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Abstract

The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation

of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the

impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative in-

vestigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional

PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling

fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous

optical sampling) and Raman thermometry based on a novel two-laser approach are used to study

the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite

element method simulations of the phonon dispersion relation and three-dimensional displacement

fields furthermore enable the unique identification of the different hypersonic vibrations. The in-

crease of surface roughness and the introduction of short-range disorder are shown to modify the

phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the

room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for

predicting phonon coherence as a function of roughness and disorder.
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Phononic crystals (PnCs) constitute an attractive class of materials with the potential to

manipulate and control the propagation of vibrational energy, i.e., sound and heat. Caused

by their periodic structure, these materials can exhibit complete acoustic band gaps due to

Bragg reflections and local resonances controlled by geometry and material properties [1–7].

The periodic modulation of their elastic properties [4, 5, 8–12] and the reduced dimensional-

ity in nanostructures [13–15] lead to strong modifications of the acoustic phonon dispersion

which directly affects the phonon group velocity, phonon propagation, and, ultimately, sound

and heat transport.

The continuing miniaturization and progress in nanofabrication techniques have enabled

the reduction of the characteristic sizes of PnCs to the nanometer scale and thereby allow the

modification and control of phonon propagation and transport properties in the frequency

range from hypersonic (GHz) [9–12] to thermal (THz) phonons [7, 16–21]. The prospect to

tailor the thermal conduction and heat capacity has recently triggered tremendous research

activities and several authors have reported the successful reduction of the room temperature

thermal conductivity in PnCs impacting potential applications in thermoelectricity [16, 17,

22–27]. The ability to modify the phonon dispersion relation in the hypersonic frequency

range, and thus the group velocity of acoustic phonons, has paved the way to applications

in RF communication technologies and optomechanics [28–32]. However, studies of the

GHz phonon dispersion relation have been performed mostly for bulk [5, 9, 10, 33–35] and

surface PnCs [11, 36, 37] including band structure mapping of surface acoustic modes [38,

39] whereas the effects of hole patterning and pillar growth in combination with second

order periodicity in thin membranes were only recently studied [12]. In particular, the

experimental exploitation of disorder, a key aspect in the design of modern photonics [40]

for the guidance and trapping of light and ultrasound by Anderson localization [41–45], is

almost completely unexplored in phononic crystals to the present day [46].

In this work, we investigate the influence of short-range disorder in Si membrane-based

2D phononic crystals on the GHz and THz phononic properties. We use time-resolved

femtosecond pump-probe spectroscopy based on asynchronous optical sampling (ASOPS) to

measure the zone-center phonon spectrum and phonon dynamics in the time domain. Finite

element method (FEM) simulations are applied to calculate the phonon dispersion relation,

3D displacement fields, and amplitudes of the different mechanical modes. The thermal

conductivity of the ordered and disordered PnCs is measured by the recently developed
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FIG. 1. (a) Optical image of a 250 nm thick Si membrane, (b) scanning electron microscopy image

of Si membrane-based ordered 2D phononic crystal with hole diameter of 175 nm and pitch of

300 nm, (c) disordered PnC with equal hole diameter and filling fraction φ = 0.267, (d) schematic

of unpatterned membrane with surface roughness, (e) hole wall roughness in ordered PnC, (f)

combination of hole wall roughness and lattice site displacement in disordered PnCs, (g) schematic

illustration of femtosecond pump-probe reflectivity measurements of an ordered PnC, (h) schematic

illustration of 2-laser Raman thermometry measurements of an ordered PnC.

contactless technique of 2-laser Raman thermometry, here applied to PnCs for the first

time.

2D phononic crystals were fabricated of free-standing silicon membranes (Norcada Inc.)

using electron beam lithography and reactive ion etching to generate ordered and disordered

hole patterns with equal filling fractions (Fig. 1(a-c)) [47]. The disorder was introduced by

random displacements of the holes in x and y direction within the unit cell of the PnC

lattice. The hole positions of the disordered PnC were defined by p = p0 ± ǫ · s, where p

is the displaced hole position along the two in-plane axes, p0 is the ordered lattice position,
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ǫ is a random number between 0 and 1 and s is the maximum displacement which was set

to 45 nm. The level of disorder in percentage of the period a = 300 nm is than quantified

by n = s/a · 100% = 15%. Figs. 1(d-f) display schematic illustrations of the unprocessed

membrane with a surface roughness of about 1 nm (d), the ordered PnC with a hole wall

roughness of about 7 nm (e), and the disordered PnC with an average displacement of the

holes from the ordered lattice sites of 22.5 nm in x- and y-direction (f).

The coherent acoustic phonon dynamics of the ordered and disordered PnCs with the

same filling fractions are investigated using femtosecond pump-probe reflectivity measure-

ments using asynchronous optical sampling [48–50] (see Fig. 1(g) and section Methods for

details). The optical excitation of acoustic vibrations arises from the electronic and thermal

stresses induced by the pump pulse which are determined by the generated electron-hole

pair density and the temperature-induced lattice deformation, respectively [49, 51, 52]. The

excited out-of-plane (dilatational) oscillations change the optical cavity thickness of the

membrane which leads to a modulation of the probed reflectivity by the Fabry-Perot ef-

fect [49, 53, 54].

Figs. 2(a-c) show the time-resolved intensity modulation of the reflected probe laser after

subtraction of the electronic contribution and system response correction (see SI) for a

250 nm thick Si membrane before patterning (a), with ordered hole lattice (b) and with

disordered holes (c). The frequencies of the coherent acoustic phonon modes are derived

from the time-domain spectra by numerical Fourier transformation as shown in Fig. 2(d-f),

where dotted spectra represent the FFT spectra of the measured time domain spectra and

solid lines are the FFT spectra of the corresponding multi-sinusoidal fits in Figs. 2(a-c).

The blue shaded areas indicate the frequency ranges in which coherent acoustic phonons

are detected. It should be noted that only phonon modes with amplitudes greater than the

noise level are displayed in the fits, thus, the highest phonon frequency is not a strict limit

for phonon coherence as indicated by the gradient in the blue shaded range. Using this

experimental approach, we can directly obtain the complete zone-center (q = 0) coherent

phonon spectrum from the GHz to the THz regime. In the case of the bare membrane

(Fig. 2(d)), the different harmonics in the vibrational spectrum appear as equidistant peaks

as a consequence of the confinement of the acoustic modes [13, 49, 55]. The lowest frequency

peak at 16.8 GHz thereby corresponds to the first order symmetric (S1) mode and higher

frequency modes up to the 9th harmonic at 151 GHz are clearly visible. The absence of
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FIG. 2. Time-resolved reflectivity spectra and corresponding damped sinusoidal fits of (a) un-

structured Si membrane, (b) ordered phononic crystals, (c) disordered phononic crystal. Center

(d-f): Fourier transformation of measured (dots) and fitted (lines) time-resolved reflectivity spec-

tra. Right (g-i): Normalized amplitude and acoustic phonon frequencies as obtained by FFT of

time resolved reflectivity spectra (dots) and finite element method calculations (bars).

even harmonics can be understood taking into account that those modes have only in-plane

displacement at the Γ point so that no modulation of the optical cavity thickness occurs [54].

Using the value of the longitudinal sound velocity for Si [001] of vL = 8433 m/s [56], the

thickness of the membrane d determines the frequencies of the observed modes fn = nvL/2d,

where fn is the frequency of the n-th harmonic (n = 1, 3, 5, ...) of the symmetric (dilatational)

mode [49]. In addition, a weak signal at 23.8 GHz is observed (0.03 of the amplitude of S1).

Using FEM modeling, we identify this peak as the symmetric S2 mode which might be visible

due to excitation of propagating in-plane modes with small but nonzero wave numbers and

therefore nonzero out-of-plane displacement [57].

Following the discussion of the acoustic phonon dynamics of the non-patterned mem-

brane, we now focus on the modification of the frequency spectrum in ordered and disor-

dered PnCs by hole patterning of the original membrane. The time resolved pump-probe
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reflectivity spectra for the ordered and disordered PnCs are displayed in Fig. 2(b) and 2(c),

respectively. The periodic signal of the unpatterned membrane in Fig. 2(a) is replaced by a

more complex time response of the reflectivity change in the ordered and disordered PnCs.

This indicates a strong modification of the phonon dispersion relation with the appearance

of additional acoustic phonon modes that contribute to reflectivity modulations. The corre-

sponding frequency spectra for the ordered and disordered PnCs are shown in Fig. 2(e) and

2(f). The relative amplitudes of the different modes, normalized to the most intense mode

at about 16 GHz, are displayed in Fig. 2(g-i) (dots) and compared to the results of FEM

simulations (bars).

In order to explain the observed differences between the unpatterned membrane and the

ordered PnC, we calculate the acoustic phonon dispersion relation and the 3-dimensional

displacement fields for the zone-center modes up to 55 GHz by means of FEM modeling as

described in Ref. [12]. In principle, the reflectivity of the membrane is modulated by the

induced mechanical modes which result in non-zero average thickness variations. Here the

model assumes a predominant role of the optical cavity thickness mechanism with negligible

contribution of the photoelastic effect (PE) [49]. The pump-induced variation of the mem-

brane thickness ∆d is of the order of a picometer and directly proportional to the measured

relative change of the reflectivity ∆R/R0. In the case of the PnCs the mechanical modes

are complex and ∆d is position dependent. We correlate the amplitudes Ai of the modes ωi

with their corresponding average change of thickness |∆d| calculated over the whole FEM

unit cell using the formula:

Ai(ωi) ∝ ∆d ∝
1

Sωi

∫

S

(

(ui(z = 0)− ui(z = d)
)

dS, (1)

where ui(z) are the out-of-plane displacement components, and S is the free surface area.

The displacement fields of all the FEM solutions are normalized in such a way that all the

modes store the same elastic energy and are populated according to the Planck distribution

at high temperature.

The acoustic phonon dispersion relations for the membranes before and after hole pat-

terning are displayed in Fig. 3(a) and 3(b), respectively. For the unpatterned membrane,

the first three symmetric modes S1, S2, and S3 are precisely reproduced by the FEM sim-

ulations regarding both amplitude and frequency (Fig. 2(g) and Fig. 3(a)). The decreasing

amplitude of the higher harmonics can be accurately described by Eq. (1) which in the case
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FIG. 3. Calculated acoustic phonon dispersion relation for a 250 nm thick Si membrane without

pattern in [110] direction (a) and with ordered hole pattern in ΓX direction (2D PnC) (b) showing

symmetric (dark color), antisymmetric (light color) and shear horizontal (gray) modes. Dispersion

relation displaying the amplitude of the out-of-plane modes in ordered PnCs (c). Black dots indi-

cate the experimentally obtained zone-center phonon frequencies (b) and (c). The corresponding

3D displacements fields for the symmetric modes at the Γ point are shown for the unpatterned

membrane (d) and the ordered PnC (e). Only modes with non-vanishing out-of-plane displacement

are displayed.
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of the unpatterned membranes simplifies to a 1/ω2 relation (Fig. 2(d)) [49]. The fact that

the mode amplitudes obey this relation indicates that the phonon coherence is not destroyed

by, e.g., surface roughness up to at least 150 GHz. In the case of the ordered PnCs, the

strong modifications of the phonon dispersion relation in Fig. 3(b) compared to the bare

membrane (Fig. 3(a)) arises from band folding and band splitting when the Bragg condition

is satisfied [12]. Considering the multitude of different modes in the dispersion relation, the

question arises why there are only nine discrete modes visible in the time domain measure-

ments. The answer becomes clear, if we consider the out-of-plane displacement amplitudes

of the different modes according to Eq. 1 which are plotted together with the measured

zone-center phonon frequencies in Fig. 3(c). In excellent agreement with the experimental

results, the calculations reveal nine discrete modes in the frequency range up to 55 GHz

(Γ1 − Γ9) with non-vanishing out-of-plane displacement amplitude at the Γ point. The

corresponding 3-dimensional displacement fields for these modes are displayed in Fig. 3(d)

and 3(e) enabling an unambiguous identification of the displacement characteristic of each

observed modes.

Comparing the acoustic phonon spectrum of the ordered PnCs with those of the disor-

dered PnCs, it is apparent that the dispersion relation and zone-center phonon frequencies

differ significantly. In a disordered PnC, no individual modes above about 20 GHz can

be detected (see Figs. 2(f) and 2(i)). This observation demonstrates the importance of

translational symmetry to build coherent phonon modes in the hypersonic frequency range.

Interestingly, two modes remain observable which are comparable in frequency and ampli-

tude to the lowest frequency modes Γ1 and Γ2 of the ordered PnC, although significantly

broadened. The fact that these modes are largely unaffected by disorder can be understood

considering the 3D displacement fields of the lowest frequency modes in the unpatterned

membrane (S1) and the ordered PnC (Γ1) in Figs. 3(d) and 3(e), respectively. Both modes

exhibit a large out-of-plane displacement amplitude and similar displacement symmetry in-

dicating that they are mainly governed by the bare membrane and do not depend on the

second-order periodicity. Consequently, these modes are not significantly affected by the

degree of order / disorder in the PnCs. Finally, it should be noted that the frequency of the

lowest energy mode in the disordered PnC (14.6 GHz) and ordered PnC (15.5 GHz) is slightly

smaller compared to the reference membrane (16.8 GHz) which is caused by the softening

of the material due to the combined effects of mass removal and periodic arrangement.
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FIG. 4. (a) Temperature line-scan profiles of the ordered and disordered PnCs and the unpatterned

Si membrane for a localized thermal excitation using two-laser Raman thermometry (2LRT). (b)

Logarithmic plot of the highlighted area in (a) to visualize the ln(r) relation as predicted by Eq. 2.

(c) Phonon frequency / phonon wavelength as function of characteristic size R (surface roughness,

hole wall roughness, lattice site displacement) for selected specularity parameters p between 0.01

and 0.90. Data points represent measured coherent acoustic phonon frequencies. The blue shaded

area indicates the coherent phonon regime extrapolated from the highest measured coherent phonon

frequencies, the red shaded area marks the non-coherent phonon regime.

Up to this point, we have limited our discussion to the hypersonic (GHz) frequency range

of the phonon spectrum. Taking into account that no coherent phonon modes in the ordered

and disordered PnCs could be observed at frequencies above 55 and 20 GHz, respectively,

we use a different approach to investigate the influence of order and disorder on the ther-

mal properties: Two laser Raman thermometry (2LRT) [58]. The main advantage of this

technique with respect to, for example, electrical measurements or time-domain thermore-

flectance (TDTR), is given by its contactless nature avoiding the introduction of additional

thermal interface resistances. Thus, the thermal conductivity of the PnCs can be directly ob-

tained from the measurements without additional modeling. A spatially fixed heating laser

generates a localized steady-state thermal excitation, whereas a low power probe laser mea-

sures the spatially-resolved temperature profile with sub-micrometer resolution through the

temperature dependent Raman frequency of the optical phonons in the material. Fig. 4(a)

displays the temperature profiles for ordered and disordered PnCs and the unpatterned Si
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membrane obtained by 2LRT with the experimental arrangement shown schematically in

Fig. 1(h). Applying Fourier’s law in 2-dimensions for a thermally isotropic medium leads to

a temperature field T (r) with:

T (r) = T0 +
Pabs

2πfdκ0

ln(r/r0) (2)

where (r0, T0) is an arbitrary point in the temperature field, Pabs is the absorbed power,

f = 0.528 is a correction factor for the missing material due to the holes in the PnCs with

a filling fraction of φ = 0.267 [25], d is the thickness of the PnC membranes, and κ0 is

the thermal conductivity. Here, κ0 can be treated as temperature independent since the

temperature range is sufficiently small (≈ 50 K). We recall that for the case of bulk Si

the thermal conductivity changes by about 15% in the range from 350 K to 400 K [59].

This variation represents only an upper (bulk) limit since the temperature dependence is

typically reduced as boundary scattering increases. Fig. 4(b) displays the thermal decays

in logarithmic scale according to Eq. (2), thus, the slope of the thermal decay is directly

related to κ0. The purely linear decay observed in this graph validates the temperature

independent treatment of κ. A deviation from this linear relation is expected in cases where

κ = κ(T ) as discussed in Ref. [58]. Based on these measurements, we obtain the same value

for the thermal conductivity κ0 = 14 ± 2 Wm−1K−1 for the ordered and disordered PnCs

compared to κ0 = 80± 3 Wm−1K−1 in case of the unpatterned membrane. Considering the

correction factor for the material loss in the holes of the PnCs, we would obtain an effective

thermal conductivity of the PnCs in the absence of size effects of fκ0 = 46± 3 Wm−1K−1.

The reduction in the thermal conductivity of the PnCs down to 18% of the value of

the unpatterned membrane, about a six-fold reduction, is in accordance with other recent

studies of the thermal conductivity of PnCs with comparable dimensions [16, 19, 23, 25–27].

This drastic reduction cannot be solely explained by the mass loss due to hole patterning.

Instead, two aspects need to be considered: (i) diffuse boundary scattering and (ii) phonon

coherence. A decrease of thermal conductivity by diffuse boundary scattering is expected

due to the increase of the surface area caused by the introduction of holes as well as the

hole wall roughness of about 7 nm due to the patterning process (c.f. Figs. 1(e) and 1(f)).

We address the issue of phonon coherence by plotting in Fig. 4(c) the phonon frequencies

of the measured coherent acoustic phonons (Fig. 2) as function of the characteristic size R

limiting in each case the measured phonon frequency range, i.e. surface roughness, hole wall
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roughness, and average lattice site displacement. Next, we plot the corresponding phonon

frequencies for selected specularity parameters p as function of R:

f(R)|p =

√

−ln(p)

16π3
·
vL
R

(3)

where the specularity parameter p expresses a quantitative measure for the percentage of

specular scattering at a normal surface with given roughness (1 for purely specular scattering

and 0 for purely diffusive scattering). The dependence of p as function of the phonon wave-

length is displayed for given values of R in SI Fig. 5. Attempting to derive a general criteria

for the non-coherent phonon regime (fully diffusive phonon scattering), we extrapolate the

specularity parameter towards 0 in SI Fig. 5. The corresponding phonon wavelength is given

in good approximation by the line for p = 0.01 in Fig. 4(c). By plotting the phonon wave-

length λph as function of roughness for this specularity parameter, we obtain λph ≤ 10R as

simple criteria for the non-coherent phonon regime. Following this approach, we obtain fre-

quency limits of 800 GHz, 115 GHz, and 36 GHz for surface roughness values of 1 nm, 7 nm,

and 22.5 nm, respectively. It is important to note that the specularity parameter as intro-

duced by Ziman [60] only considers the surface roughness for a normal incidence wave, not

wall roughness or lattice site displacement. However, despite the different types of roughness

in our phononic crystals, the computed values reproduce the general tendency of the mea-

sured decreasing high frequency limit of coherent phonons in our phononic crystals. In fact,

our experimental data suggests that phonon coherence is already affected by roughness cor-

responding to a specularity parameter between 0.3 and 0.5 (c.f. Fig. 4(c)). Using the more

conservative value of p = 0.5, we find in a rough approximation that λph > 25R constitutes

a realistic criteria for the coherent phonon regime. Consequently, we suggest that disorder,

quantified by the average hole displacement from the periodic lattice sites, can also be con-

sidered as a type of roughness for long wavelength phonons as can be seen when plotting the

measured coherent phonon frequencies of the disordered PnCs for a roughness R = 25 nm in

Fig. 4(c): the measured frequencies are in good agreement with the calculated frequency for

p = 0.3 - 0.5. The absence of any coherent acoustic phonon signal with f > 20 GHz for the

disordered PnCs in Fig. 2(f) and 2(i) can then be understood as approaching the frequency

limit of the coherent phonon regime for this given level of disorder.

It now becomes clear why no differences between the thermal conductivity of the ordered

and disordered PnCs should be expected due to coherent effects as confirmed by the equal
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values of κ measured in the 2LRT experiments: On the one hand, the hole wall roughness of

the ordered and disordered PnCs of about 7 nm prevents coherent effects for phonons with

frequencies above ≈100 GHz (see Fig. 4(c)) whereas on the other hand, the frequencies of

the dominant thermal phonons are in the low THz regime. In other words, the wavelengths

of thermal phonons at room temperature are below 10 nm and therefore commensurate

with the characteristic roughness R in the studied samples which excludes any coherent

effects based on the above given criteria. Consequently, the thermal conductivity is not

affected by phonon coherence for both, the ordered and the disordered PnCs. Even for a

roughness value as low as 1 nm, we predict phonon coherence only up to about 400 GHz

at room temperature. According to Fig. 4(c) modifications of the thermal conductivity due

to phonon coherence will only occur for very smooth surfaces/interfaces where the limit of

the coherent phonon regime reaches the THz range or for very low temperatures where the

wavelength of the thermal phonons is significantly enlarged and thereby greatly exceeds the

characteristic roughness R. These results are also in agreement with a recent study of Maire

et. al [46], who observed pronounced modifications of the thermal conductivity depending

on the level of disorder in Si PnCs only for temperatures up to about 10 K.

In conclusion, we have addressed the question to what extend disorder influences the

phononic properties of 2-dimensional phononic crystals both in the GHz and THz frequency

range. In a first step, we have shown that patterning of a 2D Si membrane by an ordered

phononic crystal lattice strongly modifies the frequencies and dispersion relation of hyper-

sonic vibrations measured by femtosecond time-domain spectroscopy. Using finite element

method simulations we have uniquely identified the displacement characteristic of each mode

by the calculation of the dispersion relation and the 3-dimensional displacement fields. In

particular, we have developed a simple model that accurately predicts the amplitudes of the

out-of-plane displacement for all observed modes in the ordered PnCs. The introduction of

disorder in the PnCs drastically modifies the hypersonic phonon spectrum resulting in the

suppression of coherent acoustic phonon modes. Measurements of the thermal conductivity

using a novel two laser Raman thermometry technique have shown that a six-fold reduction

of the thermal conductivity occurs for both ordered and disordered PnCs (κ0 = 14 ± 2

Wm−1K−1) with respect to the unpatterned membrane (κ0 = 80 ± 3 Wm−1K−1). Based

on the measured coherent acoustic phonon frequencies for different levels of roughness and

disorder we have derived two criteria for the prediction of coherent and non-coherent phonon
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regimes: (i) phonon coherence is unaffected if the roughness R is smaller than 1/25 of the

phonon wavelength and (ii) phonon coherence is destroyed if R is greater than 1/10 of the

phonon wavelength. The results reveal the impact of surface roughness and disorder on the

observation of coherent effects in phononic crystals and demonstrate that the room temper-

ature thermal conductivity in comparable phononic crystals should not be affected by the

change of the phonon dispersion resulting from coherent boundary scattering.

MATERIALS AND METHODS

Sample preparation: Commercially available single crystalline silicon (100) membranes

(Norcada Inc.) with a thickness of 250 nm and window size of 3.2×3.2 mm2 were used to

fabricate 2D PnCs [47]. PMMA 950k (Allresist) was spun at 4000 rpm for one minute,

followed by a 60 min bake at 100◦C in an oven. Electron beam lithography (Raith 150-

TWO) was carried out to pattern ordered and disordered PnCs with a hole size of 175

nm and a pitch of 300 nm for the ordered PnCs and equal filling fraction of φ = 0.267

for the disordered PnCs (c.f. Fig. 1). The dimensions of the structures were 50× 50 µm.

After development in 1:3 methyl isobutyl ketone:isopropanol (MIBK:IPA), the samples were

post-baked for 1 min in 80◦C on a hot plate. The pattern was transferred to silicon using

the reactive ion etching Bosch process (Alcatel AMS-110DE) and finally the samples were

cleaned in an oxygen plasma system (PVA Tepla).

Femtosecond pump-probe reflectivity measurements: Femtosecond pump-probe re-

flectivity measurements based on the asynchronous optical sampling (ASOPS) technique [48–

50] were used to investigate the acoustic phonon dynamics of ordered and disordered PnCs

and unpatterned membranes in the hypersonic (GHz) frequency range. The experimental

method is based on two asynchronously coupled Ti:sapphire ring cavity lasers with a rep-

etition rate of 1 GHz and a nominal pulse length of about 50 fs. The time delay between

the pump and probe pulses is achieved through an actively stabilized frequency offset of

10 kHz between the repetition rate of the two laser oscillators. This allows for a linearly

increasing time delay between pump and probe pulses with steps of 10 fs without the need

for a mechanical delay line. Owing to the high repetition rate of 1 GHz, an excellent signal-

to-noise ratio of above 107 can be achieved for typical acquisition times in the seconds to

minutes range. Pump-probe reflectivity measurements were performed by focusing both
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lasers collinear onto the PnC membranes using a 50× microscopy objective (Olympus, NA

= 0.55) in normal incidence geometry, resulting in a spot size of about 2 µm which corre-

sponds to an excitation area in the PnC of about 35 unit cells. The pump laser was tuned

to a center wavelength of 770 nm with an average power of 8 mW and the probe laser to 830

nm with a power of 4 mW. The reflected probe laser was spectrally filtered by a long-pass

filter at 800 nm to eliminate contributions from the pump laser and recorded with a low

noise photodetector with 125 MHz bandwidth.

Two-laser Raman thermometry: Thermal conductivity measurements were conducted

using two-laser Raman thermometry, a novel technique recently developed to investigate the

thermal properties of suspended membranes [58]. A spatially fixed heating laser generates

a localized steady-state thermal excitation, whereas a low power probe laser measures the

spatially-resolved temperature profile with sub-micrometer resolution through the tempera-

ture dependent Raman frequency of the optical phonons in the material. Both lasers were

focused on the PnCs using 50× microscope objectives with numerical apertures of NA =

0.55. The power of the heating laser with a wavelength of λheat = 405 nm was set to 1 mW

and the power of the probe laser with a wavelength of λprobe = 488 nm to 0.1 mW in order

to avoid local heating by the probe laser while measuring the temperature field. The ab-

sorbed power is measured for each sample as the difference between incident and transmitted

plus reflected light intensities probed by a calibrated system based on a non-polarizing cube

beam splitter. The measurements were performed at ambient pressure which introduces

heat losses through convective cooling. This effect accounts for about 30% of the thermal

conductivity in our samples, i.e., the measured values for the thermal conductivity of the

PnCs were κ0 = 21±2 Wm−1K−1. After correcting for the heat transport due to convective

cooling we obtained the reported value of κ0 = 14± 2 Wm−1K−1 for the ordered and disor-

dered PnCs. A detailed discussion of the influence of convective cooling on the experimental

values obtained for the thermal conductivity in Si PnCs is being published elsewhere [61].
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