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Abstract Bacillus subtilis UPMB13 was found to be an L-glutamic acid indepsmdproducer of
extracellular polymeric substances (EPS) with biodulation properties. Optimum production of the
bioflocculant was found to be at the early stagecalf propagation of 24-72 h of fermentation. At a
limited nutrient input of 100 mL tryptic soy brottihe flocculating activities were found to be néegaly
correlated 1§<0.01) with growth as it continued to decline af#& h, while cell growth proliferated
further. Ample nutrient supply may prolong bioflatant production with flocculating activities of @0
and higher, while excess oxygen supply may promegel growth that can lead to poor flocculation due
to the re-use of the bioflocculant as a substifatefood during starvation. Bioflocculant produrti
occurred at best at 25-%D incubation temperature and at the initial pH metiof 7 to 8. The
bioflocculant was proven to be extracellularly poed as the broth and the supernatant possessed the
ability to flocculate the suspended kaolin parscléBioflocculant productions by UPMB13 were
hereditarily stable among succeeding progenies éiepioving genetic competency. About 0.90 g of
purified bioflocculant were collected from 1 L auwle broth of UPMB13 under the optimized

fermentation conditions.

Keywords: Extracellular polymeric substance (EPS); biopolymer; y-PGA; de-novo; kaolin assay
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1 Introduction

Flocculation is a process of agglomerating suspaipaeticles aided by compounds known as flocculants
commonly used in water treatment applications (BayRey et al. 2012). Among these flocculants,
bioflocculants have been identified as the emergiternative to the conventional chemical flocctgan
due to their biodegradability and environmentaliyign characteristics (Muthulakshmi et al. 2013).
Bioflocculants are essentially extracellular polymmeubstances (EPS) synthesize mostly by bacisria
they are ubiquitous in nature.

Production of biopolymeric compounds by bacteriedias could be unpredictable even under
rigorously maintained culture conditions (Bajaj éidghal 2011a). Stressful culture conditions may
induce and improve extracellular polymeric substgnaroduction by microorganisms (Yu et al. 2015).
However, definition of stressful culture conditicen® species dependent and may vary for different
microorganisms. Salehizadeh and Yan (2014), rexdearethe production of biopolymeric flocculants by
microorganisms and stressed that the major criteflizZencing bioflocculant performances are culture
conditions, including but not limited to culturent, initial pH and temperature, aeration rate, stgak
speed and ionic dependency. Optimization of thasefs was proven to enhance the yield, quality and
the performances of the bioflocculants produced.

One of the most widely studied EPS produce@hsubtilis strains is the poly-glutamic acid
(y-PGA) (Bajaj and Singhal 2011a}PGA productions typically rely on the input of llutamic acid
supplement in the culture media. Some excepticasd € reported oprPGA production in the absence of
any glutamic acid additions (Zhang et al. 2012)takity, not ally-PGA produced were reported as
potential bioflocculants.

This paper discusses the production of a noveldaofilant by a locally isolated rhizobacterium;
B. subtilisUPMB13. It aims to i) optimize factors which affébe growth and bioflocculant production
by the strain, ii) determine the distribution oéthioflocculant produced in different culture compaots,
and iii) determine genetic competency of UPMB1Biwflocculant production. All factors will provide
thorough consideration for determining the optimeutiure conditions for continuous production ofthig
performing bioflocculants bB. subtilis UPMB13 for future studies in suspended solids et

applications.
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2 Materialsand M ethods

2.1 Bioflocculant-producing bacteria

B. subtilis UPMB13, isolated from oil-palm root, obtained fréhe culture collection of the Soil
Microbiology Laboratory, Department of Land Managam Universiti Putra Malaysia (Amir et al. 2003;
Zulkeflee et al. 2012) was selected based on thpmotogical characteristics of mucoid and ropy
colonies produced when grown on tryptic soy ag&A)l These characteristics were used as basic
identification for potential bioflocculant-produgjrbacteria (Wong et al. 2012). The strain was iestif
using Basic Local Alignment Search Tool (BLAST) gram analysis based on the 16S ribosomal
ribonucleic acid (rRNA) gene sequencing and throbigichemical identification test (BBL Crystal
Gram-Positive ID System) which proved the straiBagibtilis at 99% similarity.

Batch cultures oB. subtilis UPMB13 in tryptic soy broth (TSB) were preparegtoduce the
bioflocculants in broth form. About 50 mL seed oult of UPMB13 in TSB were prepared and incubated
for 24 h on an orbital shaker (150 rpm) at roomperature. Centrifuged cells (4000 rpm for 10 min)
from the seed culture were then washed three tmitbsphosphate buffer solution (PBS) and once with
sterile TSB before inoculation into a fresh 100 W&B and incubated again. Viscous TSB bearing the
strain attained indicates bacterial growth andlbamfulant production in the culture. The cultureths

were then used directly as the bioflocculant soimdbe flocculation assays (Aljuboori et al. 2013)

2.2 Flocculation assay

Flocculation assays using kaolin clay as the sudg@particle were conducted according to the method
described elsewhere (Zulkeflee et al. 2012). Toecfllation activities were expressed in percentage
clarity of the upper phase of the kaolin susperssafter treatment by the bioflocculant and by visua
assessment; either present or absent, of the Kkadmformed stimulated by the presence of the

bioflocculant.

2.3 Production factors

2.3.1 L-glutamic acid dependency
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Requirement for additional L-glutamic acid suppletrer bioflocculant production by UPMB13 were
determine by preparing batch cultures of 100 mL T8t treatments of; L-glutamic acid (LGA) at 20
g/L (Bajaj and Singhal 2011b), L-glutamic acid anitic acid (CA) at 10 g/L (Chen et al. 2005), and

solely TSB as the control treatment. All culturaghwespective treatments were incubated on ariarbi

shaker at 130 rpm for 48 h at°g5

2.3.2 Timeline of bioflocculant production

Optical density measurements with a spectrophotemat660 nm were conducted to determine the
growth of UPMB13 for 5 days. Percentage flocculgtiativities of the bioflocculants produced by

UPMB13 were measured every 6 h until 78 h, followgdL2 hourly intervals until 120 h of incubation.

2.3.3 Effect of culture medium ratio on bioflocculant production

Batch cultures of UPMB13 in varying volume of TSB)Q mL, 250 mL and 500 mL) were prepared by
inoculating 1 mL of the seed culture into each eetipe volume of TSB. Percentage flocculating ativ

measurements were done at 12 hourly intervalsZortl

2.3.4 Effect of incubation speed on bioflocculant production

Oxygen fluxes were introduced by means of varyimbation speed on an orbital shaker. Five speeds
were selected: 100, 150, 200, 250 and 300 rpmeR&ge flocculating activities were measured e2dry

h for three days to observe the effect on bioflteeuproduction.

2.3.5 Effect of initial pH and incubation temperatur e on bioflocculant production

The initial pH of the culture media, adjusted wéither HCI (1 N) or NaOH (1 N), were prepared fét p
5.0, 6.0, 7.0 and 8.0 (Su et al. 2012). Observatidrihe flocculating performances were done diect
after 24 h to avoid further pH changes. Two raragféscubation temperature were selected, namely; 25
30°C (Patil et al. 2009) and 37-4D (Bajaj and Singhal 2011b) provided by an incubataker.

Percentage flocculating activities were measurétftati8, 72 and 96 h of incubation.
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2.4 Determination of bioflocculant sour ce among cultur e components

The source of bioflocculant produced among theucalltomponents; broth, cell and supernatant, was
determined. The cultured cells and cell-free sugt@mt were separated from the cultured broth by
centrifugation at 4000 rpm for 10 min. The supeanatvas then removed and put aside as the
bioflocculant source for the cell-free supernataiie centrifuged cells were washed with phosphate
buffer solution (0.85%) to create a cell suspensioth again centrifuged before serving as the

bioflocculant source for the cells.

2.5 Genetic competence of B. subtilisUPMB13

UPMB13genetic competence for continuous bioflocculantipation was investigated. Each
representative generation was prepared by subrmgtliSA plate cultures of UPMB13; with the first
generation being the one directly sub-cultured fthenparent stock agar, until the"generation. Batch
cultures of 100 mL TSB of each generation were tivepared and the percentage flocculating actsvitie

were measured.

2.6 Extraction and purification of the bioflocculant

The culture broth of UPMB13 was first tested farcftulating activity through the kaolin assay. Wiies
flocculating activity of the culture broth achiev@% and above, the culture broth was then cegeifu
at 8000 x g for 10 min af’@ to separate the cells. The remaining supernatagthen added to 2
volumes of ice cold ethanol and left overnight & #b precipitate the bioflocculant. The precipithte
bioflocculant was then collected by centrifugatadri 2000 x g for 15 min af@ and re-suspended in
ultra-pure water. Further impurities were separatadlialysis against ultra-pure water with minimum
three times water change in 24 h %€ 4The resulting dialyzed suspension was then liji@ptto collect

the pure bioflocculant.

2.7 Surface mor phology imaging

The surface morphology of the freeze-dried purififlocculant was observed using a scanning elactr
microscope (SEM) Carl Zeiss EVO-MA10 (Canada). $hmples attached to carbon stubs were gold-

coated (Nwodo and Okoh 2012) twice and examinetgusbie microscope at an accelerating voltage of

6



146  20.0 kV. Additionally, the surface morphology oétkaolin particles both before and after floccwalati

147  were also scanned and observed.

148 2.8 Data Analysis

149  For each experiment, a minimum of three replicafd$PMB13 cultures were prepared. Descriptive
150 statistics for pattern and trend observations wletermined with the mean and standard deviatiomegal
151 measured. Significant differences were analyzeouiin analysis of variance (ANOVA) at 0.05

152 confidence level. Additionally, where applicablepeated measures ANOVA were used for data
153 measured repeatedly in a timely basis.

154

155 3 Resultsand Discussion

156 3.1 L-glutamic acid independent production of bioflocculants

157 Both L-glutamic acid and the citric acid inhibitedPMB13 growth, as the culture broths with the

158 supplements were observed to be clear and tramglafter 48 h of incubation, suggestive of the abse
159 of bacterial growth. In comparison, the controhtreent without any added supplement were deteoted t
160 be naturally viscous after 48 h of incubation (Eab).

161 The upper phase of the treated kaolin suspensitimtiaé supplemented broth were observed to
162 be clear, hence producing a measured flocculatitigities of 71.7% and 27.7% for the LGA and the
163 LGA+CA treatment, respectively. However, no flocrfation was detected in both treatments (Table 1).
164  In contrast, the control TSB media induced floasrfation with percentage flocculating activities

165 measured at 81.7%<0.05). Charge de-stabilization of the kaolin et might occur in the treated
166 system by the LGA and LGA+CA treatments which ekpgahe percentage flocculating activities

167 measured, despite the absence of the bioflocculant.

168 Productions of-PGA byB. subtilis strains are usually L-glutamic acid dependent]evhi

169 glutamic acid independent strains were describdzbteelatively unknown and thus less reported (Shih
170 and Van 2001). Some of the L-glutamic acid indeandacteria reported to produc®GA through the
171  denovo production pathway (without supplement) incluesubtilis TAM-4 (Ito et al. 1996)B. subtilis

172 C1 (Shih et al. 2005) aril subtilisC10 (Zhang et al. 2012). Among the studies on tbeyction ofy-
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PGA byB. subtilis strains that were reported as bioflocculants (Yahtal. 1995; Yokoi et al. 1996; Wu
and Ye 2007; Wang et al. 2008; Bajaj and Singhall®QBhunia et al. 2012) none wel@novo
producers of-PGA. Othery-PGAs produced througte novo pathways (Ito et al. 1996; Shih et al. 2005;
Zhang et al. 2012) have not been reported as patbmflocculants. In two rare casgsPGA had been
reported to be produced Bacillus strains either with or withoutié novo) the presence of glutamic acid
(Mahmoud 2006; Xu et al. 2005). TherefdBesubtilis UPMB13 is considered a nowdd novo producer
of bioflocculants as compared to other cases regantthe literature.

Production of EPS bBR. subtilis strains has been reported to co-dependently retitoa acid
apart from the L-glutamic acid supplement (Bajaj &inghal 2011a). Naturallfa. subtilis strains can
utilize citric acid as an organic acid carbon seuar growth. However, UPMB13 were notably diffetren
as citric acid supplement inhibited its growth. etual. (2005) reported similarly for the str&nsubtilis
NX-2 which could not incorporate citric acid duriggpwth fory-PGA production.

Hence B. subtilis UPMB13 was concluded to beda novo producer of bioflocculants in the

absence of L-glutamic acid or citric acid suppletaaturing growth.

3.2 Bioflocculant production during growth

Time course for bioflocculant productions Bysubtilis UPMB13 are as depicted in Figure 1.
Bioflocculant presence at the early stage of UPMBA®&vth was reflected by the 87.2% flocculating
activities measured and visible flocs formationaslied at 24 h of incubation. The flocculating atit
maintained above 80% between 24-723%0(05). This suggests that bioflocculant produchy

UPMB13 occurred parallel to its logarithmic growtte. However, between 78 h to 120 h, decrements in
flocculating activities were observed, although UBPN3 growth continued to proliferate. The relatiapsh
between growth of UPMB13 and bioflocculant prodaistivas analyzed using Pearson Product Moment
correlation. There is a strong negative relatiomgRi = - 0.787) between flocculating activitiestioé

bioflocculant with growth§<0.01).

Okaiyeto et al. (2015) reported that the decreadedculating activities after 72 h of incubation
could be due to deflocculating enzymes excretethbystrain during death phase. However, in thidystu
the growth of UPMB13 was observed to be maintainetb 120 h while flocculating activities were

declining. Therefore, it was hypothesized thatlitnéted nutrient supplied (100 mL) had led to thmake

8



201 of the bioflocculant already present in the cultoyethe cells as alternative food for growth, while
202  productions of new bioflocculants were inhibitedtbg stressful conditions created by the scardith®

203 food. This theory was proven by the results inrtbgt section.

204 3.3 Effect of culture media ratio on bioflocculant production

205  Consumption of the bioflocculants excreted intodbiure media as substitute food source for growth
206 was hypothesized to be the reason for the low filatimg performances observed in the later growth
207 stage in Figure 1. This theory was further testegtldyying the ratio of culture media used to the
208 inoculum and the results are as portrayed in Figure

209 Both the 250 mL and 500 mip%$0.05) cultures have significantly higher floccirnat

210 performances as compared to the 100 mL cultureRMB13 (<0.05) after prolonged fermentations.
211  with ample nutrients provided by the 250 mL and &@l0culture, bioflocculant productions by

212 UPMB13 had sustained until the 120 h as the peagenflocculating activities measured remained
213  around 90%. Contradictorily, the 100 mL culture esi@nced the normal decrease in flocculating
214  performances with prolonged growth. Hence, it wam/@n that the bioflocculants already present in
215  culture media excreted earlier were being takehyuhe strain to support further growth while nane
216  bioflocculants were being produced in the stressbuiditions of limited nutrients. It was reported b
217 Kimura et al. (2004) that excreted EPS may be acsoof food during starvation in the late statignar

218  microbial growth phase.

219 3.4 Effect of oxygen fluxes on bioflocculant production

220 Biopolymers yield in aerobic microbial processepatals greatly on oxygen fluxes provided through
221  agitation and aeration during fermentations (Ridrewd Margaritis 2003). Figure 3 illustrates the

222  flocculating performances of UPMB13 cultures sutgddo different shaking speeds provided during
223  incubation. Flocculating activities >80%6>0.05) were recorded at the optimal incubation dped 100
224 to 200 rpm. Significantly poorer flocculation wesleserved for cultures agitated at speed higher 208n
225  rpm (p<0.05).

226 Rapid bacterial growth at higher speed may reatthé scarcity of food resources and led to the

227 re-uptake scenario of the excreted biofloccularal@snative source for food. Excessive oxygentdue



228
229
230
231
232

233

234
235
236
237
238
239
240
241
242
243
244
245

246

247
248
249
250
251
252
253
254

rapid agitations may also inhibit biopolymeric esttons as concentration of dissolved oxygen affects
microbial nutrient absorption and enzymatic reacfar EPS productions (Su et al. 2012). Furthermore
inhibition of production could also be due to thpid conversion of carbon source to carbon dioxide
resulting from the increase in growth and respratvhich led to a decrease in biopolymeric proaunti

(Patil et al. 2010.

3.5 Effect of initial pH on bioflocculant production

Optimum initial pH for bioflocculant productions tPMB13 were at pH 7.0 to 8.0 with percentage
flocculating activities measured >75%>0.05) (Figure 4). Although the growth of UPMB13reve
observed to be higher at pH 5.0 and 6, howevetctilating performances measured were significantly
lower (p<0.05). The unfavorable acidic nature of the celtonredia at these pH ranges might create
stressful culture conditions that lower bioflocaulaxcretions by the strain (Ntsalubigal. 2013).

As bioflocculant production occurs parallel wittogith, naturally the optimum pH for
production would be similar to the pH that indubesterial growth. However, for UPMB13, the initial
pH of the culture media had more influence on biatulant production despite the level of growth.
According to Prasertsan et al. (2008), the synshefsihe enzymes that are responsible for EPS &owre
are pH dependent. Furthermore, it was reportedntinaient assimilation and enzymatic response of
microorganisms for bioflocculant production maydffected by initial pH of the culture media

(Aljuboori et al. 2013).

3.6 Effect of incubation temper ature on bioflocculant production

Bioflocculant production were proven feasible intbtemperature range with significantly different
flocculating performances observgek(.05). The 25-3C temperature range was proven optimum for
both growth and bioflocculant production. In conigan, at higher temperature range of 37€@he
growth and the flocculating performances of UPMB#Se observed to be inferior (Figure 5).

While the growth of UPMB13 fluctuates in the temgtare range of 25-8G between 24 h to 72
h, sustained bioflocculant productions were obskrveflected by the >70% percentage flocculating
activities measured throughout the assay. In csftii@e flocculating activities of UPMB13 grown3at-

40°C decreases with time although its growth proliiedaowards the end of the test. This suggested tha

10
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the available bioflocculant produced might be comsd back as food substitute that induces growth and
thus, lowered the flocculating performances.

Optimum growth temperatures fBr subtilis were reported to be at 30°&7with the minimum
temperature of '€ and the maximum at 43 (Korsten and Cook 1996). However, for the purpafse
bioflocculant production, it was concluded that tgimum temperature range for UPMB13 was 25-

30°C.

3.7 Distribution of flocculating abilities by different culture parts

Distribution of flocculating abilities by separatediture parts reflects production source and datess
the capacity of each part to be extracted andédunhrified (Liu and Cheng 2010). Naturally,
bioflocculants productions by microorganism carcekularly bounded or excreted extracellularly as
slimes (Subramanian et &009). Therefore, distribution of flocculating attiies by different culture
parts of UPMB13 was investigated (Figure 6).

High flocculating activities around 89% can be aked by both the culture broth and the cell-
free supernatanp$0.05) with visible flocs formed. In comparisonettells’ flocculating activities were
significantly lower at only 39.4%p&0.05), with no flocs formation observed. Chargstdeilizations by
the cation supplied may explain the percentagetiating activities achieved by the cells apartrfrine
residual bioflocculant activities that may adhet@the cell surfaces (Wei et al. 2008).

The results obtained proved that the bioflocculanésextracellularly produced by UPMB13 into
the surrounding broth, exhibited by the cell-frepernatant similarly. Hence, the cell-free supemat

was chosen as the bioflocculant source for theaetitm and characterization of the bioflocculant.

3.8 Genetic competence for continuous bioflocculant production

UPMB13 was proven to be genetically competencedatinuous production of high performing
bioflocculants as the ability to produce the biotinlants persist up to its T@eneration progeny (Figure
7).

Percentage flocculating activities measured fohagmeration fluctuated and maintained above

80% (>0.05) with an exception of the T @eneration, where a slight 9% decrease can beceeepared

11
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to the highest measured performance at 86(8%0.05). Visual assessment of flocs formation wése a
positive for all generations.

Continuous sub-culturing had been reported to chusseof ropy and mucoid phenotypic
expression of polysaccharides by the strain (Damlet al. 1997), whereby these characteristicenajer
contributors to bioflocculability. Furthermore, 8rdnd Wu (2009) reviewed that soBiesubtilis strains
have different genetic competency in EPS producti@n instanceB. subtilis subsp. (nattg had been
reported to be genetically incompetent in contirmiproduction of-PGA. In other reported studies
genetic incompetency in bioflocculant productiomiidobe overcome through ion implantation (Peirui et
al., 2008).

Hence, based on the results it was proven thMRIB has the genetic competence in

bioflocculant production even after incessant sulbdcing processes.

3.9 Microscopic images of purified bioflocculant and bioflocculation

From the optimum cultural conditions determinedwaydermentation of 1 L batch cultures were
prepared to extract the bioflocculant at its besasured performance based on the kaolin assaysit Abo
0.90g of purified bioflocculant can be collectedrfr 1 L culture of UPMB13 in TSB.

Figure 8a shows the image of the purified biofidaat produce by UPMB13, while Figure 8b
and Figure 8c display the microscopic images oktmin particles both before and after treatedhay
bioflocculant, respectively. The purified bioflodant (Figure 8a) appeared to be fibrous with smooth
globular structures. These are the typical attebutfy-PGA as observed by Yang (2011).

The un-flocculated kaolin particles (Figure 8b) seattered, dispersed and smaller in nature,
while the flocculated kaolin particles (Figure 8@re observed to be clumped together and larger in
comparison. According to a review by Maximova ar@h[X2006), aggregated particles formed through
induced polymeric flocculations and salt coaguladican be in the form of either loose or compact
structuresAggregates formed in a system with high salts cotmatons with added polymeric bridging
are loose in nature while those formed from the ¢magulant concentration with added shear during
bridging lead to the formation of compact aggregatectures. Therefore, referring back to Figurei8

can be confirmed that the flocculated kaolin pésgortrayed the properties of a compact aggrdgate

12
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structures which were formed through the inducdgimeric bridging of UPMB13 bioflocculant with
applied shear and minimal cationic aid.

Similar observation was also reported by Nwodd.g2814), whereby the bioflocculated kaolin
particles formed tightly weaved continuous strugsuwith no evident spacing observed between the
particles. Observations of these clumped, floced&iaolin particles proved the binding and bridging

treatment induced by the bioflocculant (Cosa e2@1.3).

4 Conclusions

Extracellularde novo synthesis (L-glutamic acid independent) of biofldeaits byB. subtilis UPMB13

were found to occur at an early logarithmic groptiase of 24-72 h of fermentation. Bioflocculant
production was found to be negatively correlatetth\growth at a limited supply of 100 mL of tryptoy
broth media. Productions of high performing bioBlolants may be prolonged and sustained with optimal
fermentation conditions of sufficient nutrients yiceed and suitable oxygen level supplied. Proliiera

of bacterial growth occur at best at 25G@&nd at the optimum pH 6 while pH 7.0 was mordepable

for early bioflocculant productions. Bioflocculgmtoduction through submerged fermentatiom of

subtilis UPMB13 was proven feasible based on its genetigoed@mcy in continuous production of high

performance bioflocculant. The results of the resteaan be useful in water treatment applications.
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440 Table1 Growth and flocculating activities of UPMB13 at B&f incubation

Media 0OD660 Flocculating activities (%) Flocs presence
Tryptic soy broth (TSB) 1.49 £ 0.05 81.7 Present
TSB + L-glutamic acid (LGA) 0.04 +£0.01 71.7 Absent

TSB + L-glutamic acid and citric
0.03+0.01 27.7 Absent
acid (LGA+CA)
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Figure captions

Fig. 1 The timeline of bioflocculant production By subtilis UPMB13 during growth. Bioflocculant

production is reflected by the flocculating acies measured

Fig. 2 The effect of different culture media ratio on flotating activities

Fig. 3 The effect of various incubation shaking speedlocciilating performances of UPMB13 at 24 h

of incubation. Flocs were present in all treatments

Fig. 4 Flocculating activities and growth measured ah24 different initial pH. Flocs were present ih al

treatments.

Fig. 5 The flocculating activities of UPMB13 biofloculaat incubation temperature range of 25l

) and 37-48C (7 ) and the growth at 25-3D (A ) and 37-48C (X). Flocs were present in all treatments.
Fig. 6 The distribution of flocculating abilities by diffent culture parts. The original culture is
represented by the broth. The broth is then cewgted to separate both the supernatant and the cell

component of the culture. Flocs were absent ircétigreatment.

Fig. 7 Flocculating activities of UPMB13 up to the"™ 6ulture progenies. Flocs were present in all

treatments.

Fig. 8 SEM images of (a) the purified bioflocculant, (m-locculated kaolin particles, and (c) kaolin

particles flocculated with UPMB13 bioflocculant
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