present during crystal growth. These results are exciting since the control 

and prediction of chemical and physical properties in crystalline matter can only be achieved 

when methods that can precisely uncover the self-assembly process can be established. The 

technology presented constitutes a potential route towards a wealth of new and improved 

materials, where the rationalization of controlled chemical and physical properties may become 

reality. 

 

Experimental Section 

Materials and Methods: The reagents Cu(NO3)2•6H2O and 4,4’-bipyridine (4,4’-bpy) were 

obtained from Sigma-Aldrich Co. High purity EtOH was purchased from Teknokroma. 
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Deionised Milipore Mili-Q water was used in all experiments. Scanning electron microscopy 

(SEM) images were collected on a scanning electron microscope (ZEISS EI MERLIN FE-

SEM) at acceleration voltages of 0.2-30 kV. Aluminium was used as support. Transmission 

electron microscopy (TEM) images were obtained with a JEOL JEM 1400 electron microscope. 

X-Ray EDX microanalysis was performed using an Oxford Instruments INCA energy SEM 

system. All measurements were performed at room temperature and at a voltage of 120 kV. X-

ray powder diffraction (XRPD) measurements were performed using an X’Pert PRO MPD 

diffractometer (Panalytical) especially configured for in-plane diffraction.  

 

Microfluidic device fabrication: The microfluidic channels employed in this study were 

structured in polydimethylsiloxane (PDMS, SYLGARD® 184 Silicone Elastomer Kit) using 

an SU-8 (2015, Microchem) master form fabricated by standard photolithographic techniques. 

Before attaching the cured and structured PDMS mould to a patterned electrode surface, inlet 

holes connecting the microfluidic channels were punched with a Biopsy puncher. Layers were 

conformally contacted to form the complete microfluidic device, since this enabled removal of 

the PDMS layer before thermal treatment of the localized superstructures. The cross-sectional 

dimensions of the microchannels were 50 µm × 50 µm for the four input microchannels, and 

250 µm × 50 µm for the main reactor channel. The total length of the main reactor channel was 

9 mm. 

Synthesis of 1 via mixture of reactants: In a typical experiment, an aqueous solution of 

Cu(NO3)2•6H2O (100 mM) was added to an ethanolic solution of 4,4’-bpy (100 mM) with or 

without stirring. After a few seconds, blue crystals of 1 were formed. Anal. (%) Calcd. for 

C20H18Cu2N6O8,NO3,H2O; C, 35.45; H, 2.97; N, 14.47. Found: C, 35.67; H, 2.69; N, 14.28. 
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Synthesis of 1 via diffusion: In a typical experiment, a solution of 4,4’-bpy (100 mM) in ethanol 

and an aqueous solution of Cu(NO3)2•6H2O (100 mM) were prepared. The solutions were then 

transferred to a test tube in a manner that generated a distinct interface between the two layers. 

After 4 days, dark blue crystals of 1 suitable for single-crystal XRD analysis started to form at 

the liquid-liquid interface. Anal. (%) Calcd. for C20H18Cu2N6O8,NO3,H2O; C, 35.45; H, 2.97; 

N, 14.47. Found: C, 35.11; H, 3.12; N, 14.28. 

 

Synthesis of 1 using laminar flow: The syntheses of different crystal morphologies of 1 were 

carried out in a planar microfluidic device that consists of four input channels and one outlet 

channel, imprinted in PDMS and is covered by a glass plate. Reactant solutions were injected 

via a syringe pump system at given flows rates. We defined the flow rates (all in µL/min) using 

the following abbreviations: flow (1), Q1; flow (2), Q2; flow (3), Q3; and flow (4), Q4. In a 

typical synthetic procedure, crystals of 1 were initially prepared by injecting an aqueous 

solution of Cu(NO3)2·6H2O (100 mM) in Q2 and an ethanolic solution of 4,4’-bpy (100 mM) 

in Q3. Both were accomplished by an auxiliary flow with the corresponding solvents, Q1 and 

Q4.  

X-ray crystallography:  X-ray single-crystal diffraction data for 1 were collected on the BM16 

Spanish line of the ESRF synchrotron in Grenoble (�  = 0.7901 Å). Data were indexed, 

integrated and scaled using HKL2000 software [1]. The H atoms were included in theoretical 

positions but not refined. The low max value is due to the data collection process, which was 

performed in the BM16 line with only a phi scan. The structure was solved by direct methods 

using the program SHELXS-97 program [2]. Refinement and all further calculations were 

carried out using SHELXL-97. Empirical absorption corrections were applied in both cases 

using SCALEPACK[1].  



This is the peer reviewed version of the following article: Marta Rubio�Martinez … [et al.], Freezing the non-
classical crystal growth of a coordination polymer using controlled dynamic gradients. Adv. Mater., 28: 8150-
8155, which has been published in final form at https://doi.org/10.1002/adma.201506462   
This article may be used for non-commercial purposes in accordance with  
Wiley Terms and Conditions for Use of Self-Archived 
Versions.   Submitted to  

 12 

AFM measurements: Atomic Force Microscopy images were taken in amplitude modulation 

dynamic AFM mode, in pure non-contact conditions with an Asylum MFP3D system, using Pt 

coated tips (Nanosensors PPP-EFM) and a resonance frequency around 70 kHz. Images were 

obtained using a scanning rate of 1 Hz and keeping the amplitude of oscillation constant at 

about 50 nm. For Kelvin Probe Force Microscopy images, an AC voltage of 1 V amplitude was 

applied to the tip at a distance of 50 nm to the surface, and the surface potential function 

difference between the tip and the sample was obtained.  

Numerical simulations: The two-dimensional steady-state fluid flow and mass transport across 

the microfluidic device was simulated using a Finite Element approach, considering geometries 

and boundary-conditions as described in the manuscript. Diffusion coefficients of both reagents 

were assumed to be 10-9 m2/s, in line with literature data for ethanol-water mixtures [3]. Density 

and dynamic viscosity of reagents and sheathed currents were assumed to be those of the 

corresponding pure solvents, i.e. 103 kg/m3 and 8.9x10-4 Pa•s for water-based currents and 789 

kg/m3 and 1.1x10-3 Pa•s for ethanol-based currents, respectively. 
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Figure 1. Coordination polymer structure. a) Crystal structure of 1. b) and c) representative 

TEM images showing the plate-like crystals synthesized through conventional mixing of 

reactants b) and under microfluidic conditions with a FRR of 0.1 (c). Scale bars are 2 µm. 
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Figure 2. Morphological transitions of coordination polymer 1 using microfluidics. a) 

Schematic illustration of the microfluidic device and the configuration of both reactant and 

sheath flows. b) XRPD patterns of 1: simulated (black), synthesized at an FRR of 0.1 (dark 

blue), 1 (violet), 2 (blue), 4 (green) and 5 (red). Peaks marked with asterisks correspond to the 

precipitation of the free 4,4’-bpy ligand. c) Sequence of TEM images of crystals of 1 fabricated 

in the microfluidic device at different FRRs with three different magnification levels, showing 

trapped crystalline phases that range from needles to hollow frames to plate-like crystals (left 

to right). Scale bars: 5 � m (top row), 2 � m (middle row) and 1 � m (bottom row). 
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Figure 3. Evolution of crystal growth.  a) Schematic representation of the crystal growth of 1 

illustrating the progressive filling of the internal area of hollow frames. b) FE-SEM images 

showing the crystal transformation from hollow frames to plate-like crystals. c) and d) AFM 

images showing the crystal growth of the internal area of the frames at initial (c) and progressive 

(d) filling stages. The left hand side images report phase contrast, and right hand side images 

are 3D graphics of topography. Scale bars: 1 � m 

  



This is the peer reviewed version of the following article: Marta Rubio�Martinez … [et al.], Freezing the non-
classical crystal growth of a coordination polymer using controlled dynamic gradients. Adv. Mater., 28: 8150-
8155, which has been published in final form at https://doi.org/10.1002/adma.201506462   
This article may be used for non-commercial purposes in accordance with  
Wiley Terms and Conditions for Use of Self-Archived 
Versions.   Submitted to  

 19 

A methodology that can be efficiently used to synthesize, isolate and study out-of-
equilibrium crystal structures employing controlled and diffusion-limited microfluidic 
environments is demonstrated. Unlike studies conducted with conventional mixing procedures 
in a flask, we prove experimentally and with numerical simulations that microfluidic 
technologies can undoubtedly fine-tune reaction times and reagents concentration profiles; 
factors that enable obtaining out-of-equilibrium crystal forms. 
 
Keyword: Coordination polymers, crystal growth, microfluidics, out-of-equilibrium 
structures. 
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Table SI.1 | Crystal and structure refinement data. 

 

Compound 1 

Empirical formula C20H18Cu2N6O8,NO3, H2O 

Formula weight 677.3 

Crystal system triclinic 

Space group P-1 

CCDC ref 1059883 

Unit cell dimensions  

a (Å) 10.385(4) 

b (Å) 11.555(4) 

c (Å) 11.790(4) 

a(deg) 73.91(3) 

b(deg) 84.08(3) 

g(deg) 70.54(3) 

V (Å3) 1,281.6(7) 

Z 2 

F (000) 686 

Ind refln (Rint) 4,905 (0.0199) 

 qmax(deg.) 27.12 

Final R indices 

[I > 2� (I)]  

R1 = 0.0528 

wR2 = 0.1553 
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Figure SI.1 | Concentration profiles of Cu(NO3)2·6H2O (blue) and 4,4’-bpy (green) at the 

microfluidic reactor exit at FRR=0.1 (TFR=1,200 � L/min) (a) and FRR=5 (TFR=220 � L/min) 

(b) calculated using constant values of the reagents flow rates (Q2 and Q3=100 � L/min). In the 

reaction-diffusion region both reagents are present. 
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Figure SI.2 | Comparison of the experimental XRPD pattern (blue) of the microcrystals of 1 

obtained by simple mixture of Cu(NO3)2·6H2O and 4,4’-bpy with the XRPD pattern simulated 

from its single-crystal structure (black).  
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Figure SI.3 | TEM images of crystals of 1 fabricated in the microfluidic device at FRR = 5, 2 

and 0.1, respectively, from top to down. Note that different TFR combinations have been used 

to work under the same FRR. Also note that identical crystalline phases -from needles to hollow 

frames to plate-like crystals (top to down)- have been synthesized for the same FRR values, 

independently of the flow rates used. The scale bars are 2 � m (top row), 5 � m (left and right 
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middle row), 2 � m (centred middle row), 10 � m (left and right bottom row) and 4 � m (centred 

bottom row). 
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Figure SI.4 | Concentration profiles of reagents at the microfluidic reactor exit, for increasing 

values of flow rate ratio (FRR = 0.1, 1, 2 and 5) and two values of total flow rate i.e. 

TFR=220 � L/min (a) and 1,200 � L/min) (b). Solid and dashed lines correspond to 

concentration profiles of Cu(NO3)2·6H2O and 4,4’-bpy, respectively. 
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Figure SI.5 | AFM topography images of a hollow frame (a) and a partially filled frame (d). 

Kelvin Probe Microscopy images (KPFM); b,e, 2D and c,f, 3D AFM topography images with 

KPFM signal as the colour scale. The surface potential function difference measured by KPFM 

confirms the absence of CP material inside of the frame. 
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Figure SI.6 | 3D AFM topography images of a single frame, showing different perspectives for 

the vertices. Note that the vertices are interpenetrated. 
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Figure SI.7 | POM images showing the optical axes of two frames that indicate that the four 

sides have perfect orientational order. 
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