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ABSTRACT

Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of 

less invasive and more specific screening and diagnosis methods which would facilitate its prompt 

identification. Blood circulating autoantibodies which are immediately produced by the immune 

system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In 

this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in 

blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic 

device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and 

reproducibility, achieving limits of detection around 1 nM (150-160 ng·mL-1). A preliminary 

evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. 

These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the 

achievement of a sensitive diagnostic tool for early detection of colorectal cancer. 
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Abbreviations 

CRC colorectal cancer 

ELISA enzyme-linked immunosorbent assay 

LSPR localized surface plasmon resonance 

POC point of care 

RI refractive index 

SAM self-assembled monolayer 

TAA tumor-associate antigen 
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1. Introduction 

Colorectal cancer (CRC) is a worldwide health problem with an incidence over 1 million annual cases 

and being a major cause of morbidity and mortality in developed countries [1]. It is the third most 

common cancer and the fourth most common cause of death around the world. Despite the exact 

cause for CRC is not known, several risk factors have been established for the disease, including 

genetic and epigenetic parameters [2]. Familiar history of colon cancer or inflammatory diseases, age, 

lifestyle and environmental conditions are strongly associated to CRC development. CRC is easily 

curable when detected early [2], thereby prevention and regular screening play crucial roles in the 

fight against this cancer. However, CRC diagnosis is particularly challenging. The most reliable 

diagnosis technique is via sampling of colon biopsies suspected of possible tumor development, 

which is typically done during colonoscopy or sigmoidoscopy for the distal colon and rectum [3]. 

These procedures are highly invasive and present important limitations in terms of costs, available 

resources and low compliance. On the other hand, established noninvasive tests such as the guaiac-

based fecal occult blood test (gFOBT) suffer from low specificity leading to inaccurate diagnosis 

results [4]. There is an evident need for novel screening tools, ideally, analytical techniques based on 

blood analysis, which permit the early and reliable identification and diagnosis of CRC. Development 

of blood biomarker assays that could indicate that a cancerous process is triggered would represent a 

great benefit. However, although a few serum proteins have been described as biomarkers in CRC 

(carcinoembryonic antigen (CEA), CA19.9 or CA125), none of them are recommended for early 

clinical diagnosis but for advanced stages and for monitoring recurrence of the disease [5]. 

Over the past decade, cancer research has made major advances in understanding the causes of 

developing CRC as well as the molecular mechanisms involved in the disease [6]. For instance many 

solid tumors such as breast, lung or colon cancer have revealed to be immunogenic. These tumors 

express aberrant levels of mutated or modified proteins known as tumor-associated antigens (TAA), 

which are related to the malignant growth. Such proteins can stimulate cellular and humoral immune 

response, triggering specific autoantibody production [7,8]. The role of autoantibodies in cancer is 

still unclear. It is not well-known whether they play a cancer-promoting role, an anti-tumor effect or if 
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they are an epiphenomenon associated to inflammation and tumor progression [9]. Nevertheless, 

autoantibody responses to TAAs hold promising characteristics to consider them as blood biomarkers 

for cancer detection and they are currently being investigated as potential diagnostic tools in multiple 

cancer types. Some reports have described the use of autoantibodies for early and preclinical detection 

of cancer, such as lung [10,11] or breast cancer [12]. The analysis of autoantibodies offers significant 

benefits when compared to direct determination of protein antigens associated to the tumor. Whereas 

detection of directly tumor-shed proteins in serum may be challenging due to their low abundance or 

to the difficulty of identifying simple mutations or structural modifications, serum autoantibodies are 

highly stable biomolecules and are produced in large quantities even after stimulation by a minimal 

amount of tumor antigen [12,13]. As a result, TAA-specific serum autoantibodies can constitute 

excellent circulating reporters for early and preclinical cancer diagnosis [14,15]. In the particular case 

of colorectal cancer, over 100 individual TAAs have been identified as target for autoantibody 

production, including full-length proteins, peptides, phage-peptides or glyco-peptides [14,16-18]. 

Current efforts in CRC research are directed not only to define specific TAA panels but also to 

develop efficient and highly sensitive analytical methods capable of detecting TAA autoantibodies in 

serum with optimum accuracy and reliability [19,20]. Most commonly employed methodologies are 

based on ELISA or protein microarrays [21] which are usually aimed at finding relative cut-off 

values, so far providing qualitative or semi-quantitative results. Optical biosensors can offer a 

valuable alternative in terms of time and sample consumption and can provide accurate quantification, 

which may result useful from a diagnosis point of view. Photonic and plasmonic biosensors in 

particular have shown great promise for the development of high-throughput and miniaturized 

platforms capable of carrying out label-free and highly sensitive biochemical analysis [22,23]. 

In this paper, we show the design and optimization of a nanoplasmonic-based biosensor for the direct 

detection and quantification of specific CRC-related TAA autoantibodies. We employ a 

refractometric nanoplasmonic biosensor whose configuration is based on the Localized Surface 

Plasmon Resonance (LSPR) of gold nanodisks [24]. The gold nanodisks are fabricated by hole-mask 

colloidal lithography [25] which is an easy, fast, low-cost and well-stablished methodology which 
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leads to reproducible results, with controlled density of disks on the surface. This device is highly 

sensitive to local refractive index (RI) changes occurring in close proximity to the surface of the 

transducer (in this case the gold nanodisks), such as the ones originated from biomolecular 

interactions. These RI changes can be detected as variations of the LSPR, which permits the real-time 

monitoring of the biorecognition events under label-free conditions. This nanoplasmonic biosensor 

has demonstrated excellent capabilities in terms of RI sensitivity improvement and signal-to-noise 

ratio enhancement, compared for instance with conventional Surface Plasmon Resonance [26] and 

more specifically its performance has also been validated for accurate detection of clinical biomarkers 

and antibodies  in blood serum in few minutes[26,27]. The proposed biosensor strategy would allow 

rapid and simple analysis of TAA autoantibodies, providing a unique and innovative tool for CRC 

diagnosis. 

2. Experimental 

2.1. Materials

Main chemical reagents and salts for buffer preparation and biofunctionalization procedure were 

acquired from Sigma-Aldrich (Germany): alkanethiols for self-assembled monolayer (SAM) 

formation (16-mercaptohexadecanoic acid (MHDA) and 11-mercaptoundecanol (MUOH)), reagents 

for carboxylate group activation (1-ethyl-4(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC) and N-hydroxysulfosuccinimide (s-NHS)), ethanolamine and Tween 20. Poly-L-Lysine-graft-

PEG (MW~70000 g·mol-1 was purchased to SuSoS (Switzerland). Commercial serum was obtained 

from Sigma-Aldrich (Germany) and commercial plasma was purchased to Innovative Research 

(USA). cDNA encoding for full-length human genes EDIL3 and  GTF2B in pDONR221 were 

obtained from the PlasmId repository (Harvard Institute of Proteomics) and, then, subcloned into 

pET28a (Novagen) for protein expression. TAAs were expressed in bacteria and purified according to 

previous studies [16,28]. The Institutional Ethical Review Boards of the Centro de Investigaciones 

Biológicas (CIB), the Spanish National Research Council (CSIC) and Hospital de Cabueñes (Gijón) 

approved this study on biomarker discovery in colorectal cancer. Serum samples were obtained from 
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the Hospital of Cabueñes previous informed consent of the patients. Antibodies anti-GTF2b and anti-

EDIL3 were purchased to Santa Cruz Biotechnology (USA) and Abcam (UK), respectively.  

2.2. Description of the Nanoplasmonic Biosensor

The nanoplasmonic device is based on a recently implemented LSPR sensing scheme based on a 

waveguided electromagnetic mode that arises in thin monolayers of sparse and randomly distributed 

plasmonic nanoparticles. Nanoplasmonic chips consist of short-range ordered arrays of gold 

nanodisks (diameter D = 100 nm, height H = 20 nm (Ti/Au 1/19 nm), surface density F = 6-7%) 

fabricated by hole-mask colloidal lithography (HCL) on glass substrates [25]. A detailed description 

of the fabrication process has been included in the Supplementary Material. Sensor chips are clamped 

between a trapezoidal glass prism (n=1.52) contacting the samples through RI matching oil (n≈1.512) 

and a custom-made Delrin flow cell (volume=4 µL). The flow cell is connected to a microfluidic 

system consisting on a syringe pump (New Era, NE-1000, USA) with adjustable pumping speed that 

ensures a constant liquid flow and a manually operated injection valve (IDEZ Health and Science, V-

451, USA). For LSPR excitation, gold nanodisks are illuminated with a collimated halogen light (HL-

2000, Micro-pack, USA) set in transverse-electric (TE) polarization mode at an angle of incidence of 

80°. The reflected light is collected and fiber-coupled to a CCD spectrometer (Ocean Optics, Jazz 

Module, US). Reflectivity spectra are acquired every 3 ms, and 300 consecutive spectra are averaged 

to provide the spectrum to be analyzed. Excitation at 80° results in deep reflectivity dips at λLSPR ≈ 

750 nm that lead to optimal biosensor performance [24,26]. Biomolecular interactions taking place 

close to the gold nanodisks induce RI changes on the surface and, as a consequence, wavelength 

displacements (ΔλLSPR). Tracking of the real-time resonance peak position is achieved via polynomial 

fit using homemade readout software. 

2.3. Surface functionalization

Prior to surface functionalization, sensor chips were subjected to a cleaning procedure consisting of 

consecutive 1 min sonication cycles in acetone, ethanol and MilliQ water, respectively, dried with N2

stream and placed in a UV/O3 generator (BioForce Nanoscience, USA) for 20 min, after which they 
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were rinsed with ethanol and water and dried with N2. Formation of the alkanethiol SAM was carried 

out by coating the chip with 250 µM MHDA in ethanol for 5h at room temperature. Then, surface was 

rinsed with ethanol and water and dried with N2 stream. For the activation of the carboxylic groups, 

the chip was incubated with 0.2 M EDC/0.05 M s-NHS in MES buffer (0.1 M pH 5.5) for 20 min at 

RT and then rinsed with water and dried. The surface was then immediately immersed in the TAA 

solution in PBS (10 mM pH 7.4) and incubated overnight at 4°C. Finally, biofunctionalized sensors 

were carefully rinsed with PBS and water, dried with N2 stream and mounted in the platform. The 

non-sensing glass areas were subsequently coated with PLL-g-PEG (0.5 mg·mL-1) to avoid non-

specific adsorptions. Figure S3 in Supplementary Material summarizes the biofunctionalization 

protocol.  

2.4. Antibody detection assays

For antibody analysis, PBST 0.5% (PBS + 0.5% Tween 20) was settled as running buffer. Different 

concentrations of specific antibody were diluted in PBST 0.5% or in commercial serum/plasma and 

flowed over the functionalized surface at 25 µL·min-1 (See Figure S9 for an example of real time 

senrograms for the detection of specific antibodies at different concentrations). Regeneration of the 

surface was achieved by injecting 20 mM NaOH at 65 µL·min-1. Calibration curves were fitted to a 

saturation total binding model. Limit of detection (LoD) was calculated as the concentration 

corresponding to the blank signal plus three times its standard deviation (SD), while limit of 

quantification (LoQ) was determined as the concentration corresponding to the minimum measurable 

signal, set as the blank signal plus 10 times SD. Data analysis was performed using Origin Pro 

software. ELISA was carried out as previously described [16,28]. Briefly, microtiter plates (Maxisorp, 

Nunc) were coated overnight with 0.3 µg of the purified recombinant proteins, using GST and human 

Annexin IV as negative controls in 50 µl of PBS. After washing three times with PBS, plates were 

blocked with 3% skimmed milk in PBS (MPBS) for 2 h at room temperature. Then, serum samples 

(dilution, 1:100 in 3% MPBS) were incubated for 2 h at room temperature. After washing, 

peroxidase-labeled anti-human IgG (Jackson laboratories) (dilution, 1:500 in 3% MPBS) was added 

for 2 h at room temperature. Then, the signal was developed with 3,3´,5,5´-tetramethylbenzidine 
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substrate for 10 min (Sigma-Aldrich). The reaction was stopped with 1 M HCl, and absorption 

measured at 450 nm. 

3. Results  

3.1. Description of the Nanoplasmonic Biosensor Platform 

The nanoplasmonic device is based on a recently implemented LSPR sensing scheme based on a 

waveguided electromagnetic mode that arises in thin monolayers of sparse and randomly distributed 

plasmonic nanoparticles [24]. We previously reported that the in-plane LSPR excitation strongly 

enhances the polarizability of the nanodisks, creating an effective RI that is sufficiently large to 

support a guided electromagnetic mode inside the plasmonic monolayer. Both the nanoparticle surface 

density (F) and the incidence angle of light are key aspects that affect this sensing performance. 

Surface density was precisely chosen so that the optimal mode excitation (light coupling efficiency 

close to 100%) occurs at angles where the sensitivity was maximized (angle close to 90º). In 

particular we employ short-ordered arrays of gold nanodisks (diameter D = 100 nm, height H = 20 

nm, surface density F = 6-7%) fabricated by hole-mask colloidal lithography (HCL) (See 

experimental details in Supplementary Material). This nanofabrication technique allows simple, cost-

efficient and wafer-scale production of the nanoplasmonic chips. This waveguided mode results not 

only in a large increase of the RI sensitivity, but also strongly improves the signal-to-noise ratio. Both 

effects assure an overall improved RI sensing performance that is up to one order of magnitude better 

than that of isolated non-interacting nanodisks. Thus, RI changes occurring close to the nanodisk 

surfaces are much easier to detect. A schematic representation of the biosensor can be seen in Figure 

1a. For LSPR excitation, the nanoplasmonic chip is illuminated with a broadband polarized light at a 

determined angle of incidence (ϴ = 80°) [24,26], and the reflected light is collected with a 

spectrophotometer. The obtained spectra show a deep reflectivity dip at λLSPR ≈ 750. Biomolecular 

interactions occurring on the nanodisks surfaces generate RI changes that, in turn, cause 

displacements of the spectral LSPR peak (ΔλLSPR) (red shifts when binding occurs and blue shifts 

during a desorption process). The real-time interrogation of this ΔλLSPR enables the extraction of 
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quantitative information related to the biomolecular interactions taking place in a label-free manner 

(Figure 1.B). In addition, the designed optical platform has very small dimensions (all optical 

components are mounted on a 20 x 20 cm2 portable breadboard), exemplifying its facile 

miniaturization and potential portability. 

3.2. Design and Optimization of the Sensor Biofunctionalization

Among the numerous TAAs defined for colorectal cancer [18], we selected GTF2b (general 

transcription factor IIB) and EDIL3 (EGF-like repeats and discoidin I-like domain 3 protein) since 

both proteins have been previously evaluated as possible TAA targets for autoantibody production in 

colorectal cancer [14]. A study performed in cancer-induced animals provided evidences of 

immediate production of GTF2b and EDIL3 autoantibodies, among others [14]. The presence of 

autoantibodies was detectable at a very early stage in tumor development, even before adenoma 

formation. Especially, GTF2b could be detected before clinically observable symptomatology while 

EDIL3 is characterized by a more homogeneous but late response. This makes GTF2B more 

appropriate to enhance sensitivity while EDIL3 would enhance specificity. 

In order to directly detect the autoantibodies for these two TAA, a biosensing strategy based on the 

direct immobilization of the TAA on the surface of the gold nanodisks has been addressed. A 

schematic representation of the proposed biosensor strategy is showed in Figure 1C. 

Biofunctionalization of the nanoplasmonic sensor chip was based on the formation of a functional 

alkanethiol self-assembled monolayer (SAM) specifically onto the gold nanodisks via thiol 

chemisorption, which act as linker for the covalent attachment of the antigens. We employed 16-

mercaptohexadecanoic acid (MHDA) to create a tight and uniform SAM where the carboxylic groups 

of the MHDA are activated to readily react with lysine (Lys) residues available in the proteins. The 

reaction generates an amide bond between the protein and the SAM. The grafting density of antigen 

molecules on the surface can also be controlled by introducing a lateral spacer during the formation of 

the SAM (i.e. 11-mercaptoundecanol, MUOH). In parallel, glass substrate was coated with the 

copolymer poly-L-lysine PEG (PLL-g-PEG 0.5 mg·mL-1) to prevent and minimize possible undesired 
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adsorptions. The PLL-g-PEG coating generates a highly hydrophilic layer that has demonstrated to 

effectively reduce nonspecific binding of proteins and other compounds present in biological 

matrices. This step facilitates the direct measurement in these biological fluids when using label-free 

biosensors [26,29].  

To establish the best immobilization conditions for both TAAs, the nanoplasmonic chips were 

independently biofunctionalized with recombinant human GTF2b and EDIL3 proteins employing 

different molar ratios of mixed alkanethiol SAM (MHDA/MUOH 1:0, 1:1, 1:10) at a total thiol 

concentration of 250 µM. The immobilization procedure was carried out in situ over the SAM-

functionalized chip already mounted on the sensor platform, by flowing the protein solution and 

monitoring the covalent coupling process (Figure S4 in Supplementary Material). We compared the 

immobilization signals obtained with a fixed protein concentration (50 µg·mL-1) over the different 

SAM ratios. We selected 50 µg·mL-1 based on preliminary experiments performed with a 

conventional SPR biosensor. We observed that although higher concentrations of protein (i.e. 100 

µg·mL-1) rendered higher immobilization signal, the subsequent detection of the autoantibody (at a 

fixed concentration of 1 µg·mL-1) remained similar to the one obtained with a protein concentration of 

50 µg·mL-1 (see Figure S5 in the Supplementary Material). This was indicative of a more optimum 

coverage of the surface for detection purposes with 50 µg·mL-1 than with 100 µg·mL-1. Based on 

these results and on previous conditions optimized for protein attachment to SAMs [27] we selected 

50 µg·mL-1 of protein for further experiments. The highest amount of protein was attached to the 

sensor surface when maximum carboxylic density was employed (Figure S6a in Supplementary 

Material), inducing wavelength shifts around 3 nm. This was observed for both GTF2b and EDIL 

proteins. Introduction of spacer molecules (MUOH) to the SAM resulted in lower signals thereby 

indicating less amount of TAA immobilized. However, the optimum TAA layer, which will lead to 

better detection levels, does not necessarily require maximum coverage with proteins. The appropriate 

distribution of antigens on the surface reveals itself as an important factor to favor the accessibility of 

antibodies. Control of the spacing between TAA molecules can a priori modulate possible steric 

hindrance effects and improve the ability of the antibodies to interact. We evaluated the detection 
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efficiency by flowing a 1 µg·mL-1 specific antibody solution over the corresponding GTF2b and 

EDIL3 functionalized surfaces. This concentration was selected for screening purposes in order to 

choose the best immobilization conditions before performing a full calibration curve. In addition, 

TAA immobilization procedure was also carried out ex situ, by coating the functionalized sensor chip 

with the protein overnight, rinsing it with buffer and then installing the protein-modified chip in the 

biosensor. The antibody detection signal achieved for both ex situ and in situ procedures carried out 

with mixed alkanethiol SAMs at different molar ratios was compared and is summarized in the Figure 

S6b in the Supplementary Material). No steric hindrance effects appeared to be relevant for the 

concentration of TAA tested (50 µg·mL-1) as maximum antibody detection was obtained in all cases 

when maximum carboxylic density was used (MHDA/MUOH 1:0). This suggests that the 

immobilization of TAAs at the selected concentration on alkanethiol SAMs formed exclusively with 

MHDA actually provides highly efficient bioreceptor layers, as also previously reported [30]. It can 

also be appreciated that ex situ immobilization resulted in significant higher antibody signals for the 

same concentration of immunoreagents. This could be attributed to a more efficient coupling yield 

and also to a more efficient protein rearrangement on the surface facilitated by longer reaction times 

(protein coupling overnight vs. 30 min when it is done in situ). From the above results, overnight 

immobilization of TAA over a 100% MHDA SAM was selected as optimum biofunctionalization 

strategy for further experiments. Regeneration for a potential reutilization of the TAAs functionalized 

surfaces was also evaluated. For both TAA-modified surfaces – GTF2b and EDIL3 – basic conditions 

(20 mM NaOH) disrupted the TAA-antibody interaction without altering or modifying the 

immobilized proteins (Figure S7 and S8 in Supplementary Material). Under these conditions it was 

possible to reuse the functionalized surface with good repeatability for up to 100 cycles before 

progressive decrease of the antibody detection signals.  

Calibration curves for both anti-GTF2b and anti-EDIL3 (Figure 2A and 2B) were then performed in 

standard buffer conditions (i.e. PBS with 0.5% of Tween 20 (PBST)), which according to previous 

works helped drastically reduce nonspecific adsorptions onto the sensor chip) [26,27]. Different 

antibody concentrations ranging from 50 ng·mL-1 to 1 μg·mL-1 were flowed by triplicate through the 
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specific TAA functionalized surfaces, respectively, and the resonance shift was obtained (Figure 2A 

and 2B). Limits of detection (LoD) were determined as the minimum antibody concentrations that 

provide an observable signal (i.e. blank signal plus 3 times its standard deviation). The LoD for anti-

GTF2b assay was 10 ng·mL-1 (66 pM) and 5 ng·mL-1 (33 pM) for anti-EDIL3 assay. Limits of 

quantification (LoQ) were determined as the minimum measurable signal, being 34 ng·mL-1 (227 nM) 

and 19 ng·mL-1 (127 pM) for GTF2b and EDIL3, respectively. Besides, the specificity of the assays 

was confirmed by using nonspecific antibodies as control. Measurements of anti-GTF2b over an 

EDIL3-functionalized surface and vice versa led to negligible signals (Figure 2A and 2B, red lines), 

which corroborates the signal contribution solely comes from the specific antibody recognition and 

confirms the feasibility of the methodology for antibody quantification. Excellent reproducibility and 

stability of the biosensor-based assays were finally demonstrated by performing intra- and inter-

assays (curves performed in the same nanodisk-functionalized surface and in different surfaces, 

respectively). As it can be seen in Table 1, the coefficient of variation (CV) for both GTF2b and 

EDIL3 was below the maximum variability recommended for clinical analysis (~15%) [31], both for 

the LoD and for the maximum signal (Smax), taken at the maximum antibody concentration tested 

([Ab] = 1 μg·mL-1). 

3.3. Analysis of TAA Antibodies in Serum and Plasma

In order to evaluate the influence of the matrix, commercial serum (undiluted, and diluted 1:1 and 

1:10 in PBST) and commercial plasma (undiluted, and diluted 1:1 and 1:10 in PBST) were flowed 

over the biofunctionalized nanoplasmonic surfaces (i.e. TAA layer + PLL-g-PEG coating) (Figure 3). 

As it can be seen in the sensorgrams, in both cases a significant background signal was observed due 

to the binding of fluid components onto the bioactive layer, being slightly higher for undiluted plasma 

(whose difference compared to serum is the presence of fibrinogen). A 1:10 dilution in PBST was 

necessary to achieve a complete reduction of nonspecific adsorptions for both fluids, resulting in 

virtually no background signals. 
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Besides the influence of the nonspecific binding onto the surface, possible matrix effects on the 

interaction of the antibody with the TAA-coated layer can occur, altering the analysis features. In 

order to assess this undesired effect, both GTF2b and EDIL3 calibration curves were obtained by 

spiking serum or plasma with several known concentrations of antibodies and then diluting them in 

PBST (1:10) (Figure 4). The curves were analogous to those obtained with standard buffer conditions 

although a slight increase of the LoDs was observed. This minor worsening can be attributed to a 

possible hindrance of the antibody/TAA interaction. For the GTF2b antibody, the LoD was 16 ng·mL-

1 in diluted serum and 15 ng·mL-1 in diluted plasma, compared to a LoD of 10 ng·mL-1 in buffer. In 

the case of EDIL3 antibody detection, LoDs were 12 ng·mL-1 in diluted serum and 11 ng·mL-1 in 

diluted plasma, compared to 5 ng·mL-1 in buffer. Overall the sample dilution (1:10) has inevitably 

decreased the sensitivity over one order of magnitude, with detectabilities around 150-160 ng·mL-1 for 

GTF2b and around 110-120 ng·mL-1 for EDIL3, respectively depending on the fluid. 

Clinical serum samples from CRC patients were analyzed with the nanoplasmonic biosensor for a 

preliminary assessment of the viability of our approach. Serum samples collected from patients from 

the Hospital of Cabueñes (Gijón, Spain) with diagnosed CRC and samples from healthy individuals 

were evaluated employing the optimal conditions selected before (1:10 dilution with PBST). All 

samples were previously analyzed for the presence of GTF2b autoantibodies using semi-quantitative 

ELISA, so the absolute concentration of the target biomarker was unknown. Table 2 compares the 

concentration values obtained with the nanoplasmonic biosensor (in µg·mL-1) to absorbance values 

(in optical density units, OD) obtained with the ELISA (quantitative data is not commonly determined 

with the ELISA for autoantibodies). A consistent correlation was observed in terms of relative signals. 

Negative samples from healthy subjects resulted below the LoD established for our biosensor 

technique (160 ng·mL-1) while positive samples lead to relatively high signals (i.e. high concentration 

of GTF2b autoantibodies). 

4. Discussion 

A major challenge in colorectal cancer research focuses on the development of novel diagnostic 

techniques for simple, rapid and accurate detection of the disease at earlier stages. In this regard, 
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cancer-associated autoantibodies generated by the immune system during tumor appearance have 

evidenced its high value as blood-circulating biomarkers for preclinical cancer diagnosis. We propose 

the use of an innovative nanoplasmonic biosensor for the direct and label-free quantification of CRC 

autoantibodies in serum or plasma. Our nanoplasmonic biosensor offer real-time detection of TAA 

antibodies without the need of any labels or sample pretreatments, which simplifies the analysis and 

provides interesting alternatives to develop small, fast and user-friendly point-of-care (POC) devices 

that could be used directly at doctor’s office. The implementation of POC biosensors for rapid and 

reliable CRC screening could substantially afford a breakthrough towards non-invasive and highly 

specific diagnostic tools for this disease which in turn would help to improve patient survival rates. 

The overall performance of the biosensor assay has been demonstrated for the determination of 

autoantibodies against two important CRC antigens: GTF2b and EDIL3. Both autoantibodies were 

selected as representative for the disease as they are generated at very early stages of CRC 

development and can be detected in blood serum before the onset of tumor lesions [14]. 

Biofunctionalization of the nanoplasmonic sensors has been designed to create a highly stable TAA 

layer that ensures an efficient capture of the specific antibodies. The immobilization strategy is based 

on the material-selective functionalization of the gold nanodisks through the formation of an 

alkanethiol SAM, which guarantees the biomolecular interaction to take place solely on the sensor 

spots. The PLL-g-PEG coating of the glass areas (which represents over the 94% of the surface) 

prevents the nonspecific binding to substrate. The covalent coupling of the TAA via the terminal 

amine groups of Lys residues is a simple and robust procedure that can be applied to immobilize 

virtually all proteins. Several biofunctionalization conditions have been optimized (e.g. alkanethiol 

SAM ratios, binding time, etc.) for the enhancement of the antibody capture efficacy reaching a LoD 

of 10 ng·mL-1 (~ 66 pM) for GTF2b antibody and 5 ng·mL-1 (~ 33 pM) for EDIL3 antibody in 

standard buffer, showing in both cases high selectivity and reproducibility. A complete assay cycle 

(including regeneration) is accomplished in 30 min. Besides, the bioactive surface with the 

immobilized TAA has proven to be reusable for more than 100 cycles with good repeatability. 
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An ultimate goal in POC development relies on the ability to readily detect the biomarkers in 

biological fluids. Here, we have exploited the unique hydrophilic properties of the PLL-g-PEG 

coating layer together with the use of a dilution buffer containing a high concentration of surfactant 

(Tween 20) in order to minimize possible interferences coming from serum or plasma matrices. In 

particular, a simple dilution of the biological sample 1:10 with PBST has led to a complete removal of 

background signals enabling the direct quantification without requiring purification or other extra 

pretreatments. This dilution factor inevitably increases the limit of detection. However, it is much 

lower than the minimum dilution required in the ELISA assay. Overall the features of the resultant 

calibration curves, both in diluted serum and plasma, offer a highly reliable analysis method to 

quantify the TAA autoantibodies with elevated selectivity and reproducibility. Moreover, clinical 

samples analysis further demonstrates the potential of using this device in comparison to conventional 

ELISA methods, according to the good correlation observed for the detection of GTF2b antibodies in 

CRC-diagnosed patients and healthy individuals. In this regard, a more complete quantitative clinical 

validation will be required in the future. However, to our knowledge, serological concentration levels 

of CRC autoantibodies have not been fully established so far, as most research articles in the field 

especially focus on their identification and the assessment of their diagnostic and/or prognostic value. 

Nevertheless we cannot obviate the evident usefulness of knowing this concentration value compared 

with other semi-quantitative or qualitative methods, not only from a perspective of early diagnosis but 

also for disease follow-up. Besides, the possibility of quantifying autoantibodies concentration in 

serum samples may allow further comprehension of the humoral response triggered by the tumor and 

harness the basis for the improvement of prognosis of the disease. On-going work currently focuses 

on the improvement of biofunctionalization strategies and the use of antifouling agents that permit 

direct measurements of undiluted serum and plasma, therefore enhancing the detectability at least 10-

fold. Moreover, the biofunctionalization methodology developed can be easily adjusted for any TAA 

with potential interest. This facilitates the eventual expansion of the biosensor strategy to elaborate a 

multiplexed compact analytical platform for the simultaneous detection of a CRC-specific panel of 

autoantibodies, which is ultimately necessary to fully cover the patient variability and to maximize the 

sensitivity and specificity of the method.  
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5. Conclusions 

We have developed a novel analytical label-free strategy for the detection of tumor-associated 

autoantibodies in blood serum and plasma based on an innovative nanoplasmonic biosensor 

technology. This strategy could provide a reliable and non-invasive screening and diagnosis of 

colorectal cancer at early stages. Our biosensor allows the label-free quantification of specific CRC-

related autoantibodies in few minutes, without requiring any sample purification or pretreatment. 

Several biofunctionalization parameters have been optimized, reaching a limit of detection of 1 nM 

(150-160 ng·mL-1) for direct measurements in human serum or plasma. Selectivity and reproducibility 

of the assay have been also evaluated demonstrating the excellent accuracy and robustness of the 

biosensor. The analysis of clinical samples from colorectal cancer patients has shown good correlation 

with ELISA. Overall, the results obtained highlight the exceptional potential of our nanoplasmonic 

biosensor as a tool for the early detection of colorectal cancer and current efforts are focused on 

establishing a multiplexed approach to expand the strategy to a CRC-panel of autoantibodies. 
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Figure Captions: 

Figure 1. (a) Schematic representation of the miniaturized nanoplasmonic biosensor. A picture of the 

nanodisks and a SEM image of the actual shape of the gold nandisks fabricated on the glass substrate 

are also shown. (b) Graphs showing the resonance peak (photon counts vs. λ) (left) and the shift of the 

resonance peak over time (ΔλLSPR vs. time) (right); (c) TAA biofunctionalization methodology based 

on covalent coupling to an alkanethiol SAM and subsequent antibody detection. 

Figure 2. (a) Calibration curve for anti-GTF2b detection performed over GTF2b-biofunctionalized 

nanodisks (black). Red dashed line indicates nonspecific adsorption of a control antibody (anti-

EDIL3); (b) Calibration curve for anti-EDIL3 detection performed over EDIL3-biofunctionalized 

nanodisks (black). Red dashed line indicates nonspecific adsorption of a control antibody (anti-

GTF2b).

Figure 3. (a) Background signal corresponding to nonspecific adsorption of undiluted serum (black), 

serum diluted 1:1 in PBST 0.5% (purple) and serum diluted 1:10 in PBST 0.5% (green); (b)

Background signal corresponding to nonspecific adsorption of undiluted plasma (blue), plasma 

diluted 1:1 in PBST 0.5% (orange) and plasma diluted 1:10 in PBST 0.5% (pink). 

Figure 4. (a) Calibration curves for anti-GTF2b antibody detection in PBST buffer (black), serum 

diluted 1:10 in PBST (green) and plasma diluted 1:10 in PBST (pink); (b) Calibration curves for anti-

EDIL3 antibody detection in PBST buffer (black), serum diluted 1:10 in PBST (green) and plasma 

diluted 1:10 in PBST (pink).  
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Table 1. Inter and intra-assay features for GTF2b and EDIL3 antibodies detection with the 
nanoplasmonic biosensor 

GTF2b antibody EDIL3 antibody
Mean ± SD* % CV Mean ± SD % CV

Intra-assay
LOD (ng·mL-1) 9.7 ± 0.5 5.15 5.2 ± 0.2 3.77

Smax (nm) 0.937 ± 0.0015 1.63 0.733 ± 0.016 2.08

Inter-assay
LOD (ng·mL-1) 10.1 ± 1.2 11.9 4.9 ± 0.4 8.16

Smax (nm) 0.917 ± 0.07 8.19 0.743 ± 0.04 5.60
* Mean and standard deviation of 3 replicates
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Table 2. Clinical serum samples analysis determined by ELISA and by the 
nanoplasmonic biosensor.

Sample
GTF2b Analysis Results

ELISA (OD) Nanobiosensor (ng·mL-1)*

G30 Negative 0.18 ND †

G42 Positive 0.48 175 ± 8

G56 Positive 0.56 254 ± 10

G101 Negative 0.13 ND †

* Mean ± SD for 3 replicates 
† ND: No Detected (below limit of detection: 160 ng·mL-1)
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ABSTRACT

Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of 

less invasive and more specific screening and diagnosis methods which would facilitate its prompt 

identification. Blood circulating autoantibodies which are immediately produced by the immune 

system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In 

this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in 

blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic 

device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and 

reproducibility, achieving limits of detection around 1 nM (150-160 ng·mL-1). A preliminary 

evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. 

These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the 

achievement of a sensitive diagnostic tool for early detection of colorectal cancer. 

Keywords 

nanoplasmonic biosensor; plasma; serum; colorectal cancer; autoantibodies; clinical diagnosis 

Abbreviations 

CRC colorectal cancer 

ELISA enzyme-linked immunosorbent assay 

LSPR localized surface plasmon resonance 

POC point of care 

RI refractive index 

SAM self-assembled monolayer 

TAA tumor-associate antigen 
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1. Introduction 

Colorectal cancer (CRC) is a worldwide health problem with an incidence over 1 million annual cases 

and being a major cause of morbidity and mortality in developed countries [1]. It is the third most 

common cancer and the fourth most common cause of death around the world. Despite the exact 

cause for CRC is not known, several risk factors have been established for the disease, including 

genetic and epigenetic parameters [2]. Familiar history of colon cancer or inflammatory diseases, age, 

lifestyle and environmental conditions are strongly associated to CRC development. CRC is easily 

curable when detected early [2], thereby prevention and regular screening play crucial roles in the 

fight against this cancer. However, CRC diagnosis is particularly challenging. The most reliable 

diagnosis technique is via sampling of colon biopsies suspected of possible tumor development, 

which is typically done during colonoscopy or sigmoidoscopy for the distal colon and rectum [3]. 

These procedures are highly invasive and present important limitations in terms of costs, available 

resources and low compliance. On the other hand, established noninvasive tests such as the guaiac-

based fecal occult blood test (gFOBT) suffer from low specificity leading to inaccurate diagnosis 

results [4]. There is an evident need for novel screening tools, ideally, analytical techniques based on 

blood analysis, which permit the early and reliable identification and diagnosis of CRC. Development 

of blood biomarker assays that could indicate that a cancerous process is triggered would represent a 

great benefit. However, although a few serum proteins have been described as biomarkers in CRC 

(carcinoembryonic antigen (CEA), CA19.9 or CA125), none of them are recommended for early 

clinical diagnosis but for advanced stages and for monitoring recurrence of the disease [5]. 

Over the past decade, cancer research has made major advances in understanding the causes of 

developing CRC as well as the molecular mechanisms involved in the disease [6]. For instance many 

solid tumors such as breast, lung or colon cancer have revealed to be immunogenic. These tumors 

express aberrant levels of mutated or modified proteins known as tumor-associated antigens (TAA), 

which are related to the malignant growth. Such proteins can stimulate cellular and humoral immune 

response, triggering specific autoantibody production [7,8]. The role of autoantibodies in cancer is 

still unclear. It is not well-known whether they play a cancer-promoting role, an anti-tumor effect or if 
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they are an epiphenomenon associated to inflammation and tumor progression [9]. Nevertheless, 

autoantibody responses to TAAs hold promising characteristics to consider them as blood biomarkers 

for cancer detection and they are currently being investigated as potential diagnostic tools in multiple 

cancer types. Some reports have described the use of autoantibodies for early and preclinical detection 

of cancer, such as lung [10,11] or breast cancer [12]. The analysis of autoantibodies offers significant 

benefits when compared to direct determination of protein antigens associated to the tumor. Whereas 

detection of directly tumor-shed proteins in serum may be challenging due to their low abundance or 

to the difficulty of identifying simple mutations or structural modifications, serum autoantibodies are 

highly stable biomolecules and are produced in large quantities even after stimulation by a minimal 

amount of tumor antigen [12,13]. As a result, TAA-specific serum autoantibodies can constitute 

excellent circulating reporters for early and preclinical cancer diagnosis [14,15]. In the particular case 

of colorectal cancer, over 100 individual TAAs have been identified as target for autoantibody 

production, including full-length proteins, peptides, phage-peptides or glyco-peptides [14,16-18]. 

Current efforts in CRC research are directed not only to define specific TAA panels but also to 

develop efficient and highly sensitive analytical methods capable of detecting TAA autoantibodies in 

serum with optimum accuracy and reliability [19,20]. Most commonly employed methodologies are 

based on ELISA or protein microarrays [21] which are usually aimed at finding relative cut-off 

values, so far providing qualitative or semi-quantitative results. Optical biosensors can offer a 

valuable alternative in terms of time and sample consumption and can provide accurate quantification, 

which may result useful from a diagnosis point of view. Photonic and plasmonic biosensors in 

particular have shown great promise for the development of high-throughput and miniaturized 

platforms capable of carrying out label-free and highly sensitive biochemical analysis [22,23]. 

In this paper, we show the design and optimization of a nanoplasmonic-based biosensor for the direct 

detection and quantification of specific CRC-related TAA autoantibodies. We employ a 

refractometric nanoplasmonic biosensor whose configuration is based on the Localized Surface 

Plasmon Resonance (LSPR) of gold nanodisks [24]. The gold nanodisks are fabricated by hole-mask 

colloidal lithography [25] which is an easy, fast, low-cost and well-stablished methodology which 
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leads to reproducible results, with controlled density of disks on the surface. This device is highly 

sensitive to local refractive index (RI) changes occurring in close proximity to the surface of the 

transducer (in this case the gold nanodisks), such as the ones originated from biomolecular 

interactions. These RI changes can be detected as variations of the LSPR, which permits the real-time 

monitoring of the biorecognition events under label-free conditions. This nanoplasmonic biosensor 

has demonstrated excellent capabilities in terms of RI sensitivity improvement and signal-to-noise 

ratio enhancement, compared for instance with conventional Surface Plasmon Resonance [26] and 

more specifically its performance has also been validated for accurate detection of clinical biomarkers 

and antibodies  in blood serum in few minutes[26,27]. The proposed biosensor strategy would allow 

rapid and simple analysis of TAA autoantibodies, providing a unique and innovative tool for CRC 

diagnosis. 

2. Experimental 

2.1. Materials

Main chemical reagents and salts for buffer preparation and biofunctionalization procedure were 

acquired from Sigma-Aldrich (Germany): alkanethiols for self-assembled monolayer (SAM) 

formation (16-mercaptohexadecanoic acid (MHDA) and 11-mercaptoundecanol (MUOH)), reagents 

for carboxylate group activation (1-ethyl-4(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC) and N-hydroxysulfosuccinimide (s-NHS)), ethanolamine and Tween 20. Poly-L-Lysine-graft-

PEG (MW~70000 g·mol-1 was purchased to SuSoS (Switzerland). Commercial serum was obtained 

from Sigma-Aldrich (Germany) and commercial plasma was purchased to Innovative Research 

(USA). cDNA encoding for full-length human genes EDIL3 and  GTF2B in pDONR221 were 

obtained from the PlasmId repository (Harvard Institute of Proteomics) and, then, subcloned into 

pET28a (Novagen) for protein expression. TAAs were expressed in bacteria and purified according to 

previous studies [16,28]. The Institutional Ethical Review Boards of the Centro de Investigaciones 

Biológicas (CIB), the Spanish National Research Council (CSIC) and Hospital de Cabueñes (Gijón) 

approved this study on biomarker discovery in colorectal cancer. Serum samples were obtained from 
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the Hospital of Cabueñes previous informed consent of the patients. Antibodies anti-GTF2b and anti-

EDIL3 were purchased to Santa Cruz Biotechnology (USA) and Abcam (UK), respectively.  

2.2. Description of the Nanoplasmonic Biosensor

The nanoplasmonic device is based on a recently implemented LSPR sensing scheme based on a 

waveguided electromagnetic mode that arises in thin monolayers of sparse and randomly distributed 

plasmonic nanoparticles. Nanoplasmonic chips consist of short-range ordered arrays of gold 

nanodisks (diameter D = 100 nm, height H = 20 nm (Ti/Au 1/19 nm), surface density F = 6-7%) 

fabricated by hole-mask colloidal lithography (HCL) on glass substrates [25]. A detailed description 

of the fabrication process has been included in the Supplementary Material. Sensor chips are clamped 

between a trapezoidal glass prism (n=1.52) contacting the samples through RI matching oil (n≈1.512) 

and a custom-made Delrin flow cell (volume=4 µL). The flow cell is connected to a microfluidic 

system consisting on a syringe pump (New Era, NE-1000, USA) with adjustable pumping speed that 

ensures a constant liquid flow and a manually operated injection valve (IDEZ Health and Science, V-

451, USA). For LSPR excitation, gold nanodisks are illuminated with a collimated halogen light (HL-

2000, Micro-pack, USA) set in transverse-electric (TE) polarization mode at an angle of incidence of 

80°. The reflected light is collected and fiber-coupled to a CCD spectrometer (Ocean Optics, Jazz 

Module, US). Reflectivity spectra are acquired every 3 ms, and 300 consecutive spectra are averaged 

to provide the spectrum to be analyzed. Excitation at 80° results in deep reflectivity dips at λLSPR ≈ 

750 nm that lead to optimal biosensor performance [24,26]. Biomolecular interactions taking place 

close to the gold nanodisks induce RI changes on the surface and, as a consequence, wavelength 

displacements (ΔλLSPR). Tracking of the real-time resonance peak position is achieved via polynomial 

fit using homemade readout software. 

2.3. Surface functionalization

Prior to surface functionalization, sensor chips were subjected to a cleaning procedure consisting of 

consecutive 1 min sonication cycles in acetone, ethanol and MilliQ water, respectively, dried with N2

stream and placed in a UV/O3 generator (BioForce Nanoscience, USA) for 20 min, after which they 
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were rinsed with ethanol and water and dried with N2. Formation of the alkanethiol SAM was carried 

out by coating the chip with 250 µM MHDA in ethanol for 5h at room temperature. Then, surface was 

rinsed with ethanol and water and dried with N2 stream. For the activation of the carboxylic groups, 

the chip was incubated with 0.2 M EDC/0.05 M s-NHS in MES buffer (0.1 M pH 5.5) for 20 min at 

RT and then rinsed with water and dried. The surface was then immediately immersed in the TAA 

solution in PBS (10 mM pH 7.4) and incubated overnight at 4°C. Finally, biofunctionalized sensors 

were carefully rinsed with PBS and water, dried with N2 stream and mounted in the platform. The 

non-sensing glass areas were subsequently coated with PLL-g-PEG (0.5 mg·mL-1) to avoid non-

specific adsorptions. Figure S3 in Supplementary Material summarizes the biofunctionalization 

protocol.  

2.4. Antibody detection assays

For antibody analysis, PBST 0.5% (PBS + 0.5% Tween 20) was settled as running buffer. Different 

concentrations of specific antibody were diluted in PBST 0.5% or in commercial serum/plasma and 

flowed over the functionalized surface at 25 µL·min-1 (See Figure S9 for an example of real time 

senrograms for the detection of specific antibodies at different concentrations). Regeneration of the 

surface was achieved by injecting 20 mM NaOH at 65 µL·min-1. Calibration curves were fitted to a 

saturation total binding model. Limit of detection (LoD) was calculated as the concentration 

corresponding to the blank signal plus three times its standard deviation (SD), while limit of 

quantification (LoQ) was determined as the concentration corresponding to the minimum measurable 

signal, set as the blank signal plus 10 times SD. Data analysis was performed using Origin Pro 

software. ELISA was carried out as previously described [16,28]. Briefly, microtiter plates (Maxisorp, 

Nunc) were coated overnight with 0.3 µg of the purified recombinant proteins, using GST and human 

Annexin IV as negative controls in 50 µl of PBS. After washing three times with PBS, plates were 

blocked with 3% skimmed milk in PBS (MPBS) for 2 h at room temperature. Then, serum samples 

(dilution, 1:100 in 3% MPBS) were incubated for 2 h at room temperature. After washing, 

peroxidase-labeled anti-human IgG (Jackson laboratories) (dilution, 1:500 in 3% MPBS) was added 

for 2 h at room temperature. Then, the signal was developed with 3,3´,5,5´-tetramethylbenzidine 
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substrate for 10 min (Sigma-Aldrich). The reaction was stopped with 1 M HCl, and absorption 

measured at 450 nm. 

3. Results  

3.1. Description of the Nanoplasmonic Biosensor Platform 

The nanoplasmonic device is based on a recently implemented LSPR sensing scheme based on a 

waveguided electromagnetic mode that arises in thin monolayers of sparse and randomly distributed 

plasmonic nanoparticles [24]. We previously reported that the in-plane LSPR excitation strongly 

enhances the polarizability of the nanodisks, creating an effective RI that is sufficiently large to 

support a guided electromagnetic mode inside the plasmonic monolayer. Both the nanoparticle surface 

density (F) and the incidence angle of light are key aspects that affect this sensing performance. 

Surface density was precisely chosen so that the optimal mode excitation (light coupling efficiency 

close to 100%) occurs at angles where the sensitivity was maximized (angle close to 90º). In 

particular we employ short-ordered arrays of gold nanodisks (diameter D = 100 nm, height H = 20 

nm, surface density F = 6-7%) fabricated by hole-mask colloidal lithography (HCL) (See 

experimental details in Supplementary Material). This nanofabrication technique allows simple, cost-

efficient and wafer-scale production of the nanoplasmonic chips. This waveguided mode results not 

only in a large increase of the RI sensitivity, but also strongly improves the signal-to-noise ratio. Both 

effects assure an overall improved RI sensing performance that is up to one order of magnitude better 

than that of isolated non-interacting nanodisks. Thus, RI changes occurring close to the nanodisk 

surfaces are much easier to detect. A schematic representation of the biosensor can be seen in Figure 

1a. For LSPR excitation, the nanoplasmonic chip is illuminated with a broadband polarized light at a 

determined angle of incidence (ϴ = 80°) [24,26], and the reflected light is collected with a 

spectrophotometer. The obtained spectra show a deep reflectivity dip at λLSPR ≈ 750. Biomolecular 

interactions occurring on the nanodisks surfaces generate RI changes that, in turn, cause 

displacements of the spectral LSPR peak (ΔλLSPR) (red shifts when binding occurs and blue shifts 

during a desorption process). The real-time interrogation of this ΔλLSPR enables the extraction of 
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quantitative information related to the biomolecular interactions taking place in a label-free manner 

(Figure 1.B). In addition, the designed optical platform has very small dimensions (all optical 

components are mounted on a 20 x 20 cm2 portable breadboard), exemplifying its facile 

miniaturization and potential portability. 

3.2. Design and Optimization of the Sensor Biofunctionalization

Among the numerous TAAs defined for colorectal cancer [18], we selected GTF2b (general 

transcription factor IIB) and EDIL3 (EGF-like repeats and discoidin I-like domain 3 protein) since 

both proteins have been previously evaluated as possible TAA targets for autoantibody production in 

colorectal cancer [14]. A study performed in cancer-induced animals provided evidences of 

immediate production of GTF2b and EDIL3 autoantibodies, among others [14]. The presence of 

autoantibodies was detectable at a very early stage in tumor development, even before adenoma 

formation. Especially, GTF2b could be detected before clinically observable symptomatology while 

EDIL3 is characterized by a more homogeneous but late response. This makes GTF2B more 

appropriate to enhance sensitivity while EDIL3 would enhance specificity. 

In order to directly detect the autoantibodies for these two TAA, a biosensing strategy based on the 

direct immobilization of the TAA on the surface of the gold nanodisks has been addressed. A 

schematic representation of the proposed biosensor strategy is showed in Figure 1C. 

Biofunctionalization of the nanoplasmonic sensor chip was based on the formation of a functional 

alkanethiol self-assembled monolayer (SAM) specifically onto the gold nanodisks via thiol 

chemisorption, which act as linker for the covalent attachment of the antigens. We employed 16-

mercaptohexadecanoic acid (MHDA) to create a tight and uniform SAM where the carboxylic groups 

of the MHDA are activated to readily react with lysine (Lys) residues available in the proteins. The 

reaction generates an amide bond between the protein and the SAM. The grafting density of antigen 

molecules on the surface can also be controlled by introducing a lateral spacer during the formation of 

the SAM (i.e. 11-mercaptoundecanol, MUOH). In parallel, glass substrate was coated with the 

copolymer poly-L-lysine PEG (PLL-g-PEG 0.5 mg·mL-1) to prevent and minimize possible undesired 
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adsorptions. The PLL-g-PEG coating generates a highly hydrophilic layer that has demonstrated to 

effectively reduce nonspecific binding of proteins and other compounds present in biological 

matrices. This step facilitates the direct measurement in these biological fluids when using label-free 

biosensors [26,29].  

To establish the best immobilization conditions for both TAAs, the nanoplasmonic chips were 

independently biofunctionalized with recombinant human GTF2b and EDIL3 proteins employing 

different molar ratios of mixed alkanethiol SAM (MHDA/MUOH 1:0, 1:1, 1:10) at a total thiol 

concentration of 250 µM. The immobilization procedure was carried out in situ over the SAM-

functionalized chip already mounted on the sensor platform, by flowing the protein solution and 

monitoring the covalent coupling process (Figure S4 in Supplementary Material). We compared the 

immobilization signals obtained with a fixed protein concentration (50 µg·mL-1) over the different 

SAM ratios. We selected 50 µg·mL-1 based on preliminary experiments performed with a 

conventional SPR biosensor. We observed that although higher concentrations of protein (i.e. 100 

µg·mL-1) rendered higher immobilization signal, the subsequent detection of the autoantibody (at a 

fixed concentration of 1 µg·mL-1) remained similar to the one obtained with a protein concentration of 

50 µg·mL-1 (see Figure S5 in the Supplementary Material). This was indicative of a more optimum 

coverage of the surface for detection purposes with 50 µg·mL-1 than with 100 µg·mL-1. Based on 

these results and on previous conditions optimized for protein attachment to SAMs [27] we selected 

50 µg·mL-1 of protein for further experiments. The highest amount of protein was attached to the 

sensor surface when maximum carboxylic density was employed (Figure S6a in Supplementary 

Material), inducing wavelength shifts around 3 nm. This was observed for both GTF2b and EDIL 

proteins. Introduction of spacer molecules (MUOH) to the SAM resulted in lower signals thereby 

indicating less amount of TAA immobilized. However, the optimum TAA layer, which will lead to 

better detection levels, does not necessarily require maximum coverage with proteins. The appropriate 

distribution of antigens on the surface reveals itself as an important factor to favor the accessibility of 

antibodies. Control of the spacing between TAA molecules can a priori modulate possible steric 

hindrance effects and improve the ability of the antibodies to interact. We evaluated the detection 
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efficiency by flowing a 1 µg·mL-1 specific antibody solution over the corresponding GTF2b and 

EDIL3 functionalized surfaces. This concentration was selected for screening purposes in order to 

choose the best immobilization conditions before performing a full calibration curve. In addition, 

TAA immobilization procedure was also carried out ex situ, by coating the functionalized sensor chip 

with the protein overnight, rinsing it with buffer and then installing the protein-modified chip in the 

biosensor. The antibody detection signal achieved for both ex situ and in situ procedures carried out 

with mixed alkanethiol SAMs at different molar ratios was compared and is summarized in the Figure 

S6b in the Supplementary Material). No steric hindrance effects appeared to be relevant for the 

concentration of TAA tested (50 µg·mL-1) as maximum antibody detection was obtained in all cases 

when maximum carboxylic density was used (MHDA/MUOH 1:0). This suggests that the 

immobilization of TAAs at the selected concentration on alkanethiol SAMs formed exclusively with 

MHDA actually provides highly efficient bioreceptor layers, as also previously reported [30]. It can 

also be appreciated that ex situ immobilization resulted in significant higher antibody signals for the 

same concentration of immunoreagents. This could be attributed to a more efficient coupling yield 

and also to a more efficient protein rearrangement on the surface facilitated by longer reaction times 

(protein coupling overnight vs. 30 min when it is done in situ). From the above results, overnight 

immobilization of TAA over a 100% MHDA SAM was selected as optimum biofunctionalization 

strategy for further experiments. Regeneration for a potential reutilization of the TAAs functionalized 

surfaces was also evaluated. For both TAA-modified surfaces – GTF2b and EDIL3 – basic conditions 

(20 mM NaOH) disrupted the TAA-antibody interaction without altering or modifying the 

immobilized proteins (Figure S7 and S8 in Supplementary Material). Under these conditions it was 

possible to reuse the functionalized surface with good repeatability for up to 100 cycles before 

progressive decrease of the antibody detection signals.  

Calibration curves for both anti-GTF2b and anti-EDIL3 (Figure 2A and 2B) were then performed in 

standard buffer conditions (i.e. PBS with 0.5% of Tween 20 (PBST)), which according to previous 

works helped drastically reduce nonspecific adsorptions onto the sensor chip) [26,27]. Different 

antibody concentrations ranging from 50 ng·mL-1 to 1 μg·mL-1 were flowed by triplicate through the 
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specific TAA functionalized surfaces, respectively, and the resonance shift was obtained (Figure 2A 

and 2B). Limits of detection (LoD) were determined as the minimum antibody concentrations that 

provide an observable signal (i.e. blank signal plus 3 times its standard deviation). The LoD for anti-

GTF2b assay was 10 ng·mL-1 (66 pM) and 5 ng·mL-1 (33 pM) for anti-EDIL3 assay. Limits of 

quantification (LoQ) were determined as the minimum measurable signal, being 34 ng·mL-1 (227 nM) 

and 19 ng·mL-1 (127 pM) for GTF2b and EDIL3, respectively. Besides, the specificity of the assays 

was confirmed by using nonspecific antibodies as control. Measurements of anti-GTF2b over an 

EDIL3-functionalized surface and vice versa led to negligible signals (Figure 2A and 2B, red lines), 

which corroborates the signal contribution solely comes from the specific antibody recognition and 

confirms the feasibility of the methodology for antibody quantification. Excellent reproducibility and 

stability of the biosensor-based assays were finally demonstrated by performing intra- and inter-

assays (curves performed in the same nanodisk-functionalized surface and in different surfaces, 

respectively). As it can be seen in Table 1, the coefficient of variation (CV) for both GTF2b and 

EDIL3 was below the maximum variability recommended for clinical analysis (~15%) [31], both for 

the LoD and for the maximum signal (Smax), taken at the maximum antibody concentration tested 

([Ab] = 1 μg·mL-1). 

3.3. Analysis of TAA Antibodies in Serum and Plasma

In order to evaluate the influence of the matrix, commercial serum (undiluted, and diluted 1:1 and 

1:10 in PBST) and commercial plasma (undiluted, and diluted 1:1 and 1:10 in PBST) were flowed 

over the biofunctionalized nanoplasmonic surfaces (i.e. TAA layer + PLL-g-PEG coating) (Figure 3). 

As it can be seen in the sensorgrams, in both cases a significant background signal was observed due 

to the binding of fluid components onto the bioactive layer, being slightly higher for undiluted plasma 

(whose difference compared to serum is the presence of fibrinogen). A 1:10 dilution in PBST was 

necessary to achieve a complete reduction of nonspecific adsorptions for both fluids, resulting in 

virtually no background signals. 
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Besides the influence of the nonspecific binding onto the surface, possible matrix effects on the 

interaction of the antibody with the TAA-coated layer can occur, altering the analysis features. In 

order to assess this undesired effect, both GTF2b and EDIL3 calibration curves were obtained by 

spiking serum or plasma with several known concentrations of antibodies and then diluting them in 

PBST (1:10) (Figure 4). The curves were analogous to those obtained with standard buffer conditions 

although a slight increase of the LoDs was observed. This minor worsening can be attributed to a 

possible hindrance of the antibody/TAA interaction. For the GTF2b antibody, the LoD was 16 ng·mL-

1 in diluted serum and 15 ng·mL-1 in diluted plasma, compared to a LoD of 10 ng·mL-1 in buffer. In 

the case of EDIL3 antibody detection, LoDs were 12 ng·mL-1 in diluted serum and 11 ng·mL-1 in 

diluted plasma, compared to 5 ng·mL-1 in buffer. Overall the sample dilution (1:10) has inevitably 

decreased the sensitivity over one order of magnitude, with detectabilities around 150-160 ng·mL-1 for 

GTF2b and around 110-120 ng·mL-1 for EDIL3, respectively depending on the fluid. 

Clinical serum samples from CRC patients were analyzed with the nanoplasmonic biosensor for a 

preliminary assessment of the viability of our approach. Serum samples collected from patients from 

the Hospital of Cabueñes (Gijón, Spain) with diagnosed CRC and samples from healthy individuals 

were evaluated employing the optimal conditions selected before (1:10 dilution with PBST). All 

samples were previously analyzed for the presence of GTF2b autoantibodies using semi-quantitative 

ELISA, so the absolute concentration of the target biomarker was unknown. Table 2 compares the 

concentration values obtained with the nanoplasmonic biosensor (in µg·mL-1) to absorbance values 

(in optical density units, OD) obtained with the ELISA (quantitative data is not commonly determined 

with the ELISA for autoantibodies). A consistent correlation was observed in terms of relative signals. 

Negative samples from healthy subjects resulted below the LoD established for our biosensor 

technique (160 ng·mL-1) while positive samples lead to relatively high signals (i.e. high concentration 

of GTF2b autoantibodies). 

4. Discussion 

A major challenge in colorectal cancer research focuses on the development of novel diagnostic 

techniques for simple, rapid and accurate detection of the disease at earlier stages. In this regard, 
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cancer-associated autoantibodies generated by the immune system during tumor appearance have 

evidenced its high value as blood-circulating biomarkers for preclinical cancer diagnosis. We propose 

the use of an innovative nanoplasmonic biosensor for the direct and label-free quantification of CRC 

autoantibodies in serum or plasma. Our nanoplasmonic biosensor offer real-time detection of TAA 

antibodies without the need of any labels or sample pretreatments, which simplifies the analysis and 

provides interesting alternatives to develop small, fast and user-friendly point-of-care (POC) devices 

that could be used directly at doctor’s office. The implementation of POC biosensors for rapid and 

reliable CRC screening could substantially afford a breakthrough towards non-invasive and highly 

specific diagnostic tools for this disease which in turn would help to improve patient survival rates. 

The overall performance of the biosensor assay has been demonstrated for the determination of 

autoantibodies against two important CRC antigens: GTF2b and EDIL3. Both autoantibodies were 

selected as representative for the disease as they are generated at very early stages of CRC 

development and can be detected in blood serum before the onset of tumor lesions [14]. 

Biofunctionalization of the nanoplasmonic sensors has been designed to create a highly stable TAA 

layer that ensures an efficient capture of the specific antibodies. The immobilization strategy is based 

on the material-selective functionalization of the gold nanodisks through the formation of an 

alkanethiol SAM, which guarantees the biomolecular interaction to take place solely on the sensor 

spots. The PLL-g-PEG coating of the glass areas (which represents over the 94% of the surface) 

prevents the nonspecific binding to substrate. The covalent coupling of the TAA via the terminal 

amine groups of Lys residues is a simple and robust procedure that can be applied to immobilize 

virtually all proteins. Several biofunctionalization conditions have been optimized (e.g. alkanethiol 

SAM ratios, binding time, etc.) for the enhancement of the antibody capture efficacy reaching a LoD 

of 10 ng·mL-1 (~ 66 pM) for GTF2b antibody and 5 ng·mL-1 (~ 33 pM) for EDIL3 antibody in 

standard buffer, showing in both cases high selectivity and reproducibility. A complete assay cycle 

(including regeneration) is accomplished in 30 min. Besides, the bioactive surface with the 

immobilized TAA has proven to be reusable for more than 100 cycles with good repeatability. 
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An ultimate goal in POC development relies on the ability to readily detect the biomarkers in 

biological fluids. Here, we have exploited the unique hydrophilic properties of the PLL-g-PEG 

coating layer together with the use of a dilution buffer containing a high concentration of surfactant 

(Tween 20) in order to minimize possible interferences coming from serum or plasma matrices. In 

particular, a simple dilution of the biological sample 1:10 with PBST has led to a complete removal of 

background signals enabling the direct quantification without requiring purification or other extra 

pretreatments. This dilution factor inevitably increases the limit of detection. However, it is much 

lower than the minimum dilution required in the ELISA assay. Overall the features of the resultant 

calibration curves, both in diluted serum and plasma, offer a highly reliable analysis method to 

quantify the TAA autoantibodies with elevated selectivity and reproducibility. Moreover, clinical 

samples analysis further demonstrates the potential of using this device in comparison to conventional 

ELISA methods, according to the good correlation observed for the detection of GTF2b antibodies in 

CRC-diagnosed patients and healthy individuals. In this regard, a more complete quantitative clinical 

validation will be required in the future. However, to our knowledge, serological concentration levels 

of CRC autoantibodies have not been fully established so far, as most research articles in the field 

especially focus on their identification and the assessment of their diagnostic and/or prognostic value. 

Nevertheless we cannot obviate the evident usefulness of knowing this concentration value compared 

with other semi-quantitative or qualitative methods, not only from a perspective of early diagnosis but 

also for disease follow-up. Besides, the possibility of quantifying autoantibodies concentration in 

serum samples may allow further comprehension of the humoral response triggered by the tumor and 

harness the basis for the improvement of prognosis of the disease. On-going work currently focuses 

on the improvement of biofunctionalization strategies and the use of antifouling agents that permit 

direct measurements of undiluted serum and plasma, therefore enhancing the detectability at least 10-

fold. Moreover, the biofunctionalization methodology developed can be easily adjusted for any TAA 

with potential interest. This facilitates the eventual expansion of the biosensor strategy to elaborate a 

multiplexed compact analytical platform for the simultaneous detection of a CRC-specific panel of 

autoantibodies, which is ultimately necessary to fully cover the patient variability and to maximize the 

sensitivity and specificity of the method.  
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5. Conclusions 

We have developed a novel analytical label-free strategy for the detection of tumor-associated 

autoantibodies in blood serum and plasma based on an innovative nanoplasmonic biosensor 

technology. This strategy could provide a reliable and non-invasive screening and diagnosis of 

colorectal cancer at early stages. Our biosensor allows the label-free quantification of specific CRC-

related autoantibodies in few minutes, without requiring any sample purification or pretreatment. 

Several biofunctionalization parameters have been optimized, reaching a limit of detection of 1 nM 

(150-160 ng·mL-1) for direct measurements in human serum or plasma. Selectivity and reproducibility 

of the assay have been also evaluated demonstrating the excellent accuracy and robustness of the 

biosensor. The analysis of clinical samples from colorectal cancer patients has shown good correlation 

with ELISA. Overall, the results obtained highlight the exceptional potential of our nanoplasmonic 

biosensor as a tool for the early detection of colorectal cancer and current efforts are focused on 

establishing a multiplexed approach to expand the strategy to a CRC-panel of autoantibodies. 
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Figure Captions: 

Figure 1. (a) Schematic representation of the miniaturized nanoplasmonic biosensor. A picture of the 

nanodisks and a SEM image of the actual shape of the gold nandisks fabricated on the glass substrate 

are also shown. (b) Graphs showing the resonance peak (photon counts vs. λ) (left) and the shift of the 

resonance peak over time (ΔλLSPR vs. time) (right); (c) TAA biofunctionalization methodology based 

on covalent coupling to an alkanethiol SAM and subsequent antibody detection. 

Figure 2. (a) Calibration curve for anti-GTF2b detection performed over GTF2b-biofunctionalized 

nanodisks (black). Red dashed line indicates nonspecific adsorption of a control antibody (anti-

EDIL3); (b) Calibration curve for anti-EDIL3 detection performed over EDIL3-biofunctionalized 

nanodisks (black). Red dashed line indicates nonspecific adsorption of a control antibody (anti-

GTF2b).

Figure 3. (a) Background signal corresponding to nonspecific adsorption of undiluted serum (black), 

serum diluted 1:1 in PBST 0.5% (purple) and serum diluted 1:10 in PBST 0.5% (green); (b)

Background signal corresponding to nonspecific adsorption of undiluted plasma (blue), plasma 

diluted 1:1 in PBST 0.5% (orange) and plasma diluted 1:10 in PBST 0.5% (pink). 

Figure 4. (a) Calibration curves for anti-GTF2b antibody detection in PBST buffer (black), serum 

diluted 1:10 in PBST (green) and plasma diluted 1:10 in PBST (pink); (b) Calibration curves for anti-

EDIL3 antibody detection in PBST buffer (black), serum diluted 1:10 in PBST (green) and plasma 

diluted 1:10 in PBST (pink).  
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Figure 1 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 

Figure 2 
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Figure 3 
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Figure 4 
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Table 1. Inter and intra-assay features for GTF2b and EDIL3 antibodies detection with the 
nanoplasmonic biosensor 

GTF2b antibody EDIL3 antibody
Mean ± SD* % CV Mean ± SD % CV

Intra-assay
LOD (ng·mL-1) 9.7 ± 0.5 5.15 5.2 ± 0.2 3.77

Smax (nm) 0.937 ± 0.0015 1.63 0.733 ± 0.016 2.08

Inter-assay
LOD (ng·mL-1) 10.1 ± 1.2 11.9 4.9 ± 0.4 8.16

Smax (nm) 0.917 ± 0.07 8.19 0.743 ± 0.04 5.60
* Mean and standard deviation of 3 replicates
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Table 2. Clinical serum samples analysis determined by ELISA and by the 
nanoplasmonic biosensor.

Sample
GTF2b Analysis Results

ELISA (OD) Nanobiosensor (ng·mL-1)*

G30 Negative 0.18 ND †

G42 Positive 0.48 175 ± 8

G56 Positive 0.56 254 ± 10

G101 Negative 0.13 ND †

* Mean ± SD for 3 replicates 
† ND: No Detected (below limit of detection: 160 ng·mL-1)


