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Summary. — The discovery of the integer quantum Hall effect in the early eighties
of the last century, with highly precise quantization values for the Hall conductance
in multiples of e2/h, has been the first fascinating manifestation of the topological
state of matter driven by magnetic field and disorder, and related to the formation of
non-dissipative current flow. Throughout the 2000’s, several new phenomena such as
the spin Hall effect and the quantum spin Hall effect were confirmed experimentally
for systems with strong spin-orbit coupling effects and in the absence of external
magnetic field. More recently, the Zeeman spin Hall effect and the formation of
valley Hall topological currents have been introduced for graphene-based systems,
under time-reversal or inversion symmetry-breaking conditions, respectively. This
review presents a comprehensive coverage of all these Hall effects in disordered
graphene from the perspective of numerical simulations of quantum transport in
two-dimensional bulk systems (by means of the Kubo formalism) and multiterminal
nanostructures (by means of the Landauer-Büttiker scattering and non-equilibrium
Green’s function approaches). In contrast to usual two-dimensional electron gases
in semiconductor heterostructures, the presence of defects in graphene generates
more complex electronic features such as electron-hole asymmetry, defect-induced
resonances in the electron density of states or percolation effect between localized
impurity states, which, together with extra degrees of freedom (sublattice pseudospin
and valley isospin), bring a higher degree of complexity and enlarge the transport
phase diagram.

PACS 72.80.Vp – Electronic transport in graphene.
PACS 73.43.-f – Quantum Hall effects.
PACS 75.76.+j – Spin transport effects.
PACS 75.70.Tj – Spin-orbit effects.
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Acronyms and main variables

2D . . . . . . . . . . . . . . . . . . . . . . two-dimensional
2DEG . . . . . . . . . . . . . . . . . . two-dimensional electron gas
AGNR . . . . . . . . . . . . . . . . . . graphene nanoribbon with armchair edges
BTE . . . . . . . . . . . . . . . . . . . . Boltzmann transport equation
BZ . . . . . . . . . . . . . . . . . . . . . . Brillouin zone
CNP . . . . . . . . . . . . . . . . . . . . charge neutrality point
CVD . . . . . . . . . . . . . . . . . . . . chemical vapor deposition
DP . . . . . . . . . . . . . . . . . . . . . Dyakonov-Perel
DOS . . . . . . . . . . . . . . . . . . . . density of states
EY . . . . . . . . . . . . . . . . . . . . . Elliot-Yafet
GB . . . . . . . . . . . . . . . . . . . . . grain boundary
GF . . . . . . . . . . . . . . . . . . . . . Green’s function
GNR . . . . . . . . . . . . . . . . . . . graphene nanoribbon
h-BN . . . . . . . . . . . . . . . . . . . hexagonal boron-nitride
HE . . . . . . . . . . . . . . . . . . . . . Hall effect
IQHE . . . . . . . . . . . . . . . . . . . integer quantum Hall effect
ISHE . . . . . . . . . . . . . . . . . . . inverse spin Hall effect
KPM . . . . . . . . . . . . . . . . . . . kernel polynomial method
LB . . . . . . . . . . . . . . . . . . . . . . Landauer-Büttiker
LL . . . . . . . . . . . . . . . . . . . . . . Landau level
MBZ . . . . . . . . . . . . . . . . . . . . magnetic Brillouin zone
NEGF . . . . . . . . . . . . . . . . . . non-equilibrium Green’s function
PIA . . . . . . . . . . . . . . . . . . . . . pseudospin inversion asymmetry
QHE . . . . . . . . . . . . . . . . . . . . quantum Hall effect
QSHE . . . . . . . . . . . . . . . . . . quantum spin Hall effect
QVHE . . . . . . . . . . . . . . . . . . quantum valley Hall effect
SH . . . . . . . . . . . . . . . . . . . . . . spin Hall
SHE . . . . . . . . . . . . . . . . . . . . spin Hall effect
SJ . . . . . . . . . . . . . . . . . . . . . . side jump
SO . . . . . . . . . . . . . . . . . . . . . . spin-orbit
SOC . . . . . . . . . . . . . . . . . . . . spin-orbit coupling
SS . . . . . . . . . . . . . . . . . . . . . . skew-scattering
TB . . . . . . . . . . . . . . . . . . . . . tight-binding
TI . . . . . . . . . . . . . . . . . . . . . . topological insulator
VHE . . . . . . . . . . . . . . . . . . . . valley Hall effect
ZGNR . . . . . . . . . . . . . . . . . . graphene nanoribbon with zigzag edges
ZSHE . . . . . . . . . . . . . . . . . . . Zeeman spin Hall effect
EF . . . . . . . . . . . . . . . . . . . . . . Fermi energy
�B . . . . . . . . . . . . . . . . . . . . . . magnetic length
RNL . . . . . . . . . . . . . . . . . . . . non-local resistance
s = [sx, sy, sz] . . . . . . . . . . . Pauli matrices operating on the spin degree of freedom
σ = [σx, σy, σz] . . . . . . . . . Pauli matrices operating on the sublattice degree of freedom
σxx, σxy . . . . . . . . . . . . . . . . longitudinal and transverse (Hall) conductivity
σz

xy . . . . . . . . . . . . . . . . . . . . . spin Hall conductivity
σv

xy . . . . . . . . . . . . . . . . . . . . . valley Hall conductivity
τz . . . . . . . . . . . . . . . . . . . . . . . z-Pauli matrix operating on the valley degree of freedom
θsH . . . . . . . . . . . . . . . . . . . . . spin Hall angle
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1. – Introduction

In 1878, Edwin Hall designed an experiment aiming at measuring the change of elec-
trical resistance in a thin gold leaf, in the presence of a steady magnetic field. He found
that the magnetic field permanently altered the charge distribution, with a transverse
potential difference [1]. The Hall conductance was defined as the longitudinal current
divided by the transverse voltage. The magnitude and even the sign of the Hall voltage
was found to be material-dependent, making the Hall effect (HE) a useful characteriza-
tion tool for inspecting the transport properties (including the nature of charge carriers,
electron versus holes) in a given solid. The classical Hall resistance follows a typical law
with charge density as Rxy = −1/ne.

The quantum Hall effect (QHE) was further discovered in 1980 at the High Magnetic
Field Laboratory in Grenoble (France) by Klaus von Klitzing, who was measuring the
Hall conductance of two-dimensional electron gas (2DEG) in the ultralow-temperature
regime, more precisely in Si(100) MOS inversion layers at B = 19 T and T = 1.5 K [2].
Von Klitzing found that the Hall conductance exhibited a staircase sequence of wide
plateaus as a function of the strength of an applied magnetic field perpendicular to
the 2DEG, that is Rxy = RK90/ν with RK90 = h/e2 = 25812.807572 Ω the universal
von Klitzing resistance constant and ν = 1, 2, 3, 4 . . . . This quantization is of incredible
precision (1 part in 1010), vanishingly sensitive to measurement geometry and material
degree of imperfection. Since 1990, the von Klitzing resistance constant stands as the
international standard for resistance calibrations. In 1985, von Klitzing was awarded the
Physics Nobel prize for the discovery of the integer QHE [3].

In the quantum Hall regime, the Hall conductivity σxy is thus also quantized σxy =
νe2/h, while the longitudinal conductivity becomes vanishingly small σxx ∼ 0. The
prefactor ν in σxy is the filling factor, and is either an integer number (ν = 1, 2, 3, . . .)
or a fractional number (ν = 1/3, 2/5, 3/7, 2/3, 3/5, . . .). The integer QHE is explained
in terms of single-particle orbitals of an electron in a magnetic field and is related to
the Landau quantization. In contrast, the fractional QHE [4, 5] fundamentally relies on
strong electron-electron interactions leading to the existence of charge-flux composite
quasiparticles known as composite fermions [6].

The spin Hall effect (SHE) was predicted theoretically by Dyakonov and Perel in
1971 [7, 8], as the formation of spin accumulation on the lateral boundaries of an unpo-
larized charge current-carrying sample, the signs of the spin directions being reversed at
opposite boundaries. Differently from the case of classical HE, where opposite charges
accumulate at the boundaries as a result of the Lorentz force generated by an external
magnetic field, the formation of SHE takes place in the absence of magnetic field and
is driven by spin-orbit coupling (SOC) either through scattering off impurities (extrinsic
SHE) or spin-split band structure (intrinsic SHE) [9, 10]. The SHE belongs to the same
family as the anomalous HE, known for a long time in ferromagnets, which originates
from the combined effect of SOC and magnetization (in fact, SHE can be viewed as the
zero magnetization limit of anomalous HE) [11,12].

The experimental confirmation of SHE has been first achieved by optical spectroscopy,
in both the extrinsic regime [13] and the intrinsic regime [14]. Then the electrical de-
tection was accomplished using the inverse SHE (ISHE) by Saitoh and coworkers [15],
Valenzuela and Tinkham [16], and Zhao and coworkers [17]. The ISHE, which is Onsager
reciprocal of direct SHE, measures a charge imbalance at the sample edges resulting from
injection of pure spin current or spin-polarized charge current into a spin-orbit-coupled
sample. Despite being observed only a decade ago, these effects are already ubiquitous
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within spintronics, as standard spin-current generators and detectors [9].
In 2005, Kane and Mele predicted the possibility of the quantum spin Hall effect

(QSHE) in graphene due to intrinsic SOC [18, 19]. Within the QSHE, the presence of
SOC results in the formation of chiral edge channels for spin-up and spin-down electrons.
The observation of the QSHE has been however jeopardized in clean graphene owing to
vanishingly small intrinsic SOC on order of μeV [20], but it has been demonstrated (at
low temperatures) in HgTe/CdTe [21] and InAs/GaSb [22] quantum wells with strong
SOC and inverted band structure [23], eventually giving rise to the field of two- and three-
dimensional topological insulators (TIs) [24, 25]. Recent theoretical proposals to induce
a topological phase in graphene include the functionalization with heavy adatoms [26,
27], covalent functionalization of the edges [28], proximity effect with three-dimensional
TIs [29-31], or intercalation and functionalization with 5d transition metals [32,33].

Finally, well separated in momentum space, degenerate valleys of energy bands (in
graphene and other two-dimensional materials) constitute a discrete degree of freedom
for low-energy carriers with long intervalley relaxation time. The valley degree of free-
dom may be used as a non-volatile information carrier, provided that it can be coupled
to external probes. In the presence of inversion symmetry breaking in graphene —for
instance having graphene onto a substrate such as hexagonal boron-nitride (h-BN)— the
valley index plays a similar role as spin in conventional semiconductors, driving towards
quantum phenomena such as Hall transport, magnetization, optical transition selection
rules, and chiral edge modes [34,35]. These make possible the control of valley dynamics
by magnetic, electric, and optical means, which form the basis of valley-based information
processing.

Beyond graphene, valley Hall physics also occurs in two-dimensional (2D) semicon-
ductors such as MoS2 monolayers and other group-VI transition metal dichalcogenides,
which are direct bandgap semiconductors with band edges located at the K points [36].
The low energy electrons and holes are well described by massive Dirac fermions with
strong spin-valley coupling. In analogy to the classical Hall and the SHE, the valley Hall
effect (VHE) is theoretically determined by different valley currents moving in opposite
directions perpendicular to the drift current. Moreover, the large SOC in the valence
band causes valley-spin locking, whereby optically excited valley populations are also
spin polarized, and valley accumulation at sample edges is accompanied by spin accumu-
lation [37,38]. Such a coexistence of VHE and SHE could make possible valley and spin
controls for potential integrated spintronics and valleytronics applications on this plat-
form. To date, VHE has only been directly observed in highly disordered SiO2-supported
(low quality) MoS2 samples [39].

2. – Fundamental aspects of Hall effects and key concepts in graphene

2.1. Quantum Hall effect and the geometrical nature of the quantization of the Hall
conductivity . – The exact quantization of the (charge and spin) Hall conductivities and
their robustness against disorder are direct consequence of the specific topological nature
of the system band structure. The discovery of the Berry curvature [40] revealed the
deep connection between certain aspects of condensed matter and differential geometry,
whose important effects are partly illustrated in the rest of this section. In particular,
we will show that the transport properties of quantum Hall systems can be obtained in
terms of topological invariant quantities, which characterize the wave functions and do
not vary under continuous deformations of the system. A popular analogy to illustrate
this concept is offered by knot theory. The number of crossings in a knot is a topological
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Fig. 1. – (a) Knots with different topological index cannot be transformed between them in a
continuous way. (b) To do this, the rope must be cut. (c) This is analog to the formation of
metallic states at the interface between two insulators with different topological index.

invariant: knots with different number of crossings, as those in fig. 1(a), cannot be
transformed between them in a continuous way and their index cannot change under
continuous deformations. This defines classes of equivalence. To transform one knot to
another belonging to a different class, we need to cut the rope as illustrated in fig. 1(b).
This means a transition to a geometry that is not a knot. Analogously, at the interface
between insulators with different topological index, a metallic phase must appear [41], see
fig. 1(c). For example, in the QHE edge states are formed at interface with the vacuum.

2.2. Topological aspect of the integer quantum Hall effect . – The main manifestation of
the QHE in high magnetic fields is the occurrence of a non-dissipative transport regime
defined by a series of quantized plateaus σxy = 1/ρxy = ne2/h and σxx = ρxx = 0.
For clean enough materials, Hall conductance plateaus develop at the Fermi energies
(EF) where there is no dissipation in the bulk, whereas chiral edge states are formed
at opposite edges of the sample and are identified through a transverse Hall voltage.
Historically, the topological origin of the Hall quantization has been demonstrated by
using bulk Kubo conductivity calculations, assuming weak enough disorder to maintain
the integrity of the electronic structure of the underlying electronic system [42].

In their seminal paper, Thouless, Kohmoto, Nightingale, and den Nijs [43] computed
the Kubo Hall conductivity of an electron gas in 2D lattice and related it to the topolog-
ical property of the ground wave function, which turns out to be a topological invariant,
known as Chern number. In the basis of eigenstates, the Kubo formula [44] for the
current density reads

(1) jy = σxyEx = − ie2
�

L2

∑
kq

〈k|vx|q〉〈q|vy|k〉
(εk − εq)2

Ex + c.c.,

which is a bulk result derived for a clean system (with translational invariance), but weak
disorder and interaction do not destroy this invariance property of the wave function [45,
46].

To obtain the quantization of the conductivity, one has first to write the Hamiltonian
for non-interacting electrons in a uniform magnetic field perpendicular to the 2D surface
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as [45]

(2) HΨ(r) =
[

1
2m

(p + eA)2 + U(r)
]

Ψ(r) = EΨ(r),

where B = ∇ × A is the magnetic field in terms of the vector potential A(r), and U(r)
is an energy potential periodic over the Bravais lattice with translation vectors a and b.
The magnetic field is translationally invariant, but H is not invariant under the discrete
translation operator TR = e

i
�
R·p, because A(r) is not constant. The Hamiltonian can be

made invariant under the combined action of a translation and a gauge transformation,
which defines the “magnetic translation operators” TR = e

i
�
R·[p+e(r×B)/2], with R =

na+mb and (n,m) ∈ Z
2. It can be verified by inspection that [TR,H] = 0. However the

two magnetic translation operators do not generally commute since TaTb = e2iπϕTbTa,
with ϕ = (eB/�)ab the magnetic flux per unit cell in units of the elementary magnetic
flux. To solve this problem, we can define an enlarged magnetic unit cell defined by
the transformation R′ = nqa + mb, with q ∈ Z, in such a way that an integer number
of flux quanta thread the cell. This leads to [Tqa, Tb] = 0. The eigenstates of H can
now be labelled with good quantum numbers in the Bloch form Ψk(x, y) = eik·ruk(x, y),
with TqaΨ = eikxqaΨ and TbΨ = eikybΨ, thus defining the generalized crystal momenta
restricted to the magnetic Brillouin zone (MBZ) (0 ≤ kx ≤ 2π/(qa), 0 ≤ ky ≤ 2π/b). By
exploiting the relation 〈k|vx|q〉 = 〈k|∂H(k)

∂kx
|q〉/�, one can write

(3)

σxy = − ie2
�

L2

∑
kq

〈k|vx|q〉〈q|vy|k〉
(εk − εq)2

=
e2

2iπh

∫
MBZ

d2k

∫
d2r

(
∂u∗

k

∂ky

∂uk

∂kx
− ∂u∗

k

∂kx

∂uk

∂ky

)
.

Finally, the Hall conductivity turns out to be connected to topological properties of the
ground state wave function through [45]

σxy =
e2

h

1
2π

∫
MBZ

d2k[∇k × ω(k)]z(4)

with ω(k) = −i

∫
d2ru∗

k∇kuk = −i〈uk|∇k|uk〉.

Note that ω(k) is the Berry connection and Ω = ∇k×ω(k) is the Berry curvature, whose
integral over the closed Brillouin zone (BZ) surface is a topological invariant. Indeed, by
means of the Stokes theorem, we can write

(5) σxy =
e2

h

1
2π

∫
MBZ

d2kΩz(k) =
e2

h

1
2π

∮
c

ω(k)dk =
e2

h
n,

with n the integer Chern number, which entails the conductivity quantization [45]. One
notes that the concept of the Berry phase, as an accumulated phase of the wave function
undergoing adiabatic evolution, was introduced in 1981 by Michael Berry, and has proven
to be ubiquitous in quantum transport phenomena [40]. The existence of a topological
invariant (Chern number) is a direct consequence of the known failure of parallel transport
around a closed loop, which is measured by the Berry phase. The local adiabatic curvature
of the bundle of ground states in the parameter space is then defined as the limit of Berry
phase mismatch divided by the loop area (see ref. [47] for pedagogical introduction).
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The Chern number is a topological invariant in the sense that its value is unchanged
under small changes in the Hamiltonian (due for instance to disorder perturbation).
However, when large deformations of the Hamiltonian are taking place, the wave function
ground state can cross over other eigenstates, and such a level crossing triggers transitions
between Chern numbers and Hall conductance plateaus. This topological interpretation
of the quantized Hall conductivity stands as a major milestone for the understanding
of QHE, but has also generated many inspired subsequent developments of topological
physics in condensed matter.

2.3. Fundamentals of Dirac materials. – The electronic transport properties of gra-
phene are known to be very peculiar [48-53] giving rise to quantum-mechanical phenom-
ena such as Klein tunneling, weak antilocalization, or anomalous QHE, all driven by the
additional degree of freedom (pseudospin) and related π-Berry phase endowed by the
bipartite nature of graphene and its sublattice degeneracy [54]. These fascinating prop-
erties are robust as long as disorder preserves a long range character and valley mixing
is minimized.

The simplest tight-binding (TB) model Hamiltonian for pristine graphene in the ab-
sence of SOC considers a single 2pz orbital per atom and first nearest neighbor coupling

(6) H = −γ0

∑
〈i,j〉

c†i cj ,

where γ0 ≈ 2.7 eV is the coupling energy, 〈i, j〉 indicates the couples of neighbor carbon
atoms with indices i and j, c†i is the creation operator for an electron in the 2pz orbital of
the atom with index i, and cj is the annihilation operator for an electron in the 2pz orbital
of the atom with index j. The carbon atoms are spatially distributed on a triangular
lattice and over the two sublattices A and B. The corresponding BZ is hexagonal, with
two non-equivalent highly symmetric points at its corners, which are called K and K ′

points. The Bloch theorem allows the definition of a k-dependent Hamiltonian, which
operates on a vector containing the coefficient for the two Bloch sums corresponding to
the A and B sublattices

(7) H(k) =

(
0 f(k)

f(k)∗ 0

)
, with f(k) = 1 + 2 ei3aky/2 cos

(√
3akx/2

)
,

where a = 1.42 Å is the interatomic distance. The eigenvalues for conduction and valence
bands are then

(8) E±(k) = ±γ0

√
3 + 2 cos(

√
3akx) + 4 cos(3aky/2) cos(

√
3akx/2) .

Note that the two bands touch each other at the K and K ′ points, where the charge
neutrality point (CNP) is located. There, the energy dispersion is approximately linear
and forms two Dirac cones. If we expand the Hamiltonian around the K and K ′ points
by considering k as the displacement from those points and by replacing it with the
momentum operator p/� = −i∇, we obtain two effective Hamiltonians

(9) HK = vF (σxpx + σypy) and HK′ = vF(σxpx − σypy),
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which have the same form of a massless 2D Dirac Hamiltonian, where the light speed is
replaced by the Fermi velocity vF =

√
3aγ0/(2�), and the Pauli matrices σx and σy act

on the sublattice degree of freedom (pseudospin) similarly to the mathematical structure
defining the spin degree of freedom. For this reason, the K and K ′ points are also
named Dirac points. The time-reversal invariance of the Hamiltonian is guaranteed by
HK = H∗

K′ . The eigenvalues and eigenvectors of eq. (9) are

(10) E±(k)=±�vF|k| , Ψ±,K(r)=
eik·r
√

2

(
1

±eiθk

)
, Ψ±,K′(r)=

eik·r
√

2

(
1

±e−iθk

)
,

where θk is the angle of the momentum with respect to the x-axis, i.e. tan θk = ky/kx.
It is worth noting that the pseudo-spinors are also eigenstates of the helicity operator
h = σ · p/(2|p|), which defines the chirality of the electrons. This means that the
pseudospin polarization is locked to the momentum. By introducing the valley degree
of freedom (also called isospin) and the corresponding z-Pauli matrix τz, we can recast
eq. (9) in a single equation

(11) H = vF τzσ · p,

which acts on a 4-component wave functions describing the two valley isospin and two
sublattice pseudospin degrees of freedom

[
ψ

K+
A , ψ

K+
B , ψ

K−
B , ψ

K−
A

]
. Note the A and B

components are inverted for the K ′ valley.

2.4. Spin lifetimes in Rashba spin-orbit-coupled materials. – In quantum physics, the
SOC (also called spin-orbit effect or spin-orbit interaction) is an interaction of a particle
spin with the magnetic field induced by particle motion relative to the surrounding
electric fields (for an alternative interpretation see Appendix A). This is detectable as
a splitting of spectral lines, which can be thought of as a Zeeman effect due to the
magnetic field in the particle rest frame. In the field of spintronics, spin-orbit (SO)
effects for electrons in semiconductors and other materials are explored for technological
applications.

In solids, the atomic SOC splits bands that would be otherwise degenerate. The
particular form of this SO splitting (typically of the order of few to few hundred meV)
depends on the particular system and broken symmetries. The bands of interest can be
then described by various effective models, usually based on some perturbative approach.
A 2DEG in an asymmetric quantum well (or heterostructures) will feel the Rashba SOC,
which is a momentum-dependent splitting of spin bands similar to the splitting of parti-
cles and anti-particles in the Dirac Hamiltonian [55]. The splitting is a combined effect
of atomic SOC and asymmetry of the potential in the direction perpendicular to the
two-dimensional plane. The understanding of band structure and spin dynamics in the
presence of Rashba SOC has been essential for the proposal of spintronic devices such
as the Datta-Das spin transistor [56], and for the prediction of fundamental physical
phenomena such as the intrinsic SHE [9,57].

From a practical point of view, understanding the relaxation mechanisms and spin
lifetimes in clean materials is a prerequisite to realizing spintronic devices, since they de-
termine the upper time and length scales on which spin devices can operate. In Rashba
SO-coupled materials, the spin lifetime is commonly dictated by the Dyakonov-Perel
(DP) mechanism [58], where SOC triggers the spin precession of charge carriers. The
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DP mechanism is an efficient mechanism of spin relaxation due to SOC in systems lacking
inversion symmetry. Examples of materials without inversion symmetry include semicon-
ductors from groups III-V (e.g. GaAs) or II-VI (e.g. ZnSe), where inversion symmetry is
broken by the presence of two different atoms in the Bravais lattice. Electron spins pro-
cess along an effective magnetic field that depends on the momentum. At each scattering
event, the direction and frequency of the precession changes randomly. After many scat-
tering events, the randomization of the precession leads to dephasing and a loss of the spin
signal, thus resulting in a spin relaxation time τDP

s ∝ 1/τp that is inversely proportional
to the momentum scattering time τp. This scaling behavior contrasts with the Elliot-
Yafet (EY) mechanism [59]. The EY mechanism has been derived for spin relaxation in
metals, and relates the spin dynamics with electron scattering off impurities or phonons.
Each scattering event changes the momentum, with a finite spin-flip probability, which
is derived by a perturbation theory (assuming weak spin-orbit scattering). This gives
rise to weak antilocalization phenomena in the low-temperature regime, and to a typical
scaling behavior of the spin relaxation time with momentum relaxation as τEY

s ∼ τp.
The properties of Rashba SOC allow the manipulation of spin states by electrostatic
means, thus making it possible to perform elementary operations and paving the way
towards non-charge-based computing and information processing technologies [60]. Be-
yond traditional III-V semiconductor quantum wells —such as InAs, InGaAs, or InSb—
2D graphene and monolayers of MoS2 and other group-VI dichalcogenides have recently
raised a lot of interest. In addition to their predicted long spin lifetimes [61-65], the
possibility to harness proximity effects or to couple the spin and valley degrees of free-
dom makes these materials very interesting from both a fundamental and a technological
perspective [37,64,66].

The nature of spin relaxation in graphene has been fiercely debated since the early
studies by van Wees and coworkers [67], and initial theoretical predictions of millisecond
spin lifetimes (see ref. [68] for a discussion). Additionally, following what was known
for metals and semiconductors, the two different EY type and the DP mechanisms were
first considered in graphene [69, 70]. Some theoretical derivation in monolayer graphene
(taking into account the Dirac cone physics) proposed a revision of the scaling behavior
of the spin lifetime as τs ∼ ε2F τp/λ2

R, which would remain of the EY-type [71], but such
a prediction has failed to explain experimental data. Besides, this result was derived as-
suming the absence of intervalley scattering and perturbative effect of the SOC. All such
approximations are incapable to explain experimentally observed smallness (∼ 100 ps) of
spin relaxation time in graphene. The presence of impurities such as hydrogen adatoms
has been shown to introduce local SOC and magnetic moment [72-74]. resulting in mag-
netic resonant scattering and short spin lifetimes, but the predicted EY mechanism does
not consistently account for all the experimental observations [73]. A completely dif-
ferent mechanism —spin-pseudospin entanglement [75]— which is specific to graphene
was unveiled by quantum simulations of spin dynamics in disordered graphene with
Rashba SOC due to substrate-induced electric field or small density of metallic adatoms
(such as gold or nickel). Such a mechanism results from the entangled dynamics of
spin and pseudospin degrees of freedom, which is particularly predominant close to the
CNP [75-77]. This is actually first evidenced in the peculiar form of low-energy eigen-
states, Ψ ∼ (1, 0)T × |↓〉 ± i(0, 1)T × |↑〉, where |↓〉 and |↑〉 denote the spin state, whereas
(1, 0) and (0, 1) are the pseudospin states [78]. Such a spin-pseudospin locking effect
results in a fast spin dephasing, even when approaching the ballistic limit [75], with
increasing spin lifetimes away from the CNP, as observed experimentally [79]. Depend-
ing on the type of substrate (silicon oxide or h-BN), the impact of disorder (through
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Fig. 2. – Density of states showing the LLs in pristine graphene in the absence of magnetic field
(dashed lines), for B = 10 T (black solid line) and B = 50T (grey solid line). The DOS is given
in arbitrary units (Courtesy of L. E. F. Foa Torres).

electron-hole puddles) was found to yield either a DP or an EY-type of spin relaxation.
Finally, this unique phenomenon offers opportunities to create spin manipulation by con-
trolling the pseudospin degree of freedom, which could be useful in the development of
spin logic [80-83].

3. – Quantum Hall effect in clean and disordered graphene

The massless Dirac fermion nature of electronic excitations in monolayer graphene
is manifested through the formation of non-equidistant Landau levels (LLs) in the high
magnetic field regime [49, 84]. The eigenvalues for graphene under magnetic field are
given by E±n = ±(�vF /�B)

√
2n, with ± denoting the levels with positive and negative

energy, and �B =
√

�/eB is the magnetic length [49]. As a matter of illustration, the
LL spectrum for magnetic fields of 10 and 50 T are shown in fig. 2. Note that the
term relativistic is used to distinguish the ∼

√
Bn dispersion of the levels from that

of the conventional (non-relativistic) LLs, which disperse linearly in Bn. A remarkable
difference with respect to non-relativistic LLs in metals (with parabolic bands) is the
presence of a zero-energy LL with n = 0.

Owing to the peculiar nature of the LL spectrum, the well-known integer quantum
Hall effect (IQHE) [2] observed in conventional 2D electron systems transforms into a rel-
ativistic half-integer (anomalous) QHE in graphene, whose quantized Hall conductivity
becomes σxy = 4e2/h × (n + 1/2) [49, 85, 86]. Such an anomalous QHE was simultane-
ously reported in the groups of Manchester University [85] and Columbia University [86].
Figure 3 shows both the charge density dependence of the longitudinal resistivity (ρxx)
and Hall conductivity (σxy) at 14 T and 4 K [85]. Quantized plateaus of the Hall conduc-
tivity have been also reported at room temperature and low magnetic fields [87]. In what
follows, we will illustrate some aspects of the QHE in clean and disordered graphene from
the complimentary points of view of two-terminal and 2D systems.
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Fig. 3. – Longitudinal resistivity ρxx and Hall conductivity σxy as a function of charge density
in monolayer graphene at 14 T and 4K. The inset shows the case of bilayer graphene. Adapted
from ref. [85].

3.1. Two-terminal magnetoconductance and edge currents. – We start by scrutinizing
the regime of strong magnetic fields in ultraclean graphene nanoribbons (GNRs). In
the absence of any disorder, the localization/delocalization transition is provoked by the
edges of the samples, which break the symmetry of the system and allow for delocalized
edge states (skipping orbits), in contrast with the magnetic-field-induced localized states
of the bulk.

Before showing the results, we briefly recall the TB description of graphene under
magnetic field. We consider a first-nearest neighbor TB Hamiltonian with a single 2pz

orbital per carbon atom

(12) H = −
∑
〈ij〉

γij c†i cj , with γij = γ0 exp
[

e

�c

∫ rj

ri

dr · A(r)
]

,

where c†i and ci are the creation and annihilation operators for electrons on the 2pz

orbital of the carbon atom with index i, 〈ij〉 indicates couple of indices corresponding to
first neighbor atoms, γij is the coupling parameter, which is proportional to the coupling
γ0 = 2.7 eV and to the Peierls phase factor, whose argument is given by the integral of
the vector potential A along the straight line connecting the positions of the two atoms.
Such a description is applicable as long as the magnetic length remains much larger than
the atomic spacing a. This is actually the case for experimentally accessible magnetic
fields, since a/�B ≈ 0.005

√
B (T). Note that the Peierls phase depends on the chosen

gauge, however the product of phases along a closed circuit is invariant and its argument
is given by the magnetic flux through the encircled area over the elementary magnetic
flux �c/e.
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In our two-terminal simulations, we consider graphene ribbons that are infinitely
extended along the transport direction x̂. In the presence of a uniform magnetic field
B = Bẑ, we can conveniently choose the vector potential in the first Landau gauge
A = −Byx̂. With such a gauge, and if the ribbon is pristine, the translation invariance
along x̂ is preserved, thus allowing the band structure calculation. As an example,
fig. 4(a) shows the bands of a 100 nm wide zigzag graphene nanoribbon (ZGNR) under
a magnetic field B = 20 T. We can observe the two-valley structure, which is preserved
by the zigzag edge geometry, as well as a series of flat LLs with four-fold degeneracy due
to valley and spin. The dispersive bands correspond to edge states with opposite group
velocity, whose direction and intensity is proportional to the energy band derivative with
respect to the wave number. This means that, for energies in between the LLs, electrons
move in one direction along the top edge of the ribbon and in the opposite direction
along the bottom edge, i.e. they are spatially chiral and no state is available in the bulk.
As shown later on, this phenomenon is at the origin of the IQHE robustness.

To simulate two-terminal electron transport, we consider a standard configuration
where the system under investigation is connected to two contacts (source and drain)
at different chemical potentials. All the results presented in this review refer to quasi-
equilibrium conditions, where the source-drain potential difference is very small, as it
usually occurs in magnetotransport experiments. The details of the non-equilibrium
Green’s function (NEGF) approach adapted to calculate the Landauer-Büttiker (LB)
conductance, the local density of states (DOS) and density of occupied states, and the
local spectral currents are presented in Appendix B.

Let us consider again our 100 nm wide pristine ZGNR. Its zero-temperature differen-
tial conductance is reported in fig. 4(b). As expected, the conductance is quantized in
units of 2e2/h, and the height of each plateau depends on the number of active bands
at the considered energy. For example, at E ≈ 150 meV, indicated by the cyan lines
in figs. 4(a,b), there are 3 spin-degenerate active bands and then the conductance is
3 × 2e2/h. The corresponding local distribution of spectral currents, obtained from
eq. (B.24), is shown in fig. 4(c). We observe that the current, injected from the left
source contact, flows toward the right drain contact along the top edge of the ribbon.
The width of the edge channel is proportional to the magnetic length �B ≈ 25.7/

√
B nm.

A conductive channel where electrons flow in the opposite direction is present at the
lower edge. However, it is empty, since electrons are injected from the left and thus
only occupy the channel that allows them to move from left to right. This is why the
bottom edge channel is not visible in the figure. As long as these two channels do
not come into contact (i.e. they keep the spatial chirality), the backscattering is sup-
pressed and the conductance is quantized. The large spatial separation between them
thus explains the robustness of the quantum Hall effect. To better clarify this point,
let us introduce disorder in the system. We consider a random distribution of impuri-
ties with Gaussian potential profile over a 300 nm long section. The concentration of
impurities is n = 5 × 1012 cm−2, their maximum strength is 100 meV and they have
a spatial range of 2 nm. The resulting conductance is reported in fig. 4(b). We can
see that, especially at low energies, the conductance remains quantized over large en-
ergy ranges. This means that the spatial deviation of the current due to disorder is
not large enough to break spatial chirality. On the contrary, at the energies where
the conductance is not quantized, electrons are (partially) deviated from the top edge
to the bottom one. Such a picture is confirmed by the local spectral currents shown
in fig. 4(d), where we observe part of injected electrons penetrating into the bulk and
reaching the bottom edge. As a consequence, only part of the current is transmitted
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Fig. 4. – (a) Band structure of a 100 nm wide ZGNR under a perpendicular homogeneous
magnetic field of 20 T. We observe the sequence of LLs and the valley degeneracy structure.
(b) Zero-temperature differential conductances of the pristine ribbon and of the defected ribbon.
Gaussian disorder with concentration n = 5 × 1012 cm−2, maximum strength 100 meV and
range 2 nm, over a 300 nm long section. (c) Spatial distribution of the spectral current for the
pristine ribbon at E = 0.153 eV, as indicated by a cyan line in panels (a) and (b). (d) Spatial
distribution of the spectral current at E = 0.153 eV for the disordered ribbon. The corresponding
conductance is about 1.4 (2e2/h). The low relief in the disordered region indicates the local
potential profile generated by Gaussian impurities.

to the drain along the top edge, while the rest is backscattered to the source along the
bottom edge.

When the graphene ribbon is narrow, also the spatial separation between counter-
propagating conductive channels is small. Therefore, a minimum amount of disorder
suffices to break spatial chirality and induce backscattering. Such a situation is in-
vestigated by Poumirol and coworkers in ref. [88], where the magnetoconductance of a
chemically derived 10 nm wide graphene ribbon is measured under fields up to 60 T and
for different back gate potentials. The experimental results, shown in fig. 5(a), clearly
indicate a positive magnetoconductance, which, however, is far from being quantized.
When the magnetic field increases, the magnetic length decreases, thus tending toward
a progressive separation of the edge channels. Even though spatial chirality is never
reached due to the narrow ribbon section, this phenomenon explains the positive mag-
netoconductance. Figure 5(b) shows the simulation of magnetoconductance for a 10 nm
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Fig. 5. – (a) Experimental magnetoconductance at 80 K for the 10 nm wide GNR for various
gate potential values Vg (top); and at 80, 50, and 20 K for Vg = 0 (curves with symbols:
measurements; solid lines: simulated data). The magnetoconductance for a 90 nm wide GNR is
also shown, varying from 0.6G0 to 0.4G0 (dashed curve). (b) Simulated magnetoconductance
for a 10 nm wide AGNR at different Vg with Gaussian impurities. (c) Corresponding spectral
current distribution at the energy E = 200meV in the presence of Gaussian at with B varying
from 0 to 60 T. Charge flows from left to right. Adapted from ref. [88].

wide graphene nanoribbon with armchair edges (AGNR) in the presence of Gaussian
potential impurities and for different back gate potentials, i.e. for different chemical po-
tentials as calculated from the capacitive coupling between back gate and graphene. The
Gaussian potential impurities mimic charged impurities trapped in the substrate. As
observable in the figure, such a model fairly reproduces the experimental trend. Disorder
of different nature (edge roughness, for example), entails a different behavior, thus indi-
cating that the transport properties of the sample are dominated by charged impurities.
The spatial distribution of the spectral current, at a representative energy E = 200 meV,
clarifies the mechanisms at work. Figure 5(c) shows the evolution of the current when
increasing the magnetic field from 0 to 60 T. Up to B ≈ 30 T, backscattering is maxi-
mum and the current spreads almost homogeneously over the ribbon. At higher fields
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the formation of edge channels is more visible, as indicated by the arrows in the case
B = 50 T. This recalls what already observed in fig. 4(d) for the larger ribbon. Finally,
at B = 60 T, the formation of the top edge channel is evident, though backscattering is
still present and spatial chirality is not achieved.

The results illustrated above clarify the origin of the integer quantum Hall regime and
emphasize the role of the spatial chirality of the edge currents. This concept will often
come up in the rest of the review.

3.2. Quantum Hall effect in disordered graphene and Kubo Hall conductivity . – The
effect of disorder on the localization phenomena in the quantum Hall regime is central
to understand the integer QHE from a bulk perspective, where σxy plateaus develop by
varying the charge density in a region coinciding with a vanishing σxx [42]. Historically,
the phase diagram of (σxy, σxx) was explained in terms of a localization/delocalization
transition of the wave functions driven by the competition between magnetic and disorder
length scales. Given that LLs need to be formed to observe QHE, weak disorder can
be treated as a perturbation on top of the LL spectrum, and it was found that the
states are much more robust at the center of LLs and remain mostly delocalized in the
whole system, in contrast to states in between LL centers, which are typically localized.
Actually, the onset of σxy quantization is connected to the formation of mobility edges
separating extended from localized states. Inside the plateau, the state localization is
then consistent with σxx ∼ 0 (but also the resistivity ρxx ∼ 0), in the absence of bulk
dissipative transport [42].

The most standard method to treat bulk Hall conductivities is the linear-response
theory developed by Ryogo Kubo [44], and applied for the first time to QHE by Aoki and
Ando [89]. Bulk quantities can actually be connected to measurements in the Corbino
geometry for which electrodes (coaxial contacts) are attached to the inner and outer
perimeters of a disk-shaped sample in which the current flows radially from an inner
contact to an outer ring contact. This geometry not only eliminates any unknown edge
effects that might interfere with determining the Hall conductivity, but is also insensitive
to the formation of the known quantized edge conductance of other filling factors, thus
enabling us to directly probe the bulk conduction [90].

Understanding the anomalous features of QHE in disordered graphene is a very chal-
lenging issue. Indeed, surprisingly, QHE in graphene seems very robust to very large
disorder, as for instance that introduced by hydrogenation in ref. [91]. Furthermore,
QHE in graphene presents additional peculiarities depending on the symmetry-breaking
aspects conveyed by defects. In weakly oxidized graphene or in the presence of structural
vacancies, the formation of disorder-induced resonant critical states in the zero-energy
LL is observed, as evidenced by lower bound values of the dissipative conductivity σxx

and a zero-energy σxy quantized plateau in between resonances [92,93], see sect. 3.4.
Exploring Hall transport in disordered systems of large size and for moderate mag-

netic fields demands for real-space order-N computational methods. Recently, two ap-
proaches where developed to calculate σxy conductivity, one by Garcia and cowork-
ers based on the kernel polynomial method (KPM) [94, 95] and a second one due to
Ortmann and coworkers based on time-dependent propagation methods [96-98]. The
advantage of these methods relies on the ability to compute the conductivity tensor
without having to know all the eigenstates of the system, which would be prohibitive
for the large systems required to simulate disordered systems under moderate magnetic
fields [89].
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Fig. 6. – Hall conductivity for Anderson disorder (dashed curves: exact diagonalization, solid
curves: real space σxy) at different magnetic fields (main frame). Same information for larger
disorder for high field 963 T (upper inset) and intermediate fields of 45T (lower inset). Adapted
from ref. [97].

The general framework is provided by Kubo linear response theory [44] in which the
dc conductivity is given as

(13) σαβ(ω = 0) = lim
1
V

∫ ∞

0

dte−st

∫ β

0

dλ Tr [ρ0jβ(0)jα(t + i�λ)] ,

where V is the volume of the sample, ρ0 is the equilibrium density matrix and jα(τ) is the
current operator in the α direction, evaluated at τ = 0 and τ = t+ i�λ in the formula. A
simple derivation of the Kubo formula, together with the different representations used
in this review, is presented in Appendix C.

For disordered systems, where the correlations are small compared to the disorder
scale, one can focus only on the non-interacting regime, where the density matrix ρ0 can
be fully described by two parameters: the temperature T and the chemical potential μ.
One representation that can be exploited using time-evolution method is

(14) σα,β =
1
V

∫ ∞

0

dt

∫ ∞

−∞
dεf(ε)Tr

[
δ(ε − H)jβ

1
ε − H + iη

jα(t) + h.c.
]

,

where η is a small convergence parameter, which is starting point of the real space
implementation developed in refs. [96, 97]. This formula was used to calculate some
results for graphene with Anderson disorder, which are presented in fig. 6, where the
robustness of quantized Hall plateaus is studied as a function of magnetic and disorder
strengths.
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The study of Anderson disorder is indeed a traditional reference for metallic systems,
allowing the simple investigation of the transition from the QHE regime to the conven-
tional Anderson insulating state by varying a single parameter W , while keeping the
initial LL spectrum unchanged by disorder (beyond broadening). Figure 6 indicates an
excellent agreement (within few percent) between the real space Kubo algorithm and
exact diagonalization techniques at low energy for high magnetic fields [97].

To illustrate the effect of increasing disorder, a zoom on the first two Hall steps is
provided for B = 963 T in the upper inset of fig. 6. The LLs are broadened with W
around the critical states, while the first and second plateaus at ±2e2/h and ±6e2/h
remain unaffected. It is clear that by increasing disorder broadening, one progressively
suppresses the LL integrity, which results in the disappearance of the Hall plateaus,
starting from high energy levels, which are closer in energy.

One sees that the physics is identical (lower inset) for a more realistic magnetic field
(45 T). This illustrates the performance of the algorithm to probe low magnetic fields and
the possibility to destroy quantization at higher energy for W = γ0. For such a disorder,
only the zero-energy LL fully develops, while all the other states become localized.

3.3. Effect of disorder grain boundary in polycrystalline graphene. – As mentioned
in the introduction, the QHE in graphene is characterized by a large energy separation
between LLs. As a consequence, in graphene Hall bars, the transverse resistance quan-
tization can be observed even at relatively high temperature and low magnetic fields.
Graphene is thus an ideal material to replace the GaAs-based metrological standard of
resistance. Thanks to the development of the chemical vapor deposition (CVD) tech-
nique, it is now possible to fabricate very large Hall bars made of monolayer graphene,
thus incontrovertibly opening the doors to metrological applications, as recently verified
experimentally [99]. However, despite its general high quality, CVD graphene is intrinsi-
cally polycrystalline. As shown below, this may induce dissipative transport [100], thus
putting at risk the quality of the Hall resistance quantization.

The particularly complex and tunable morphology of polycrystalline graphene, made
of a distribution of grains with varying size and orientation, interconnected by irregu-
lar grain boundaries (GBs), which appear as one-dimensional dislocations full of odd-
membered rings defects, opens challenging questions concerning the formation of LLs
and the conditions for the QHE observation. Figure 7 shows a typical structural model
of a polycrystalline sample with various grains of different orientations connected via
GBs, which mainly contain pentagonal and heptagonal rings [101]. In ref. [101], the
mean free path was found to upscale with the average GB sizes (�e ∼ dgrain size), with
mobility in the order of μ ∼ 3 × 105 cm2/(V s) for grain size of about 1μm and charge
density n = 3 × 1011 cm−2.

QHE has been investigated experimentally in low-mobility polycrystalline graphene
irregularly decorated with disordered multilayer graphene patches [102], and in CVD
grown monolayer samples [100]. In ref. [100], the temperature and magnetic field de-
pendence of the longitudinal conductance are found to follow smooth power-law scaling,
which is incompatible with variable range hopping or thermal activation, and indicates
the existence of extended or poorly localized states at energies between LLs [100]. Such
a phenomenon has been theoretically understood in ref. [103].

To simulate the electronic properties of large-area model of disordered polycrystalline
graphene samples, containing hundreds of thousands atoms and morphology defined by
varying grain misorientation angles, realistic carbon ring statistics, and unrestricted GB
structures, a real space method is here again compulsory [101]. High-magnetic field
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Fig. 7. – Ball-and-stick model of a polycrystalline sample, with GBs manifested by red/blue
colored atoms, which pictured local electron/hole local doping. Courtesy of Jani Kotakoski
(University of Vienna, Austria).

quantum Kubo conductivity σxx(E,B) is investigated with an order-N , real space ap-
proach [98]. The scaling properties of σxx are computationally followed through wave
packets dynamics from σ(E, t) = e2ρ(E)ΔX2(E, t)/t, where ρ(E) is the DOS and
ΔX2(E, t) = Tr[δ(E − Ĥ)|X̂(t) − X̂(0)|2]/Tr[δ(E − Ĥ)] (with X̂(t) the position op-
erator in Heisenberg representation) is the energy- and time-dependent mean quadratic
displacement of the wave packet. Calculations are performed on systems containing up
to ten million carbon atoms, which corresponds to sizes larger than 500 × 500 nm2. In
all of our simulations, the energy smearing factor is 13 meV.

The main frame of fig. 8 shows the longitudinal conductivity σxx (solid line) of a poly-
crystalline sample, superimposed with the total DOS (dashed line). In contrast to other
forms of disordered graphene [104], the energy dependence of σxx does not reflect that
of the LL spectrum. In particular, the conductivity is suppressed at the LLs, while it re-
mains finite and constant between LLs. This situation is opposite that of the conventional
QHE, for which states at the center of LLs are robust against localization, while bulk
states beyond the mobility edges all become localized, thus enabling both a quantized
Hall conductivity and a longitudinal conductivity that qualitatively resembles the DOS.

The nature of the states at and between LLs is revealed by their time-dependent
behavior. By scrutinizing the diffusion coefficient D(t) for energies at the center of two
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Fig. 8. – Kubo conductivity (left axis) and superimposed DOS (right axis) of a polycrystalline
sample with 15 nm average grain diameter and k = 9, where k is the ratio between the average
grain diameter and the magnetic length. The conductivity has been calculated at a simulation
time of 10 ps. Inset: Local DOS for an energy of 0.5 eV located between the zero-energy LL and
the first LL. In both panels, k = 9. Adapted from ref. [103].

LLs (marked by arrows at ν = 0 and 4) and energies between LLs (at ν = 2 and 6),
the localized nature of the states at the center of the LLs is clear from the fast decay
of D(t) [103]. On the contrary, D(t) exhibits a weak time-dependent decay between
LLs, which is typical of extended states in the weak localization regime. This behavior
connects to the finite value of σxx between LLs, where the current is conveyed by states
that propagate through the GB network as pictured in the inset of fig. 8.

The dissipative conductivity at the CNP has actually been the subject of intense
study. In the absence of magnetic fields, experiments indicate the possible existence of
some quantum critical states at the CNP with a finite conductivity that is insensitive
to localization effects down to zero temperature [105]. Under strong external transverse
magnetic fields, finite values of the conductivity at the CNP are further predicted and sug-
gested the existence of critical states [96,106] and robustness of the QHE [104,107]. Re-
cently, the observation of a quantized Hall conductance in highly resistive hydrogenated
graphene, with mobility less than 10 cm2 V−1 s−1 and mean free path far beyond the
Ioffe-Regel limit [91], or in low mobility polycrystalline graphene irregularly decorated
with disordered multilayer graphene patches [102], further confirmed surprising robust-
ness of QHE in strongly disordered graphene. Here, we have shown that polycrystalline
geometries, at the origin of zero-energy states, strongly jeopardize the formation of the
QHE (for grains smaller than the magnetic length), and also suppress the robustness of
the zero-energy conductivity, in total contrast with smooth disorder potentials [96].

Even for polycrystalline graphene with large grains, we expect that electrons can flow
along the GB network thus entailing dissipative transport. However, the presence of
disorder can localize the states at the GBs, thus de facto interrupting the network and
partially restoring dissipationless transport. Indeed, experimentally [100], despite the
presence of GBs, the quality of the Hall quantization is found to be much better than
expected from the simulation results above. This means that the conductive network
along the GBs is indeed partially neutralized by additional disorder.
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Fig. 9. – (a) Conductance vs. energy E of a 100 nm wide AGNR with a transverse GB consisting
of pentagonal and octagonal rings, shown in the inset, at B = 40T. (b) Spatial distribution
of the right-injected local DOS at E = 140 meV. (c) Same as (b) at E = −262 meV. Adapted
from ref. [103].

Electron transport in the two-terminal configuration confirms the 2D picture and
proves a further insight in the mechanism that breaks the spatial chirality of the edge
currents. Figure 9(a) shows the conductance of a 100 nm wide AGNR as a function of the
electron energy in the presence and in the absence of a transverse line defect constituted
of pentagonal and octagonal rings, and in the presence of a 40 T magnetic field. Over a
large region of the spectrum, the quantization observed for the pristine ribbon is affected
by the line defect. Note that the graphene sublattice symmetry is broken by the presence
of odd numbered (pentagonal) rings, which entails the electron-hole asymmetry observed
in the figure. For a large energy range within the first conductance plateau, a series of
periodic oscillations appear. Their frequency is inversely proportional to the width of
the ribbon (not shown here), i.e. the length of the line defect. This suggests that they
are generated by electrons travelling back and forth along the line defect itself.

By looking at the spatial distribution of the occupied density of states, it is possible
to visualize the mechanism underlying the breakdown of the QHE regime. Figure 9(b)
shows the distribution at E = 140 meV. The electrons are injected from the right and
flow along the bottom edge. When reaching the line defect, they are partially transmitted
to the left still along the bottom edge, and partially deviated along the line defect before
reaching the top edge and being backscattered. This “short-circuit” mechanism clearly
shows how GBs can entail dissipative transport, in agreement with the 2D picture. The
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Fig. 10. – Evolution of the conductance in of a ribbon with a GB and increasing Anderson
disorder with strength W . Adapted from ref. [108].

ribbon with the line defect can be seen as the union of two semi-infinite ribbons along
whose edges the chiral currents flow clockwise. At the junction between the semi-infinite
ribbons, i.e. along the line defect, two chiral channels with opposite group velocity are
present. Therefore, the spatial chirality of current is largely lost along the line defect,
where electrons can flow in both directions. This explains the periodic oscillations ob-
served in fig. 9(a) and suggests that the inter-edge channel can be easily localized in the
presence of additional disorder. This picture is confirmed in the literature [100, 108]. In
fig. 10, the conductance of a graphene ribbon in the presence of Anderson disorder along
the line defect is shown for a small energy interval along the first Hall plateau [108].
Disorder progressively localizes the states along the defect, thus reducing backscattering
and partially restoring quantization.

As seen in fig. 9(a), for some energy ranges the conductance is not affected by the
presence of the line defect. In this case, the penetration of electrons along the non-chiral
channels is limited, and the current does not reach the opposite ribbon edge. This is
seen in fig. 9(c) for E = −262 meV. Note that, compared to fig. 9(b), the chirality is
here opposite, since we are in the hole region of the spectrum. An analogous mechanism
of spatial chirality breaking has been predicted [109] and observed [110] in epitaxial SiC
graphene, where bilayer regions behave as metallic patches that can connect opposite
edges.

3.4. Anomalous quantum Hall effect . – Experiments on disordered graphene with low
mobility have reported surprising features such as a double peak in the dissipative con-
ductivity and some onset of a zero-energy quantized Hall conductance, see figs. 11(a,b),
which cannot be easily interpreted by LL splitting since disorder is too strong and mixes
valleys [111]. Such an occurrence of a zero-energy plateau in the presence of strong
disorder is truly puzzling since it calls for revisiting the understanding of conductance
quantization in terms of topological invariants in disordered materials. Here, we show
that similar unconventional magnetotransport fingerprints in the quantum Hall regime
(with applied magnetic fields from one to several tens of teslas) can occur in chemically
or structurally disordered graphene. Figure 11(c) shows a low-energy double-peaked con-
ductivity for 1% of adsorbed monoatomic oxygen on graphene, which results from the
formation of critical states conveyed by the random network of defects-induced impu-
rity states. In conjunction with the double peak σxx(E), the onset of a quantized Hall
conductivity plateau σxy(E) = 0 emerges, similarly to the experimental measurements
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Fig. 11. – (a) The longitudinal conductivity σxx and (b) Hall conductivity σxy as functions of the
shifted gate voltage V ′

g = (Vg − VCNP) for T = 150, 100, 50, 30, 10, 5, and 2 K in the magnetic
field B = 13 T. The arrows indicate the changes corresponding to lowering temperature. The
vertical dashed lines represent filling factors corresponding to ν = 0,±4,±8. Adapted from
ref. [111]. (c): longitudinal conductivity σxx (dashed lines) and Hall conductivity σxy (solid
lines) for 1% of epoxy defect density. Courtesy of Nicolas Leconte (University of Seoul, Korea).

of figs. 11(a,b). Such features are observed when the magnetic length is larger than the
typical distance (di) between impurities (here �B/di = 3), and have been extensively
discussed in ref. [93]. When �B/di 
 1, these features disappear, as seen in fig. 12.

The conductivity σxx(E) is further shown in fig. 12 for impurity densities of 0.05%,
0.25%, 1% at B = 80 T [93]. In the inset, we observe how the localization length of
electronic states diverges in the vicinity of some resonant energy (Ec), which correspond
to one peak value of σxx(E). It turns out that σxx(E = Ec) is scale-independent (does
not vary with system length), thus suggesting that critical states are formed at Ec.
In ref. [93], we discussed the origin of such a critical delocalization as the result of a
percolation between local impurity states in real space [93]. At other energies (above
or below Ec), σxx(E) is found to decay with the system length, thus pointing towards
localized states. Accordingly, the computed double-peaked conductivity together with
the onset of a zero-energy Hall conductance plateau, very similar to the experimental
features reported in figs. 11(a,b), indicate a genuine metal-insulator transition, which is
unique to disordered graphene.

The two-terminal simulations of large graphene ribbons with a random distribution of
double vacancies and under high magnetic field, as reported in ref. [93], better illustrate
the percolative behavior of electrons. Figure 13(a) shows the conductance of a 100 nm
wide graphene ribbon with a density 0.5% of double vacancies over a section of the ribbon
with length L varying between 25 and 100 nm. The source and drain contacts, at the



610 A. CRESTI, B. K. NIKOLIĆ, J. H. GARCÍA and S. ROCHE

Fig. 12. – σxx (dashed lines) and σxy (solid lines) for double vacancies at 80T. Inset: Estimated
localization lengths for 0.5% at 80 T with theoretical critical exponential (ν = 2.34) decay around
E+

c . Adapted from ref. [93], by courtesy of Nicolas Leconte (University of Seoul, Korea).

side of the disordered region, are doped so to inject many electrons, and a magnetic field
of 80 T is considered.

For L = 25 nm and in the absence of disorder, the conductance is quantized to 2e2/h
around E = 0, see the inset of fig. 13(a). As anticipated, in this case the current enter-
ing from the source is deviated to the top edge, where it flows without being scattered
to the drain, as shown in fig. 13(b). When including disorder, states are expected to
form around the double vacancies with an extension comparable to the magnetic length,
as observed in the 2D simulations and in the literature [112]. For L = 25 nm, the
conductance increases above 2e2/h. Such a behavior, which may appear counterintu-
itive, is due to the formation of bulk conductive channels created by the coupling of
states localized around the vacancies. The current distribution of fig. 13(c) clearly shows
this phenomenon. When increasing the length of the disordered section to L = 50 nm
and L = 100 nm, backscattering increases due to the lengthening of the percolative
path that electrons have to travel before reaching the drain contact, see figs. 13(d,e).
This determines a progressive decrease of the conductance with L. In qualitative agree-
ment with the 2D simulations, for L = 100 nm, transport is strongly suppressed around
E = 0 and two energy windows of more extended states are present at the sides of this
point.

4. – Quantum spin Hall effect in graphene with enhanced spin-orbit coupling

The seminal theoretical study [26] by Weeks and co-workers has revealed that
graphene endowed with modest coverage of heavy adatoms (such as indium and thal-
lium) could exhibit a substantial band gap and QSH fingerprints (detectable in transport
or spectroscopic measurements). For instance, one signature of such a topological state
would be a robust quantized two-terminal conductance (2e2/h), with an adatom density-
dependent conductance plateau extending inside the bulk gap induced by SOC [26,113].
To date, such a prediction lacks experimental confirmation, despite some recent results
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Fig. 13. – (a) Conductance of the two-terminal system with a density n = 0.5% of double
vacancies over a ribbon of length L for 25 nm to 100 nm. Inset: pristine case for L = 25nm.
(b) Spatial distribution of the spectral current at E = 0.008 γ0 for the pristine ribbon with
L = 25 nm. The arrows indicate the current direction. (c-e) Same as (b) for double vacancy
density of 0.5% and L = 25nm, 50 nm and 100 nm. All simulations at 80 T. Adapted from
ref. [93].

on indium-functionalized graphene that have shown a surprising reduction of the CNP
resistance with increasing indium density [114], although other attempts have been un-
successful in revealing anomalous transport phenomena [115]. On the other hand, it is
known that adatoms deposited on graphene inevitably segregate, forming islands rather
than a homogeneous distribution [116], which significantly affects most transport fea-
tures [117]. A detailed description of the origin of the different types of SOC in graphene
and the corresponding TB Hamiltonians are reported in Appendix A.

4.1. Homogeneous distribution of heavy adatoms. – In this section, we illustrate the
model Hamiltonian proposed by Weeks and coworkers [26] to describe graphene in the
presence of heavy adatoms. Heavy atoms, such as indium and thallium, preferably sit on
the hollow site of graphene. Due their high atomic number, they show a strong intrinsic
SOC, which makes them an ideal mean to induce an effective SOC in graphene.

The Hamiltonian terms corresponding to the adatom orbitals can be removed by in-
cluding an energy-dependent self-energy and thus obtaining an all-graphene renormalized
Hamiltonian, where only the carbon 2pz orbitals appear. In the low-energy limit, such a
Hamiltonian can be approximated by eq. (A.3), with VR = VPIA = 0.

This is equivalent to having two independent Hamiltonians for spin-up and spin-down
electrons, which allows us to unambiguously define spin currents. Indeed, it can be shown
that a moderate Rashba SOC, with strength weaker than the topological gap, does not
sensibly affect the phenomena illustrated below.

When adatoms are scattered over graphene with a high enough concentration [26], we
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Fig. 14. – (a) Differential conductance of a 100 nm wide ribbon with a homogeneous distribution
of thallium adatoms with concentration nad = 15% over a 100 nm long section, in the presence
and in the absence of SOC. (b) Spectral spin current distribution at E = −100 meV for spin up
electrons injected from the left contact. (c) Same as (b) for spin down electrons. (d) Polarized
density of occupied states at E = −100 meV. The color is blue for spin-down and red for spin-up
electrons.

expect that the resulting effective SOC induces a quantum spin Hall phase in graphene,
with the raise of counterpropagating spin-polarized edge channels and quantized conduc-
tance [26,113,118]. Let us consider a 100 nm wide graphene ribbon with a homogeneous
distribution of thallium adatoms (VI = 54 meV and μ = −270 meV) with concentration
nad = 15% over a length of 100 nm. The leads are electrically doped by adding an energy
potential of −2.5 eV, thus mimicking source and drain contacts with a high DOS. Fig-
ure 14 (a) shows the differential conductance as a function of the electron energy in such
a system when VI = 0, i.e. SOC is switched off, and VI = 54 meV. First, we observe that,
in both cases, the CNP is shifted to E ≈ −120 meV. This is due to the doping effect of
the adatoms, which is given by the concentration of atoms on the involved carbon rings
(3nad) times the energy shift (μ). Then, and most importantly, fig. 14(a) shows that in
the presence of SOC, the transport gap observed for VI = 0 closes, and a 2e2/h plateau
appears over an energy window of about 80 meV. Such a width corresponds to the topo-
logical gap 6

√
3 V eff

I expected for an effective SOC V eff
I ≈ 7.9 meV ≈ nad VI. We can thus

conclude that the effect of a homogeneous distribution of heavy adatoms is to induce an
effective SOC with strength proportional to the adatom concentration. To further verify
the topological nature of this phenomenon, fig. 14(b) reports the local distribution of
spin spectral currents at E = −100 meV. We observe that electrons, injected from the
left contact, are transmitted along the top or bottom edge channel according to their
spin polarization. No current flows in the bulk, where a topological gap is present.

4.2. Clustering of adatoms and transition to the spin Hall effect . – As shown in the
previous section, a homogeneous distribution of heavy adatoms (with concentration 15%
in the example) is expected to induce a spin Hall phase. However, at present no topo-
logical phase has been observed experimentally in this kind of systems [115]. Here,
we illustrate the case of thallium adatoms and show how their clustering might be re-
sponsible for such a failure [119]. Clustering and segregation are typical phenomena for
adatoms on 2D materials [116]. This is already known to have a significant impact on
several material features concerning doping [120, 121], transport [122-125] and optical
properties [126,127].

We consider a 100 nm wide graphene ribbon with a concentration nad = 15% of
thallium adatoms over a 100 nm long section. The adatoms are segregated into islands
with given radius r. As shown in figs. 15(a-e), for small islands with radius r < 1 nm, we
still observe a quantum spin Hall phase with conductance plateau and edge polarization.
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Fig. 15. – (a) Differential conductance of a 100 nm wide ribbon with a distribution of thallium
adatoms with concentration nad = 15% in islands with radius r = 0.5 nm, over a 100 nm long
section, in the presence and in the absence of SOC. (b) Spectral spin current distribution at
E = −100 meV for spin up electrons injected from the left contact. (c) Same as (b) for spin
down electrons. (d) Polarized density of occupied states at E = −100 meV. The color is blue for
spin down and red for spin up electrons. (e-h) Same as (a-d) for islands with radius r = 1nm.
Note that we cut the color bar edges to have the same scale as in (b,c,d). (i-l) Same as (e-h) for
islands with radius r = 1.5 nm.

When increasing the island size to r = 1 nm, see fig. 15(e), the plateau is reduced in
width and an increase of the conductance above 2e2/h at the edges of the topological
gap is observed. To better understand this phenomenon, we look at the spin resolved
spectral current density at E = 100 meV, in correspondence of a conductance peak, see
figs. 15(f,g). We observe that the current starts flowing through the bulk and concentrates
in two spatially separated regions. Here, the current forms vortices, whose propagation
direction depends on the spin polarization of injected electrons [119]. From fig. 15(h)
we can clearly see that edge polarization is preserved, but strongly polarized regions
appear in correspondence of the current vortices. For r = 1.5 nm, see figs. 15(i-l), the
conductance plateaus is completely lost, and the conductance is above 2e2/h. This is
consequence of the bulk current that develops around and between the islands. However,
and very intriguingly, a residual spin accumulation at the sample edges is present, as
in the SHE [10, 128]. Indeed, giant SHE has been recently observed in graphene [129]
decorated with clustered transition metals, whose origin was attributed to resonant skew-
scattering (SS) induced by adatoms [130].

The perturbation of the quantum spin Hall phase resulting from segregation depends
on the joint effect of the presence of large “pristine” regions between the clusters and
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Fig. 16. – (a) Sketch of the chiral currents (for given spin orientation) around an island of
adatoms, and a group of two close islands. The current direction is indicated by the arrows.
(b) Formation of edge channels for small island size. (c) For intermediate island size, edge
currents, bulk chiral current around islands and weak non-chiral bulk currents (green regions)
coexist. (d) For large island size, edge currents disappear and large non-chiral bulk currents are
present.

the large potential shift under the islands. However, the signature of the SOC is still
present, as evidenced by current vortices around the islands, whose chirality depends on
the spin orientation.

We provide a heuristic explanation of these phenomena by means of fig. 16. Local
chiral currents (i.e. flowing clockwise or counterclockwise depending on spin orientation)
form around an isolated island of adatoms. When two islands are close, they form a single
larger island and again the current turns around it, see fig. 16(a). For given adatom con-
centration, a small island size implies a large graphene coverage, which corresponds to an
almost uniform distribution of the SOC. Therefore, as for the homogeneous distribution
of adatoms, we observe the formation of chiral edge channels, as shown in figs. 15(b,c,e)
and illustrated in fig. 16(b). When increasing the size of the islands, large regions of
graphene are not covered by adatoms. As a consequence, we have the coexistence of chi-
ral currents (at the edges and around the islands) and non-chiral bulk currents, indicated
in green in fig. 16(c). The conductance quantization is largely perturbed by the bulk cur-
rents. In particular, due to the opening of transport channels through the topological gap
in the bulk, the conductance increases above 2e2/h. However, a strong spin accumulation
at edges still holds, as visible in figs. 15(i,l). Finally, for large island size, adatoms are
clustered in isolated regions separated by large regions of pristine graphene, see fig. 16(d).
Transport is thus dominated by the bulk non-chiral currents, which completely destroy
the conductance plateau. However, the local chiral currents around the island clusters
still generate some spin accumulation, i.e. a non-quantum SHE, as illustrated in sect. 5.

5. – Spin Hall effect in disordered graphene

The SHE [9, 10] is a phenomenon where a conventional unpolarized charge current
injected into a metal or a semiconductor generates a transverse pure spin current or
a spin accumulation at the lateral sample boundaries. In the ISHE, an injected pure
spin current generates a transverse charge current or a transverse voltage in an open
circuit. The distinction between unpolarized charge, spin-polarized charge and pure spin
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Fig. 17. – Comparison of charge I and spin ISα currents associated with different combination
of spin-resolved charge fluxes, I↑ and I↓, carrying spin-↑ and spin-↓ electronic wave packets,
respectively: (a) conventional unpolarized charge current is characterized by I = I↑ + I↓ �= 0
and ISα = I↑ − I↓ ≡ 0; (b) spin-polarized charge current I �= 0 is accompanied also by non-zero
spin current ISα �= 0; and (c) pure spin current ISα = I↑ − I↓ �= 0 arises when spin-↑ electrons
move in one direction, while an equal number of spin-↓ electrons move in the opposite direction,
so that net charge current is I ≡ 0.

current is explained in fig. 17. The two SHE effects, which are equivalent to each other
due to Onsager reciprocity relations [131], are illustrated in fig. 18 using four-terminal
device geometry. While the SHE is analogous to the classical HE for charges, it occurs in
the absence of externally applied magnetic field or magnetization that breaks the time-
reversal symmetry. Instead, the spin separation requires SOC, which has emerged as one
of the central resources for spintronics since, unlike cumbersome magnetic fields, SOC
makes possible spin control on very short length and time scales via electric fields [132].
We overview basics of SOC, as the manifestation of relativistic effects in solids and
graphene in particular, in Appendix A.

The SHE was originally predicted in the early 1970s [58], but remained largely un-
noticed until its rediscovery in the 1990s [133,134] and experimental confirmation in the
early 2000s brought by advances in optical techniques for measuring spin accumulation
in semiconductors [13, 14]. In contrast to these early experiments, where usage of opti-
cal techniques has required semiconductor samples of ∼ 100 μm size, later experiments
have moved toward electrical detection at room temperature using much smaller (of size
∼ 1 μm) metallic [16, 135] and semiconductor [136] samples. Furthermore, the inverse
SHE has become a “standard detector” of pure spin currents generated by variety of
mechanisms other than direct SHE [137], and a number of SHE-based devices has been
realized using different materials [138].

To compare efficiency of SHE-driven conversion of charge into spin in different mate-
rials, one uses the figure of merit known as the spin Hall (SH) angle θsH defined by the
ratio of driving charge current and resulting spin current. Using the example in fig. 18,
for injected conventional charge current, I1 = I↑1 + I↓1 �= 0 and ISz

1 = I↑1 − I↓1 = 0, and
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Fig. 18. – Basic phenomenology of the direct and inverse SHE, assuming example of 2D system
like graphene within the xy-plane: (a) in the direct SHE, conventional unpolarized charge current
I1 generates transverse pure spin current ISz

2 or spin accumulation (when transverse leads are
removed) of opposite sign at opposite lateral edges; (b) in the inverse SHE, pure spin current
ISz
1 generates transverse charge current I2 or voltage V2 − V3 in an open circuit. Note that

the usage of ideal transverse leads without SOC or other types of spin-dependent interactions,
as assumed in (a), bypasses [139] the issue of how to unambiguously define the conserved spin
current [140,141].

generated pure spin current, ISz
2 = I↑2 − I↓2 �= 0 and I2 = I↑2 + I↓2 = 0, the SH angle is

defined by

(15) θsH =
ISz
2

I1
.

This quantity is dimensionless when using the same units for spin and charge currents,
which are defined in terms of the spin-resolved charge currents I↑, I↓ carrying spins
pointing along the α = {x, y, z}-axis, as illustrated in fig. 17. Note that separated spins
are orthogonal to spin flux, as illustrated in fig. 18 for 2D samples. In 3D samples [142]
charge current in the x-direction generates transverse spin currents in the z- and y-
direction, which are polarized along the y- and z-axis, respectively, and have the same
amplitudes. The definition in eq. (15) is suitable for calculations based on the LB formula
(see Appendix B) for current in the leads (as performed in sects. 5.4 and 6), while for
calculations based on the Kubo formula for bulk conductivities (as performed in sect. 5.3),
we use

(16) θsH =
σz

xy

σxx
,

where σz
xy is the SH conductivity and σxx is the longitudinal charge conductivity. Note

that spin conductivity in two dimensions has the same unit as spin conductance and it is
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naturally given in the units of spin conductance quantum, e/4π. However, to make θsH a
dimensionless quantity, spin conductivity/conductance should be expressed in the same
units as charge conductivity/conductance by replacing e/4π with charge conductance
quantum e2/h = (2e/�)(e/4π).

To date, measured values of θsH range from ∼ 10−4 in semiconductors to ∼ 0.01 for
metals like Pt [142] and ∼ 0.1 for metals like β-Ta and β-W [143]. Thus, recent experi-
ments [129,144] extracting surprisingly large θsH � 0.2 from all-electrical measurements
via combined direct and inverse SHE in multiterminal graphene devices (see figs. 25
and 30 for illustration) have attracted considerable attention. In order to enhance the
minuscule SOC effects (see Appendix A) in pristine graphene, these experiments have
utilized heavy adatoms like Cu, Au, Ag [129] or even light adatoms like hydrogen [144]
and fluorine [145] in order to locally enhance SOC in the graphene regions surrounding
the adatoms [146].

Before delving into quantum transport modeling of θsH, as well as RNL as the quantity
actually measured in these experiments, we first overview in sect. 5.1 three distinct
microscopic mechanisms behind SHE stemming from different aspects of SOC in solids
—SS and side jump (SJ) mechanisms associated with extrinsic impurities, as well as the
intrinsic mechanism associated with uniform SOC affecting the band structure of the
material. In addition, in sect. 5.2 we also overview recently provoked controversy due
to the inability of some of the repeated measurements [147, 148] on adatom-decorated
graphene to unambiguously associate non-zero RNL with spin-dependent transport.

5.1. Physical mechanisms of the spin Hall effect: Extrinsic versus intrinsic. – The
lab frame interpretation of SOC given in Appendix A makes it easy to understand the
Mott SS [149] off an impurity whose Coulomb field deflects a beam of spin-↑ and spin-↓
particles in opposite directions, thereby generating the SS contribution [9,10] to extrinsic
SHE. For example, if we look at spin-↑ electron from behind moving along the y-axis,
whose expectation value of the spin vector is oriented along the positive z-axis so that
the corresponding magnetic dipole moment lies along the negative z-axis, then in the
lab frame we also see its Lorentz transformed electric dipole moment Plab oriented along
the negative x-axis. The electric dipole feels the force F = (Plab · ∇)Elab, oriented in
this case along the positive x-axis since gradient of the electric field Elab = −∇Vimp(r)/e
generated by the impurity is always negative outside of it.

Note that this simple classical picture only explains one aspect of SOC-dependent
interaction with impurity. The other one —the so-called SJ (i.e., sideways shift of the
scattering wave packet)— requires fully quantum mechanical analysis. The elimination
of the negative energy states in the Dirac equation, which leads to SOC Hamiltonian in
eq. (A.1), can be viewed equivalently as a redefinition of the position operator [10,11]

(17) rphys = r +
�

4m2c2
p × s,

in the positive energy subspace (i.e., by replacing canonical position operator by rphys

in V (r), and by expanding to first order in �/4m2c2, one recovers eq. (A.1)). This leads
to anomalous velocity operator in SO-coupled systems [10,11]

(18) v =
drphys

dt
=

i

�
[H, rphys] =

p
m

− �

4m2c2
∇Vimp(r) × s,

for H = p2/2m+Vimp(r). During the collision of electronic wave packet with an impurity,
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the second term in eq. (18) dominates because ∇Vimp(r)/e = −dp/dt is very large, so that
the center of the wave packet will be displaced by Δrphys =

∫
dtv(t) = (�/4m2c2)Δp×s.

This includes the change of the internal structure of the wave packet in the course of
scattering, and it is the origin of the SJ contribution [9, 10] to extrinsic SHE.

The intrinsic SHE arises due to uniform SOC affecting electronic band structure.
Such a SOC can also be viewed as the Zeeman interaction −s · Bn(p) with an internal
effective magnetic field Bn(p) that depends on momentum (in order to preserve time-
reversal invariance) and the band index n. For example, for the Rashba SOC in eq. (A.2),
BR(p) = α(ẑ × p)/�. The Rashba SOC Hamiltonian, ĤR = −s · BR(p), then gives rise
to the acceleration operator [150,151]

(19) a =
d2r
dt2

=
1
�2

[ĤR, [r̂, ĤR]] =
2α2

�3
(p × ẑ) ⊗ sz.

Taking the expectation value of this operator in spin-polarized wave packet state shows
that it deflects opposite spins in opposite direction, thus giving origin to the intrinsic
SHE in finite-size samples [139, 151-154]. The spins along the z-axis will also precess
in BR(p) (which leads to oscillations of the expectation value of a along the wire), and
eventually dephase due to spin-orbit entanglement [155] (which leads to the decay of the
expectation value of a along the wire). Thus, the strength of the intrinsic SHE is set
by the competition between spin separation and spin dephasing induced concurrently by
the same SOC mechanism [139,152,153].

While impurities do not play an active role in the intrinsic SHE, they must be in-
cluded in the calculation of intrinsic σz

xy of macroscopic samples since normal (i.e., spin-
independent) scattering off impurities is required to establish the steady-state transport
regime in the presence of external electric field [10]. On the other hand, the SH con-
ductance GsH = ISz

2 /(V1 − V4) for the device in fig. 18 or SH accumulation can be
calculated [152,153,156] even if the SO-coupled central region is a perfectly clean sample
in the ballistic transport regime. In such a situation, the electric field is zero and the
charge current I1 is driven by the electrochemical potential difference eV1 − eV4 between
the macroscopic Fermi liquid reservoirs responsible for dissipation [157].

Unlike metals with low mobility, where SJ contribution dominates over SS contribu-
tion and where it is difficult to differentiate SJ from the intrinsic mechanism [10], due
to the smallness of uniform SOC in graphene (see Appendix A) the analysis of SHE in
graphene with adatoms can be performed solely in terms of SJ versus SS contribution.
For example, the recent SHE experiments on graphene decorated with Au or Cu adatoms
were explained as a consequence of SS mechanism [129], while experiments on graphene
decorated with hydrogen adatoms have concluded that they are predominantly driven
by SJ mechanism [144]. This is based on weak dependence of θsH on the concentration
of adatoms nad in the former case, and θsH ∝ nad dependence in the latter case. Besides
large SOC around the adatom position, strong perturbation of the potential around the
adatom can also contribute to large magnitude of the extrinsic SHE [158].

5.2. Controversies in the interpretation of non-local transport measurements on
adatom-decorated graphene. – The failure of recent attempts [147, 148] to confirm that
the non-local resistance RNL in multiterminal (see fig. 25) adatom-decorated graphene
is driven by spin transport has questioned the early interpretation in terms of SHE. For
example, ref. [147] found that the deposition of Au or Ir adatoms onto graphene did
induce a large non-local signal, which, however, is insensitive to the applied in-plane
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magnetic field. Similarly, ref. [148] found that non-local signal in hydrogenated graphene
is also not sensitive to in-plane magnetic field, which should affect the non-local signal
if spin current mediated it. The VHE and the contribution of long-range neutral valley
currents (see sect. 7) as mediators of non-local signal can be excluded [148] due to ab-
sence of temperature dependence and broken inversion symmetry [159-163]. Therefore,
these experimental data call for in-depth scrutiny and clarification.

On the theoretical side, we note that semiclassical theories for θsH [130] and RNL [164]
suffer from many flaws since they utilize approximations known to be inaccurate [75,165]
at low energies close to CNP where the non-local signal is actually observed. While the
Kubo formula [166] offers a fully quantum-mechanical treatment that can in principle
capture all relevant effects, its standard analytical evaluations as perturbative expansion
in disorder strength neglect [167] interference terms generated by SS from pairs of closely
spaced impurities [168-170]. Thus, the adatom clustering, which is usually observed
experimentally [116], should also impact θsH as it introduces large variation of charge
and spin transport characteristics [119,120,125].

Section 5.3 presents the Kubo formula-based calculations of θsH for square graphene
sheet with periodic boundary conditions in the presence of randomly distributed adatoms
as a function of the strength of SOC terms in eq. (A.3), or adatom concentration covering
both dilute and non-dilute regimes. This Section also presents calculations for realistic
graphene samples with Au or Tl adatoms, which determine the strength of SOC terms
(as extracted from DFT calculations, see Appendix A), where we analyze the effect of
randomly distributed versus clustered (as discussed also in sect. 4) adatoms.

Section 5.4 presents the LB formula-based calculations of θsH for Au-adatom-
decorated multiterminal graphene. This approach makes it possible to obtain θsH in
both quasiballistic and diffusive transport regimes, as well as to compute the non-local
resistance RNL as the quantity directly measured in experiments, thereby revealing pres-
ence of non-SHE-related contributions to the non-local signal [171]. This motivates us to
propose a novel experimental setup (see fig. 30), which can eliminate such background
contributions and can make it possible to measure non-local resistance unambiguously
connected to the SHE mechanism.

5.3. Spin Hall angle in adatom-decorated graphene: Kubo formula approach. – Mod-
eling SOC in graphene due to the adsorption of adatoms is a complex task, because
it strongly depends on the interaction between the graphene and the impurity or-
bitals [26,32,74,172-175]. Here, we employ minimal effective TB Hamiltonian in eq. (A.3)
as an input for quantum transport calculations, whose construction and fitting of param-
eters (VI, VR, VPIA, and μ) to DFT calculations is elaborated in Appendix A. Below,
we denote the position of adatoms as either H-site (see fig. 25 for illustration), which
is at the center of a hexagonal ring of carbon atoms, or T-site, which is on the top of
carbon atom. We neglect any on-site potential on the carbon atoms due to adatom, so
that μ = 0 in figs. 19, 20, 21 and 22.

The SH conductivity is evaluated by computing the Kubo conductivity tensor using
an efficient real-space method developed in ref. [94]. Although this methodology was orig-
inally developed for charge conductivity, it has been recently extended to the calculation
of spin conductivity [95,171]. The methodology is delineated in Appendix C.

To gain insight into the effect of three different SOC terms in eq. (A.3), locally induced
(such as VR and VPIA) or enhanced (such as VI) by the presence of an adatom, we begin
our analysis by scrutinizing the effect of purely intrinsic SOC —VI �= 0;VR = VPIA = 0.
The presence of an energy gap ΔI is observed in the DOS in fig. 19(c), which results in
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Fig. 19. – Spin and charge transport properties of graphene decorated with adatoms of con-
centration nad = 20%. The adatoms are positioned at T-sites and they locally enhance only
the intrinsic SOC —VI �= 0; and VR = VPIA = 0 in eq. (A.3). (a) Longitudinal conductivity
and (b) SH conductivity as a function of EF for increasing values of VI. (c) DOS and (d) SH
conductivity as a function of VI for different values of EF. We use D = 2 × 200 × 200 sites and
M = 1600 in the Kubo formula calculations (see Appendix C). Adapted from ref. [94].
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Fig. 20. – Spin and charge transport properties of graphene decorated with a random distribution
of adatoms of concentration nad = 20%. The adatoms are positioned at T-sites and they locally
generate only the Rashba SOC —VR �= 0; and VI = VPIA = 0 in eq. (A.3). (a) Longitudinal
conductivity and (b) SH conductivity as a function of EF for increasing values of VR. (c) DOS
and (d) SH conductivity as a function of VR for different values of EF. We use D = 2×200×200
sites and M = 800 in the Kubo formula calculations (see Appendix C). Adapted from ref. [94].

an insulating behavior of the longitudinal charge conductivity shown in fig. 19(a). The
zero charge conductivity σxx = 0 inside the gap of such a realization [26, 32, 119, 176] of
2D TI phase (see also sect. 4) means that θsH in eq. (15) is ill-defined within the gap. So,
our systematic analysis of the effect of different SOC terms on spin and charge transport
is presented by plotting separately the SH conductivity σz

xy and the longitudinal charge
conductivity σxx.
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Fig. 21. – Spin and charge transport properties of graphene decorated with a random distribution
of adatoms of concentration nad = 20%. The adatoms are positioned at T-sites and they locally
generate only PIA SOC —VPIA �= 0; and VI = VR = 0 in eq. (A.3). (a) Longitudinal conductivity
and (b) SH conductivity as a function of the EF for increasing values VPIA. (c) DOS and (d) SH
conductivity as a function of VPIA for different values of the EF. We use D = 2×200×200 sites
and M = 800 in the Kubo formula calculations (see Appendix C). Adapted from ref. [94].

0 0.2 0.4 0.6 0.8 1
n

ad

0

0.5

1

1.5

2

σz xy
(e

/4
π)

E
F
=0.05γ0

E
F
=0.1γ0

E
F
=0.5γ0

0 0.1 0.2 0.3 0.4
n

ad

0

0.5

1

1.5

σz xy
(e

/4
π)

E
F
=0.05γ0

E
F
=0.1γ0

E
F
=0.5γ0

V
RSO

=0.4γ0

V
PIA

=0.4γ0

(b)(a)

Fig. 22. – Spin Hall conductivity of graphene decorated with a random distribution of adatoms
as a function of their concentration nad. The adatoms are positioned at T-sites and they locally
generate only the Rashba SOC of strength VR = 0.4γ0 in (a) or PIA SOC of VPIA = 0.4γ0

in (b). We use D = 2 × 200 × 200 sites and M = 800 in the Kubo formula calculations (see
Appendix C). Adapted from ref. [94].

By fitting the behavior for different concentrations and values of VI we find that energy
gap follows ΔI ∝ VInad, which is consistent with Kane-Mele [18,19] model rescaled by the
adatom concentration nad and it agrees with previous numerical calculations [94,177,178].
In fig. 19(b), quantized SH conductivity is found for energies inside the gap ΔI, as
predicted by the Kane-Mele model [18, 19], even in the presence of weak disorder [179].
Moreover, fig. 19(d) shows the robustness of the SH conductivity outside the gapped
region, even at small strengths of the intrinsic SOC, which is important for experiments
where VI in eq. (A.3) is usually small and the gap ΔI is easily closed by disorder and/or
temperature.

We proceed by analyzing the effect of adatoms that would generate purely Rashba
SOC —VR �= 0; and VI = VPIA = 0 in eq. (A.3). In the DOS shown in fig. 20(c),
we notice the presence of new states at CNP. These states produce a slight increase in
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the minimum of σxx for increasing values of SOC, as can be seen in fig. 20(a). At the
same time, the Rashba SOC strongly suppresses σxx away from CNP, thus decreasing
the mobility of graphene. The SH conductivity in fig. 20(b) changes sign as it crosses
the CNP at which σz

xy = 0 due to particle-hole symmetry [152, 154]. In the vicinity of
CNP there is a rapid increase of the SH conductivity, saturating at ≈ ±e/(2π), which
is consistent with analytical calculations of σz

xy in infinite homogeneous graphene with
uniform Rashba SOC [180]. The transition from negative to positive SH conductivity
as a function of EF gets more abrupt for small VR. Surprisingly, this translates into an
increase of σz

xy in the vicinity of CNP for decreasing VR, as shown in fig. 20(d). The
Rashba SOC breaks the spin degeneracy and there are two non-degenerate bands for
electrons at CNP. In the case of nad = 100%, the sharp increase of the SH conductivity
occurs at EF of the order of the Rashba splitting between the bands at energy scales
where the DOS presents the contribution of a single band. A similar behavior is seen for
nad = 20% in fig. 20 with the Rashba splitting scaled with the concentration.

Finally, we analyze the effect of adatoms that would generate purely PIA SOC —
VPIA �= 0; and VI = VR = 0 in eq. (A.3). The DOS plotted in fig. 21(c) shows the
emergence of new states in the vicinity of the CNP. These new states translate into
a decrease of σxx and mobility away from CNP, as shown in fig. 21(a). Figure 21(b)
shows that the SH conductivity reaches a maximum at high energies with a value that
depends directly on VPIA. In contrast to the SH conductivity driven by the Rashba SOC
in fig. 20(d), for PIA SOC σz

xy at fixed EF shown in fig. 21(d) increases with the SOC
strength, and it is very small in the limit VPIA → 0.

In fig. 22, we compare the dependence on adatom concentration for the SH conduc-
tivity generated purely by the Rashba SOC versus PIA SOC. Figures 22(a) and 20(d)
suggests that Rashba SOC-generated contribution to the SH conductivity must be ex-
tremely important for experiments since it is larger for low adatom concentrations and
weak VR. On the other hand, figs. 22(b) and 21(d) show that PIA SOC generated contri-
bution to the SH conductivity will be negligible under realistic experimental conditions
where VPIA is weak [74,172-175] and concentration of adatoms is small [129,144].

We conclude insights from Kubo formula-based calculations by discussing spin
and charge transport properties of realistic graphene samples encountered in experi-
ments [129] where adatoms generate both the intrinsic and the Rashba SOC. Figure 23
plots the SH angle defined in eq. (16) as a function of EF for nad = 15% concentration of
Au adatoms distributed in scattered fashion (i.e., isolated adatoms without any cluster-
ing, as illustrated in fig. 25). This result is contrasted with samples where either Au or
Tl adatoms are clustered into randomly distributed islands of radius ∈ [1, 3] nm. We use
VI = 0.007γ0, VR = 0.0165γ0, VPIA = 0 and μ = 0.1γ0 in eq. (A.3) for Au adatoms [75]
residing on H-sites, and VI = 0.02γ0, VR = VPIA = 0 and μ = 0 for Tl adatoms residing
on H-sites, where both sets of parameters are extracted (see also Appendix A) from DFT
calculations [26,75].

Remarkably, θsH shown in fig. 23 is very large close to CNP, reaching 0.1–0.3 (de-
pending on the type of adatom distribution), which is quite similar to the experimentally
reported values [129] for Au adatoms. However, for Au adatoms a threefold decrease in
θsH is found when adatoms are segregated into islands with small radius, thus manifesting
the detrimental effect of adatom clustering on SHE. This sharply contradicts the predic-
tions of semiclassical transport theories, where θsH increases with the radius of adatoms
clusters [130]. Nevertheless, a rigorous comparison would require treating a system con-
sisting of identical islands by both theories. Another discrepancy between our numerical
exact results in fig. 23 and approximations made in semiclassical theories is that the
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Fig. 23. – The spin Hall angle θsH for graphene with nad = 15% concentration of Au adatoms
on H-sites, which are either scattered or clustered, as well as for graphene with nad = 15%
concentration of clustered Tl adatoms. The two insets show the SH conductivity σz

xy and the
longitudinal charge conductivity σxx corresponding to the same graphene decorated with Tl
adatoms as in the main panel. Results are averaged over 400 disorder realizations. Adapted
from ref. [171].
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Fig. 24. – Spin Hall angle as a function of the concentration of randomly scattered Au adatoms.
These results are obtained from the LB formula applied to four-terminal graphene devices whose
central square-shaped region of the size 50 nm × 50 nm or 100 nm × 100 nm is attached to four
semi-infinite leads of the same respective width. The values of θsH are averaged over the EF

interval [−0.01γ0, 0.01γ0].

latter predicts [130] how σz
xy requires local enhancement of VI while being little sensitive

to VR.
Our additional calculations in fig. 23 using heavier adatoms such as Tl point towards

higher charge-to-spin conversion efficiency, even in the presence of adatom clustering.
As discussed in sect. 4 and Appendix A, Tl adatoms locally enhance the intrinsic SOC
while generating negligible Rashba SOC [26]. For large nad and scattered distribution
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of Tl adatoms, 2D TI phase exhibiting QSHE is predicted [26]. The impact of adatom
clustering was studied in ref. [119] where a crossover from QSHE to SHE was predicted
upon Tl clustering, see sect. 4.2. Figure 23 shows that clustered Tl adatoms lead to a
θsH that is similar in shape but larger than for Au adatoms, using the same nad. Thus,
our quantum transport calculations show that islands with non-zero VI (as in the case of
clustered Tl adatoms) are more efficient in generating extrinsic SHE than islands with
non-zero VR (as in the case of Au adatoms).

In the experiments [129], the density of gold clusters of diameter ranging from 20
to 40 nm is estimated to lie within 1010 cm−2–1011 cm−2. This leads to nad � 2–3%
assuming that clusters are two-dimensional. The values of θsH obtained from the Kubo
formula calculations assume larger adatom concentration nad = 15%. Because of too
large mean free paths (above the micrometer) for few percent adatom densities, we
cannot (within our present computational capability) reach the diffusive regime in which
the Kubo conductivities could be safely estimated. An estimate of θsH for much lower
density is actually not straightforward because the scaling of σsH with nad is predicted
to ultimately depend on the mechanism dominating the SHE [169,170].

Neglecting localization effects, the scaling of longitudinal conductivity should follow
the Fermi golden rule, σxx ∼ 1/nad. Similarly, the spin Hall conductivity follows σz

xy ∼
1/nad, but only when the SS mechanism predominates the extrinsic SHE [130,169,170],
as confirmed numerically in fig. 22(a). As discussed in refs. [169, 170], σsH should be
dominated by a nad-independent value for the quantum SJ mechanism, whereas higher
order quantum interference terms between scattering paths could lead to nα

ad dependence
(where α = 1, 2, . . .) [130,169,170,181].

Therefore in the limit of small nad, θsH is expected to be either constant or ∝ nad

(∝ nα+1
ad ). The value nad = 15% used in our Kubo formula calculations lies outside the

dilute adatom regime where such theories have been developed [95,169,170], but based on
the arguments above we extrapolate that for few percent of Au adatom concentration,
the maximum value should range within θsH � 0.01–0.1, where the lower limit is for
adatom clusters. Thus, our estimate is about one order of magnitude lower than the
value reported in ref. [129]. Finite temperatures and larger clusters will lead to even
lower spin Hall angles.

A brute-force calculation of θsH for arbitrary adatom concentration in finite-size sam-
ples is possible using the multiterminal LB formula approach discussed in sect. 5.4.
Figure 24 shows that θsH does increase with the adatom concentration in the limit of low
nad, with values agreeing with estimates made above. Comparing our results in fig. 24
with those in refs. [95,169,170] suggests that SJ and anomalous quantum processes could
dominate the physics of SHE in graphene decorated with low concentration of adatoms.

5.4. Spin Hall angle and non-local resistance in multiterminal adatom-decorated
graphene: Landauer-Büttiker approach. – To describe non-local transport in SHE ex-
periments [129, 144], we simulate six-terminal graphene devices, as depicted in fig. 25,
by using the LB formula (see Appendix B) as efficiently implemented in the KWANT
package [182]. In the SHE-based explanation for the origin of non-local signal, the in-
jected transverse charge current between leads 1 and 2 generates the longitudinal spin
current ISz

5 in lead 5, as well as the putative mediative spin current ISz

M . The conversion
of ISz

M via the inverse SHE into the voltage VNL = V3 − V4 between the leads 3 and
4 then gives non-zero RNL. Similarly to eq. (15), the SH angle for the device geome-
try in fig. 25 is obtained from θsH = ISz

5 /I1, and the non-local resistance is given by
RNL = VNL/I1 = (V3 − V4)/I1.
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Fig. 25. – Schematic view of a six-terminal graphene device used for computing SH angle θsH and
non-local resistance RNL via the LB formula. The central channel is AGNR of width W = 50 nm
(composed of 3m + 2 dimer lines, so that its electronic structure resembles that of large-area
graphene [183]) and variable length L = 10–300 nm, while the attached ideal leads are modeled
as pristine ZGNRs. In the zoom, black circles represent carbon atoms and yellow circles label
positions of scattered or clustered Au adatoms. The dashed square denotes the sample (of the
size 400 nm × 400 nm and with periodic boundary conditions) used in the calculations of spin
and charge conductivities via the Kubo formula in sect. 5

.
3.

To understand the different mechanisms, including those not related to spin transport,
that can contribute to RNL, or the importance of resonant impurity scattering, we analyze
three different situations. First, we consider the case for which no adatom is present in
the central region of the device in fig. 25. Second, we consider the device in fig. 25 where
a homogeneous Rashba SOC is present within the entire central region. Finally, we
consider central region with random distribution of Au adatoms and with concentration
nad = 15%, which can be either scattered or clustered into islands of radius ∈ [1, 3] nm,
in complete analogy with the Kubo formula calculations presented in sect. 5.3 and using
the same parameters VI = 0.007γ0, VR = 0.0165γ0, VPIA = 0 and μ = 0.1γ0 in eq. (A.3)
for scattered Au adatoms [75] residing on H-sites or μ = 0.3γ0 for clustered Au adatoms.

Figure 26 shows the scaling of RNL with the length L (at fixed width W ) for pristine
graphene device in fig. 25. Such a positive non-local signal is specific to Dirac electron
systems, like graphene [184] or 3D TI metallic surfaces [176], where evanescent wave
functions penetrate through zero gap of the Dirac cone to generate the “pseudodiffusive”
transport close to CNP. The pseudodiffusive transport regime is characterized by Ohmic-
like two-terminal conductance G ∝ 1/L [176,184,185], even though the device is perfectly
clean. This mechanism is expected to provide background contribution Rpd

NL to total RNL,
as long as W > L, as confirmed in fig. 28 for Au-adatom-decorated graphene.

Figure 27 shows RNL and θsH for the case of a uniform distribution of Au adatoms,
where each hexagon within the central region hosts one Au adatom. Both quantities
are calculated at temperatures T = 0 K and T = 300 K, where the latter includes
thermal broadening effects in the LB calculations. The uniform Rashba SOC gener-
ates the intrinsic SHE in multiterminal devices, akin to the one found in multiterminal
2DEGs [139, 152-154]. The large value of the non-local signal and θsH is observed away
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Fig. 26. – Non-local resistance RNL computed via the LB formula for six-terminal graphene
device in fig. 25 which is perfectly clean (i.e., without any adatoms, defects or impurities in
either its central region or the attached six leads). Adapted from ref. [171].
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Fig. 27. – (a) Non-local resistance RNL and (b) SH angle in six-terminal graphene device with
uniform distribution of Au adatoms. Since every hexagon within the central region in fig. 25
is covered by one Au adatom, this setup is described by homogeneous Rashba SOC term in
eq. (A.3). Adapted from ref. [171].

from CNP due to doping of graphene by μ = 0.3γ0 (chosen by viewing central region as a
single large cluster) in eq. (A.3). The SH angle and RNL due to such an intrinsic SHE are
actually smaller than the same quantities observed for scattered Au adatoms in fig. 28
(especially for the “pure SHE” device setup in fig. 30 and the corresponding results in
fig. 31). This confirms the importance of resonant scattering off adatoms for enhancing
the extrinsic SHE, a conclusion reached also in semiclassical transport theories [130].

The SH angle for graphene with scattered or clustered Au adatoms is presented in
fig. 28(b), and can be compared with the corresponding Kubo formula results in fig. 23.
The value of θsH ∼ 0.1 in the scattered case, as well as decrease of θsH from scattered to
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Fig. 28. – (a) Non-local resistances RNL as a function of EF for various channel lengths —L =
10nm (main frame); L = 100 nm (left inset); and L = 300 nm (right inset)— at fixed channel
width W = 50 nm of six-terminal graphene device in fig. 25 with nad = 15% concentration of
scattered Au adatoms. RNL of non-SHE (SOC ≡ 0 ⇔ VI = VR = 0) origin is plotted as dotted
line. (b) The SH angle θsH for the same nad as in panel (a), where adatoms are scattered (main
frame) or clustered (inset). All curves are averaged over 10 adatom configurations. Adapted
from ref. [171].

clustered Au adatom distribution, are in full accord with the conclusions obtained from
the Kubo formula calculations. We also find that thermal broadening reduces θsH.

Surprisingly, we observe large RNL in fig. 28(a) even when all SOC terms are artificially
switched off (VR = VI = 0), while keeping random on-site potential μ �= 0 due to Au
adatoms. In addition, we find a complex sign change of RNL with varying the channel
length L. The change of sign of RNL with increasing channel length from L = 10 nm
to L = 300 nm suggests the following interpretation. The total RNL has in general four
contributions

(20) RNL = RSHE
NL + ROhm

NL + Rqb
NL + Rpd

NL,

assuming they are additive after disorder averaging. For unpolarized charge current
injected from lead 1 (i.e., electrons injected from lead 2):

– RSHE
NL due to the combined direct and inverse SHE has a positive sign;

– ROhm
NL is trivial Ohmic contribution due to classical diffusive charge transport [164]

and has a positive sign;

– Rqb
NL is the negative quasiballistic contribution arising due to direct transmission

T32 �= 0 from lead 2 to lead 3, as observed previously in SHE experiments on
multiterminal gold devices [186];

– Rpd
NL is a positive contribution due to pseudodiffusive transport specific to graphene,

as explained in fig. 26.

In device geometries with W > L, such as for W = 50 nm and L = 10 nm case in
the main frame of fig. 28(a), positive sign RNL is dominated by Rpd

NL akin to fig. 26.
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Fig. 29. – Scaling with the length L of the transmission functions Tpq from lead q to lead p
in six-terminal graphene device of width W = 50nm in fig. 25: (a) T32; (b) T42; and (c) their
difference, T32 − T42. The central region is covered by scattered distribution of Au adatoms of
concentration nad = 15%, while their SOC is switched on (solid lines) or off (dotted lines). All
curves are obtained by averaging Tpq(E) over the energy interval [−0.01γ0, 0.01γ0].

Fig. 30. – Schematic view of the proposed six-terminal graphene device where adatoms in the
channel connecting two crossbars are removed in order to isolate RSHE

NL by bringing other three
contributions to total RNL in eq. (20) to zero. The concentration of Au adatoms is nad = 15%
within the left and the right crossbar area.

However, due to scattering of impurities of uniform strength at CNP [187], Rpd
NL in the

main frame of fig. 28(a) can be larger than in the case of perfectly clean multiterminal
graphene in fig. 26. The negative sign of RNL in the two insets in fig. 28 in the absence
of SOC, VR = VI = 0, and for L > W suggests that ROhm

NL can be safely neglected in our
samples due to small concentration of adatoms. That is, we can estimate the mean free
path � for nad = 15% concentration of Au adatoms to be between 300 nm and 400 nm,
so that when diffusive transport regime sets in for � < L the Ohmic contribution scaling
as ROhm

NL ∝ exp(−πL/W ) [148,164] is already negligible due to L/W � 1.
Therefore, for L > W the main competition is between Rqb

NL with negative sign and
RSHE

NL with positive sign, as found in the two insets of fig. 28(a). Figure 29 shows the
scaling of the transmission function Tpq = Tr[tpqt†pq] in eq. (B.2) with the length L
(at fixed width W ) for electron paths from lead 2 → 3 and lead 2 → 4, as well as
their difference, in six-terminal graphene device in fig. 25. The difference T32 − T42

being positive means that more electrons arriving into lead 3 than in lead 4 will cause
negative Rqb

NL at some intermediate length scales. The slow decay of quantities in fig. 29
characterizing the quasiballistic transport regime can manifest as long as the channel
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length L is smaller than the mean free path. Thus, the existence of contributions to RNL

that do not originate from SHE and can be much larger than RSHE
NL could account for

the insensitivity of the total RNL in eq. (20) to the applied external in-plane magnetic
field observed in some experiments [147,148].

The difficulty in clarifying the dominant contribution to RNL could be resolved by
detecting its sign change as a function of the channel length L in fig. 25. An alternative
is to design a setup where ROhm

NL , Rqb
NL, and Rpd

NL are negligible so that RSHE
NL can be

isolated. We propose such setup in fig. 30 where adatoms are completely removed from
the channel. When such perfectly clean channel is sufficiently long, Rpd

NL = 0 due to
L > W and ROhm

NL , Rqb
NL → 0 due to the absence of impurity scattering in the channel,

so that mediative spin current ISz

M generated by direct SHE in the first crossbar arrives
conserved [139] at the second crossbar where it is converted into VNL by the inverse SHE.
Indeed, fig. 31 demonstrates that RNL and θsH in this setup are unambiguously related
since they both display sharp peak at virtually the same EF very close to CNP.

6. – Zeeman spin Hall effect in multiterminal graphene

The Zeeman SHE (ZSHE) is a phenomenon where an injected unpolarized longitu-
dinal charge current generates a transverse spin current in graphene under an out-of-
plane magnetic field [165, 188-191]. Unlike the conventional SHE discussed in sect. 5,
ZSHE does not require SOC. Instead, out-of-plane magnetic field splits the Dirac cone
of graphene by the Zeeman interaction, where electron- and hole-like carriers acquire
opposite spins near CNP, as illustrated by the inset in fig. 32.

The ZSHE was originally discovered [188] by detecting a non-local resistance in mul-
titerminal graphene devices placed in an external out-of-plane magnetic field. The non-
zero RNL can be explained using fig. 32, where an injected unpolarized charge current
flowing between leads 1 and 2 generates via ZSHE the longitudinal spin current ISz

5 in
lead 5 and the mediative pure spin current ISz

M = I↑M − I↓M flowing toward lead 6. The
mediative spin current is then converted via the inverse ZSHE into the voltage drop
VNL between the leads 3 and 4, and the corresponding non-local resistance is defined by
RNL = (V3 − V4)/I1, in complete analogy with non-local signal discussed in sect. 5.4.
The distance between the pairs of contacts 1 and 2 and the pairs of contacts 3 and 4 in
experiments is few microns [188-190].
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Fig. 32. – Schematic view a six-terminal graphene geometry used for computing the non-local
voltage VNL = V3 − V4 and the corresponding non-local resistance RNL = (V3 − V4)/I1 due
to ZSHE. The central region of the device consists of an AGNR (of width W ) in longitudinal
direction and a portion of transverse ZGNR leads attached to it. Dashed square encloses the de-
vice used in four-terminal quantum transport simulations. For simplicity, out-of-plane external
magnetic field and many-body interactions causing dephasing are assumed to be present only
within the central region of the four-terminal or six-terminal devices, while the attached ZGNR
leads are assumed to be ideals ones (i.e., free of spin and charge interactions).

The non-locality in electronic transport, signified by the voltage VNL in figs. 32 and 25
between contacts that are far from the classical path of injected charge current, is a rare
and highly non-trivial effect. It has been previously associated with phase coherence of
single electrons (such as in systems exhibiting QHE [192,193] and QSHE [194]), or long-
range order in interacting many-electron systems (such as charge density waves and super-
conductors). For example, in sufficiently high magnetic field and at sufficiently low tem-
peratures, phase-coherent transport of independent electrons through edge states [195]
of QHE will generate peaks in RNL at specific charge densities [188] (e.g., in 2DEGs in
QHE regime such peaks have been observed even for distances of ∼ 1 mm between the
pairs of contacts 1 and 2 and the pairs of contacts 3 and 4 [192, 193]). However, the
peak of RNL at CNP is observed [188] even in weak magnetic fields B � 1 T and at room
temperature T = 300 K, which is clearly outside of the QHE regime.

Recently, the ZSHE induced RNL was enhanced by an order of magnitude by replacing
external out-of-plane magnetic field with magnetic exchange field (> 14 T, with the
potential to reach hundreds of tesla) from a ferromagnetic insulator overlayer covering
graphene, which points to possible spintronic applications [190]. For example, in contrast
to conventional spin injection of spin-polarized electrons into semiconductors and 2D
materials, where tunneling through a barrier is typically employed, the ZSHE directly
spin-polarizes electrons.

The same multiterminal geometry for measuring RNL associated with ZSHE has been
later employed to measure RNL associated with SHE in graphene with adatom-induced
SOC (sect. 5) or VHE (sect. 7). The seminal experiments [188] on ZSHE have also
provided a blueprint on how to make graphene devices with high mobility (between
5 × 104 and 1.5 × 105 cm2/Vs for carrier concentrations n ∼ 1011 cm−2) by using thin
crystals of h-BN as a substrate. Such devices exhibit RNL that is 10 to 100 times
larger than in conventional devices, where graphene is placed on top of an oxidized Si
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wafer [188]. The usage of atomically flat h-BN substrate rules out Rashba SOC [196]
(due to charge impurities from the substrate [61] or lattice distortion by adatoms [197])
that could otherwise generate RNL via combined direct and inverse SHE discussed in
sect. 5.4.

Note that some ZSHE experiments [189] have also revealed non-spin-related effects
(such as thermomagnetic ones) contributing to RNL, whose signal can be even larger
than due to ZSHE. This highlights the same issue discussed in sect. 5 —that care must
be taken when associating measured RNL to putatively dominant microscopic mechanism.

An intuitive picture of ZSHE can be constructed simply by using classical Newto-
nian dynamics of massless Dirac fermions where charge of the electron behaves inco-
herently but its spin behaves coherently and is, therefore, described by quantum me-
chanics. The classical Hamiltonian of low-energy quasiparticles close to CNP is given
by H±(p) = ±vF

√
p2

x + p2
y, which in the weak external magnetic field B = ∇ × A be-

comes H±(p) = ±vF

√
(px − eAx)2 + (py − eAy)2. The classical velocity is then given

by v±
x,y = ∂H±/∂px,y = ±vF Πx,y/

√
Π2, where Π = p − eA, and the corresponding

acceleration is

(21) a± =
dv
dt

= ±evF v± × B√
Π2

=
ev2

F v± × B
E± .

Thus, the quasiparticles with energy E+ above CNP (or below with energy E−) moving
in a weak (i.e., non-quantizing) perpendicular magnetic field will experience a transverse
force, which deflects them to the left (right). Furthermore, when E± is very close to
CNP such a deflecting force will be very large.

Although the Zeeman splitting ΔZ in 2DEG is typically small in a weak external
magnetic field [196], it can play an essential role in graphene for temperatures kBT < ΔZ

by shifting the Dirac cones for opposite spins to induce two types of carriers illustrated in
the inset in fig. 32. The quasiparticles with energy E− are spin-↑ polarized, while those
with energy E+ are spin-↓ polarized. These two effects, classical for charge and quantum
for spin, conspire to generate transverse spin current in response to longitudinal charge
current, as illustrated in fig. 32. Such a phenomenology is similar to SHE in multiterminal
graphene (see sect. 5.4) and 2DEG devices [152,198], even though no SOC is involved to
provide the deflecting force [150] of opposite direction for opposite spins, as exemplified
by eq. (19).

These simple arguments for the existence of ZSHE in graphene can be converted into
a semiclassical transport theory based on the Boltzmann transport equation (BTE) [191].
However, the BTE approach is known to give incorrect results for transport properties
close to CNP [199,200]. When applied to ZSHE, it is valid in high-T and weak-B regime,
while experiments [188] have observed increasingly more profound non-locality in the low-
T and/or strong-B regime, so that a unified theory is called for that can cover such a wide
range of parameters. For example, such a theory should explain the non-local voltage in
strong (i.e., quantizing) external magnetic field, as well as at intermediate temperatures
where edge-state transport mechanism is removed.

The fully quantum transport theory of ZSHE in multiterminal graphene devices was
formulated in ref. [165]. It is based on NEGF formalism [201], where its combination
with phenomenological [202] many-body self-energies that take into account dephasing
processes involving simultaneous phase and momentum relaxation is delineated in Ap-
pendix B. This approach intrinsically accounts for the contributions of both electrons
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Fig. 33. – The charge and spin transport quantities in four-terminal graphene devices illustrated
in fig. 32: (a) charge Hall conductance Gxy = I5/(V1 − V2); (b) charge Hall resistance RH =
(V5 − V6)/I1; (c) spin Hall conductance GsH = ISz

5 /(V1 − V2); and (d) SH angle θsH = ISz
5 /I1.

The width of AGNR channel is W/�B = 3.42 in the units of the magnetic length �B and a small
momentum-relaxing dephasing dm = 0.04γ0 (see Appendix B) is introduced into the central
region shown in fig. 32. Adapted from ref. [165].

and holes, which is crucial to describe transport near CNP [191]. It can also handle ar-
bitrary scattering processes, in contrast to semiclassical theories of charge [199,200] and
spin [75] transport, which are known to break down close to CNP. Finally, it yields the
spin Hall angle θsH, as the ratio of transverse spin Hall and longitudinal charge currents
characterizing the strength of any SHE [9, 10, 135], as well as experimentally measured
non-local resistance RNL. In contrast, semiclassical theories [130,191] of SHE in graphene
are typically focused on computing only θsH, which, however, is not directly measurable
quantity due lack of “spin current ammeter” [203].

The results of quantum transport simulations of ZSHE in multiterminal graphene
devices presented in figs. 33, 34 and 35 demonstrate how this approach interpolates
smoothly between the phase-coherent transport regime at low temperatures and in the
quantizing external magnetic field and the semiclassical transport regime at higher tem-
peratures. In particular, dephasing by many-body interactions destroys features found
at low-T while leaving peaks (of reduced magnitude) in the spin Hall conductance and
non-local voltage around CNP, in full accord with experiments [188-190].

Close to the CNP, graphene in an external magnetic field can be described by the TB
Hamiltonian with a single 2pz orbital per site

(22) H =
∑

i

(εi + gμBσB)c†iσciσ − γ0

∑
〈ij〉,σ

eiφij c†iσcjσ.

Here c†iσ (ciσ) creates (annihilates) electron with spin σ in the 2pz orbital located on site i;
εi is the on-site energy; σ = +1 for spin-↑ electron and σ = −1 for spin-↓ electron so that
Zeeman splitting is given by ΔZ = 2gμBB with g = 2.0; and γ0 is the nearest-neighbor
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Fig. 34. – The charge and spin transport quantities in four-terminal graphene devices illustrated
in fig. 32: (a) charge Hall conductance Gxy; (b) charge Hall resistance RH; (c) spin Hall con-
ductance GsH; and (d) spin Hall angle θsH. The width of the AGNR channel is W/�B = 1.53
in units of the magnetic length �B and large momentum-relaxing dephasing dm = 0.4γ0 (see
Appendix B) is introduced into the central region shown in fig. 32. Adapted from ref. [165].

hopping parameter. The external magnetic field enters through the Peierls phase factor
φij , see eq. (12) in sect. 3.

The active region of the device in fig. 32 consists of an AGNR and a portion of
semi-infinite ideal leads modeled as ZGNRs. The electronic structure and the DOS of an
AGNR composed of 3m+2 dimer lines resemble [183] (if we assume that only the nearest-
neighbor hopping γ0 is non-zero) those of large-area graphene employed experimentally.
Although ZGNRs are insulating at very low temperatures due to one-dimensional spin-
polarized edge states coupled across the width W of the GNR, such an unusual magnetic
ordering and the corresponding band gap is easily destroyed above T � 10 K so that we
employ them as a model for ideal metallic leads [204,205]. The weak vs. strong magnetic
field is tuned using the ratio W/�B , where W is the width of the AGNR channel in fig. 32.
All graphene devices simulated in figs. 33, 34 and 35 are placed in quantizing external
magnetic field, W/�B > 1.

We employ the momentum-relaxing model within NEGF formalism, discussed in Ap-
pendix B, to account for the local and simultaneous phase and momentum relaxation.
This model can be physically interpreted as a highly simplified version (valid in the
high-temperature limit) of the self-consistent Born approximation for electron-phonon
interaction [206, 207]. We note that the momentum-relaxing model has been previously
used to study dephasing effects in the integer QHE [208] where phenomenological de-
phasing length is often invoked [209] to account for electron-electron and electron-phonon
scattering without delving into the microscopic details of such interactions.

For phase-coherent multiterminal transport of charge and spin described by eqs. (B.1)
and (B.3), respectively, the recently developed algorithms [182] make it possible to sim-
ulate devices containing ∼ 106 atomic orbitals (as demonstrated in sect. 5) with modest
computational resources by exploiting sparse nature of the Hamiltonian matrix. However,
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Fig. 35. – Panels (a) and (c) plot charge Hall resistance RH = (V1 − V2)/I5, while panels
(b) and (d) plot non-local resistance RNL = (V3 − V4)/I1 as the central quantity measured in
the ZSHE experiments [188-190] on six-terminal graphene devices. The quantum coherence is
retained in panels (a) and (b) where only a small momentum-relaxing dephasing dm = 0.02γ0

(see Appendix B) is present in the central region of the device, while much larger dephasing
dm = 0.5γ0 is used for panels (c) and (d). The width of the AGNR channel in fig. 32 is
W/�B = 3.42 in panels (a) and (b) and W/�B = 1.53 in panels (c) and (d) in the units of the
magnetic length �B . Adapted from ref. [165].

in the presence of dephasing, one needs to manipulate dense matrices in the formulas of
Appendix B, which becomes prohibitively expensive for multiterminal graphene devices
of the size employed in ZSHE experiments [188]. Therefore, since we have to perform
such a computation on a grid of energy points, we select much smaller size for the active
region of the device in fig. 32 —W � 2.7 nm for 4-terminal devices and W � 2.0 nm
for 6-terminal devices. Given the very small device size in our simulation, we have to
apply unrealistically large external magnetic fields in order to bring the device into the
quantizing regime W/�B > 1. Nevertheless, the important parameter for comparing our
results with experiments is not the absolute value of W or B but the ratio W/�B .

6.1. Zeeman spin Hall effect in four-terminal graphene. – In the analysis of the four-
terminal graphene device in fig. 32, voltage V/2 is applied to lead 1 and −V/2 to lead 2,
while voltages on leads 5 and 6 are set to zero. Figure 33 shows that in the quantizing
external magnetic field W/�B > 1 the four-terminal device generates large spin Hall
conductance

(23) GsH =
I↑5 − I↓5
V1 − V2

,

and the corresponding SH angle

(24) θsH =
ISz
5

I1
=

GsH

GL
,
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where GL = I1/(V1 − V2) is the longitudinal charge conductance. The spin current
ISz
5 = I↑5 − I↓5 is the difference of spin-resolved charge currents composed of spin-
↑ or spin-↓ electrons polarized along the z-axis, which is orthogonal to the plane of
graphene.

The value of GsH shown in fig. 33(c) is comparable to the one found in sect. 5 for
graphene with SOC due to adatoms. Unlike intrinsic SHE [152,153] in finite-size 2DEGs,
where Rashba SOC induces both the transverse spin deflection [150] and spin dephasing
that compete against each other in the processes of generating pure spin current, in
the ZSHE spin precession is absent and transverse spin current is pure only at CNP
(i.e., total charge current I5,6 = I↑5,6 + I↓5,6 becomes zero at CNP in fig. 33(a)). This
could be advantageous for spintronic applications since spin dephasing in the course of
spin precession is evaded, as demonstrated by the experimental detection of RNL even
at distances ∼ 10 μm away from the region where SH current was generated [188]. We
note that for very strong magnetic field, as could be achieved in graphene covered by
a ferromagnetic insulator overlayer [190], the peaks of GsH in fig. 33(c) would become
quantized [210] as a realization of the QSHE [25] in the absence of SOC.

The introduction of dephasing processes into four-terminal devices, which relax
both [202] the phase and the momentum of quasiparticles propagating through the ac-
tive region, destroys the quantization of the charge Hall conductance Gxy = I5/(V1−V2)
or charge Hall resistance RH and underlying chiral edge states, as demonstrated by the
transition from fig. 33(a) to fig. 34(a) for Gxy and from fig. 33(b) to fig. 34(b) for RH.
The charge Hall resistance in four-terminal devices is defined as RH = (V5 − V6)/I1 for
the measuring geometry, where current I1 is injected into lead 1 and voltages V5 and
V6 develop as the response to it. The SH conductance and SH angle are concurrently
reduced by two orders of magnitude, which are values similar to those found in semi-
classical approaches [191] in the temperature range T = 200–300 K. Thus, fig. 34 can be
used to tune phenomenological parameters (see Appendix B) controlling the strength of
momentum-relaxing dephasing.

6.2. Zeeman spin Hall effect in six-terminal graphene. – In the analysis of six-terminal
graphene devices in fig. 32, a charge current I1 is injected through lead 1 and a current
−I1 flows through lead 2, while Iα ≡ 0 in all other leads. We then compute voltages that
develop in the leads α = 3, 4, 5, 6 labeled in fig. 32 in response to injected current I1.
Figure 35(b) shows peaks in the non-local resistance within the phase-coherent transport
regime, which closely resemble the CNP and side peaks observed experimentally in strong
(quantizing) external magnetic field [188]. We note that peaks of both RNL in fig. 35(b)
and of θsH in fig. 33(d) reside within the transition regime between two QH plateaus
where edge states actually delocalize and “percolate” through the bulk [211].

The transition of RNL from fig. 35(b) to fig. 35(d) shows how dephasing removes both
side peaks while leaving the non-local voltage around CNP, which becomes two orders
of magnitude smaller than in the phase-coherent regime. The charge Hall resistance
in six-terminal devices, RH = (V1 − V2)/I5 defined for injected current I5 and voltages
measured between leads 1 and 2 (for I1 = I2 = 0), changes smoothly from fig. 35(a) to
fig. 35(c) as dephasing in increased, where the curve in fig. 35(c) looks remarkably similar
to those observed experimentally [191] for T = 250 K and B = 1–12 T or in semiclassical
transport theories [191] (where steep change of RH amplifies RNL [190]).
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7. – Valley Hall effect in graphene

Degenerate valleys of energy bands well separated in momentum space constitute a
discrete degree of freedoms for low-energy carriers with long relaxation time. The valley
index may be used as a non-volatile information carrier provided that it can be coupled
to external probes. In graphene with broken inversion symmetry, the valley index can
play a similar role as the spin degree of freedom in phenomena such as Hall transport,
magnetization, optical transition selection rules, and chiral edge modes [34,35,212,213].
As a result, proposals are made to control of valley dynamics by magnetic, electric, and
optical means, in the quest for valley-based information processing (“valleytronics”).

Recently, generalizations to monolayers of MoS2 and other group VI transition metal
dichalcogenides have also been experimentally achieved [39, 214]. Those materials are
direct bandgap semiconductors with band edges located at K points. The low energy
electrons and holes are well described by massive Dirac fermions with strong spin-valley
coupling. Valley and spin-dependent optical transition selection rules were reported as
well as coexistence of VHE and SHE. This suggests possible control of both valley and
spin degrees of freedom for potential integrated spintronics and valleytronics applications
based on hybrid two-dimensional materials [36].

7.1. Concept and new device principles. – The control of the valley degree of freedom
in graphene has a decade long history [215, 216]. Several proposals have been made to
obtain a valley valve in order to generate a valley polarized current or to filter electrons
with given valley polarization.

The first idea [215,217] was developed on the basis of a result obtained by Wakabayashi
and Aoki [218], where a potential barrier creating a pn junction in a ZGNR is able to
block the current at energies close to the Fermi level. In the band structure of a ZGNR,
the K and K ′ valley are separated and an almost flat band (corresponding to states
localized at the edges) extends between the two valleys. Figure 36(a) shows such a band
structure in the three regions of a ribbon composed of Nz = 60 zigzag chains and with
a potential barrier of height U along the x̂ ribbon axis. The barrier profile has a length
of about 100 nm in the sample, and can be smooth or sharp, this entailing a different
valley mixing degree. When, in the barrier region, EF lies within the region where only
one electron (hole) band is active, electrons moving from left to right can only propagate
at the K (K ′) valley, where the group velocity, i.e. the band slope, is positive. Let
us consider, for example, EF between the bottom of the first electron conduction band
(E = 0) and the bottom of the first conduction band E ≈ 200 meV, as indicated by
the green circle and dashed line in fig. 36(a). In this case, electrons are injected from
the K valley. As long as U < EF, they are fully transmitted along the K valley in the
barrier region and finally to the right contact. As shown in fig. 36(b), this entails a
transmission coefficient quantized to 1. As U > EF, electrons need to pass from K to
K ′ valley to propagate from left to right inside the barrier, which is not allowed as long
as U is smaller than the bottom of the second conduction band, as visible from window
with zero transport coefficient in fig. 36(b).

A completely analogous behavior is observed when the Fermi level is between the
bottoms of the first and the second conduction bands in the region outside the barrier,
see the purple circle and dashed line in fig. 36(a). In this case, electrons are injected
from both valleys and, for U = 0, three conductive channels are active, see fig. 36(d).
In the filtering region, electrons from the most external conduction band at K are fully
transmitted for U < EF, while they are largely backscattered for U > EF. However, in
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Fig. 36. – (a) Potential profile of the smooth and sharp barriers (with height U) considered in
the simulations as a function of the position along the ribbon axis. The band structure of a
ZGNR is reported in the different regions. The green and (purple) dashed lines correspond to
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and the third conduction bands (indicated by a purple circle). (e) Same as (d) for a ribbon
composed of Nz = 61 chains.

this case backscattering is not perfect, especially for the sharp barrier due to the fact
that more than one channel is active and backscattering can occur also at the right side
of the barrier. As a confirmation, the transmission coefficient shows oscillations related
to Fabry-Perot interference along the length of the barrier. The residual transmission
can be further suppressed by considering very long barrier with very smooth edges. We
can thus conclude that the configuration of fig. 36(a) allows transmitting K-polarized
electrons or backscattering them depending on the potential barrier height U .

Indeed, this blocking effect is only observed when the ZGNR is composed of an even
number of carbon chains, while it breaks down for an odd number of zigzag chains, as
visible in figs. 36(c,e) for Nz = 61 and as explained in detail in refs. [219, 220]. The
filtering effect is triggered by the fact that the barrier potential is uniform along the
transverse direction of the ribbon (it only varies along the axis direction) and thus, for
an even number of zigzag chains, the Hamiltonian is invariant under mirror symmetry
along the ribbon axis. As a consequence, the wave functions of the periodic ribbon
have a definite parity with respect to this operation. In particular, the first valence and
conduction bands have opposite parities. In a pn junction, this entails that electrons
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have to jump not only from one valley to the other, but also between wave states with
opposite parity in order to be transmitted. If the barrier potential does not break the
mirror symmetry, the matrix element is identically zero, which entails a perfect reflection
as seen in fig. 36(b). On the contrary, when the number of zigzag chains is odd, the
Hamiltonian is not invariant under mirror symmetry, see fig. 36(d), reflection is not
perfect since at least one band in the barrier region and one band outside the barrier
region have the same parity and then the corresponding matrix element is non-vanishing,
unless the barrier is very long and smooth, as already discussed. This proposal requires
extremely well-defined and narrow (to have a large operating energy window) ZGNR,
which is not easy to fabricate. A more efficient valley filter based on the same principle
is proposed in ref. [221].

Gunlycke and White proposed to realize a valley filter by including a line defect in
graphene [222]. The idea exploits the mirror symmetry of the considered line defects and
the fact that only the symmetric component of the wave function is transmitted through
the defect, while the antisymmetric component is fully reflected. This gives rise to a
transmission through the defect that depends on the valley τ and incident angle α of the
injected electrons (with respect to the normal of the line defect) as Tτ (α) = (1+sinα)/2.
As a consequence, the line defect turns out to be semi-transparent for an unpolarized
electron flux and, for α = ±π/2 the transmitted and reflected electrons are fully valley-
polarized. The advantage of such a configuration is that it does not require fabricating
high-quality ribbons with sub 10 nm width, and that the technology to realize atomically
precise line defects is available [223].

A different mechanism proposed by Fujita and coworkers [224] and by Zhai and
coworkers [225] is based on the combined effect of strain and magnetic field. In the
Dirac Hamiltonian of graphene, strain can be included as a gauge vector potential AS

with different orientation in the two valleys [226], which ensures the time-reversal sym-
metry invariance. The presence of a magnetic field adds a gauge vector potential AM,
which is the same for the two valleys, through the minimal substitution. This breaks the
time-reversal symmetry and induces a valley anisotropy since the effective vector poten-
tial will be AM ± AS, depending on the valley. This phenomenon can be exploited to
realize valley filters, where the valley selection is performed by changing the direction of
the magnetic field generated by ferromagnetic stripes [224,225,227-229]. Other proposals
are based on the valley-dependent anisotropy introduced by trigonal warping [230, 231],
slanted graphene junctions [232] or bilayer graphene [233-236].

7.2. Topological valley Hall currents. – The opposite Berry curvature for electrons
at different valleys suggested the possibility to generate valley-dependent transport
characteristics. From a semiclassical point of view, the origin stems from the anoma-
lous group velocity, which is derived from the band structure [237]

(25) v(k) =
1
�

∂εn(k)
∂k

− e

�
E × Ωn(k),

where k is the wave vector, Ωn(k) is the Berry curvature of the nth band and E is
an external electric field. The last term of eq. (25) introduces an anomalous velocity,
which is perpendicular to the electric field and the Berry curvature. When an external
perturbation breaks the sublattice (inversion) symmetry, a gap opens and the Berry
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curvature around the two valleys becomes finite and valley-dependent [216]

(26) Ωn(k) = τz
3a2Δ

2(Δ2 + 4k2�2v2
F )3/2

,

as can be shown from the corresponding Dirac Hamiltonian

(27) H = �vF (kxτzσx + kyσy) +
Δ
2

σz,

where Δ is the sublattice potential imbalance, i.e. the band gap width. The important
point is that the two Berry curvatures have opposite sign around the two valleys, and
then we expect electrons to be deflected in opposite directions depending on the valley
they come from. However, the argument based on semiclassical eq. (25) requires finite
electric field, which is difficult to reconcile with quantum transport simulations in the
linear-response regime [162].

The valley-dependent response of electrons can be better understood by looking at the
velocity operator as sketched by Ando in ref. [163]. For the K valley, the Hamiltonian (27)
can be written as

(28) H = �vF (k · σ) + Δσz = vF (p · σ) + Δσz,

where p is the momentum operator. The velocity and the acceleration operators are

(29) v =
1
i�

[r,H] = vF σ and v̇ =
1
i�

[v,H] = 2v2
F (k × σ) − 2Δ

�
v × ẑ,

where ẑ is the unit vector perpendicular to the graphene plane. From this formulation,
it is evident that the gap Δ induces an in-plane extra term in the acceleration operator,
which is perpendicular to the velocity operator and acts as an orthogonal magnetic field
with strength proportional to Δ and zero in the absence of a gap. Note that, very
importantly, the sign of this term is opposite for the K ′ valley.

From the Hamiltonian in eq. (28), the K valley Hall conductivity at temperature T
and chemical potential μ can be calculated by the Kubo formula

σxy(μ, T ) =(30)
2�

iπL2

∫
dE f(E,μ, T ) 〈Tr [jx (∂E Re G(E + i0)) jy Im G(E + i0) − (x ↔ y)]〉 .

The presence of a homogeneous distribution of disorder centers with given short-range
or long-range potential profile can be included within the self-consistent Born approxi-
mation. The final result at zero temperature is [163]

σK
xy(μ, T = 0) =(31) ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−e2

h
, for |μ| < Δ,

−e2

h

8|δ|(Γ0 − Γ1)[(1 + δ2)Γ0 − 2δ2Γ1 − (1 − δ2)Γ2]
[(1 + 3δ2)Γ0 − 4δ2Γ1 − (1 − δ2)Γ2]2

, for |μ| ≥ Δ,
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Fig. 37. – (a) Separation of electrons belonging to different valleys by an acceleration term
perpendicular to the velocity for graphene with a gap induced by breaking of the inversion
symmetry. (b) K-valley Hall conductivity obtained within the Kubo formalism in the presence
of disorder centers with varying potential spatial range d. Adapted from ref. [163].

where δ = Δ/μ, and Γn are related to the potential profile and density of the impurity
centers and vanish for clean systems. Note that in the region of the valence and conduc-
tance bands close to the gap, the conductivity scale as σK

xy = −(e2/h)μ/Δ, independently
of the presence of disorder. The central result of eq. (31) is that the valley Hall conductiv-
ity is quantized to e2/h within the gap energy window, thus predicting a quantum valley
Hall effect (QVHE). While the conductivity is obtained by integrating eq. (30) over the
whole Fermi sea, its quantization is determined only by the contributions just below and
above the energy gap, corresponding to the regions with high Berry curvature. An exam-
ple is reported in fig. 37(b) for impurity potentials with different range. We can see that
σK

xy is quantized within the gap and enhanced at the gap edges, thus generating a double
peak curve. The sign of the K ′ valley Hall conductivity is opposite with respect to that
at K. Therefore, within the gap we have a global Hall conductivity σxy ≡ σK

xy +σK′

xy = 0
(and also σxx = 0) and a valley Hall conductivity σv

xy ≡ σK
xy − σK′

xy = 2e2/h. This means
that when applying an electric field to the insulating system, both the longitudinal and
transverse net charge currents are zero. The zero transverse current can be seen as the
sum of two opposite and spatially superposing valley currents. Note that these results
neglect any intervalley scattering, which can be significant for short-range impurities and
presence of edges of particular geometry.

7.3. Valley Hall effect in tight-binding models of graphene. – To analyze the VHE, the
usual approach is to study the low-energy Hamiltonian assuming the absence of valley
mixing (the two Dirac cones are decoupled). However, it is possible to study valley effects
using the full TB Hamiltonian, through the projector

(32) PK,RK
≡

∫
BZ

θ(|k − K| − RK)|k〉〈k|dkx dky,
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Fig. 38. – (a) Regions around the K and K′ Dirac points that we define as the valley region.
We set the radius to RK = 1

2
|K − M |, which is large enough to capture the physics at low

energy, as shown by comparison with the full-band calculation. (b) Dissipative conductivity for

Δ = 0.2γ0 considering the full band structure σxx (black) and only the valley region σK
xx + σK′

xx

for a clean system (solid line) and a disordered system with W = 0.9γ0 (dashed line). (c) Total
Hall conductivity obtained considering the full band structure (black) and the valley region
(red), and valley Hall conductivity (blue) for a clean system (solid line) and a disordered system
with W = 0.9γ0 (dashed line).

where the kets |k〉 are the eigenstates of the momentum operator and RK is the radius of
the region we are going to define as our valley, the region we choose are shown in fig. 38(a).
We use the KPM method elaborated in Appendix C to compute the valley conductivity
tensor σv

α,β ≡ σK
α,β −σK′

α,β , the total conductivity tensor σα,β , and the contribution to the

conductivity tensor due to the valleys σK+K′

α,β ≡ σK
α,β + σK′

α,β . A simple TB model of a
honeycomb lattice, including a staggered potential and an Anderson disorder potential,
is given by

(33) H =
∑
〈i,j〉

a†
i bj + h.c. +

∑
i

[(
εi +

Δ
2

)
a†

iai +
(

εi −
Δ
2

)
b†i bi

]
,

where (a†
i and ai) [b†i and bi] are the creation and annihilation operators for electrons in

the (A)[B]-sublattice of the honeycomb lattice, εi is an Anderson disorder with strength
W and Δ = 0.2γ0 the band gap width. The results are shown in fig. 38(b,c) for the
pristine and disordered case.

In fig. 38(b) we show the dissipative conductivity numerically calculated by consid-
ering the full band structure or only the valley region. These results show that, in both
the pristine and the disordered case, only the electrons from the valley region contribute
to transport, thus confirming that the chosen valley region is large enough to accurately
capture the physics at low energy. In fig. 38(c) we show the charge and valley Hall con-
ductivities. The charge Hall conductivity vanishes in the gap region, as required by the
time-reversal symmetry, which is not broken by the staggered potential. However, we
do see a quantized valley Hall conductivity, as predicted by Ando [163] with analytical
calculations based on the Dirac Hamiltonian. This plateau is robust against moderate
Anderson disorder and persists up to a disorder strength W = 0.9γ0. Therefore, from a
bulk perspective, we conclude that a staggered potential can lead to the QVHE. However,
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Fig. 39. – (a) Experimental setup (inset) and non-local resistance (main panel) for a six-terminal
graphene bar aligned over an h-BN substrate in the experiment by Gorbachev and cowork-
ers [159]. (b) Experimental non-local resistance for aligned and non-aligned h-BN substrates.
(c) Four terminal setup (inset) and calculated non-local resistance as reported in ref. [162].
Adapted from: (a,b) ref. [159]; (c) ref. [162].

at least for the uncorrelated disorder considered here, no increase of the conductivity is
seen outside the gap, which is a different result compared to what expected from the
continuous model [163].

In ref. [159], Gorbachev and coworkers adjusted the alignment between a graphene
monolayer with an h-BN substrate for breaking the sublattice symmetry. As a result,
a gap was formed, whereas a valley-dependent transport argument was used to interpret
the large non-local resistance signal measured at low charge density (see fig. 39(a)).

When the layers are perfectly aligned, regions of commensurate graphene/h-BN re-
gions form with the same A/B sublattice asymmetry sign, with surrounding strain bound-
aries. The size of these commensurate regions is about 10 nm, which is ten times smaller
than the typical electron wave length. This indicates that a gap is locally present in the
sample, even if currents can flow through the interface strained areas, thus preventing
the observation of thermally activated conductance. The result is that a non-local resis-
tance peak around the CNP and with roughly the same width of the gap is measured,
see fig. 39(a,b). Several aspects seem to indicate that the peak is related to a VHE.
First of all, it disappears for misaligned layers, when the gap vanishes, see fig. 39(b).
This excludes any possible SHE. Then, any transport along edges is excluded, and the
phenomenon has a purely bulk nature. Finally, the non-local resistance is observed to
decay exponentially with the distance between the current and voltage terminals. The
decay parameter (about 1μm) is compatible with the intervalley scattering due to edges
or disorder.

However, this experiment has raised a debate on its microscopic explanation [162,238].
For example, ref. [238] argues that the origin of the VHE comes from the Fermi sea
bulk states just beneath the gap and not from edge states, which, if present, are not
topologically protected. The idea is that for EF within the gap, two opposite valley
polarized currents circulate in the system, thus generating a valley and charge-neutral
current, as discussed above. Since the neutral valley current is transmitted by electrons
of the Fermi sea below the gap, they are non-dissipative. Therefore, in this picture,
even though the system is charge insulator and the chemical potential is within the gap,
the neutral persistent valley currents arising from the Fermi sea are able to generate a
non-local signal in the six-terminal experimental system, which appears counterintuitive.

The connection between high non-local resistance RNL and the topological origin
of the valley Hall currents has been recently questioned by Kirczenow, who suggested
that a non-local resistance can be calculated by LB formalism applied to multiterminal
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Fig. 40. – (a) Structure of the simulated four-terminal graphene with and without staggered
sublattice potential Δ = ±60.2 meV. The four contacts are modeled as uncoupled unidimen-
sional chains with the same on-site energy as the carbon atoms they are attached to (see the
color of the circles in the sketch). The color inside the structure represents the local DOS (on
logarithmic scale) at energy E = 10meV and in the presence of the staggered potential. (b)
Non-local resistance RNL for the system without staggered potential as a function of the chem-
ical potential μ, at a temperature T = 4.2 K and for different length of the system. (c) Main
panel: same as (b) in the presence of the staggered potential. Left inset: Value of the non-local
resistance at the CNP as a function of the system length L. Right inset: Transmission coefficient
from the source contact to the bottom voltage probe as a function of the electron energy and
for different system lengths. (d) Same as the main panel of (c) zoomed in the low RNL region.

gapped graphene described by TB Hamiltonian, see the inset of fig. 39(c) [162]. The
four contacts are made of unidimensional carbon chains with on-site energy equal to that
of the carbon of the central structure they are attached to. In the central structure, a
staggered potential ±Δ = 60.2 meV is applied to break the inversion symmetry. Such a
signal cannot be related to the semiclassical anomalous velocity in eq. (25), since the peak
of the non-local resistance occurs within the gap where transport occurs by quantum-
mechanical tunneling. Moreover, in the linear response regime the electric field in eq. (25)
can be assumed to be vanishingly small.

This phenomenon can be shown to be associated with valley currents, which however
are not generated by the Berry curvature but rather by the specific geometry of the
contacts, analogously to what observed for instance in ref. [215], and enhanced by the
staggered sublattice potential. To further investigate this picture and to emphasize the
role of tunneling transport through the gap by evanescent states, we performed four-
terminal LB simulations based on a similar geometry but with larger width W = 50 nm
and for different lengths L between the current and the voltage probes. A sketch of
the system is shown in fig. 40(a). As illustrated in fig. 40(b), for Δ = 0 the non-local
resistance is small and shows positive and negative fluctuation independently of the
length. When Δ = 60.2 meV, a gap opens in the system and the non-local resistance
shows a huge peak at the CNP and all over the width or the gap, see fig. 40(c). However,
the peak decreases when increasing L and it finally disappears, see also fig. 40(d) and
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the left inset of fig. 40(c). Such a result can be easily explained by considering that
within the gap transport occurs through evanescent states that rapidly vanish when
penetrating into the bulk. Since the distance W between source and drain is fixed, the
transmission coefficient between them does not change with L. On the contrary, the
transmission coefficient between the source or drain contacts and the voltage probes is
strongly suppressed when increasing L, as illustrated in the right inset of fig. 40(c). The
result is that the non-local resistance vanishes for L � W . The decrease of the DOS
when getting away from the contacts is indicated by the color map in fig. 40(a).

We conclude that the observation of the VHE in gapped graphene remains debatable
and a direct measure of the valley current has not yet been convincingly demonstrated.
In particular, the connection between (not directly observable) valley Hall conductivity
and RNL directly observed in multi-terminal measurements calls for further theoretical
and computational efforts.

8. – Conclusion

This review has presented an overview of quantum transport properties in disordered
graphene by using simulation results obtained with exact Landauer-Büttiker and Kubo
frameworks. These two methodologies to explore charge and spin transport have been
shown to be essential to discuss how bulk mechanisms can give rise to edge transport
phenomena or spin accumulation in graphene, and to highlight their connection to topo-
logical concepts. If the quantization of Hall conductance can be well interpreted in terms
of Chern number and topological invariants, additional features unique to disordered
graphene are necessary to explain the anomalous dissipation observed in polycrystalline
graphene or the appearance of unexpected plateau-like characteristics in the presence of
strong disorder. In relation to spin transport, the calculation of a finite spin Hall angle
computed from the Kubo bulk formalism and driven by SOC effects, needs to be comple-
mented by non-local transport formalism and spin current calculations to further inspect
recent claims of giant SHE in disordered (adatom-decorated) graphene. The transition
from a QSHE to a SHE under (heavy) adatom segregation could be also a smoking gun
of unique chiral bulk current formed around metallic islands on the graphene surface.
Finally, the existence of VHE is quite controversial from a quantum transport viewpoint,
and more studies are needed to reconcile a non-trivial disorder-induced valley-polarized
bulk phenomenon with the requirement of an energy bandgap and the measurement of
huge non-local resistance.
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Appendix A.

Spin-orbit coupling in disordered graphene: Physical mechanisms and tight-
binding models

The coupling between the orbital and the spin degree of freedom of electrons is a rel-
ativistic effect described formally by the non-relativistic expansion of the Dirac equation
in external electric and magnetic fields (for which exact solutions do not exist) in powers
of the inverse speed of light c. In the second order v2/c2, one identifies [239] the SOC
term

(A.1) HSO =
�

4m2c2
p · [s ×∇V (r)],

responsible for the entanglement of the spin and orbital degrees of freedom in the two-
component non-relativistic Pauli Hamiltonian for spin-1

2 electron. Here m is the free
electron mass, s = (sx, sy, sz) is the vector of the Pauli matrices, and V (r) is the electric
potential.

The physical origin of eq. (A.1) is traditionally explained as the consequence of elec-
tron magnetic dipole moment (associated with spin) interacting with magnetic field in
the rest frame of an electron [240], which is obtained by Lorentz transforming electric
field from the lab frame. However, for intuitive understanding of the effect of SOC on
propagating spins it is advantageous to remain in the lab frame [241] where a magnetic
dipole μ moving with velocity v generates electric dipole moment Plab = v×μ/c2. Here
the right-hand side is evaluated in the electron rest frame and Plab is measured in the
lab (both sides can be evaluated in the lab frame yielding the same result to first order
in v/c). The potential energy of the interaction of the electric dipole with the external
electric field Elab in the lab frame, Udipole = −Plab · Elab, corrected for the Thomas
precession (which takes into account change in rotational kinetic energy due to the pre-
cession of accelerated electron seen by the lab observer) UThomas = −Udipole/2, leads to
USO = Udipole + UThomas = −Plab · Elab/2. Thus, replacing classical quantities in USO

with the corresponding Hermitian operators yields eq. (A.1).
The non-relativistic expansion of the Dirac equation can be viewed as a method of

systematically including the effects of the negative-energy solutions on the positive en-
ergy states by starting from their non-relativistic limit [239]. The SOC effects in vacuum
are small due to huge gap 2mc2 between positive and negative energy states. In the case
of atoms, SOC is due to interaction of electron spin with the average Coulomb field of
the nuclei and other electrons. In solids, V (r) is the sum of periodic crystalline potential
Vcrystal(r) and an aperiodic part containing potentials due to impurities Vimp(r), confine-
ment, boundaries and external electric fields. Thus, in solids, large value of electric field
E = −∇Vcrystal(r)/e near the nuclei competes with the huge denominator in eq. (A.1),
so that much smaller band gap between conduction and valence band (playing the role of
electron positive energy sea and positron negative energy sea, respectively) replaces 2mc2,
thereby illustrating the origin of strong enhancement of the SOC in solids [10,196,242].

In addition to impurity induced SOC effects, the SOC due to Vcrystal(r) in solids with
bulk inversion asymmetry or an interfacial Vint(r) accompanying structural inversion
asymmetry spin-splits the band structure and can give rise to intrinsic SHE [9, 10]. For
example, the Rashba SOC [60, 196] in 2DEGs within heterostructures with structural
inversion asymmetry is given by

(A.2) HR =
α

�
(s × p) · ẑ.
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The quantum transport algorithms discussed in Appendices C and B require TB Hamil-
tonian as an input. In the case of 2DEGs this can be achieved by discretizing eqs. (A.1)
and (A.2) on the square lattice [139,243].

In the case of graphene, minimal (i.e., with the smallest number of orbitals per site)
effective TB model can be constructed by starting from the usual graphene Hamiltonian
with single 2pz orbital per site of the honeycomb lattice and by adding SOC terms
permitted by the symmetries of the lattice [74, 172-175]. This leads to the following
Hamiltonian employed for transport simulations in sects. 4 and 5

H = −γ0

∑
〈ij〉

c†i cj +
2i√
3
VI

∑
〈〈ij〉〉∈R

c†is · (dkj × dik)cj(A.3)

+ iVR

∑
〈ij〉∈R

c†i ẑ · (s × dij)cj + iVPIA

∑
〈〈ij〉〉∈R

c†i ẑ · (s × Dij)cj − μ
∑
i∈R

c†i ci.

Here ci = (ci↓, ci↑) is the pair of annihilation operators for electrons with spin down
and spin up on the site i; γ0 = 2.7 eV is the nearest neighbor hopping parameter; 〈ij〉
denotes sum over nearest neighbors and 〈〈ij〉〉 denotes sum over next-nearest neighbors;
dkj is the unit vector pointing from site j to site k, with site k standing in between i
and j; dij is the unit vector pointing from site i to its nearest neighbor j; Dij is the
unit vector pointing from site i to its next-nearest neighbor j; and R denotes a set of
hexagons where respective terms are assumed to be non-zero. For quantum transport
simulations of realistic graphene systems, as performed in sects. 4 and 5, the parameters
VI, VR, VPIA, μ can be extracted by fitting the low-energy band structure obtained from
first-principles calculations on supercells of graphene with adatoms [26, 74, 75, 172-176]
or graphene on different substrate materials [174].

The first and second term in eq. (A.3), where the latter is intrinsic SOC present on
all hexagons (i.e., R is the whole graphene lattice), comprise the so-called Kane-Mele
model employed in the seminal arguments [18,19] for the existence of QSHE and 2D TIs.
The intrinsic SOC of strength VI splits Dirac cone by an energy gap ΔI = 12VI, while
preserving spin degeneracy due to combined time-reversal and space inversion symmetry.
The third term in eq. (A.3) is the Rashba SOC that appears when the inversion symmetry
of graphene is broken by the substrate, external electric field or adatoms. The Rashba
SOC lifts the spin degeneracy, destroys conservation of spin sz (unlike intrinsic SOC),
and eventually closes [20] the gap ΔI when VR � VI [179]. The forth term in eq. (A.3) is
pseudospin inversion asymmetry (PIA) induced SOC [74,172-175] that arises due to the
sites of the two triangular sublattices of honeycomb lattice becoming inequivalent close
to the impurity site, so that matrix elements of eq. (A.1) between 2pz orbitals of carbon
atom with chemisorbed adatom and next-nearest neighbor 2pz orbitals (with flipped spin)
become non-zero. Both Rashba and PIA SOC terms explicitly break z → −z symmetry.
The fifth term can accommodate additional on-site energy μ on carbon atoms within
hexagons R that are covered by adatoms [26].

All-electron DFT calculations [20, 244] have estimated ΔI to be in the range 24–50
μeV, which is minuscule due to the lightness of carbon atoms. The same result can
be reproduced by using Slater-Koster TB Hamiltonian with a proper choice of three
orbitals 2pz, dxz, and dyz per carbon atom, where nominally unoccupied d orbitals are
required to fit DFT computed band structure of graphene and GNRs even in the absence
of SOC [245]. The SOC is then introduced by finding matrix elements of eq. (A.1) in
the basis of such orbitals, while spin-dependent hopping in the second, third and fourth
term of eq. (A.3) is justified a posteriori through projection onto the subspace of 2pz

orbitals [246].
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Fig. 41. – (a) Graphene with a heavy In or Tl adatoms, which favor position in the center of the
hexagon. (b) Visual depiction of spin-dependent hopping in the second term of eq. (A.3) whose
magnitude VI is enhanced by the presence of adatoms.

The Rashba SOC due to an external electric field is also rather small, where spin-
splitting of energy levels reaches ΔR � 5 μeV (in Rashba spin-split Dirac cone, at each
momentum there are two states with energy differing by ΔR) in representative transverse
electric field of strength 1 V/nm [20]. Another source of Rashba SOC are ripples in
graphene, but their typical curvature also leads to negligible ΔR � 20 μeV [247,248]. Note
that in contrast to Rashba SOC in eq. (A.2) for 2DEG semiconductor heterostructures,
in graphene it does not depend on electron momentum due to electrons having constant
velocity at CNP [20].

To realize topologically protected quantum spin Hall [18, 19] and quantum anoma-
lous Hall phases [249] in graphene at room temperature, or to enable anticipated spin-
tronic [250, 251] and thermoelectric applications [176, 252] requires to increase either VI

or VR. The exposed graphene surface makes possible new functionalities because other
materials, such as ferromagnetic metals [251] and insulators [249, 253], or light [66] can
be easily brought into direct contact with SO-coupled 2D electron system.

The DFT screening [26] of heavy adatoms has predicted that VI can be locally and
substantially enhanced by In and Tl, which favor high-symmetry position in the center
of the hexagons while being non-magnetic and without inducing VR, as illustrated in
fig. 41. The system graphene + adatoms of In or Tl is described by eq. (A.3) with VR =
VPIA = 0 and VI �= 0 on hexagons R hosting the adatoms (as discussed above, uniform
VI on all hexagons due to carbon atoms themselves can be neglected). Remarkably,
despite completely random position of heavy adatoms, such a disordered system has
extremely stable 2D TI phase, which is actually stabilized by the randomness of adatom
distribution [27]. For example, total DOS shown in fig. 42(b) does not contain any
signatures of spatial inhomogeneities, in contrast to the local DOS in fig. 42(a), which is
confined around the edges and sensitive to the distribution of adatoms around the edge.
This means that in transport calculations on such a system one does not need to perform
disorder averaging [176, 178]. The energy gap ΔI = 12VInad [178] is controlled by the
type of adatoms —VI ≈ 0.0032γ0 [176] for In and VI ≈ 0.017γ0 [26] for Tl is extracted
from DFT calculations— and their concentration nad. Other choices for heavy adatoms
—such as Os, Ir and Cu-Os or Cu-Ir dimers— are predicted [32] to generate even larger
gaps ΔI using smaller adatom coverage while evading propensity of In atoms to cluster
on graphene.

The Rashba SOC can be uniformly enhanced by hybridization with 5d-states of Au
monolayer, which is intercalated at graphene/h-BN [254] or graphene/Ni interface [255].
Another experimentally demonstrated strategy [256,257] puts graphene onto a monolayer
of transition metal dichalcogenide like WS2 whose proximity effect induces Rashba and
PIA SOC terms in eq. (A.3) while also enhancing the intrinsic SOC [66, 174]. In fact,
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Fig. 42. – (a) Local DOS at E = 1meV in ZGNR whose nad = 19% of hexagons are covered by
In adatoms (grey dots in the center of hexagons). (b) Total DOS for ZGNR + adatoms in panel
(a) or ZGNR + uniform intrinsic SOC (with its magnitude tuned to open the same gap ΔI as in
the case of adatoms), where the gap ΔI � 17.3 meV around E = 0 meV is filled by contributions
from helical edge states and it is insensitive to the randomness of adatom configuration or spatial
inhomogeneities. Adapted from ref. [176].

DFT calculations have also predicted that strong SOC proximity effect from WSe2 would
convert graphene into 2D TI [174]. Surprisingly, even light adatoms like chemisorbed
hydrogen [144] or fluorine [145] can induce non-zero VR and VPIA, as well as enhance VI,
where such an effect is governed by the local lattice distortion [74, 197] in the case of
hydrogen or SOC of fluorine atom itself [172].

In quantum transport simulations of sect. 5, we use Au adatoms whose presence is
accounted by TB model in eq. (A.3) with its parameters extracted from DFT calculations
—VI = 0.007γ0, VR = 0.0165γ0, VPIA = 0 and μ = 0.1γ0 is set on the hexagons R where
Au adatoms are located (see fig. 25 for illustration). Hydrogen or fluorine adatoms
require all terms in eq. (A.3) to be non-zero [74,172], but in sect. 5.3 we selectively turn
them on and off in order to understand how different SOC terms influence charge and
spin Hall conductivities.

Appendix B.

Quantum transport algorithms for charge and spin currents in multiterminal
systems with and without dephasing effects

The theoretical description of HE and SHE is founded on their respective conduc-
tivities, which become topological invariants in the case of QHE or QSHE [25]. On
the other hand, the analysis of transport experiments on devices exhibiting such effects,
which are embedded into circuits with many external leads [192-194, 198], is typically
based on the multiterminal LB formula [258, 259]. The LB approach is actually essen-
tial to compute observable charge transport quantities, like the non-local resistance RNL

studied in sects. 5, 6 and 7, which are measured experimentally to confirm the existence
of direct and inverse SHE and VHE. This is due to the fact that spin current and re-
lated conductance/conductivity or valley current and related conductance/conductivity
are not directly observable quantities (e.g., transport of electron spin between two loca-
tions in real space is alien to Maxwell electrodynamics and no “spin current ammeter”
exists [203]).
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The usual multiterminal LB formula [258,259]

(B.1) Ip =
∑

q

Gpq(Vp − Vq),

relates total charge current Ip in lead p to voltages Vq in all other leads via the charge
conductance coefficients

(B.2) Gpq =
e2

h

∫
dE

(
− ∂f

∂E

)
Tr[tpqt†pq].

These coefficients are determined by the transmission matrix tpq connecting transverse
propagating modes within semi-infinite ideal leads p and q. The multiterminal LB for-
mula is valid when phase coherence is maintained in the active region of the device, while
phase breaking events are assumed to be taking place only in the electron reservoirs to
which the leads are attached at infinity and where electrons are equilibrated to acquire
the Fermi-Dirac distribution fp(E) = f(E − eVp).

Using the same units for the total charge Ip = I↑p + I↓p and total spin ISα
p = I↑p − I↓p

currents flowing through lead p, which are constructed from spin-resolved charge currents
Is
p with the spin quantization axis for s =↑, ↓ chosen along the α-direction (α = x, y, z),

eq. (B.1) can be extended to describe the total spin current ISα
p in lead p

(B.3) ISα
p =

∑
q

GSα
pq (Vp − Vq).

The total spin current ISα
p is conserved quantity within lead p (i.e., ISα

p is the same as
at each cross section of the lead) on the proviso that the lead does not contain any spin-
dependent interactions [139]. The spin conductance coefficients in eq. (B.3) are given
by

(B.4) GSα
pq =

e2

h

∫
dE

(
− ∂f

∂E

)
Tr[sαtpqt†pq],

where the Pauli matrix sα describes the spin carried by the current.
We note that there has been a lively debate [155,260] in the literature on the proper

derivation of eq. (B.3). The debate was spurred by one of the early derivations [261] using
the traditional scattering matrix approach [259], which predicted unphysical ISα

p �= 0 in
equilibrium, i.e. for constant Vp. The pitfalls [260] in such a derivation can be evaded
by starting from NEGF [201] based expression for spin current in lead p (the so-called
Meir-Wingreen formula [262])

(B.5) ISα
p =

e

h

∫
dE Tr

{
sα[Σ<

p (E)G>(E) − Σ>
p (E)G<(E)]

}
,

which assumes that any inelastic scattering events are localized within the active region
of the device (i.e., they do not occur in the attached ideal leads). The two fundamental
objects of NEGF formalism for steady state transport that enter into this formula are the
retarded G(E) and the lesser G<(E) Green’s functions (GFs), which describe the density
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of available quantum states and how electrons occupy those states, respectively [201].
They are given by

G(E) =

[
E − H −

∑
p

Σp(E) − Σint(E)

]−1

,(B.6)

G<(E) = G(E)

[∑
p

Σ<
p (E) + Σ<

int(E)

]
G†(E).(B.7)

In the elastic transport regime, the self-energies due to interactions with other electrons
or bosonic quasiparticles are zero, Σint(E) = 0 = Σ<

int(E), so that retarded Σp(E) and
lesser Σ<

p (E) = ifp(E)Γp(E) self-energies are generated only by attached leads, where
Γp = i[Σp(E) − Σ†

p(E)] is the level broadening matrix determining the escape rates for
electrons to exit into the attached leads. This makes it possible to rewrite eq. (B.5) for
the total spin current in lead p in the elastic transport regime as

(B.8) ISα
p =

e

h

∑
q

∫
dE Tr[sαΓq(E)G(E)Γp(E)G†(E)] {fp(E) − fq(E)} .

By expanding fp(E)−fq(E) to linear order in Vp−Vq, we obtain the desired multiterminal
LB formula for spin currents

(B.9) ISα
p =

e2

h

∑
q

∫
dE

(
− ∂f

∂E

)
Tr[sαΓq(E)G(E)Γp(E)G†(E)](Vp − Vq),

where Tr[sαΓq(E)G(E)Γp(E)G†(E)] expression in terms of NEGF quantities is equiva-
lent to Tr[sαtpqt†pq] expressions in terms of the transmission submatrix component [182]
of the full scattering matrix. Note that charge current Ip is obtained also from eq. (B.5)
by replacing sα with a unit 2 × 2 matrix.

The calculation of spin and charge conductance coefficients in eqs. (B.2) and (B.4)
was performed in sect. 7 by means of homegrown codes and in sect. 5 by using the
KWANT package, which employs highly efficient and robust algorithms to calculate scat-
tering matrix, while being able to significantly outperform commonly used recursive GF
methods [263] for multiterminal systems containing a large number of atoms [182]. The
KWANT packages also avoids the usual instabilities that occur with many commonly used
algorithms (such as in dealing with the evanescent modes of complex leads) [182]. In
the computation of non-local resistance RNL measured in recent SHE, ZSHE and VHE
experiments on multiterminal graphene, we inject charge current I1 through lead 1 and
current −I1 flows through lead 2 while Ip ≡ 0 in all other leads of six-terminal graphene
devices illustrated in figs. 25 and 32. We then compute voltages that develop in the leads
p = 3, 4, 5, 6 (labeled in figs. 25 and 32) in response to injected current I1. The non-local
resistance is obtained as RNL = (V3 − V4)/I1. The spin Hall angle for graphene devices
in figs. 25 and 32 is obtained from θsH = ISz

5 /I1.
The equivalence between NEGF and scattering matrix approaches holds only in the

elastic or phase-coherent transport regime. When electron-electron [264, 265], electron-
phonon [206] and electron-magnon [207] scattering events occur in the active region of
the device, LB formulas become inapplicable. On the other hand, NEGF formalism [201]
offers a rigorous prescription for including such a process by starting from a microscopic
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Hamiltonian and by constructing the interacting self-energies Σint(E) and Σ<
int(E) in

some approximation to yield spin and charge current through eq. (B.5).
Although the NEGF formalism is also capable of scaling to systems with large number

of atoms [266, 267], the self-consistent evaluation of Feynman diagrams for interacting
self-energies (which yields coupled system of non-linear integral equations) is at present
prohibitively expensive for devices containing realistic number of atoms [207]. Thus,
to include dephasing processes due to many-body interactions in devices containing few
thousands of carbon atoms, in sect. 6 we employ the phenomenological model of ref. [202],
which is conceptually and numerical simple while making it possible to adjust the de-
gree of phase and momentum relaxation independently. In the “momentum-conserving”
model of dephasing, the interacting self-energies are given by [202]

Σint(E) = dpG(E),(B.10)
Σ<

int(E) = dpG<(E),(B.11)

while in the “momentum-relaxing” model

Σint(E) = D[dmG(E)],(B.12)
Σ<

int(E) = D[dmG<(E)].(B.13)

The operator D[. . .] selects the diagonal elements of the matrix on which it acts while
setting to zero all the off-diagonal elements. Any linear combination of these two choices
can be used to adjust the phase and momentum relaxation lengths independently. When
computed self-consistently together with G(E) and G<(E), both of these choices for
Σint(E) and Σ<

int(E) ensure the conservation of charge current,
∑

p Ip = 0.
For both momentum-conserving and momentum-relaxing dephasing (or their linear

combination) one has to solve for G(E) and Σint(E) using a self-consistent loop where
the initial guess is

(B.14) Gin(E) =

[
E − H −

∑
p

Σr
p(E)

]−1

.

Then

(B.15) Gout(E) =

[
E − H −

∑
p

Σp(E) − dpGin(E)

]−1

,

in the case of “momentum-conserving” dephasing or

(B.16) Gout(E) =

{
E − H −

∑
p

Σp(E) −D[dmGin(E)]

}−1

,

in the case of momentum-relaxing dephasing is used as the input Gin(E) of next iteration.
We assume that the self-consistent loop has converged when ‖Gout(E)−Gin(E)‖ < 10−4.

Using the converged G(E) matrix, the next step is to compute G<(E), which proceeds
differently for momentum-conserving and momentum-relaxing dephasing while yielding
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the same generalization of eq. (B.1)

(B.17) Ip =
∑

q

(
Gcoh

pq + Gincoh
pq

)
(Vp − Vq).

Here the “coherent” contribution to charge conductance coefficients is given by

(B.18) Gcoh
pq (E) =

e2

h

∫
dE

(
− ∂f

∂E

)
Tr[Γp(E)G(E)Γq(E)G†(E)],

while the “incoherent” contribution is given by

(B.19) Gincoh
pq (E) =

e2

h

∫
dE

(
− ∂f

∂E

)
Tr[Γp(E)G(E)Γd

q(E)G(E)].

Although Gcoh
pq in eq. (B.18) resembles eq. (B.2) for phase-coherent transport of single

electron exhibiting elastic scattering only, it actually takes into account the many-body
interaction effects through G(E) in eq. (B.6), which includes Σint(E).

In the case of momentum-conserving dephasing, the matrix Γd
α in eq. (B.19) is ob-

tained from

(B.20) [Gr
0]

−1Γd
α − dpΓd

αGa
0 − dpΓαGa

0 = 0.

This is recognized as the Sylvester equation [268] of matrix algebra, AX+XB+C = 0,
where we identify unknown matrix as X = Γd

α while the known coefficients are A =
[Gr

0]
−1, B = −dpGa

0 , and C = −dpΓαGa
0 .

In the case of momentum-relaxing dephasing, the diagonal elements of the matrix Γd
α

in eq. (B.19) are obtained from

(B.21) [Γd
β ]jj = dm

∑
v

[Q]jv[Gr
0ΓβGa

0 ]vv,

using [208] Q = [1−dmP]−1 and [P]jv = [Gr
0]jv[Ga

0 ]vj . Here the notation [M]jv denotes
the matrix element of M.

We note that phenomenological dephasing effects are often introduced [269] into quan-
tum transport simulations via the Büttiker voltage probe scheme [270]. Such probes are
attached to the active region as leads with no net charge current flowing through them, so
that for every electron that enters the probe and is absorbed by its macroscopic reservoir
at infinity another one has to come out, which is not coherent with the one going in. For
example, one possible way to apply this method to multiterminal graphene devices in
fig. 25 or fig. 32 is to attach one-dimensional leads to each site [271] of the honeycomb lat-
tice. This is equivalent to adding a complex energy −iη to on-site potential of graphene
Hamiltonian (parameter η is related to the dephasing time η = �/2τφ). In addition, one
has to solve the ensuing multiterminal LB formula by imposing that current through
additional 1D leads is zero [271]. However, besides blurring phase-coherence-generated
oscillations in Gpq, Büttiker voltage probes can also introduce additional scattering that
reduces the average value of Gpq in an uncontrolled fashion [202].

Since we find that momentum-conserving model of dephasing discussed cannot re-
produce experimental results [188], in sect. 6 we employ the momentum-relaxing model.
An interested reader can find detailed comparison of momentum-conserving, momentum-
relaxing and traditional Büttiker voltage probes [270,271] phenomenological methods to



CHARGE, SPIN AND VALLEY HALL EFFECTS IN DISORDERED GRAPHENE 653

introduce dephasing in quantum transport in ref. [202] for a simple example of disordered
wire attached to two ideal semi-infinite leads.

The GFs also provide other interesting quantities [272, 273] as the local density-of-
states ρi(E) on the carbon atom with index i

(B.22) ρi(E) = − 1
π
� [Gii(E)] ,

the local density-of-occupied-states

(B.23) ρocc
i (E) =

1
2π

G<
ii(E),

and the local spectral current distribution Ii→j flowing between the atom with index i
and the atom with index j

(B.24) Ii→j(E) =
e

h
�
[
Hij G<

ji(E)
]
,

where Hij is the Hamiltonian matrix element. These local quantities allow us to under-
stand where charges flow and accumulate within the system.

Appendix C.

The Kubo formula for different conductivity tensors

The Kubo formula allows the investigation of the linear response of a system to an
external perturbation. When this perturbation is an electric field, a possible result is the
generation of a current density, which, in the context of this review, is associated with
transport of charge or different types of spins (pseudospin, isopin, intrinsic spin). In this
case, the linear coefficient is defined through the following equation:

(C.1) Γα = σα,βEβ ,

where Γα is the generated macroscopic current in the system and the tensor σα,β is the
conductivity. Here, we will derivate the formalism along the same lines as in ref. [274]
The starting point is a Hamiltonian of the form

(C.2) H = H0 + lim
s→0

estH ′,

where H0 is the many-body Hamiltonian of the system when the perturbation is absent,
and H ′ is the coupling to the perturbation. The prefactor est is explicitly placed so that
the perturbation vanish at t → −∞, and the limit s → 0 is placed to ensure the field
is turned on adiabatically. One fundamental assumption to construct the Kubo formula
is the existence of a unique many-body ground state at temperature T and chemical
potential μ, which is the result of a previous thermalization process at t = −∞. This
mean there is no quantum coherent states at the initial time, excluding as a consequence
initial currents or polarized states.

The macroscopic current in eq. (C.1) is connected to the microscopic many-body op-
erator γMB

α , through its thermal average

(C.3) Γα = Tr
[
ρ(μ, T ) γMB

α

]
,
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where ρ is the many-body density matrix in a grand canonical ensemble at given tem-
perature T and chemical potential μ. In order to find the conductivity, one must connect
eq. (C.3) with eq. (C.1) within the linear regime by calculating the perturbed density
matrix in eq. (C.3). In the linear response regime, this quantity can be written as

(C.4) ρ(t, μ, T ) = ρ0(μ, T ) + lim
s→0

estδρ(E),

where ρ0 is the equilibrium density matrix in the absence of the electric field and δρ(E)
is a small modification due to the presence of the field, which is assumed to vanish for
t → −∞, in the same way as the electric field. After the electric field is turned on, the
equilibrium density will evolve adiabatically to a new density. This process is described
by the Liouville-Von Neumann equation

(C.5) i�
∂ρ(t)
∂t

= [H(t), ρ(t)].

By replacing both the Hamiltonian and the density operator with those in eqs. (C.2)
and (C.3), and excluding all terms that are non-linear in the electric field, the final result
is

(C.6) i�
∂[est]

∂t
δρ − est[H0, δρ] = est[H ′, ρ0].

Before proceeding any further, let us introduce the definition for the evolution operator
of a time-independent Hamiltonian H0

(C.7) U(t, t0) ≡ e−i
(t−t0)

�
H0 .

In the Heisenberg picture, this operator is responsible for the time evolution of observables

(C.8) A(t − t0) ≡ U†(t, t0)AU(t, t0).

where A is a time-independent operator. Using these definitions, one can prove the
following identity:

i�U(t, 0)
d f(t)A(t)

dt
U†(t, 0) = i�U(t, 0)

d
dt

(
f(t)U†(t, 0)AU(t, 0)

)
U†(t, 0)(C.9)

= −i�
∂f(t)

∂t
A − f(t)[H0, A]

with f(t) a time-dependent scalar function. Setting f(t) = est and A = δρ, we can use
this identity to express equation eq. (C.6) as:

(C.10) i�U(t, 0)
destδρ(t)

dt
U†(t, 0) = est[H ′, ρ0].

It is straightforward to prove that the time evolution of A(t) is determined by

(C.11) i�
∂A(t0)

∂t
− [H0, A(t0)] = i�

dA(t)
dt

.
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By setting A(t) = estU(t, 0)†δρU(t, 0) = estδρ(t), we have a relation that seems to be
very similar to left side of equation eq. (C.6)

(C.12) i�
∂estδρ(t)

∂t
− [H0, estδρ(t)] = i�

destδρ(t)
dt

,

in terms of a total derivative, and then

(C.13) U(t, 0)
destδρ(t)

dt
U†(t, 0) = − i

�
est[H ′, ρ0],

which can be immediately integrated as

(C.14) δρ = − i

�

∫ t

−∞
dt′es(t′−t)[H ′(t′ − t), ρ0].

In order to eliminate the commutator, we first demonstrate the following identity

(C.15) [H ′(−t), ρ0] = −iρ0�

∫ λ

0

dλ′ ∂H ′(−t − i�λ′)
∂t

,

where λ = 1/T with T the temperature. To prove it, we first notice that
(C.16) ∫ λ

0

∂H ′(−t − i�λ′)
∂λ

dλ′ = i�

∫ λ

0

∂H ′(−t − i�λ′)
∂t

dλ′ = H ′(−t) − H ′(−t − i�λ),

then, multiplying by the equilibrium density matrix ρ0(μ, T ) = e−(H−μN)/T , we obtain

i�ρ0

∫ λ

0

∂H ′(−t − i�λ′)
∂t

dλ′ =(C.17)

ρ0(μ, T )[H ′(−t) − eH/T H ′(−t)e−H/T ] = [ρ0,H(−t)],

which can be replaced in eq. (C.14) after performing the following change of variable
t′ − t → −t

(C.18) δρ = −ρ0

∫ ∞

0

dte−st

∫ λ

0

dλ′ ∂H ′(−t − i�λ′)
∂t

.

This last relation is a very important one because it relates the non-equilibrium den-
sity matrix with an arbitrary external perturbation. We specify now the perturbation
Hamiltonian by considering the minimal coupling interaction term

(C.19) H ′(t) =
∫

V

dr3φ(r)ρe(r, t),

where V is the volume of the sample, φ(r) is a time-independent scalar potential, which
is related to the electric field through the relation E = −∇φ and ρMB

e (r, t) is the many-
body charge density. By taking the time derivative of the interaction term, one can use
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the continuity equation for charge to obtain

(C.20)
∂H ′(t)

∂t
=

∫
V

dr3φ(r)
∂ρMB

e (r, t)
∂t

=
∫

dr3φ · ∇ · jMB(r, t).

where jMB is the many body charge current density. After integrating by parts, the
previous equation can be rewritten as

(C.21)
∂H ′(t)

∂t
= −

∫
V

dr3E · jMB(r, t).

The last step consists in using the previous relation in eq. (C.18) to obtain

(C.22) δρ = lim
s→0

ρ0

∫ ∞

0

dte−st

∫ λ

0

dλ′
∑

β

∫
V

dr3EβjMB
β (r,−t − i�λ′).

Finally, from eq. (C.3) we obtain the conductivity tensor

(C.23) σαβ(r) = lim
s→0

∫ ∞

0

dte−st

∫ λ

0

dλ′
∫

V

dr3
[
ρ0j

MB
β (r,−t − i�λ′)γMB

α

]
.

This last equation is the Kubo formula.

Different representations of the Kubo formula. – The previous derivation of the Kubo
formula was obtained for a general system, provided that the initial assumptions are
satisfied. In the following, we will focus on the non-interacting electron approximation
and derive the different versions of the formula that are used in the main text.

In general, the many-body Hamiltonian can be written as

(C.24) H =
∑

n

c†ncnεn,

where c†n and cn are the creation and annihilation operators of an electron at a given
energy εn, which is an eigenvalue of H. Additionally, the many-body current operator
can represented as

(C.25) γMB
α =

∑
n

c†ncm〈m|γα|n〉

where |n〉 are single-particle eigenstates and γα is the single-particle current operator.
In the independent electron approximation the trace in eq. (C.3) can be calculated

by using the following result

(C.26) Tr
[
ρ0 c†mcnc†pcq

]
= δnpδmqf(μ, T, εm)[1 − f(μ, T, εn)].

By using this property, one obtains

σα,β = lim
s→0

∫ ∞

0

dte−st
∑
m,n

∫ λ

0

dλ′f(μ, T, εm)〈m|γα|n〉(C.27)

×[1 − f(μ, T, εn)] 〈n|jβ(−t − i�λ′)|m〉.
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In order to perform the integration in λ′, we will cast the evolution operator for t = −i�λ,
such that we can write

σα,β =(C.28)

lim
s→0

∫ ∞

0

dte−st
∑
m,n

f(εm)(1 − f(εn))
∫ λ

0

dλ′e−λ(εn−εm)〈m|γα|n〉〈n|jβ(−t)|m〉.

σα,β =

lim
s→0

∫ ∞

0

dte−st
∑
m,n

[
f(εm)(1 − f(εn))

1 − e−λ(εn−εm)

εn − εm

]
〈m|γα|n〉〈n|jβ(−t)|m〉.

The expression in brackets can be replaced by the following identity

(C.29)
1 − e−λ(εn−εm)

εn − εm
f(εm)[1 − f(εn)] =

f(εn) − f(εm)
εn − εm

,

so that the conductivity can rewritten as

(C.30) σα,β = lim
s→0

∫ ∞

0

dte−st
∑
m,n

∫ λ

0

dλ′ f(εn) − f(εm)
εn − εm

〈m|γα|n〉〈n|jβ(−t)|m〉.

When the time integration is performed and we replace the current operator by the
velocity operator, this expression is the same as the initial expression for the conductivity
presented in sect. 2.

By developing this equation further, one can insert the identity
∫∞
−∞ dεδ(ε − εn) = 1

in order to rewrite the Kubo formula as

σα,β = lim
s→0

∫ ∞

−∞
dε

∫ ∞

0

dte−st
∑
m,n

(
δ(ε − εn)f(ε)

ε − εm
(C.31)

− δ(ε − εm)f(ε)
εn − ε

)
〈m|γα|n〉 〈n|jβ(−t)|m〉,

which can be then represented as a trace

σα,β = lim
s→0

lim
η→0

∫ ∞

−∞
dε

∫ ∞

0

dte−stf(ε)Tr
[
δ(ε − H)jβ(−t)

1
H − ε + iη

γα(C.32)

− δ(ε − H)γα
1

H − ε − iη
jβ(−t)

]
,

where the η parameters is introduced to ensure the convergence of the integrals. This
second expression is the starting point of the real-space method developed by Ortmann
and coworkers [97], which was presented in sect. 4. After integrating in time, one obtains
the following expression

σα,β = lim
s→0

lim
η→0

∫ ∞

−∞
dεf(ε)Tr

[
δ(ε − H)jβ

1
H − ε + iη

1
H − ε + is

γα(C.33)

− δ(ε − H)γα
1

H − ε − iη

1
H − ε − is

jβ

]
.
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By using the definition of the retarded G−(ε,H) and advanced G+(ε,H) GFs for non-
interacting electrons

(C.34) G±(ε,H) = lim
η→0

1
H − ε ± iη

and the following identity

(C.35)
dG±(ε,H)

dε
= − 1

(H − ε ± iη)2
,

one can find the following representation of the Kubo formula:
(C.36)

σα,β =
∫ ∞

−∞
dεf(ε)Tr

[
δ(ε − H)jβ

dG+(ε,H)
dε

γα − δ(ε − H)γα
dG−(ε,H)

dε
jβ

]
,

which is known as the Kubo-Bastin formula [275], and it is used in sect. 4 to compute
the spin conductivity tensor.

As a final simplification, we consider the case where only the diagonal elements of the
GFs are relevant. In this case, one can use the property

(C.37) G+(ε,H) − G(ε,H)− =
i

π
δ(H − ε)

to simplify the Kubo-Bastin formula as

(C.38) σα,α =
1
π2

∫ ∞

−∞
dεf(ε)Tr

[
δ(ε − H)jα

dδ(ε − H)
dε

jα

]
,

which now can be written as

(C.39) σα,α =
∫ ∞

−∞
dε

∂f(ε)
∂ε

Tr [δ(ε − H)jαδ(ε − H)jα] .

This last expression is known as the Kubo-Greenwood formula, which is widely used for
transport calculation and is the starting point of the wave package evolution technique
described briefly in sect. 2.

Numerical implementation of the Kubo formula in real-space: Kernel polynomial
method . – As can be seen from all the previous equations, to calculate the conductivity
it is essential to obtain the GFs of the system. To this aim, a very convenient approach
is the KPM [276,277]. The first step, is to rescale all the energies of the system between
the [−α, α] interval with α → 1, which can be done by the following transformations:

(C.40) H̃ =
2α

ΔE

(
H − E+ + E−

2

)
, ε̃ =

2α

ΔE

(
ε − E+ + E−

2

)
,

where ΔE is the bandwidth and E− and E+ the lower and upper band edge respectively.
Then, one can proceed to approximate the GFs of the system by using an orthogonal
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basis of Chebyshev polynomials. For the Kubo-Bastin formula, for example, this leads
to the following expression for the conductivity [95]

(C.41) σz
αβ(μ, T ) =

4�

V

4
ΔE2

∫ 1

−1

dε̃
f(ε̃)

(1 − ε̃2)2

M∑
m,n

Γnm(ε̃)μαβ
nm,

where

(C.42) Γmn(ε̃)≡ [(ε̃−in
√

1 − ε̃2)ein acos(ε̃)Tm(ε̃)+(ε̃+im
√

1 − ε̃2)e−im acos(ε̃)Tn(ε̃)]

is an energy-dependent function that does not depend on the details of the Hamiltonian
and

(C.43) μαβ,z
mn ≡ gmgn

(1 + δn0)(1 + δm0)
Tr

[
γz

αTm(H̃)jβTn(H̃)
]

is the so-called Chebyshev expansion moments, with Tn(H) the Chebyshev polynomials
defined recursively as

(C.44) Tn(H) = 2HTn−1(H) − Tn−2(H), T1(H) = H, T0(H) = 1,

and gn as the Jackson’s g-factor used to reduce Gibbs oscillations [277] due to truncation
at order M of the sum in eq. (C.41). Calculating the Chebyshev moments is numerically
very time-consuming, because it requires M2 matrix-vector multiplication. However,
thanks to the sparse nature of the usual TB Hamiltonian, all these operations are of
order N .
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[139] Nikolić B. K., Zârbo L. P. and Souma S., Phys. Rev. B, 73 (2006) 075303.
[140] Shi J., Zhang P., Xiao D. and Niu Q., Phys. Rev. Lett., 96 (2006) 076604.
[141] Sugimoto N., Onoda S., Murakami S. and Nagaosa N., Phys. Rev. B, 73 (2006)

113305.
[142] Wang L., Wesselink R. J. H., Liu Y., Yuan Z., Xia K. and Kelly P. J., Phys.

Rev. Lett., 116 (2016) 196602.
[143] Mellnik A. R., Lee J. S., Richardella A., Grab J. L., Mintun P. J., Fischer

M. H., Vaezi A., Manchon A., Kim E.-A., Samarth N. and Ralph D. C., Nature,
511 (2014) 449.

[144] Balakrishnan J., Gavin K. W., Jaiswal M., Neto A. H. C. and Özyilmaz B.,
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[153] Nikolić B. K. and Dragomirova R. L., Semicond. Sci. Technol., 24 (2009) 064006.
[154] Sheng L., Sheng D. N. and Ting C. S., Phys. Rev. Lett., 94 (2005) 016602.
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[157] Schiró M. and Fabrizio M., Phys. Rev. B, 79 (2009) 153302.
[158] Gradhand M., Fedorov D. V., Zahn P. and Mertig I., Phys. Rev. Lett., 104 (2010)

186403.
[159] Gorbachev R. V., Song J. C. W., Yu G. L., Kretinin A. V., Withers F., Cao

Y., Mishchenko A., Grigorieva I. V., Novoselov K. S., Levitov L. S. and Geim

A. K., Science, 346 (2014) 448.



664 A. CRESTI, B. K. NIKOLIĆ, J. H. GARCÍA and S. ROCHE
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(2014) 3779.
[177] Liu Z., Zhu M. and Zheng Y., Phys. Rev. B, 92 (2015) 245438.
[178] Shevtsov O., Carmier P., Groth C., Waintal X. and Carpentier D., Phys. Rev.

B, 85 (2012) 245441.
[179] Sheng L., Sheng D. N., Ting C. S. and Haldane F. D. M., Phys. Rev. Lett., 95

(2005) 136602.
[180] Dyrda�l A., Dugaev V. K. and Barnaś J., Phys. Rev. B, 80 (2009) 155444.
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[186] Mihajlović G., Pearson J. E., Garcia M. A., Bader S. D. and Hoffmann A.,

Phys. Rev. Lett., 103 (2009) 166601.
[187] Titov M., EPL, 79 (2007) 17004.
[188] Abanin D. A., Morozov S. V., Ponomarenko L. A., Gorbachev R. V., Mayorov

A. S., Katsnelson M. I., Watanabe K., Taniguchi T., Novoselov K. S., Levitov

L. S. and Geim A. K., Science, 332 (2011) 328.
[189] Renard J., Studer M. and Folk J. A., Phys. Rev. Lett., 112 (2014) 116601.
[190] Wei P., Lee S., Lemaitre F., Pinel L., Cutaia D., Cha W., Katmis F., Zhu Y.,

Heiman D., Hone J., Moodera J. S. and Chen C.-T., Nat. Mater., 15 (2016) 711.
[191] Abanin D. A., Gorbachev R. V., Novoselov K. S., Geim A. K. and Levitov

L. S., Phys. Rev. Lett., 107 (2011) 096601.
[192] McEuen P. L., Szafer A., Richter C. A., Alphenaar B. W., Jain J. K., Stone

A. D., Wheeler R. G. and Sacks R. N., Phys. Rev. Lett., 64 (1990) 2062.
[193] Haug R. J., Semicond. Sci. Technol., 8 (1993) 131.



CHARGE, SPIN AND VALLEY HALL EFFECTS IN DISORDERED GRAPHENE 665
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