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Abstract

Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for
the dynamics of condensed matter properties and quantum computation even at higher temperatures.
The experimental certification of this paradigmatic quantum effect in macroscopic high temperature
systems is constrained by the limited access to the quantum state of the system. In this paper we show
how macroscopic observables beyond the mean energy of the system can be exploited as proxy
witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all
previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be
certified at higher temperatures without access to any local observable. For an efficient computation of
proxy witnesses one can resort to a generalised grand canonical ensemble, enabling entanglement
certification even in complex systems with macroscopic particle numbers.

1. Introduction

While the occurrence and possible uses of entanglement were first studied for bipartite states, entanglement in
systems containing a large number of particles is of interest both from a theoretical and from a practical point of
view. Even though the macroscopic world we experience daily, can be described classically, there are a number of
systems that are large enough to be described by the thermodynamic limit, which exhibit quantum behaviour,
Bose—FEinstein condensates, ferromagnetic and superconducting materials being prominent examples.
Entanglement may turn out useful in understanding thermodynamic phenomena such as phase transitions in
such systems [1-3]. Recently there has also been alot of attention on the role of entanglement in quantum
thermodynamics [4—6]. Other possible applications of large entangled systems are quantum computers based on
solid state or NMR systems [7—10]. In addition to studying entanglement in the limit of many particles it is also
worth asking up to which temperature entanglement can exist. This is an important question for experiments,
where cooling down systems requires lots of resources. While entanglement usually exists at very small
temperatures, it could persist to up to 100 K in superconductors [11].

Experimentally detecting entanglement in macroscopic systems is generally a highly non-trivial task.
Checking for instance the famous PPT (positivity under partial transpose) criterion, as easy as it is theoretically,
requires a full state tomography, which is not possible in large systems. Also, calculating the eigenvalues for
matrices of large dimensions is not practical. The method of choice are entanglement witnesses, i.e. observables
with positive expectation value for all separable states but with negative expectation value for some entangled
states. Witnesses reduce the complexity of entanglement detection to the measurement of a single observable.
However, this observable might have no physical meaning and might be hard or impossible to measure. In
particular it might be necessary to perform a collective measurement of all particles, which is not experimentally
feasible in macroscopic systems. What is feasible is the measurement of macroscopic observables such as the

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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mean energy, the magnetisation, the temperature or the entropy of the system. There have been several results
showing that mean energy and temperature can serve as entanglement witnesses at low temperatures ([12—17] to
name just a few).

However, all of these are limited intrinsically at higher temperatures when the value of the macroscopic
witness is consistent with separable pure states. Knowing that any experimental system will have some non-zero
entropy, i.e. not be in pure state, often allows for reasonable lower bounds on the system entropy to be assumed
(as for example through ambient temperature and the second law of thermodynamics). Here we can leverage the
entropy to bound ‘by proxy’ generic entanglement criteria, allowing us to detect, in principle, all entangled
Gibbs states of a many-body system, as well as entangled states far out of equilibrium. This method can in general
be phrased as a semi-definite program (SDP), which are efficiently solvable for small system sizes (and have in
fact often been used in the context of entanglement quantification [ 18-20]). In the following we will showcase
some exemplary situations where these SDPs can improve entanglement detection for systems of up to thirteen
qubits on a regular laptop. Furthermore we show that using entanglement witnesses in particular allows one to
harness tools from statistical physics and solve the problem through introducing a virtual ‘chemical potential’ in
a generalised Gibbs ensemble, changing the maximum entropy state for a given energy. In these generalised
Gibbs ensembles entanglement witnesses play the role of additional conserved quantities, making the proxy
method as accessible for large systems as the computation of Gibbs entropies, which we demonstrate by
detecting entanglement by proxy in the thermodynamic limit.

In what follows we will assume the Hamiltonian to be well characterised, which for large systems is of course
only an approximation. Unfortunately, to characterise entanglement one requires reasonably precise knowledge
of the observables used to certify it. As we will show later, the method is robust against small perturbations, but if
the Hamiltonian is entirely different it can of course lead to false positives. Our method is suitably generic and
requires knowledge only of conserved quantities for use in the generalised Gibbs ensembles. While we
generically use the average energy to showcase our methods, they could just as well be replaced by other
macroscopic approaches such as e.g. spin squeezing [21-23].

2. Entropy as entanglement witness

2.1. The primal problem
As mentioned in the introduction, the mean energy of a system can be used to witness entanglement in the
corresponding quantum state. Namely any state with mean energy less than

Emin,sep = min Tr pH (D

pESsep

is entangled. By convexity the minimum is attained in a pure state. sep can be chosen to be the set of fully
separable states or the set of k-separable states. For k = 2, genuinely multipartite entanglement is detected. If the
system is in thermal equilibrium, it is possible to derive an analogous criterion for the temperature.

The goal of this chapter is to find a condition that is able to detect entanglement at higher energies than
Emin,sep- The idea is to add additional constraints to (1). For example, alower bound on the (von Neumann)
entropy of p:

Enin,sep,s' = min  Tr pH. 2)

pesep, S(p)>S

If E(p) < Emin,sep,s’ and S(p) > S’, pisentangled. S’ can be varied between 0 and In d. Clearly, it holds
Emin,sep,S' 2 Emin,sep- But the relevant question is whether there are entropies for which the strict inequality
holds. While (1) is minimised by a pure state, the minimum does not have to be unique. Hence a mixture of
minimisers could also have mean energy Epin,sep» Dut at non-zero entropy. The exact behaviour depends, of
course, on the Hamiltonian. However, it is possible to show that if there exists an S', for which the strict
inequality holds, it will hold for any larger entropy. This follows from

. /-
Lemma 1. Epniy oep,s' as function of S’ is convex.

Proof.Let0 < S, < Indand 0 < p < 1. Let p, , be separable states with entropies S1 ; respectively, that
minimise (2). Then

Eminseps (PS, + (1= p)S3) < Tr H(ppy + (1 = )3) = P sens'(S1) + (1 = P Emineps'($2), (3)

where the inequality is due to the fact that pp, + (1 — p) p, is a feasible point of (2), which follows from the
concavity of the entropy. O
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Figure 1. Qualitative form of Epyn,scp,s’ as a function of §’. The dark grey area under Epiy «p iS detected by [12—14]. The method
presented here can detect entanglement in the light grey area, i.e. for § > Spi, and E < Epjn,sep,s'- In the white area above the
Ein,sep, s’ Curve, separability is possible. Because of it is convexity, the same curve can be obtained by maximising the entropy under
the constraint that the mean energy is less than E and varying E.

Figure 2. Schematic view of corollary 3 for one witness W. The constrained entropy Spax, w, g or short Sy is attained at the intersection
between the (green) hyperplane induced by the witness Tr(pW) = 0 and the (red) hyperplane induced by the mean energy

Tr(pH) = E. The concentric circles represent equi-entropic states, with the outside low entropy region (blue) bounded by Sy and the
centre high entropy region (red) bounded by the Gibbs state entropy Sgibbs. The detected states lie within the (white) region spanned
by AS.

Since Epin,sep, s’ is convex, it is strictly monotonically increasing as soon as it exceeds Ein,sep- Let us call the
smallest entropy where the constraint hits S;,. See also figure 1.
Since for S’ > Spin, Emin,sep,s' 18 strictly monotonically increasing, we can obtain the same curve, i.e. detect
the same entanglement, by computing
Smax,sep,E = max S(p) 4)
pesep, Tr Hp=E
and varying Epin ep < E < %. Equivalently we could also demand Tr Hp < E.Note that if we remove the
separability constraint (4) will become the Gibbs state entropy
Saibbs = max  S(p), 5)
pstate, Tr Hp=E
attained by the Gibbs state. Since the optimisation is of the same form as the one yielding the regular Gibbs
ensemble we will call the resulting state a separable Gibbs ensemble. In order to compare its entropy with the
Gibbs state entropy, let us define the entropy gap AS = Sgibbs — Smax,sep,E-

Theorem 2. For mean energy E and corresponding temperature T, any state p with Spax sep. e < S(p) < Sgibbs 1S
entangled. In particular the Gibbs state is entangled if AS > 0.

Note that for any non-zero gap between S, sep, r and Sgibbs there always exist states different from the Gibbs
state which we detect, for example there is always a state with entropy ASmax sep,z + (I — A)Sgibbs»
where 0 < A < L

The optimisation in (4) is difficult to deal with because it contains the separability constraint. The main idea
is to relax this constraint using sets of states which remain positive semidefinite after the application of positive
(yet not completely positive) maps A. A prominent example would be the partial transposition. While these are

3
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of course supersets of the separable states, it is clear that for every entangled state in principle there exists a map A
and thus a semidefinite relaxation that will still yield optimal results for the constrained optimisation.

Let us use the fact that every set of A-positive states forms a convex set that can be approximated by a suitable
set of entanglement witnesses W; with suitable weights v; > 0[24]. As every optimal entanglement witness for
the set of A-positive states for partition A can be writtenas A, ® 1x[|1) (¢|] one can find suitable entanglement
witnesses for the system in question. While this of course comes at the expense of finding suitable entanglement
witnesses for specific systems, it also opens the possibility to constrain the entropy beyond just states which are
separable under fixed bi-partitions. L.e. it enables us to find also genuine multipartite entanglement or any other
non-partially separable set, by choosing corresponding witnesses. In order to remain fully general we include
both an arbitrary set of entanglement witnesses and positive maps in the following considerations.

The relaxed problem is thus given by

Smax,sep,E < Smax,AA,W,-,E = max S(ﬂ)
s. t. pstate, Tr (pH) = E,

Ax @ 1zlp] > 0, Tr(pW) > 0. ©)

Smax, Ay, w,E Will be an upper bound on Sy sep, £» it is tightness depending on the choice of witnesses or maps.
Since the relaxation just provides an upper bound for the separable entropy it trivially follows that according to
theorem 2:

Corollary 3. For mean energy E and corresponding temperature T, any state p with Spax p, wie < S(P) < SGibbs IS
entangled. In particular the Gibbs state is entangled if Smax A, W, < Scibbs For an illustration see figure 2.

While the relaxation weakens the detection criterion, we are now dealing with a convex optimisation
problem with only linear and semidefinite constraints (since maximising a concave function is of course
equivalent to minimising a convex one). Such programs can be solved efficiently numerically thanks to so-called
interior point methods [25]. In addition, they have a duality theory which can be used to give certified upper
bounds on Sy A, w;, B> as we will discuss in the next section. One might ask why instead of applying corollary 3,
one cannot simply apply the witnesses or positive maps involved directly. While this is possible theoretically, let
us note again that witnesses or positive maps are in general not easily accessible in experiments, while
macroscopic variables such as the mean energy and entropy are. Since corollary 3 makes use of witnesses without
the need to measuring them directly, but instead requires the measurement of mean energy and entropy, we call
those two quantities proxy witnesses.

Let us conclude this section by noting that apart from the von Neumann entropy, in principle any concave
function can serve as a proxy witness. An example is the so called linear entropy, also known as impurity of a
quantum state, which is defined by S; (p) = 1 — Tr p?[26]. The linear entropy is upper bounded by the von
Neumann entropy and can be seen as a measure of mixedness of a quantum state, as well. The optimisation of
the linear entropy is easier to deal with than of the von Neumann entropy, as it is only quadratic in p.

2.2. The dual problem

For convex optimisation problems, such as (6), it is possible to derive a dual optimisation problem. To do so, one
defines the Lagrangian, a function incorporating both objective, i.e. the function to be maximised, and the
constraints. The constraints are added by means of Lagrange multipliers. The Lagrange multipliers are referred
to as dual variables, whereas the variables of the original problem are referred to as primal. Maximisation of the
Lagrangian over all admissible primal points yields the dual objective. The dual problem is then given by the
minimisation of the dual objective with respect to the dual variables. It can be shown that any dual feasible point
provides an upper bound on the original problem, which is referred to as weak duality. For details, please refer to
[25]. For (6),the Lagrangian is given by

L(p, A, s Vis Xo, XA,A): S(p)+ AX(Trp— 1)+ pu(Tr pH — E) + Zz/,- Tr pW,

+ Tr pXo + > Tr Ay @ Iz[p] X a5 @
AN

where A, pand the v; are real Lagrange dual variables, corresponding to the trace, mean energy and witness
constraints, respectively. As the witness constraint is given by an inequality, we can restrict to v; > 0. X, and the
X4, A, the Lagrange dual variables corresponding to the positivity and positive maps constraints respectively, are
positive semidefinite matrices.

Here it becomes clear that witnesses are easier to deal with numerically than positive maps, as they only
require scalar variables. The dual objective function reads as follows

4
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£ (A s v Xop X ) o= max L (pu A o v Xoo X ) ®

where the maximisation is over all admissible p, i.e. those for which the right-hand side is defined, in particular
not necessarily obeying the primal constraints in (6). Note that the dual problem is also a convex optimisation
problem: the constraints are indeed linear and semidefinite, while ¢ is convex, owed to the linearity of L in the
dual variables.

Clearly, for every primal feasible p and dual feasible A, u, v;, Xoand X, 4 itholds

S(P) g L(P, Aa s Vis XO: XA,A) g K(A) > Vi, XO) XA,A)- (9)
In particular we have what is referred to as weak duality:
Smas, AWt < min 2 (A, 1, viy Xo, X0 ) (10)

where the minimisation is over the dual feasible region,i.e. A, u € R, v; > 0, Xg > 0, X4 o > 0. Theright-
hand side is referred to as the Lagrange dual problem. Note that any dual feasible bound yields an upper bound on
Smax, A, w,E- This allows us to obtain analytical upper bounds from numerics. One simply has to numerically
optimise the dual problem and check if the so obtained optimisers are dual feasible. If they are they can be
inserted into £ yielding the bound.

Let us now evaluate the dual objective function (8) for the von Neumann entropy, which is well-defined on
any positive semidefinite matrix. Since the entropy is concave, so is the Lagrangian. Hence it is sufficient to find a
critical point, that is positive semidefinite, of L as function of p. Using V,S(p) = —1 — In p and
V, Tr pM = M with respect to the trace inner product on Hermitian matrices, as well as the fact that
Tr (Ax ® 1z[plXan) = Tr (ijS ® 1x[Xa,4]) one can obtain

VoL =—1—Inp+ A+ pH + Y wWi+ Xo + A @ 1x[ Xan ], (11)
i AN
which vanishes for
pt = exp((A — DI+ pH + Y viW + Xo + Y Af ® ﬂx[XA,A]). (12)
i AN

Hence the dual objective is given by
£ (A s vis Xo» Xan ) = L (%% A, 5 iy Xop Xan), (13)
:Trexp(()\ — DI+ puH + S uiWi + Xo + SN © Jl;[XA,A]] — A\ — puE, (14)

i AN
:e(A—l)Trexp(uH + 3 W+ Xo 4+ S AL @ ﬂg[xA,A]) — X\ — uE. (15)
i AN

We will have to minimise # with respect the dual variables. Since X, > 0, the minimum will be attained at

Xy = 0. ¢ can be easily minimised for A. This is due to the fact that the eigenvalues of a hermitian matrix cannot
decrease if a positive semi-definite matrix is added, which follows from theorem 4.3.1 of [27]. By convexity the
minimum is attained where the derivatives vanishes, yielding a function # just of y, v;, Xa o

f(u, v, XA,A) = In Tr exp [uH + ZViW; + ZA;? ® JIAT[XA,A]] — uE. (16)
i AA

By weak duality, it holds

Smaxrowr < min  2(p, v Xan). (17)
HER,1;>0,X4 >0

As 7 is convex, £ is convex, as well [25]. If only witnesses are used, # only has scalar variables, which results in a
greatly enhanced numerical performance compared to the primal problem.
Itis an interesting observation that £ is reminiscent of a grand canonical ensemble and

f=InZ + BE=InTr exp(—ﬁH/) + BE, (18)

where H' = H — %(Ziy,»wi + Z " AA’}; ® 1x[Xa, A]). Instead of particle numbers the constraints stem from

the specific witnesses or maps used. We will sometimes refer to equation (18) as a witness canonical ensemble
entropy (WCEE).

In other words, when choosing = — 3, the operator Zi v; W, + ZA)A N ® 17[Xa2]canbeseen as
some sort of grand canonical ensemble with additional ‘chemical’ or rather witness potentials. In particular the

5
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entropy gap can be lower bounded as follows:

AS > In Trexp(—FH) (19
Trexp(—0H + Y Wi+ 33, Kf @ 12 Xan ])
forally; > 0and X4 o > 0.
Itis also possible to compute £ for the linear entropy. After rewriting the Lagrangian as
Lin=1—X— uE+Tr p(/\Jl + uH + viW + Xo + S A @ JIA[XA,A]] ~ T p?, (20)
AN
itis easy to show that the optimiser is given by
. 1
it — E(,\Jl + uH + W+ Xo + S AL @ Jlg[xA,A]]. 1)
AA

Hence

2
1
e (N 1o v Xo» Xan) = n Tr[)\Jl + uH + W+ Xo 4+ SN © ﬂg[XA,A]] +1—A—pE. (22
AN

Minimisation of £y yields an upper bound on the maximal linear entropy achievable by separable states. Again,
this minimisation is easier to deal with as in the von Neumann case, because it is only a quadratic function.

2.3. On numerics

Let us now briefly discuss how the primal and dual optimisation problems introduced in the preceding sections
can be implemented numerically. As mentioned before, (6) and (17) have concave and convex objectives,
respectively, as well as linear and semidefinite constraints. Note that for our purposes it is sufficient to only
compute the dual problems. It can however be instructive to also compute the primal problem in order to obtain
the optimiser and check if strong duality holds. While interior-point methods can in principle solve such
problems [25], readily available solvers such as Sedumi [28] or SDPT3 [29] can only handle linear and quadratic
objectives. This is sufficient to solve (6) and minimise (22) for the Linear entropy.

For the von Neumann entropy, however, there is a way to obtain an approximate solution: it is a well known
fact that the von Neumann entropy of a state is equal to the Shannon entropy of its eigenvalues. As for Z, note
that for ahermitiann X n matrix M with eigenvalues ); it holds Trexp (M) = Zi exp(\;). Hence Zisa
function of the eigenvalues of the exponent. Both S and # are invariant under permutation of the eigenvalues.
This allows us to reformulate (6) as

Smax,AA,Wi,E = max H(V)’

v,p
s. t. v = eig(p), pstate, Tr(pH) = E,
A ® lIzlp] > 0, Tr(pW;) > 0, (23)

where eig(p) denotes the vector of eigenvalues of p. Note that this is not a semidefinite constraint. There is,
however, a trick to include the eigenvalues into a semidefinite programme[30]: while the eigenvalues are
generally not SDP-representable, the sum of the k largest eigenvalues of a matrix is [31]. We can now replace the
eigenvalue constraint in (23) by the constraint that v has to majorise eig(p), i.e.

Tr(p) = ZW

si(p) <
s200) <Kvi+n

n—1
su1(p) < D vis
i-1

where s (M) denotes the sum of the k largest eigenvalues of a matrix M. Then the optimising v will be equal to
the eigenvalues of the optimising p. To see this, recall thatif v > w, itholds H (v) < H (w) [32]. Let us now
assume that the (unique) optimising v of the Shannon entropy majorises but is not equal to the eigenvalues of
the optimal p. Then S (p) would be greater or equal to H (v), which is a contradiction. Since v > w implies
f ) = f (w) for any convex function [32], the same argument can be applied to (17).

So far, we have replaced the von Neumann by the Shannon entropy and, in the dual problem, the matrix
exponential by scalar exponential functions and transformed the arising eigenvalue constraints into semidefinite
constraints. In order to apply Sedumi or SDPT3, all that is left to do is to approximate the objectives by piecewise

6
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Table 1. Energy ranges in which the von Neumann entropy can be suc-
cessfully used a proxy for detecting entanglement in the anti-

ferromagnetic Heisenberg model (J = —1).

N EO/N Emin,PPT»eVenfodd/N Emax,gap/N €

3 —1.000 —1.000 —0.610 0.195
—2.000 —1.000 —0.660 0.447

5 —1.494 —1.008 —0.695 0.320

linear functions. While this will only give us approximate solutions, let us note that the optimisers found in this
way, can be easily checked to be feasible and inserted in the original objective.

When using PPT or other positive maps the dimension of the matrix variables increases exponentially with
the number of qubits. As we will show in the next section, this makes it difficult to go beyond five qubits. The
computation of (16) greatly simplifies when only witnesses are used. In this case there will only be scalar
variables 1 and v; and no semidefinite constraints. This allows for application of a standard nonlinear solver,
such as FMINCON [33]. Using FMINCON we were able to obtain results for up to 13 qubits, as we will present
in the next section.

If we want to show if the Gibbs state is entangled, we will also need to compute the Gibbs state entropy
S(pgivps) = BE + In Z.To do so numerically it is sufficient to compute the eigenvalues of the Hamiltonian,
which allows for computation of the partition function Z = Tre~?" and the mean

1 ;
energy E = Tr pgupH = 7 > e EE;

2.4. Examples

In order to test our method, we have implemented it for Heisenberg model, which was introduced in order to
simplify the analysis of systems of spins, such as ferro- or antiferromagnets. It only takes into account the nearest
neighbour exchange interaction between the spins as well an external magnetic field. In the one-dimensional
case, i.e. a chain of spins, the Heisenberg model is described by the following Hamiltonian

N N
H= *Z(]ngfffﬂ + ]ya{af’ﬂ + ]zafff}‘zﬂ) + BZUf> (24)

i=1 i=1

where J, J,, J; are the coupling constants for the x, y, z-components of the spins, N the number of spins and B
the external magnetic field in zdirection. o}, o7, o} denote the Pauli operators for the ith spin. Let us assume
periodic boundary conditions, i.e. aring of spins. If ], = J, = ], =: ], weare talking about an isotropic XXX
Heisenbergmodel. ] > 0and J < 0 correspond to ferromagnetic and antiferromagnetic systems, respectively. If
J« = J, = J., the system s called an XXZ system and so on. If only one component of the spin is considered, i.e.
onlyone J; = 0, the Heisenberg model reduces to the Ising model.

The numerical results presented below have been obtained using either Sedumi or SDPT3 as well as Yalmip
[34]. Using PPT constraints we have applied the method for up to five qubits, for witnesses for up to 13 qubits.

2.4.1. Antiferromagnetic Heisenberg model

For the one-dimensional antiferromagnetic Heisenberg model (XXX with | = —1), itis possible to detect
entanglement at higher energies than [12—14], both using the von Neumann and the linear entropy as proxies.
The computations have been performed using both the partial transpose with respect to the partition
Ajeven|Ajoda and all possible partitions.

Let us start with the results for the even versus odd partition. In table 1 the energy ranges where entanglement
is detected are shown for the von Neumann entropy and for the linear entropy, respectively. Here N denotes the
number of qubits, E, the ground state energy and E i, ppT-even—odd denotes the smallest mean energy allowing
for PPT w.r.t. the even versus odd partition . Below that mean energy any state is guaranteed to be entangled.
Note that Emin,sep = Emin,PPT—all Z Emin,PPT—evenfodd- Between Emin,PPT—evenfodd and Emax,gap all states falhng
into the entropy gap are entangled. I.e. Epax gqp is the largest energy for which the proxy method can work. This
includes the Gibbs state in the von Neumann case. Note that the Gibbs state is not necessarily the maximiser for
the linear entropy. Hence, instead of the Gibbs state we have computed the state with maximal linear entropy

SL,max = max SL (P) (25)
pstate, Tr Hp=E

and compared it to the constraint linear entropy. £ is defined as the fraction of the energy range where
entanglement is detected
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Table 2. Energy ranges in which the linear entropy can be successfully
used a proxy for detecting entanglement in the antiferromagnetic Hei-
senbergmodel (J = —1).

N EO/N Emin,PPT»evenfodd/N Emax)gﬂp/N &

3 —1.000 —1.000 —0.600 0.200
—2.000 —1.000 —0.370 0.543

5 —1.494 —1.008 —0.302 0.478

34 T T T T T T T
3.2f 1
3r 4
281 q
S S
26 1
24F 1
221 Gibbs entropy Gibbs entropy
wcee ooty Wcee
2 . . . . . . . . . . . .
-1.05 -1 -095 -09 -085 -08 -0.75 -0.7 -0.65 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
(a) E/N (b) E/N
Figure 3. The entropy gap for the antiferromagnetic Heisenberg model (J = —1) with five qubits and the PPT condition w.r.t.
subsystems 1, 3, 5. (a) Shows the von Neumann entropy, (b) the linear entropy. The Gibbs state entropy (red line) and the dual of the
constraint, i.e. the witness canonical ensemble entropy (WCEE), (blue line) plotted versus the mean energy. The difference of the two
lines constitutes the entropy gap.

Table 3. Energy ranges for three qubits in the antiferromagnetic Heisen-

bergmodel (J = —1) in a magnetic field B = 3 using von Neumann
entropy.

B EO/N Emin,PPT-even—odd/N Emax,gap/N 5

0 —1.000 —1.000 —0.610 0.195
1 —1.333 —1.333 —0.720 0.184
2 —1.667 —1.667 —1.033 0.136
3 —2.000 —2.000 —1.540 0.077

£— Ernax,gap - EO ) (26)
Emax - EO

where E ,,, denotes the largest energy eigenvalue.

As can be seen in tables 1 and 2, entanglement can be detected in a large area of the energy spectrum. The
maximum mean energy where entanglement can be detected is also substantially higher than — N, which is the
maximum mean energy where the methods of [12—14] work. Let us also note that the ground state energies given
in[12—14] are only correct in the limit of large N, as has been noted in [ 14]. The fact that the linear entropy
detects more than the von Neumann entropy could be a result of the piecewise linear approximation of the von
Neumann entropy in the maximisation, which results in weaker bounds on Sy sep-

The entropy gap can be seen in figures 3(a) and (b) for the von Neumann entropy and for the linear entropy,
respectively. Here the Gibbs state entropy or Sy, nax, as well as Syax ppT-even—dd are plotted versus the mean
energy.

Entanglement can also be detected in the presence of a magnetic field. Tables 3 and 4 show the detected
energy ranges in a three qubit system for the von Neumann and linear entropies, respectively. The entropies are
plotted in figure 4 for B = 3.

Going from PPT w.r.t. the even—uneven partition to all possible partitions greatly increases the computation
time as the number of partitions grows exponentially with the number of qubit. Since the constrained entropy
increases monotonically in E, it holds Erax,gap, pPT-all 2 Emax,gap,PPT-even—odd> POssibly increasing the energy
range, where entanglement can be detected. In the example considered here, however, only a small increase can
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Table 4. Energy ranges for three qubits in the antiferromagnetic Heisen-
berg model (J = —1) with a magnetic field B = 3 usinglinear entropy.

B EO/N Emin,PPT-even—odd/N Emax,gap/N 5
0 —1.000 —1.000 —0.600 0.200
1 —1.333 —1.333 —0.560 0.232
2 —1.667 —1.667 —0.717 0.204
3 —2.000 —2.000 —0.940 0.177
. . . . . . . . . . 0.9
181 R
1.7¢ i 0.85- 1
161 0.8r R
1.5¢ 0.75F 1
141 \
S S 0.7F 1
131
0.65f E
1.2¢
0.6 1
110
1 Gibbs entropy 1 055 Gibbs entropy
WCEE WCEE
09t . ‘ . s s s . ‘ ‘ L 0.5 \ \ ‘ ‘ ‘
-2 -195 -1.9 -1.85 -1.8 —1.75 -1.7 165 —1.6 —1.55 —22 -2 18 -6 14 12 -1 -08
(a) E/N (b) E/N
Figure 4. The entropy gap for three qubits in the antiferromagnetic Heisenberg model (J = —1) with a magnetic field B = 3, again for
PPT w.r.t. the even versus uneven partition. (a) Shows the von Neumann entropy, (b) the linear entropy.

Table 5. Results for the von Neumann entropy in the anti-
ferromagnetic Heisenberg model (J = —1) with a magnetic field
B = 3 usingall possible partitions.

N EO/N Emin,PPT-a]]/N Emax,gap/N 5

3 —1.000 —0.600 —0.600 0.200
—2.000 —1.000 —0.660 0.447

5 —1.494 —0.809 —0.809 0.275

Table 6. Results for the linear entropy in the antiferromagnetic
Heisenberg model (J = —1) with a magnetic field B = 3 usingall

possible partitions.

N Eo/N Erin,ppr-al/N Ermax,gap/N 2

3 —1.000 —0.600 —0.594 0.203
4 —2.000 —1.000 —0.360 0.547

be obtained. See tables 5 and 6, as well as figure 5. For three qubits it holds E i, ppr-at/N = —0.6 > —1,
implying that Ein sep/N 2 — 0.6 > — 1. This shows that the result of [12, 14] is suboptimal for an odd number
of qubits, as mentioned in [14]. The reason is that they use a partition into two sub-lattices such that every
neighbouring sites belong to different sub-lattices, which is not possible for an odd number of qubits.

2.4.2. Dicke states
Dicke states were first considered in the theory of coherent spontaneous light emission [35]. They are defined by

or) = () "), @
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26 T T T T T ' j 0.96
251 0.94 i
0.921 b
241
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S 23 088F .
221 S 0.86 b
0.84r b
21¢
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2r Gibbs entropy | 08l Gibbs entropy
WCEE WCEE
1.9 1 1 1 1 1 1 L 0.78 L L 1 1 L 1 1
-1 -095 -09 -08 -08 -075 -07 -0.65 -06 -1.1 -1 -09 -08 -07 -06 -05 -04 03
(a) E/N (b) E/N
Figure 5. The entanglement gap for all possible partitions for the von Neumann (a) and linear (b) entropies in the antiferromagnetic
Heisenberg model (J = —1) with a magnetic field B = 3.

where

|d) = ® oy @ 1), (28)
iZo i€a
mis the number of excitations, & denote sets of indices of excited subsystems and the sum is taken over all
inequivalent sets of m indices.

More recently Dicke states turned out to be a useful resource for quantum information processing task as
theyare LOCC transferable to GHZ or W states [36]. Several experiments have successfully created Dicke states,
e.g. [36-38].

In [39], it has been shown using perturbation theory that the approximate ground states of anisotropic
ferromagnetic XXZ Heisenberg Hamiltonians (i.e. J, = J, > J, > 0)are Dicke states. For B = 0 and
J. = J, > 0theground states are given by { |D};) } i _, with n 4+ 1-fold degeneracy, which makes entanglement
atlow energies unlikely. This is because the system will soon go into a mixture of the Dicke states, which is
separable. For J, > J,and B = 0, however, the degeneracy vanishes. In first order perturbation theory | D) is
the ground state for

_n—2m + 1A]<B<—n_2m_1A], 29)
n—1 n—1
where AJ = J, — ], is the anisotropy parameter.

A number of methods have been developed to detect genuinely multipartite entanglement in Dicke states
[40-46], of which [44] is the most generally applicable one. It consists of a nonlinear witness, i.e. an nonlinear
inequality that has to hold for every biseprable state. In order apply the witness only a polynomial (in the number
of qubits) number of local measurements is necessary.

Combining [44] with the use of proxy witnesses, entanglement can be detected even more easily
experimentally. To do so, let us introduce a (weaker) linear version of the nonlinear witness given in [44]. Itis
given by

Wi=3 5 (las) (o] = [da) (ds] +[darus)(damral + |doua)(dova]). - 0

1
2 dey

where vy = {(a, 8): |a N G| = m — 1}. W, detects | D};) in a maximal way. Using these witnesses as a
constraintin (6), it is possible to detect entanglement for different choices of J, and J, and B satisfying (29).

Results for 11 and 13 qubits are presented in table 7 and figures 6 and 7.

3. To the thermodynamic limit

3.1. The ground state witness

In order to extend the above results to the thermodynamic limit, let us now focus on witnesses, which are
diagonal in the energy eigenbasis. A general example of such a witness is givenas W = al — |Eg)Ey|, where | Eg)
is the ground state of Hand ov = max )|,y [ (Eol|®)|¢) [* [47]. Instead of | Ey)( Eo|, one could also use any
projector onto one or several energy eigenstates. The only obvious requirement being that the states are
entangled themselves, otherwise the resulting operators would not be witnesses. We can then either maximise

10
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Table 7. Detection energies and entropies for the XXZ Hamiltonian with ], = 1 using (30) as witness.

S Biuml et al

N m B A] Eo/N Emin,gap/N Emax,gap/N Tmin,gap Tmax,gap &

11 5 -1 10 —13.753 —13.599 —12.890 3.970 7.930 0.031
11 5 -3 20 —26.707 —26.299 —24.698 8.460 16.420 0.038
11 5 -1 20 —26.525 —26.344 —24.802 6.940 15.850 0.033
13 6 -1 12 —16.276 —16.149 —15.577 3.970 7.930 0.021
2.8 T
2.6

24

22

(a)

Gibbs entropy
WCEE

0.8 . . . . . .
-264 -262 -26 -258 -25.6 -254 -252 -25 -24.8 -246

E/N

Figure 6. Entropy gap plotted versus mean energy for (a) 11 qubits, m = 5, B

Gibbs entropy
WCEE

(b)

I I I I I I
-16.1 -16 -159 -158 -157 -156 -155 -154 -153 -15.2

E/N

= —3and AJ = 20 and (b) 13 qubits,m = 6, B = —1

and AJ = 12.
2.8 ‘ : ‘ ‘ 26 ‘
26 ] 241
24+ 1 2ot
22t 1 5l
2+ i
S 181
18+ f
S 16+
16+ 1
14+
14+ 1
120 f 1.2r
1L Gibbs entropy 1k / Gibbs entropy i
WCEE WCEE
08 : ‘ ‘ : 08 : : : :
8 10 12 14 16 18 3 4 5 6 7 8 9
(a) T (b) T
Figure 7. Entropy gap plotted versus temperature for (a) 11 qubits, m = 5, B = —3 and AJ = 20 and (b) 13 qubits,m = 6, B = —1
and AJ = 12.

over a fixed bipartition, or over all possible ones. In the former case it is possible to detect bipartite entanglement
w.r.t. the partition chosen, in the latter case we can detect genuinely multipartite entanglement. Inserting the
witness into (16), we see that the exponent becomes diagonal

(i, v) = In Tr exp [Z(uEi + V(a - (51-0))‘E,»><E,~

=In Z exp (uEi + V(a — 6,-0)) — uE,

)HE)

(3D

(32)

where E;and | E;) are the energy eigenvalues and eigenvectors, respectively and & is the Kronecker delta. Setting
the gradient equal to zero, we obtain
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%i(u, v)=0= (i) 21: exp (,LLEi + V(a — 5,~0))(Ei - E) =
;—Vf(u, v) =0 = (i) Zl: exp (,uEi + V(a — (5,-0))(a — 6,-0) =0,

which, by convexity of 7, are sufficient conditions for a minimum. Solving those transcendent equations w.r.t.
the Lagrange variables is only possible numerically for small N. Still it is possible to obtain a result for the
thermodynamic limit, as we will now demonstrate.

Let us first consider the case where o = 1,1.e. H has a separable ground state. Since the first term in the sum
of (ii) vanishes, (ii) cannot be fulfilled for any > 0. Since Z increases with v/, the minimum is attained at v = 0.
Atv = 0, however, (16) is an upper bound on the unconstrained problem, namely

minln ) exp(uEi) — BE = S(pGipps)-
" i

Since S (pgipps) = In Z + BE, the minimum is attained at 4 = — 3. In this case no entanglement is detected.

— BEq
Let us now move on to the case where o < eTO Assuming that the minimum is attained at v = 0, i.e. that
(ii) is fulfilled at v < 0, (ii) tells us that

exp(—/BEO + v(a — 1)) e—BEo e—BEo e—0Eo

= — = =2 )
Zi exp(*ﬂEi + V(O‘ - 51‘0)) Z e Mier(1-00) e Zi>oeiﬁE’e’ Tz

with equality for v = 0, which is a contradiction. Hence the minimum is attained at > 0. This implies that
n’nnu>0 /lf < mln,uf(o ,U/) - S(pGlbbS) hence Smax As, W,E < S(pGlbbS)

Theorem 4 Let SEP be the set of separable pure states w.r.t. some partitions and o = max|gyesep | (Eol|9) |*. Then,

ifa

those partltzons.

max A WLE < S < S(Pgiphs) Will be inseparable w.r.t.

. eIk
Note that while for o <

entanglement of the Gibbs state can also be detected by applying the witness

directly, the same is not true for states with entropy Smax o, w,e < S < S(0gipps)- Since such states always exist,
this shows that our method generically works. Theorem 4 can be applied in the thermodynamic limit. Since E,
generally scales linear in N while Z does so exponentially, theorem 4 can yield non-trivial results

where o = O(e™V).

3.2. Example
We consider a special case of the Heisenberg Hamiltonian, given by

N
1
H:—E ( +raf0"‘
i=1

2 l+1+h0)

This is known as the XY'model in a transverse magnetic field. If r = 1, we talk about the Ising model, if r = 0, the
XX model. The XY model undergoes a phase transition ath = 1[2]. The ground state energy as well as the
partition function have been computed in the thermodynamic limit by [48]. According to a conjecture
numerically tested in [49], a w.r.t. full separability is given by

In @
I\}lian—Zmaxf dp In

cos O cos? é + sin @ sin % cot i |,

where tan 20 = % and —g <0< % Using this, we can numerically show entanglement for a wide

range of T'and h. See figure 8. In particular we can show entanglement in vicinity of the phase transition, in
accordance with [2].

3.3. Arbitrarily large gap

Unfortunately the entropy gap closes in the limit when using the regular ground state witnesses, a fact which is
related to the lack of robustness of the ground state witness itself. It would be most interesting to find other,
asymptotically robust witnesses, which could result in a macroscopic entropy gap. Let us now present an
artificial example of a Hamiltonian which, with the right choice of witness, allows for an arbitrarily big entropy
gap in the thermodynamic limit, thus proving the feasibility of this endeavour in principle.
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entanglement where this expression is positive, i.e. left of the zero line.
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The Hamiltonian is given by

d>—1

H= 3 k|w)(wl, (33)

k=0

where d = 22 and { |\Ilk) yd k "are a Bell state basis of an n-qubit Hilbert space. The basis is ordered in such a way
that | Iy) = f Z |z li —|— k) for k = 0...d — 1. Note that these first d basis elements have orthogonal
support. As witness, we choose

(34)

weol— S [m)(w,
k=0

which, again, is diagonal in the energy eigenbasis. « is the defined as the maximal overlap of the projector
ZZ; (1) | Ui X Wi | with a separable state. As all the | ;) have orthogonal support, « is the maximal overlap of any of

the | ¥;) with a separable state, hence o« = % because the | ¥;) are maximally entangled. Inserting this into (19),

we obtain
=1 gk
AS > 1 k= o (35)
= 1n .
=1 _gk,—v(1-1 =1,k v
Zk:Oe e ( d)—|— g € ed
Letting 1, hence d, go to infinity, we obtain
lim AS > v, (36)
n—oo
Bk 8
where we have used the fact that hmdaoozk e Ok = lldewZ —Pk — ﬁ.Note that v can be chosen
arbitrarily large.
4. Discussion

4.1.Robustness

In macroscopic systems assuming the exact form of the Hamiltonian is always an idealisation. While it is fair
from a physical point of view one might wonder about the impact of mis-characterised Hamiltonians on our
entropy gap AS. If we assume that the real Hamiltonian is givenas H = H + P we can that the dual entropy of
the actual Hamiltonian for the chosen parameters

Smax.w.e (s ) = log Tr exp(—pH — peP + vW) + pE + pe Tr(pP), (37)

can be bounded from above using the Golden-Thompson Tr(e?*8) < Tr(e?) Tr(e®) and Holder’s
[|1AB|l < [|A]lso||B]l inequalities to yield

Smax,W,E (,LL, V) < Smax,W,E(N’ V) + pe Tr(ﬂp) - ,LLEPo- (38)

This shows that small perturbations or inaccuracies in the description of the Hamiltonian will only have a
correspondingly small impact on the validity of the entanglement certification by proxy witnesses.

4.2. Experimental estimation of entropy

While the mean energy and the entropy are both macroscopic properties of quantum states, measurements of
the latter are not possible directly as they do not correspond to a quantum observable. There are however various
ways that the global entropy can be determined, and all we need is alower bound on the entropy. The most
straightforward way would of course consist of equilibrating the system with a thermal bath at temperature T.
This is naturally the case, as any system found in nature at ambient temperature T, will most accurately be
described by its corresponding Gibbs state. Thus, once the system is equilibrated we know that its corresponding
entropy should correspond to the Gibbs entropy S (pth (B(E) )). Starting from equilibrated systems one can
introduce global quenches of system parameters, such that the entropy will still be bounded from below by the
initial Gibbs entropy due to the second law of thermodynamics, despite the system being far out of equilibrium.
In that way one directly receives alower bound on the system entropy for a wide range of out of equilibrium
systems and experimental preparations. There are of course other methods, such as reasonable assumptions
about symmetry in the state, that can be used to estimate linear entropy from macroscopic spin observables (as
would be possible e.g. in [50]). Another straightforward way to obtain lower bounds would be accesstoad x d
sub-matrix of the global state, whose entropy will always yield a lower bound to the global entropy. The exact
ways of experimentally estimating entropies is of course highly dependent on the experimental setup, access and
reasonable assumptions about system properties. As any non-zero amount of entropy already provides an
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advantage in entanglement detection it is however fairly straightforward to infer correspondingly useful
entropies.

This highlights the main advantage of our approach: while entanglement of Gibbs states could be directly
inferred from its description, it would strictly work only if we know that the state is in fact in thermal
equilibrium. This would require strict assumptions about the state of the system and exact characterisation of its
Hamiltonian. Using our entropy gap there is no need whatsoever to assume any particular form of the system’s
state: measurements of the mean energy and lower bounds on the global entropy are completely sufficient to
prove that the underlying system is entangled in a robust way. We believe that future work will uncover witnesses
robust enough to be amenable to the proxy method, yielding a sizeable entropy gap in the thermodynamic limit.

5. Conclusion

We have introduced a framework in which concave functions can be used as a proxy for detecting entanglement
in many body systems. As the most relevant example we have explored the use of entropy in this context, yielding
separable Gibbs ensembles and a corresponding entropy gap that can be used for entanglement detection.
Through the efficient description through witness canonical ensembles this unlocks powerful tools from
entanglement theory, such as positive maps or entanglement witnesses to be harnessed in situations where the
actual estimation of said quantities is experimentally impossible.

We hope that our work can contribute to the further understanding of the relationship between important
physical aspects of many-body systems, such as phase transitions, and the paradigmatic feature of quantum
information theory, entanglement [3]. We address some possible new avenues in entanglement detection, by
indicating the importance of an open conjecture regarding the geometric measure of entanglement for ground
states [49] and by specifying particularly useful forms of entanglement witnesses in many-body systems.

We have furthermore demonstrated the usefulness and feasibility of this approach in exemplary and
paradigmatic physical Hamiltonians. For moderate system size we have demonstrated how our results directly
improve upon previous work on inferring entanglement from macroscopic observables. The resulting entropy
gaps quantify to what extent even out-of-equilibrium systems can be certified to exhibit entanglement. In the
thermodynamic limit we have shown that particularly promising paths towards this goal are strongly connected
to ground state properties of many-body Hamiltonians. Our results in this context furthermore elucidate how a
development of robust entanglement witness techniques can prove useful, even if they themselves remain
inaccessible due to experimental limitations.
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