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Abstract
Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for
the dynamics of condensedmatter properties and quantum computation even at higher temperatures.
The experimental certification of this paradigmatic quantum effect inmacroscopic high temperature
systems is constrained by the limited access to the quantum state of the system. In this paper we show
howmacroscopic observables beyond themean energy of the system can be exploited as proxy
witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all
previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be
certified at higher temperatures without access to any local observable. For an efficient computation of
proxywitnesses one can resort to a generalised grand canonical ensemble, enabling entanglement
certification even in complex systemswithmacroscopic particle numbers.

1. Introduction

While the occurrence and possible uses of entanglement werefirst studied for bipartite states, entanglement in
systems containing a large number of particles is of interest both from a theoretical and from a practical point of
view. Even though themacroscopic worldwe experience daily, can be described classically, there are a number of
systems that are large enough to be described by the thermodynamic limit, which exhibit quantumbehaviour,
Bose–Einstein condensates, ferromagnetic and superconductingmaterials being prominent examples.
Entanglementmay turn out useful in understanding thermodynamic phenomena such as phase transitions in
such systems [1–3]. Recently there has also been a lot of attention on the role of entanglement in quantum
thermodynamics [4–6]. Other possible applications of large entangled systems are quantum computers based on
solid state orNMR systems [7–10]. In addition to studying entanglement in the limit ofmany particles it is also
worth asking up towhich temperature entanglement can exist. This is an important question for experiments,
where cooling down systems requires lots of resources.While entanglement usually exists at very small
temperatures, it could persist to up to 100 K in superconductors [11].

Experimentally detecting entanglement inmacroscopic systems is generally a highly non-trivial task.
Checking for instance the famous PPT (positivity under partial transpose) criterion, as easy as it is theoretically,
requires a full state tomography, which is not possible in large systems. Also, calculating the eigenvalues for
matrices of large dimensions is not practical. Themethod of choice are entanglement witnesses, i.e. observables
with positive expectation value for all separable states but with negative expectation value for some entangled
states.Witnesses reduce the complexity of entanglement detection to themeasurement of a single observable.
However, this observablemight have no physicalmeaning andmight be hard or impossible tomeasure. In
particular itmight be necessary to perform a collectivemeasurement of all particles, which is not experimentally
feasible inmacroscopic systems.What is feasible is themeasurement ofmacroscopic observables such as the
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mean energy, themagnetisation, the temperature or the entropy of the system. There have been several results
showing thatmean energy and temperature can serve as entanglement witnesses at low temperatures ([12–17] to
name just a few).

However, all of these are limited intrinsically at higher temperatures when the value of themacroscopic
witness is consistent with separable pure states. Knowing that any experimental systemwill have some non-zero
entropy, i.e. not be in pure state, often allows for reasonable lower bounds on the system entropy to be assumed
(as for example through ambient temperature and the second law of thermodynamics). Herewe can leverage the
entropy to bound ‘by proxy’ generic entanglement criteria, allowing us to detect, in principle, all entangled
Gibbs states of amany-body system, as well as entangled states far out of equilibrium. Thismethod can in general
be phrased as a semi-definite program (SDP), which are efficiently solvable for small system sizes (and have in
fact often been used in the context of entanglement quantification [18–20]). In the followingwewill showcase
some exemplary situationswhere these SDPs can improve entanglement detection for systems of up to thirteen
qubits on a regular laptop. Furthermore we show that using entanglement witnesses in particular allows one to
harness tools from statistical physics and solve the problem through introducing a virtual ‘chemical potential’ in
a generalisedGibbs ensemble, changing themaximumentropy state for a given energy. In these generalised
Gibbs ensembles entanglementwitnesses play the role of additional conserved quantities,making the proxy
method as accessible for large systems as the computation ofGibbs entropies, whichwe demonstrate by
detecting entanglement by proxy in the thermodynamic limit.

Inwhat followswewill assume theHamiltonian to bewell characterised, which for large systems is of course
only an approximation. Unfortunately, to characterise entanglement one requires reasonably precise knowledge
of the observables used to certify it. Aswewill show later, themethod is robust against small perturbations, but if
theHamiltonian is entirely different it can of course lead to false positives. Ourmethod is suitably generic and
requires knowledge only of conserved quantities for use in the generalisedGibbs ensembles.While we
generically use the average energy to showcase ourmethods, they could just as well be replaced by other
macroscopic approaches such as e.g. spin squeezing [21–23].

2. Entropy as entanglementwitness

2.1. The primal problem
Asmentioned in the introduction, themean energy of a system can be used towitness entanglement in the
corresponding quantum state. Namely any state withmean energy less than

E Hmin Tr 1min,sep
sep

r=
rÎ

( )

is entangled. By convexity theminimum is attained in a pure state. sep can be chosen to be the set of fully
separable states or the set of k-separable states. For k=2, genuinelymultipartite entanglement is detected. If the
system is in thermal equilibrium, it is possible to derive an analogous criterion for the temperature.

The goal of this chapter is tofind a condition that is able to detect entanglement at higher energies than
Emin,sep. The idea is to add additional constraints to (1). For example, a lower bound on the (vonNeumann)
entropy of ρ:

E Hmin Tr . 2Smin,sep,
sep, S S

r=
r r

¢
Î ¢

( )
( )

If E E Smin,sep,r < ¢( ) and S Sr ¢( ) , ρ is entangled. S¢ can be varied between 0 and dln . Clearly, it holds
E ESmin,sep, min,sep¢ . But the relevant question is whether there are entropies for which the strict inequality
holds.While (1) isminimised by a pure state, theminimumdoes not have to be unique.Hence amixture of
minimisers could also havemean energy Emin,sep, but at non-zero entropy. The exact behaviour depends, of
course, on theHamiltonian.However, it is possible to show that if there exists an S¢, for which the strict
inequality holds, it will hold for any larger entropy. This follows from

Lemma1. E Smin,sep, ¢ as function of S¢ is convex.

Proof. Let S d0 ln1,2  and p0 1  . Let 1,2r be separable states with entropies S1,2¢ respectively, that
minimise (2). Then

E pS p S H p p pE S p E S1 Tr 1 1 , 3S Smin,sep,S 1 2 1 2 min,sep, 1 min,sep, 2 r r¢ + - ¢ + - = ¢ + -¢ ¢ ¢( ) ( ) ( ) ( )( ) ( ) ( ) ( )

where the inequality is due to the fact that p p11 2r r+ -( ) is a feasible point of (2), which follows from the
concavity of the entropy. ,

2

New J. Phys. 18 (2016) 015002 S Bäuml et al



Since E Smin,sep, ¢ is convex, it is strictlymonotonically increasing as soon as it exceeds Emin,sep. Let us call the
smallest entropywhere the constraint hits Smin. See alsofigure 1.

Since for S Smin¢ , E Smin,sep, ¢ is strictlymonotonically increasing, we can obtain the same curve, i.e. detect
the same entanglement, by computing

S Smax 4E
H E

max,sep,
sep, Tr

r=
r rÎ =

( ) ( )

and varying E E H

dmin,sep
Tr  . Equivalently we could also demand H ETr r . Note that if we remove the

separability constraint (4)will become theGibbs state entropy

S Smax , 5
H E

Gibbs
state, Tr

r=
r r=

( ) ( )

attained by theGibbs state. Since the optimisation is of the same form as the one yielding the regularGibbs
ensemblewewill call the resulting state a separable Gibbs ensemble. In order to compare its entropywith the
Gibbs state entropy, let us define the entropy gap S S S EGibbs max,sep,D = - .

Theorem2. Formean energy E and corresponding temperature T, any state ρwith S S SEmax,sep, Gibbsr< ( ) is
entangled. In particular theGibbs state is entangled if S 0D > .

Note that for any non-zero gap between S Emax,sep, and SGibbs there always exist states different from theGibbs
state whichwe detect, for example there is always a state with entropy S S1Emax,sep, Gibbsl l+ -( ) ,
where 0 1 l .

The optimisation in (4) is difficult to deal with because it contains the separability constraint. Themain idea
is to relax this constraint using sets of states which remain positive semidefinite after the application of positive
(yet not completely positive)mapsΛ. A prominent examplewould be the partial transposition.While these are

Figure 1.Qualitative form of E Smin,sep, ¢ as a function of S¢. The dark grey area under Emin,sep is detected by [12–14]. Themethod
presented here can detect entanglement in the light grey area, i.e. for S Smin and E E Smin,sep,< ¢. In thewhite area above the
E Smin,sep, ¢ curve, separability is possible. Because of it is convexity, the same curve can be obtained bymaximising the entropy under
the constraint that themean energy is less than E and varying E.

Figure 2. Schematic view of corollary 3 for onewitnessW. The constrained entropy S W Emax, , or short SW is attained at the intersection
between the (green) hyperplane induced by thewitness WTr 0r =( ) and the (red) hyperplane induced by themean energy

H ETr r =( ) . The concentric circles represent equi-entropic states, with the outside low entropy region (blue) bounded by SW and the
centre high entropy region (red) bounded by theGibbs state entropy SGibbs. The detected states lie within the (white) region spanned
by SD .
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of course supersets of the separable states, it is clear that for every entangled state in principle there exists amapΛ
and thus a semidefinite relaxation thatwill still yield optimal results for the constrained optimisation.

Let us use the fact that every set ofΛ-positive states forms a convex set that can be approximated by a suitable
set of entanglement witnessesWiwith suitable weights 0i n [24]. As every optimal entanglement witness for
the set ofΛ-positive states for partitionA can bewritten as A A* y yL Ä ñá [∣ ∣]one can find suitable entanglement
witnesses for the system in question.While this of course comes at the expense offinding suitable entanglement
witnesses for specific systems, it also opens the possibility to constrain the entropy beyond just states which are
separable underfixed bi-partitions. I.e. it enables us tofind also genuinemultipartite entanglement or any other
non-partially separable set, by choosing correspondingwitnesses. In order to remain fully general we include
both an arbitrary set of entanglementwitnesses and positivemaps in the following considerations.

The relaxed problem is thus given by

S S S

H E

W

max

s. t. state, Tr ,

0, Tr 0. 6

E W E

A A i

max,sep, max, , ,A i

 

r
r r

r r

=
=

L Ä

L

 ( )

( )
( )

[ ] ( )

S W Emax, , ,A iL will be an upper bound on S Emax,sep, , it is tightness depending on the choice of witnesses ormaps.
Since the relaxation just provides an upper bound for the separable entropy it trivially follows that according to
theorem2:

Corollary 3. Formean energy E and corresponding temperature T, any state ρwith S S SW Emax, , , GibbsA i
r<L ( ) is

entangled. In particular theGibbs state is entangled if S SW Emax, , , GibbsA i
<L . For an illustration see figure 2.

While the relaxationweakens the detection criterion, we are nowdealingwith a convex optimisation
problemwith only linear and semidefinite constraints (sincemaximising a concave function is of course
equivalent tominimising a convex one). Such programs can be solved efficiently numerically thanks to so-called
interior pointmethods [25]. In addition, they have a duality theory which can be used to give certified upper
bounds on S W Emax, , ,A iL , as wewill discuss in the next section.Onemight askwhy instead of applying corollary 3,
one cannot simply apply thewitnesses or positivemaps involved directly.While this is possible theoretically, let
us note again thatwitnesses or positivemaps are in general not easily accessible in experiments, while
macroscopic variables such as themean energy and entropy are. Since corollary 3makes use of witnesses without
the need tomeasuring themdirectly, but instead requires themeasurement ofmean energy and entropy, we call
those two quantities proxywitnesses.

Let us conclude this section by noting that apart from the vonNeumann entropy, in principle any concave
function can serve as a proxywitness. An example is the so called linear entropy, also known as impurity of a
quantum state, which is defined by S 1 TrL

2r r= -( ) [26]. The linear entropy is upper bounded by the von
Neumann entropy and can be seen as ameasure ofmixedness of a quantum state, as well. The optimisation of
the linear entropy is easier to deal with than of the vonNeumann entropy, as it is only quadratic in ρ.

2.2. The dual problem
For convex optimisation problems, such as (6), it is possible to derive a dual optimisation problem. To do so, one
defines the Lagrangian, a function incorporating both objective, i.e. the function to bemaximised, and the
constraints. The constraints are added bymeans of Lagrangemultipliers. The Lagrangemultipliers are referred
to as dual variables, whereas the variables of the original problem are referred to as primal.Maximisation of the
Lagrangian over all admissible primal points yields the dual objective. The dual problem is then given by the
minimisation of the dual objective with respect to the dual variables. It can be shown that any dual feasible point
provides an upper bound on the original problem,which is referred to asweak duality. For details, please refer to
[25]. For (6),the Lagrangian is given by

L X X S H E W

X X

, , , , , Tr 1 Tr Tr

Tr Tr , 7

i A
i

i i

A
A A A

0 ,

0
,

,

å

å

r l m n r l r m r n r

r r

= + - + - +

+ + L Ä

L

L
L

( ) ( ) ( ) ( )

[ ] ( )

where ,l m and the in are real Lagrange dual variables, corresponding to the trace,mean energy andwitness
constraints, respectively. As thewitness constraint is given by an inequality, we can restrict to 0i n .X0 and the
XA,L, the Lagrange dual variables corresponding to the positivity and positivemaps constraints respectively, are
positive semidefinitematrices.

Here it becomes clear that witnesses are easier to deal with numerically than positivemaps, as they only
require scalar variables. The dual objective function reads as follows

4
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X X L X X, , , , max , , , , , , 8i A i A0 , 0 ,l m n r l m n
r

L L( ) ( )ℓ ≔ ( )

where themaximisation is over all admissible ρ, i.e. those forwhich the right-hand side is defined, in particular
not necessarily obeying the primal constraints in (6). Note that the dual problem is also a convex optimisation
problem: the constraints are indeed linear and semidefinite, while ℓ is convex, owed to the linearity of L in the
dual variables.

Clearly, for every primal feasible ρ and dual feasible X, , ,i 0l m n and XA,L it holds

S L X X X X, , , , , , , , , . 9i A i A0 , 0 , r r l m n l m nL L( ) ( )ℓ( ) ( )

In particular we havewhat is referred to asweak duality:

S X Xmin , , , , , 10W E i Amax, , , 0 ,A i  l m nL L( )ℓ ( )

where theminimisation is over the dual feasible region, i.e. X X, , 0, 0, 0i A0 ,   l m nÎ L . The right-
hand side is referred to as the Lagrange dual problem. Note that any dual feasible bound yields an upper bound on
S W Emax, , ,A iL . This allows us to obtain analytical upper bounds fromnumerics. One simply has to numerically
optimise the dual problem and check if the so obtained optimisers are dual feasible. If they are they can be
inserted into ℓ yielding the bound.

Let us now evaluate the dual objective function (8) for the vonNeumann entropy, which is well-defined on
any positive semidefinitematrix. Since the entropy is concave, so is the Lagrangian. Hence it is sufficient tofind a
critical point, that is positive semidefinite, of L as function of ρ. Using S lnr r = - -r ( ) and

M MTr r =r with respect to the trace inner product onHermitianmatrices, as well as the fact that

X XTr TrA A A A A A, ,*r rL Ä = L ÄL L ( [ ] ) ( [ ]) one can obtain
⎡⎣ ⎤⎦L H W X Xln , 11

i
i i

A
A A A0

,
,*å år l m n = - - + + + + + L Är

L
L   ( )

which vanishes for

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟H W X Xexp 1 . 12

i
i i

A
A A A

crit
0

,
,*å år l m n= - + + + + L Ä

L
L ( ) ( )

Hence the dual objective is given by

X X L X X, , , , , , , , , , 13i A i A0 ,
crit

0 ,l m n r l m n=L L( ) ( )ℓ ( )

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟H W X X ETrexp 1 , 14

i
i i

A
A A A0

,
,*å ål m n l m= - + + + + L Ä - -

L
L ( ) ( )

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟e H W X X ETrexp . 15

i
i i

A
A A A

1
0

,
,*å åm n l m= + + + L Ä - -l-

L
L ( )( )

Wewill have tominimise ℓ with respect the dual variables. Since X 00  , theminimumwill be attained at
X 00 = . ℓ can be easilyminimised forλ. This is due to the fact that the eigenvalues of a hermitianmatrix cannot
decrease if a positive semi-definitematrix is added, which follows from theorem4.3.1 of [27]. By convexity the
minimum is attainedwhere the derivatives vanishes, yielding a function ℓ̃ just of X, ,i A,m n L

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟X H W X E, , ln Tr exp . 16i A

i
i i

A
A A A,

,
,*å åm n m n m= + + L Ä -L

L
L( )ℓ̃ ( )

Byweak duality, it holds

S Xmin , , . 17W E
X

i Amax, , ,
, 0, 0

,A i
i A,


  

m n
m n

L
Î

L
L

( )ℓ̃ ( )

As ℓ is convex, ℓ̃ is convex, as well [25]. If only witnesses are used, ℓ̃ only has scalar variables, which results in a
greatly enhanced numerical performance compared to the primal problem.

It is an interesting observation that ℓ̃ is reminiscent of a grand canonical ensemble and

Z E H Eln ln Tr exp , 18b b b= ¢ + = - ¢ +( )ℓ̃ ( )

where H H W X
1

i i i A A A A, ,*å åb
n¢ = - + L ÄL L( )[ ] . Instead of particle numbers the constraints stem from

the specificwitnesses ormaps used.Wewill sometimes refer to equation (18) as awitness canonical ensemble
entropy (WCEE).

In other words, when choosing m b= - , the operator W X
i i i A A A A, ,*å ån + L ÄL L [ ]can be seen as

some sort of grand canonical ensemblewith additional ‘chemical’ or ratherwitness potentials. In particular the

5
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entropy gap can be lower bounded as follows:

⎡⎣ ⎤⎦
S

H

H W X
ln

Tr exp

Trexp
19

i i i A A A A, ,*


å å
b

b n
D

-

- + + L Ä
L L( )

( ) ( )

for all 0i n and X 0A, L .
It is also possible to compute ℓ for the linear entropy. After rewriting the Lagrangian as

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟L E H W X X1 Tr Tr , 20i i

A
A A ALIN 0

,
,

2*ål m r l m n r= - - + + + + + L Ä -
L

L  ( )

it is easy to show that the optimiser is given by

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟H W X X

1

2
. 21i i

A
A A A

crit
0

,
,*år l m n= + + + + L Ä

L
L  ( )

Hence

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟X X H W X X E, , , ,

1

4
Tr 1 . 22i A i i

A
A A ALIN 0 , 0

,
,

2

*ål m n l m n l m= + + + + L Ä + - -L
L

L ( )ℓ ( )

Minimisation of LINℓ yields an upper bound on themaximal linear entropy achievable by separable states. Again,
thisminimisation is easier to deal with as in the vonNeumann case, because it is only a quadratic function.

2.3.Onnumerics
Let us nowbriefly discuss how the primal and dual optimisation problems introduced in the preceding sections
can be implemented numerically. Asmentioned before, (6) and (17)have concave and convex objectives,
respectively, as well as linear and semidefinite constraints. Note that for our purposes it is sufficient to only
compute the dual problems. It can however be instructive to also compute the primal problem in order to obtain
the optimiser and check if strong duality holds.While interior-pointmethods can in principle solve such
problems [25], readily available solvers such as Sedumi [28] or SDPT3 [29] can only handle linear and quadratic
objectives. This is sufficient to solve (6) andminimise (22) for the Linear entropy.

For the vonNeumann entropy, however, there is away to obtain an approximate solution: it is a well known
fact that the vonNeumann entropy of a state is equal to the Shannon entropy of its eigenvalues. As for ℓ̃, note
that for a hermitian n×nmatrixMwith eigenvalues il it holds MTrexp exp

i iå l=( ) ( ). Hence ℓ̃ is a

function of the eigenvalues of the exponent. Both S and ℓ̃ are invariant under permutation of the eigenvalues.
This allows us to reformulate (6) as

S H

H E

W

v

v

max ,

s. t. eig , state, Tr ,

0, Tr 0, 23

W E

A A i

v
max, , ,

,
A i

 

r r r

r r

=

= =

L Ä

r
L

 ( )

( )

( ) ( )

[ ] ( )

where eig r( ) denotes the vector of eigenvalues of ρ. Note that this is not a semidefinite constraint. There is,
however, a trick to include the eigenvalues into a semidefinite programme[30]: while the eigenvalues are
generally not SDP-representable, the sumof the k largest eigenvalues of amatrix is [31].We can now replace the
eigenvalue constraint in (23) by the constraint that v has tomajorise eig r( ), i.e.

v

s v

s v v

s v

Tr

...

,

i
i

n
i

n

i

1 1

2 1 2

1
1

1






å

å

r

r
r

r

=

+

-
=

-

( )

( )
( )

( )

where sk(M) denotes the sumof the k largest eigenvalues of amatrixM. Then the optimising v will be equal to
the eigenvalues of the optimising ρ. To see this, recall that if v w , it holds H Hv w( ) ( ) [32]. Let us now
assume that the (unique) optimising v of the Shannon entropymajorises but is not equal to the eigenvalues of
the optimal ρ. Then S r( )would be greater or equal to H v( ), which is a contradiction. Since v w implies
f fv w( ) ( ) for any convex function [32], the same argument can be applied to (17).

So far, we have replaced the vonNeumann by the Shannon entropy and, in the dual problem, thematrix
exponential by scalar exponential functions and transformed the arising eigenvalue constraints into semidefinite
constraints. In order to apply Sedumi or SDPT3, all that is left to do is to approximate the objectives by piecewise
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linear functions.While this will only give us approximate solutions, let us note that the optimisers found in this
way, can be easily checked to be feasible and inserted in the original objective.

When using PPT or other positivemaps the dimension of thematrix variables increases exponentially with
the number of qubits. Aswewill show in the next section, thismakes it difficult to go beyond five qubits. The
computation of (16) greatly simplifies when onlywitnesses are used. In this case therewill only be scalar
variables m and in and no semidefinite constraints. This allows for application of a standard nonlinear solver,
such as FMINCON [33]. Using FMINCONwewere able to obtain results for up to 13 qubits, as wewill present
in the next section.

If wewant to show if theGibbs state is entangled, wewill also need to compute theGibbs state entropy
S E ZlnGibbsr b= +( ) . To do so numerically it is sufficient to compute the eigenvalues of theHamiltonian,
which allows for computation of the partition function Z Tre H= b- and themean

energy E H
Z

ETr
1

e
i

E
iGibbs

iår= = b- .

2.4. Examples
In order to test ourmethod, we have implemented it forHeisenbergmodel, whichwas introduced in order to
simplify the analysis of systems of spins, such as ferro- or antiferromagnets. It only takes into account the nearest
neighbour exchange interaction between the spins as well an externalmagnetic field. In the one-dimensional
case, i.e. a chain of spins, theHeisenbergmodel is described by the followingHamiltonian

H J J J B , 24
i

N

x i
x

i
x

y i
y

i
y

z i
z

i
z

i

N

i
z

1
1 1 1

1
å ås s s s s s s= - + + +
=

+ + +
=

( ) ( )

where J J J, ,x y z are the coupling constants for the x y z, , -components of the spins,N the number of spins andB
the externalmagnetic field in zdirection. , ,i

x
i
y

i
zs s s denote the Pauli operators for the ith spin. Let us assume

periodic boundary conditions, i.e. a ring of spins. If J J J Jx y z= = ≕ , we are talking about an isotropic XXX
Heisenbergmodel. J 0> and J 0< correspond to ferromagnetic and antiferromagnetic systems, respectively. If
J J Jx y z= , the system is called anXXZ system and so on. If only one component of the spin is considered, i.e.
only one J 0i ¹ , theHeisenbergmodel reduces to the Isingmodel.

The numerical results presented below have been obtained using either Sedumi or SDPT3 aswell as Yalmip
[34]. Using PPT constraints we have applied themethod for up tofive qubits, for witnesses for up to 13 qubits.

2.4.1. Antiferromagnetic Heisenbergmodel
For the one-dimensional antiferromagneticHeisenbergmodel (XXXwith J 1= - ), it is possible to detect
entanglement at higher energies than [12–14], both using the vonNeumann and the linear entropy as proxies.
The computations have been performed using both the partial transpose with respect to the partition
A Ai jeven odd∣ and all possible partitions.

Let us start with the results for the even versus odd partition. In table 1 the energy ranges where entanglement
is detected are shown for the vonNeumann entropy and for the linear entropy, respectively. HereN denotes the
number of qubits,E0 the ground state energy and Emin,PPT even odd-‐ denotes the smallestmean energy allowing
for PPTw.r.t. the even versus odd partition . Below thatmean energy any state is guaranteed to be entangled.
Note that E E Emin,sep min,PPT all min,PPT even odd  -‐ ‐ . Between Emin,PPT even odd-‐ and Emax,gap all states falling
into the entropy gap are entangled. I.e. Emax,gap is the largest energy forwhich the proxymethod canwork. This
includes theGibbs state in the vonNeumann case. Note that theGibbs state is not necessarily themaximiser for
the linear entropy.Hence, instead of theGibbs statewe have computed the state withmaximal linear entropy

S Smax 25L
H E

L,max
state, Tr

r=
r r=

( ) ( )

and compared it to the constraint linear entropy.  is defined as the fraction of the energy rangewhere
entanglement is detected

Table 1.Energy ranges inwhich the vonNeumann entropy can be suc-
cessfully used a proxy for detecting entanglement in the anti-
ferromagneticHeisenbergmodel (J 1= - ).

N E N0 E Nmin,PPT even odd-‐ E Nmax,gap 

3 −1.000 −1.000 −0.610 0.195

4 −2.000 −1.000 −0.660 0.447

5 −1.494 −1.008 −0.695 0.320
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E E

E E
, 26

max,gap 0

max 0

 =
-

-
( )

where Emax denotes the largest energy eigenvalue.
As can be seen in tables 1 and 2, entanglement can be detected in a large area of the energy spectrum. The

maximummean energy where entanglement can be detected is also substantially higher than N- , which is the
maximummean energy where themethods of [12–14]work. Let us also note that the ground state energies given
in [12–14] are only correct in the limit of largeN, as has been noted in [14]. The fact that the linear entropy
detectsmore than the vonNeumann entropy could be a result of the piecewise linear approximation of the von
Neumann entropy in themaximisation, which results in weaker bounds on Smax,sep.

The entropy gap can be seen infigures 3(a) and (b) for the vonNeumann entropy and for the linear entropy,
respectively. Here theGibbs state entropy or SL,max, as well as Smax,PPT even dd-‐ are plotted versus themean
energy.

Entanglement can also be detected in the presence of amagnetic field. Tables 3 and 4 show the detected
energy ranges in a three qubit system for the vonNeumann and linear entropies, respectively. The entropies are
plotted infigure 4 forB=3.

Going fromPPTw.r.t. the even–uneven partition to all possible partitions greatly increases the computation
time as the number of partitions grows exponentially with the number of qubit. Since the constrained entropy
increasesmonotonically inE, it holds E Emax,gap,PPT all max,gap,PPT even odd -‐ ‐ , possibly increasing the energy
range, where entanglement can be detected. In the example considered here, however, only a small increase can

Table 2.Energy ranges inwhich the linear entropy can be successfully
used a proxy for detecting entanglement in the antiferromagneticHei-
senbergmodel (J 1= - ).

N E N0 E Nmin,PPT even odd-‐ E Nmax,gap 

3 −1.000 −1.000 −0.600 0.200

4 −2.000 −1.000 −0.370 0.543

5 −1.494 −1.008 −0.302 0.478

Figure 3.The entropy gap for the antiferromagnetic Heisenbergmodel (J 1= - )with five qubits and the PPT conditionw.r.t.
subsystems 1, 3, 5. (a) Shows the vonNeumann entropy, (b) the linear entropy. TheGibbs state entropy (red line) and the dual of the
constraint, i.e. thewitness canonical ensemble entropy (WCEE), (blue line)plotted versus themean energy. The difference of the two
lines constitutes the entropy gap.

Table 3.Energy ranges for three qubits in the antiferromagnetic Heisen-
bergmodel (J 1= - ) in amagnetic fieldB=3 using vonNeumann
entropy.

B E N0 E Nmin,PPT even odd-‐ E Nmax,gap 

0 −1.000 −1.000 −0.610 0.195

1 −1.333 −1.333 −0.720 0.184

2 −1.667 −1.667 −1.033 0.136

3 −2.000 −2.000 −1.540 0.077
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be obtained. See tables 5 and 6, as well asfigure 5. For three qubits it holds E N 0.6 1min,PPT all = - > -‐ ,
implying that E N 0.6 1min,sep  - > - . This shows that the result of [12, 14] is suboptimal for an odd number
of qubits, asmentioned in [14]. The reason is that they use a partition into two sub-lattices such that every
neighbouring sites belong to different sub-lattices, which is not possible for an odd number of qubits.

2.4.2. Dicke states
Dicke states were first considered in the theory of coherent spontaneous light emission [35]. They are defined by

⎜ ⎟⎛
⎝

⎞
⎠D

n

m
d , 27m

n
1
2

å=
a

a

-
( )

Table 4.Energy ranges for three qubits in the antiferromagnetic Heisen-
bergmodel (J 1= - )with amagneticfieldB=3 using linear entropy.

B E N0 E Nmin,PPT even odd-‐ E Nmax,gap 

0 −1.000 −1.000 −0.600 0.200

1 −1.333 −1.333 −0.560 0.232

2 −1.667 −1.667 −0.717 0.204

3 −2.000 −2.000 −0.940 0.177

Figure 4.The entropy gap for three qubits in the antiferromagneticHeisenbergmodel (J 1= - )with amagnetic fieldB=3, again for
PPTw.r.t. the even versus uneven partition. (a) Shows the vonNeumann entropy, (b) the linear entropy.

Table 5.Results for the vonNeumann entropy in the anti-
ferromagneticHeisenbergmodel (J 1= - )with amagneticfield
B=3 using all possible partitions.

N E N0 E Nmin,PPT all‐ E Nmax,gap 

3 −1.000 −0.600 −0.600 0.200

4 −2.000 −1.000 −0.660 0.447

5 −1.494 −0.809 −0.809 0.275

Table 6.Results for the linear entropy in the antiferromagnetic
Heisenbergmodel (J 1= - )with amagnetic fieldB=3 using all
possible partitions.

N E N0 E Nmin,PPT all‐ E Nmax,gap 

3 −1.000 −0.600 −0.594 0.203

4 −2.000 −1.000 −0.360 0.547
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where

d 0 1 , 28
i

i
i

i= Ä ñ Ä ña
a aÏ Î

∣ ∣ ( )

m is the number of excitations, a denote sets of indices of excited subsystems and the sum is taken over all
inequivalent sets ofm indices.

More recentlyDicke states turned out to be a useful resource for quantum information processing task as
they are LOCC transferable toGHZorW states [36]. Several experiments have successfully createdDicke states,
e.g. [36–38].

In [39], it has been shownusing perturbation theory that the approximate ground states of anisotropic
ferromagneticXXZHeisenbergHamiltonians (i.e. J J J 0x y z= > ) areDicke states. ForB=0 and
J J 0x z= > the ground states are given by Dm

n
m
n

0={ } with n 1+ -fold degeneracy, whichmakes entanglement
at low energies unlikely. This is because the systemwill soon go into amixture of theDicke states, which is
separable. For J Jx z> and B 0¹ , however, the degeneracy vanishes. Infirst order perturbation theory Dm

n is
the ground state for

n m

n
J B

n m

n
J

2 1

1

2 1

1
, 29-

- +
-

D < < -
- -

-
D ( )

where J J Jx zD = - is the anisotropy parameter.
A number ofmethods have been developed to detect genuinelymultipartite entanglement inDicke states

[40–46], of which [44] is themost generally applicable one. It consists of a nonlinear witness, i.e. an nonlinear
inequality that has to hold for every biseprable state. In order apply thewitness only a polynomial (in the number
of qubits)number of localmeasurements is necessary.

Combining [44]with the use of proxywitnesses, entanglement can be detected evenmore easily
experimentally. To do so, let us introduce a (weaker) linear version of the nonlinear witness given in [44]. It is
given by

W d d d d d d d d
1

2
, 30m

n

,
å Ç Ç È È= - - + +

a b g
b a a b a b a b a b a b

Î
( ) ( )

( )

where m, : 1Çg a b a b= = -{( ) ∣ }.Wn
m detects Dm

n in amaximal way. Using thesewitnesses as a
constraint in (6), it is possible to detect entanglement for different choices of Jx and Jz andB satisfying (29).
Results for 11 and 13 qubits are presented in table 7 andfigures 6 and 7.

3. To the thermodynamic limit

3.1. The ground statewitness
In order to extend the above results to the thermodynamic limit, let us now focus onwitnesses, which are
diagonal in the energy eigenbasis. A general example of such awitness is given asW E E0 0a= - , where E0

is the ground state ofH and Emax , 0
2a f j= f j ∣ ∣ [47]. Instead of E E0 0 , one could also use any

projector onto one or several energy eigenstates. The only obvious requirement being that the states are
entangled themselves, otherwise the resulting operators would not bewitnesses.We can then eithermaximise

Figure 5.The entanglement gap for all possible partitions for the vonNeumann (a) and linear (b) entropies in the antiferromagnetic
Heisenbergmodel (J 1= - )with amagnetic fieldB=3.
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over afixed bipartition, or over all possible ones. In the former case it is possible to detect bipartite entanglement
w.r.t. the partition chosen, in the latter case we can detect genuinelymultipartite entanglement. Inserting the
witness into (16), we see that the exponent becomes diagonal

⎛
⎝⎜

⎞
⎠⎟E E E E, ln Tr exp , 31

i
i i i i0åm n m n a d m= + - -( )( )ℓ̃( ) ( )

E Eln exp , 32
i

i i0å m n a d m= + - -( )( ) ( )

where Ei and Ei are the energy eigenvalues and eigenvectors, respectively and i0d is the Kronecker delta. Setting
the gradient equal to zero, we obtain

Table 7.Detection energies and entropies for theXXZHamiltonianwith Jz= 1 using (30) aswitness.

N m B JD E N0 E Nmin,gap E Nmax,gap Tmin,gap Tmax,gap 

11 5 −1 10 −13.753 −13.599 −12.890 3.970 7.930 0.031

11 5 −3 20 −26.707 −26.299 −24.698 8.460 16.420 0.038

11 5 −1 20 −26.525 −26.344 −24.802 6.940 15.850 0.033

13 6 −1 12 −16.276 −16.149 −15.577 3.970 7.930 0.021

Figure 6.Entropy gap plotted versusmean energy for (a) 11 qubits,m=5, B 3= - and J 20D = and (b) 13 qubits,m=6, B 1= -
and J 12D = .

Figure 7.Entropy gap plotted versus temperature for (a) 11 qubits,m=5, B 3= - and J 20D = and (b) 13 qubits,m=6, B 1= -
and J 12D = .
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which, by convexity of ℓ̃, are sufficient conditions for aminimum. Solving those transcendent equationsw.r.t.
the Lagrange variables is only possible numerically for smallN. Still it is possible to obtain a result for the
thermodynamic limit, as wewill nowdemonstrate.

Let usfirst consider the case where 1a = , i.e.H has a separable ground state. Since the first term in the sum
of (ii) vanishes, (ii) cannot be fulfilled for any 0n . Since ℓ̃ increases with n , theminimum is attained at 0n = .
At 0n = , however, (16) is an upper bound on the unconstrained problem, namely

E E Smin ln exp .
i

i Gibbså m m r-
m

( ) ( )

Since S Z ElnGibbsr b= +( ) , theminimum is attained at m b= - . In this case no entanglement is detected.

Let us nowmove on to the case where
Z

e E0
a <

b-
. Assuming that theminimum is attained at 0n = , i.e. that

(ii) is fulfilled at 0n , (ii) tells us that

E
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e e

e

e e e
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with equality for 0n = , which is a contradiction.Hence theminimum is attained at 0n > . This implies that
Smin min 0,0, Gibbs m r< =n m mℓ ℓ˜ ˜( ) ( ), hence S SW Emax, , , GibbsA i

r<L ( ).

Theorem4. Let SEP be the set of separable pure states w.r.t. some partitions and Emax SEP 0
2a f= f Î ∣ . Then,

if
Z

e E0
a <

b-
, the Gibbs state as well as any state with entropy S S SW Emax, , , GibbsA i

r< <L ( )will be inseparable w.r.t.
those partitions.

Note that while for
Z

e E0

a <
b-

entanglement of theGibbs state can also be detected by applying thewitness

directly, the same is not true for states with entropy S S SW Emax, , , GibbsA i
r< <L ( ). Since such states always exist,

this shows that ourmethod generically works. Theorem4 can be applied in the thermodynamic limit. Since E0
generally scales linear inNwhileZ does so exponentially, theorem4 can yield non-trivial results
where e Na = -( ).

3.2. Example
Weconsider a special case of theHeisenbergHamiltonian, given by

⎜ ⎟⎛
⎝

⎞
⎠H

r r
h

1

2

1

2
.

i

N

i
x

i
x

i
y

i
y

i
z

1
1 1å s s s s s= -

+
+

-
+

=
+ +

This is known as theXYmodel in a transversemagnetic field. If r=1, we talk about the Isingmodel, if r=0, the
XXmodel. TheXYmodel undergoes a phase transition at h=1 [2]. The ground state energy aswell as the
partition function have been computed in the thermodynamic limit by [48]. According to a conjecture
numerically tested in [49], aw.r.t. full separability is given by

N
lim

ln
2 max d ln cos cos

2
sin sin

2
cot ,

N 0

2 2
1
2

ò
a

m q
x

q
x

pm= +
x¥

where tan 2 r

h

sin 2

cos 2
q = pm

pm-
and

2 2
 q- p p . Using this, we can numerically show entanglement for awide

range ofT and h. Seefigure 8. In particular we can show entanglement in vicinity of the phase transition, in
accordancewith [2].

3.3. Arbitrarily large gap
Unfortunately the entropy gap closes in the limit when using the regular ground state witnesses, a fact which is
related to the lack of robustness of the ground statewitness itself. It would bemost interesting tofind other,
asymptotically robust witnesses, which could result in amacroscopic entropy gap. Let us nowpresent an
artificial example of aHamiltonianwhich, with the right choice of witness, allows for an arbitrarily big entropy
gap in the thermodynamic limit, thus proving the feasibility of this endeavour in principle.
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Figure 8.Our results for the (a) Ising, (b)XYwith r= 0.5 and (c)XXmodels. The lhs show themaximum temperature at which

theorem 4 yields non-trivial results. The rhs is a contour plot of the positive part of ⎜ ⎟⎛
⎝

⎞
⎠N

E

N

Z

N
lim

ln ln
N

0a b
- - -¥ .We can show

entanglement where this expression is positive, i.e. left of the zero line.
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TheHamiltonian is given by

H k , 33
k

d

k k
0

12

å= Y Y
=

-

( )

where d 2
n
2= and k k

d
0
12

Y =
-{ } are a Bell state basis of an n-qubitHilbert space. The basis is ordered in such away

that i i kk d i

d1

0

1åY = +=
- ∣ ∣ for k d0 ... 1= - . Note that thesefirst d basis elements have orthogonal

support. Aswitness, we choose

W , 34
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åa= - Y Y
=

-

 ( )

which, again, is diagonal in the energy eigenbasis.α is the defined as themaximal overlap of the projector

k

d
k k0

1å Y Y=
-

with a separable state. As all the kY have orthogonal support,α is themaximal overlap of any of

the kY with a separable state, hence
d

1
a = because the kY aremaximally entangled. Inserting this into (19),

we obtain
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Letting n, hence d, go to infinity, we obtain

Slim , 36
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wherewe have used the fact that lim e lim ed k

d k
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d k
0

1
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1 e

e 1

2

å å= =b b
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b

b . Note that ν can be chosen
arbitrarily large.

4.Discussion

4.1. Robustness
Inmacroscopic systems assuming the exact formof theHamiltonian is always an idealisation.While it is fair
from a physical point of view onemight wonder about the impact ofmis-characterisedHamiltonians on our
entropy gap SD . If we assume that the real Hamiltonian is given as H H P= +˜ we can that the dual entropy of
the actualHamiltonian for the chosen parameters

S H P W E P, log Tr exp Tr , 37W Emax, ,  m n m m n m m r= - - + + +˜ ( ) ( ) ( ) ( )

can be bounded fromabove using theGolden–Thompson e e eTr Tr TrA B A B+( ) ( ) ( ) andHölder’s
AB A B1 1 ¥∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ inequalities to yield

S S P P, , Tr . 38W E W E omax, , max, ,  m n m n m r m+ -˜ ( ) ( ) ( ) ( )

This shows that small perturbations or inaccuracies in the description of theHamiltonianwill only have a
correspondingly small impact on the validity of the entanglement certification by proxywitnesses.

4.2. Experimental estimation of entropy
While themean energy and the entropy are bothmacroscopic properties of quantum states,measurements of
the latter are not possible directly as they do not correspond to a quantumobservable. There are however various
ways that the global entropy can be determined, and all we need is a lower bound on the entropy. Themost
straightforwardwaywould of course consist of equilibrating the systemwith a thermal bath at temperatureT.
This is naturally the case, as any system found in nature at ambient temperatureT, willmost accurately be
described by its correspondingGibbs state. Thus, once the system is equilibratedwe know that its corresponding
entropy should correspond to theGibbs entropy S Ethr b( )( ( )) . Starting from equilibrated systems one can
introduce global quenches of systemparameters, such that the entropywill still be bounded frombelow by the
initial Gibbs entropy due to the second law of thermodynamics, despite the systembeing far out of equilibrium.
In thatway one directly receives a lower bound on the system entropy for awide range of out of equilibrium
systems and experimental preparations. There are of course othermethods, such as reasonable assumptions
about symmetry in the state, that can be used to estimate linear entropy frommacroscopic spin observables (as
would be possible e.g. in [50]). Another straightforwardway to obtain lower boundswould be access to a d×d
sub-matrix of the global state, whose entropywill always yield a lower bound to the global entropy. The exact
ways of experimentally estimating entropies is of course highly dependent on the experimental setup, access and
reasonable assumptions about systemproperties. As any non-zero amount of entropy already provides an
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advantage in entanglement detection it is however fairly straightforward to infer correspondingly useful
entropies.

This highlights themain advantage of our approach: while entanglement ofGibbs states could be directly
inferred from its description, it would strictly work only if we know that the state is in fact in thermal
equilibrium. This would require strict assumptions about the state of the system and exact characterisation of its
Hamiltonian. Using our entropy gap there is no needwhatsoever to assume any particular formof the system’s
state:measurements of themean energy and lower bounds on the global entropy are completely sufficient to
prove that the underlying system is entangled in a robust way.We believe that future workwill uncoverwitnesses
robust enough to be amenable to the proxymethod, yielding a sizeable entropy gap in the thermodynamic limit.

5. Conclusion

Wehave introduced a framework inwhich concave functions can be used as a proxy for detecting entanglement
inmany body systems. As themost relevant examplewe have explored the use of entropy in this context, yielding
separable Gibbs ensembles and a corresponding entropy gap that can be used for entanglement detection.
Through the efficient description throughwitness canonical ensembles this unlocks powerful tools from
entanglement theory, such as positivemaps or entanglement witnesses to be harnessed in situationswhere the
actual estimation of said quantities is experimentally impossible.

We hope that ourwork can contribute to the further understanding of the relationship between important
physical aspects ofmany-body systems, such as phase transitions, and the paradigmatic feature of quantum
information theory, entanglement [3].We address some possible new avenues in entanglement detection, by
indicating the importance of an open conjecture regarding the geometricmeasure of entanglement for ground
states [49] and by specifying particularly useful forms of entanglement witnesses inmany-body systems.

We have furthermore demonstrated the usefulness and feasibility of this approach in exemplary and
paradigmatic physicalHamiltonians. Formoderate system size we have demonstrated how our results directly
improve upon previous work on inferring entanglement frommacroscopic observables. The resulting entropy
gaps quantify towhat extent even out-of-equilibrium systems can be certified to exhibit entanglement. In the
thermodynamic limit we have shown that particularly promising paths towards this goal are strongly connected
to ground state properties ofmany-bodyHamiltonians. Our results in this context furthermore elucidate how a
development of robust entanglement witness techniques can prove useful, even if they themselves remain
inaccessible due to experimental limitations.

Acknowledgments

The authors are pleased to acknowledge enlightening discussions onmany-body systems and quantum
thermodynamics with Janet Anders,Martí Perarnau andAnna Sanpera. S Bwould like to thank Johann Löfberg
for his help including nonlinear objectives into SDPs. S B andAWare supported by the European Research
Council (AdvancedGrant ‘IRQUAT’). AWandMHwere supported by the EuropeanCommission (STREP
‘RAQUEL’), by the SpanishMINECO, projects FIS2008-01236 and FIS2013-40627-P, with the support of
FEDER funds, and by theGeneralitat de CatalunyaCIRIT, project 2014-SGR-966.MH furthermore
acknowledges funding from the Juan de la Cierva fellowship (JCI 2012-14155). DB andHKacknowledge
support fromDeutsche Forschungsgemeinschaft (DFG) andBundesministerium für Bildung und
Forschung (BMBF).

References

[1] AndreasO, Amico L, Falci G and FazioR 2002 Scaling of entanglement close to a quantumphase transitionNature 416 608–10
[2] Tobias JO andNielsenMA2002 Entanglement in a simple quantumphase transition Phys. Rev.A 66 032110
[3] Luigi A,OsterlohA andVedral V 2008 Entanglement inmany-body systemsRev.Mod. Phys. 80 517–76
[4] Nicolas B,HuberM, LindenN, Popescu S, Silva R and Skrzypczyk P 2014 Entanglement enhances cooling inmicroscopic quantum

refrigerators Phys. Rev.E 89 032115
[5] Felix CB, Vinjanampathy S,Modi K andGoold J 2015Quantacell: powerful charging of quantumbatteriesNew J. Phys. 17 075015
[6] JohnG,HuberM, Riera A, Rio L del and Skrzypczyk P 2015The role of quantum information in thermodynamics—a topical

review arXiv:org/abs/1505.07835
[7] Artur E and Jozsa R 1998Quantum algorithms: entanglement-enhanced information processing Phil. Trans.:Math. Phys. Eng. Sci. 356

1769–81
[8] ThaddeusD L, Jelezko F, LaflammeR,Nakamura Y,Monroe C andOBrien J L 2010Quantum computersNature 464 45–53
[9] Raussendorf R andBriegelH J 2001A one-way quantum computer Phys. Rev. Lett. 86 5188–91
[10] SimonCB, Lovett BWand Smith JM2009 Prospects formeasurement-based quantum computingwith solid state spins Laser

Photonics Rev. 3 556–74
[11] VlatkoV 2004High-temperaturemacroscopic entanglementNew J. Phys. 6 102

15

New J. Phys. 18 (2016) 015002 S Bäuml et al

http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/PhysRevE.89.032115
http://dx.doi.org/10.1088/1367-2630/17/7/075015
http://arXiv.org/abs/org/abs/1505.07835
http://dx.doi.org/10.1098/rsta.1998.0248
http://dx.doi.org/10.1098/rsta.1998.0248
http://dx.doi.org/10.1098/rsta.1998.0248
http://dx.doi.org/10.1098/rsta.1998.0248
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1002/lpor.200810051
http://dx.doi.org/10.1002/lpor.200810051
http://dx.doi.org/10.1002/lpor.200810051
http://dx.doi.org/10.1088/1367-2630/6/1/102


[12] MarkRD,Doherty AC andBartlett SD 2004 Energy as an entanglementwitness for quantummany-body systems Phys. Rev.A 70
062113

[13] Caslav B andVlatkoV 2004Macroscopic thermodynamical witnesses of quantum entanglement arXiv:quant-ph/0406040
[14] Géza T 2005Entanglement witnesses in spinmodels Phys. Rev.A 71 010301
[15] L-AWu, Bandyopadhyay S, SarandyMS and LidarDA 2005 Entanglement observables andwitnesses for interacting quantum spin

systemsPhys. Rev.A 72 032309
[16] Janet A, Kaszlikowski D, Lunkes C,OhshimaT andVedral V 2006Detecting entanglement with a thermometerNew J. Phys. 8 140
[17] Andreas G andHiesmayr BC 2013Macroscopic observables detecting genuinemultipartite entanglement and partial inseparability in

many-body systemsEurophys. Lett. 101 30003
[18] GühneO, ReimpellM andWerner R F 2007 Estimating entanglementmeasures in experiments Phys. Rev. Lett. 98 110502
[19] Eisert J, Brandao FG S L andAudenaert KMR2007Quantitative entanglementwitnessesNew J. Phys. 9 46
[20] Audenaert KMRandPlenioMB2006When are correlations quantum?Verification and quantification of entanglement by simple

measurementsNew J. Phys. 8 266
[21] L-MDuan, SorensenA,Cirac J I andZoller P 2000 Squeezing and entanglement of atomic beamsPhys. Rev. Lett. 85 3991–4
[22] Korbicz J K, Cirac J I and LewensteinM2005 Spin squeezing inequalities and entanglement of n qubit statesPhys. Rev. Lett. 95 120502
[23] JianM,WangX, SunCP andNori F 2011Quantum spin squeezing Phys. Rep. 509 89–165
[24] Cecilia L, GühneO, Sengupta R andHuberM2015Relaxations of separability inmultipartite systems: semidefinite programs,

witnesses and volumes J. Phys. A:Math. Theor. 48 505302
[25] Stephen PB andVandenberghe L 2004ConvexOptimization (Cambridge: CambridgeUniversity Press)
[26] Nicholas A P,Wei T-C andKwiat PG 2004Mixed-state sensitivity of several quantum-information benchmarks Phys. Rev.A 70 052309
[27] HornRA and JohnsonCR1990Matrix Analysis (Cambridge: CambridgeUniversity Press)
[28] Jos F S 2006 Sedumi version 1.3
[29] TohKC, ToddM J andTütüncüRH2009 SDPT3 version 4.0 (beta)-aMATLAB software for semidefinite-quadratic-linear

programming (http://math.nus.edu.sg/mattohkc/sdpt3.html)
[30] Johann L 2013 private communication
[31] FaridA 1995 Interior pointmethods in semidefinite programmingwith applications to combinatorial optimization SIAM J. Optim. 5

13–51
[32] Michael AN andVidal G 2001Majorization and the interconversion of bipartite statesQuantum Inf. Comput. 1 76–93
[33] Mathworks T Fmincon r2012a documentation
[34] Johann L 2004Yalmip : a toolbox formodeling and optimization inMATLAB Proc. CACSDConf. (Taipei, Taiwan) (http://users.isy.

liu.se/johanl/yalmip)
[35] RobertHD1954Coherence in spontaneous radiation processes Phys. Rev. 93 99–110
[36] Nikolai K, SchmidC, TóthG, Solano E andWeinfurteH2007 Experimental observation of four-photon entangled dicke state with

highfidelity Phys. Rev. Lett. 98 063604
[37] WitlefW,Krischek R, Kiesel N,Michelberger P, TóthG andWeinfurterH 2009 Experimental entanglement of a six-photon symmetric

dicke state Phys. Rev. Lett. 103 020504
[38] Robert P, CronenbergG, TameMS, PaternostroM,Walther P, KimM-S andZeilinger A 2009 Experimental realization of dicke states

of up to six qubits formultiparty quantumnetworking Phys. Rev. Lett. 103 020503
[39] Jing Z, YongHu, Xu-BoZou andG-CGuo 2011Ground-state preparation of arbitrarilymultipartite dicke states in the one-

dimensional ferromagnetic spin-1 2 chain Phys. Rev.A 84 042324
[40] Géza T 2007Detection ofmultipartite entanglement in the vicinity of symmetric dicke states J. Opt. Soc. Am.B 24 275–82
[41] Thiel C, Zanthier J von, Bastin T, Solano E andAgarwal G S 2007Generation of symmetric dicke states of remote qubits with linear

optics Phys. Rev. Lett. 99 193602
[42] Steve C, TameMandPaternostroM2009Characterizingmultipartite symmetric dicke states under the effects of noiseNew J. Phys. 11

073039
[43] PhilippK, KampermannH, BrußD, BertlmannRA, Kwek LC andMacchiavello C 2009Multipartite entanglement detection via

structure factorsPhys. Rev. Lett. 103 100502
[44] MarcusH, Erker P, SchimpfH,Gabriel A andHiesmayr B 2011 Experimentally feasible set of criteria detecting genuinemultipartite

entanglement in n-qubit dicke states and in higher-dimensional systems Phys. Rev.A 83 040301
[45] ElieWandYelin S F 2014Certifying separability in symmetricmixed states of n qubits, and superradiance Phys. Rev. Lett. 112 140402
[46] Elie F andYelin S F 2014 Spin squeezing bymeans of driven superradiance arXiv:org/abs/1405.5288
[47] OtfriedG andTóthG 2009 Entanglement detection Phys. Rep. 474 1–75
[48] Shigetoshi K 1962 Statisticalmechanics of the anisotropic linearHeisenbergmodel Phys. Rev. 127 1508
[49] Tzu-ChiehWei, DasD,Mukhopadyay S, Vishveshwara S andGoldbart PM2005Global entanglement and quantumcriticality in spin

chainsPhys. Rev.A 71 060305
[50] BehboodN,Ciurana FM,ColangeloG,NapolitanoM,TóthG, Sewell R J andMitchellMW2014Generation ofmacroscopic singlet

states in a cold atomic ensemble Phys. Rev. Lett. 113 093601

16

New J. Phys. 18 (2016) 015002 S Bäuml et al

http://dx.doi.org/10.1103/PhysRevA.70.062113
http://dx.doi.org/10.1103/PhysRevA.70.062113
http://arXiv.org/abs/quant-ph/0406040
http://dx.doi.org/10.1103/PhysRevA.71.010301
http://dx.doi.org/10.1103/PhysRevA.72.032309
http://dx.doi.org/10.1088/1367-2630/8/8/140
http://dx.doi.org/10.1209/0295-5075/101/30003
http://dx.doi.org/10.1103/PhysRevLett.98.110502
http://dx.doi.org/10.1088/1367-2630/9/3/046
http://dx.doi.org/10.1088/1367-2630/8/11/266
http://dx.doi.org/10.1103/PhysRevLett.85.3991
http://dx.doi.org/10.1103/PhysRevLett.85.3991
http://dx.doi.org/10.1103/PhysRevLett.85.3991
http://dx.doi.org/10.1103/PhysRevLett.95.120502
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1088/1751-8113/48/50/505302
http://dx.doi.org/10.1103/PhysRevA.70.052309
http://www.math.nus.edu.sg/mattohkc/sdpt3.html
http://dx.doi.org/10.1137/0805002
http://dx.doi.org/10.1137/0805002
http://dx.doi.org/10.1137/0805002
http://dx.doi.org/10.1137/0805002
http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevLett.98.063604
http://dx.doi.org/10.1103/PhysRevLett.103.020504
http://dx.doi.org/10.1103/PhysRevLett.103.020503
http://dx.doi.org/10.1103/PhysRevA.84.042324
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1103/PhysRevLett.99.193602
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1103/PhysRevLett.103.100502
http://dx.doi.org/10.1103/PhysRevA.83.040301
http://dx.doi.org/10.1103/PhysRevLett.112.140402
http://arXiv.org/abs/org/abs/1405.5288
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRev.127.1508
http://dx.doi.org/10.1103/PhysRevA.71.060305
http://dx.doi.org/10.1103/PhysRevLett.113.093601

	1. Introduction
	2. Entropy as entanglement witness
	2.1. The primal problem
	2.2. The dual problem
	2.3. On numerics
	2.4. Examples
	2.4.1. Antiferromagnetic Heisenberg model
	2.4.2. Dicke states


	3. To the thermodynamic limit
	3.1. The ground state witness
	3.2. Example
	3.3. Arbitrarily large gap

	4. Discussion
	4.1. Robustness
	4.2. Experimental estimation of entropy

	5. Conclusion
	Acknowledgments
	References



