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Abstract

In this article we consider the class QS of all non-degenerate quadratic systems. A quadratic
polynomial differential system can be identified with a single point of R'? through its coefficients.
In this paper using the algebraic invariant theory we provided necessary and sufficient conditions
for a system in QS to have at least one invariant hyperbola in terms of its coefficients. We also
considered the number and multiplicity of such hyperbolas. We give here the global bifurcation
diagram of the class QS of systems with invariant hyperbolas. The bifurcation diagram is done
in the 12—dimensional space of parameters and it is expressed in terms of polynomial invariants.
The results can therefore be applied for any family of quadratic systems in this class, given in
any normal form.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx dy

—p = = 1
o = Py, - =0Qy), (1)
where P, @ € Rz, y], i.e. P, @ are polynomials in z, y over R and their associated vector fields

0
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We call degree of a system (1) the integer m = max(deg P, deg Q). In particular we call quadratic a
differential system (1) with m = 2. We denote here by QS the whole class of real non-degenerate
quadratic systems, i.e. we assume that the polynomials P and () are coprime.

Quadratic systems appear in the modeling of many natural phenomena described in different
branches of science, in biological and physical applications and applications of these systems became
a subject of interest for the mathematicians. Many papers have been published about quadratic
systems, see for example [13] for a bibliographical survey.

Let V be an open and dense subset of R?, we say that a nonconstant differentiable function
H :V — Ris a first integral of a system (1) on V' if H(z(t),y(t)) is constant for all of the values of
t for which (x(¢),y(t)) is a solution of this system contained in V. Obviously H is a first integral of

systems (1) if and only if
OH OH
X(H)=P— — =
(H) ox + dy
for all (z,y) € V. When a system (1) has a first integral we say that this system is integrable.

0, (3)

The knowledge of the first integrals is of particular interest in planar differential systems because
they allow us to draw their phase portraits.

On the other hand given f € Clz,y| we say that the curve f(x,y) = 0 is an invariant algebraic
curve of systems (1) if there exists K € C|x, y] such that

of |, ,of
P =Kf. 4
9 T 9o, =K/ (4)
The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When K =0, fis a

polynomial first integral.

Quadratic systems with an invariant algebraic curve have been studied by many authors, for
example Schlomiuk and Vulpe in [14, 16] have studied quadratic systems with invariant straight
lines; Qin Yuan-xum [10] have investigated the quadratic systems having an ellipse as limit cycle
was investigated, Druzhkova [7] presented the necessary and sufficient conditions for existence and
uniqueness of an invariant algebraic curve of second degree in terms of the coefficients of quadratic
systems and Cairo and Llibre in [3] studied the quadratic systems having invariant algebraic conics
in order to investigate the Darboux integrability of such systems.

The motivation for studying the systems in the quadratic class is not only because of their useful-
ness in many applications but also for theoretical reasons, as discussed by Schlomiuk and Vulpe in
the introduction of [14]. The study of non—degenerate quadratic systems could be done using normal
forms and applying the invariant theory.

The main goal of this paper is to investigate non—degenerate quadratic systems having invariant
hyperbolas and this study is done applying the invariant theory. More precisely in this paper we give
necessary and sufficient conditions for a quadratic system in QS to have invariant hyperbolas. We
also determine the invariant criteria which provide the number and multiplicity of such hyperbolas.

Definition 1. We say that an invariant conic ®(z,y) = p + qx + ry + sz + 2tzy + uy? = 0,
(s,t,u) # (0,0,0), (p,q,r,s,t,u) € CC for a quadratic vector field X has multiplicity m if there exists
a sequence of real quadratic vector fields X converging to X, such that each X, has m distinct



(complex) invariant conics @} = 0,...,®}" = 0, converging to ® = 0 as k — co (with the topology of
their coefficients), and this does not occur for m+ 1. In the case when an invariant conic ®(z,y) =0
has multiplicity one we call it simple.

Our main results are stated in the following theorem.

Main Theorem. (A) The conditions vy = 2 = 0 and either n > 0, M # 0 or Cy = 0 are necessary
for a quadratic system in the class QS to possess at least one invariant hyperbola.
(B) Assume that for a system in the class QS the condition v1 = 2 = 0 is satisfied.

e (B1) If n > 0 then the necessary and sufficient conditions for this system to possess at least
one itnvariant hyperbola are given in DIAGRAM 1, where we can also find the number and
multiplicity of such hyperbolas.

e (B2) In the case n = 0 and either M # 0 or Co = 0 the corresponding necessary and sufficient
conditions for this system to possess at least one invariant hyperbola are given in DIAGRAM 2,
where we can also find the number and multiplicity of such hyperbolas.

(C) The DIAGRAMS 1 and 2 actually contain the global bifurcation diagram in the 12-dimensional
space of parameters of the systems belonging to family QS, which possess at least one invariant
hyperbola. The corresponding conditions are given in terms of invariant polynomials with respect to
the group of affine transformations and time rescaling.

C
Remark 1. An invariant hyperbola is denoted by H if it is real and by H if it is complex. In the
case we have two such hyperbolas then it is necessary to distinguish whether they have parallel or

non-parallel asymptotes in which case we denote them by HP (7—?7’) if their asymptotes are parallel
and by H if there exists at least one pair of non-parallel asymptotes. We denote by Hy (k=2,3) a
hyperbola with multiplicity k; by H5 a double hyperbola, which after perturbation splits into two HP;
and by H% a triple hyperbola which splits into two HP and one H.

The term “complex invariant hyperbolas” of a real system requires some explanation. Indeed the
term hyperbola is reserved for a real irreducible affine conic which has two real points at infinity.
This distinguishes it from the other two irreducible real conics: the parabola with just one real point
at infinity and the ellipse which has two complex points at infinity. We call “complex hyperbola” an
irreducible affine conic ®(x,y) = 0, with ®(x,y) = p + gz + ry + sz? + 2txy + uy? = 0 over C, such
that there does not exist a non-zero complex number A\ with A(p,q,7,s,t,u) € RS and in addition
this conic has two real points at infinity.

The invariants and comitants of differential equations (see Subsection 2.2) used for proving our
main result are obtained following the theory of algebraic invariants of polynomial differential sys-
tems, developed by Sibirsky and his disciples (see for instance [18, 19, 12, 1, 4]).

2 Preliminaries

Consider real quadratic systems of the form:

dx d
E = Do +p1(x7y) + pg(l’,y) = P(.’B,y), d_:g =qo +Q1($ay) + QQ(xhy) = Q(x,y) (5>
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DiAGraM 1: Existence of invariant hyperbolas: the case n > 0

with homogeneous polynomials p; and ¢; (i = 0,1,2) of degree i in z,y:

po = a0, pi1(z,y) = awx +any, pa(z,y) = anr? + 2anzy + agy?,
g0 = boo, q1(x,y) = biox +bory, ga(x,y) = baoz® + 2b117Y + boay®.

Such a system (5) can be identified with a point in Rm. Leta = (aoo, aio, ap1, a0, a11, A2, boo, blo, b01, bgo,
b117 bQQ) and consider the ring R[aoo, a10y .-, a02, boo, blo, ey bOQ, x, y] which we shall denote R[d, x, y]
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DiAGrAaM 2: Existence of invariant hyperbolas: the case n =0

2.1 Group actions on quadratic systems (5) and invariant polynomials with
respect to these actions

On the set QS of all quadratic differential systems (5) acts the group Aff(2,R) of affine transforma-
tions on the plane. Indeed for every g € Aff(2,R), g : R? — R? we have:

()uC) e () ) e

where M = || M;;|| is a 2 x 2 nonsingular matrix and B is a 2 X 1 matrix over R. For every S € QS
we can form its transformed system S = g9

dz -, dy _ ~.- - G
E = P(SU, ), a = Q(chy)’ (S)
where .
P(#,9) \ _ (Pog™")(2,7
( &(z.9) ) ‘M< CRYRER" )
The map

Aff2,R) xQS — QS
(9. S) — S=g¢gS
verifies the axioms for a left group action. For every subgroup G C Aff(2,R) we have an induced

action of G on QS . We can identify the set QS of systems (5) with a subset of R'? via the embedding
QS < R!'2 which associates to each system (5) the 12-tuple (aqo, ..., bo2) of its coefficients.



On systems (5) such that max(deg(p), deg(q)) < 2 we consider the action of the group Aff(2,R)
which yields an action of this group on R'2. For every g € Aff(2,R) let 7, : R'? — R!? be the
map which corresponds to g via this action. We know (cf. [18]) that 4 is linear and that the map
r: Aff(2,R) — GL(12,R) thus obtained is a group homomorphism. For every subgroup G of
Aff(2,R), r induces a representation of G onto a subgroup G of GL(12,R).

We shall denote a polynomial U in the ring R[a, z,y] by U(a, x,y).

Definition 2. A polynomial U(a,z,y) € Ra,z,y] is a comitant for systems (5) with respect to a
subgroup G of Aff(2,R), if there exists x € Z such that for every (g, @) € G x R'? and for every
(z,y) € R? the following relation holds:

U(rg(a), g(z,y)) = (det g)"*U(a,x,y).

If the polynomial U does not explicitly depend on z and y then it is an ‘nvariant. The number
X € Z is the weight of the comitant U(a,z,y). If G = GL(2,R) (or G = Aff(2,R)) then the
comitant U(a,x,y) of systems (5) is called GL-comitant (respectively, affine comitant).

Definition 3. A subset X C R'? will be called G-invariant, if for every g € G we have r,(X) C X.

Let T'(2,R) be the subgroup of Aff(2,R) formed by translations. Consider the linear representation
of T(2,R) into its corresponding subgroup 7 C GL(12,R), i.e. for every 7 € T(2,R), 7 : = =
T+ o, y =7+ B we consider as above r; : R1? — R!2,

Definition 4. A GL—comitant U(a,x,y) of systems (5) is a T'—comitant if for every (7, a) € T'(2,R) x
R'2 the relation U(r,(a), ¥, §) = U(a, &, §) holds in R[Z, 7].

Consider s homogeneous polynomials U;(a, z,y) € Rla, z,y], i =1,...,s:
d;
Uz(a7x7y) = ZUzj(a)xdz ]y]7 =1, » S,
j=0

and assume that the polynomials U; are G L—comitants of a system (5) where d; denotes the degree
of the binary form U;(a,z,y) in x and y with coefficients in R[a]. We denote by

U:{Uij(d)ER[d]\izl,...,s, j:O,l,...,di},

the set of the coefficients in R[a] of the GL—comitants U;(a,z,y), i =1,...,s, and by V(U) its zero
set:
V) ={aeR?|Uj@ =0, VUj@el}.

Definition 5. Let Uy, Uy,...,Us be GL—comitants of a system (5) . A GL-comitant U(a,x,y)
of this system is called a conditional T'—comitant (or CT—-comitant) modulo the ideal generated by
Uija) (i=1,...,s;5=0,1,...,d;) in the ring R[a] if the following two conditions are satisfied:

(i) the algebraic subset V(i) C R!? is affinely invariant (see Definition 3);

(ii) for every (r,a) € T(2,R) x V(U) we have U(r.(a),z,y) = U(a,Z,y) in R[Z, g].

In other words a CT—comitant U(a,x,y) is a T—comitant on the algebraic subset V(i) C R'2.



Definition 6. A homogeneous polynomial U(a,z,y) € Rla,x,y] of even degree in z, y has well
determined sign on V C R'? with respect to z, y if for every @ € V, the binary form u(z,y) =
U(a,x,y) yields a function of constant sign on R? except on a set of zero measure where it vanishes.

Remark 2. We draw attention to the fact that if a C'Tcomitant U(a,x,y) of even weight is a
binary form of even degree in x and y, of even degree in & and has well determined sign on some
affine invariant algebraic subset V, then its sign is conserved after an affine transformation and time
rescaling.

2.2 The main invariant polynomials associated to invariant hyperbolas

We single out the following five polynomials, basic ingredients in constructing invariant polynomials
for systems (5):
C’L(&7 €, y) = ypl(xa y) - xqz(xa y)7 (/L = 07 17 2)
dpi  Oq; . (6)
— =1,2).
ax + 8y bl (Z Y )

As it was shown in [18] these polynomials of degree one in the coefficients of systems (5) are GL—

Dz(a‘axay) =

comitants of these systems. Let f, g € R[a, z,y| and
k

k ok f oFg
(k) — _1\h
(£,9) };)( 1) <h> Oxk—hoyh oxhoyk—h-

The polynomial (f, g)*) € R[a,z,y] is called the transvectant of index k of (f,g) (cf. [8], [11])).

Theorem 1 (see [19]). Any GL-comitant of systems (5) can be constructed from the elements (6)

by using the operations: +, —, X, and by applying the differential operation (x, *)(k).

Remark 3. We point out that the elements (6) generate the whole set of G L—comitants and hence
also the set of affine comitants as well as the set of T-comitants.

We construct the following G L—comitants of the second degree with respect to the coefficients of
the initial systems

= (Co, )V, = (Co, Co)V = (Co, Do)V,
T4 S (L), T= (L)Y, Ty = (0 )? (7)
T7 = (Cth)( ) (02702)( ), Ty = (C27D2)( )

Using these G L-comitants as well as the polynomials (6) we construct the additional invariant
polynomials. In order to be able to calculate the values of the needed invariant polynomials directly
for every canonical system we shall define here a family of T—comitants expressed through C; (i =
0,1,2) and D; (j = 1,2):

A=(Cy, Ty — 2Ty + D2)® /144,

_ [200 (Ts — 8Ty — 2D2) + C1(6T7 — Ts — (C1, T5)™) + 6D, (C1 Dy — T) — 9Df02} /36,
E= [D1(2T9 ~Ty) — 3(Cy, To)M) — Dy(3T% + D1D2)} /72,
F = [6D}(D} — 4Ty) + 4Dy Do(Ts + 6T%) +48Cy (Do, Tp)'Y) — 9D3Ty+288D, E

) N\
— 2 (CQ,D)( +120 (DQ,D)( 3601 (Do, T5)) +-8Dy (DQ,TE))(”} /144,

7



B= {16D1 (D2, Ts)V (3C1 Dy — 2Co Dy + ATy) + 32C, (Do, Ty)Y (3D Dy — 5Ty + 9T%)
+2(Dy, Ty) V) (2701 Ty — 18C1 D} —32D1Ts + 32 (Co, T5) V)
+6(Dy, 7)YV [8Co(Ts — 12Ty) — 12C1 (D1 Dy + Tx) + D1(26C5 Dy + 32T5) +Ca(9Ty + 96T3))]
+6 (Do, Tg) W [32C Ty — C1 (1215 + 52Dy Do) —32C5 D3] + 48Dy (D2, Ty) Y (2D3 — T)
— 32D T (Do, To)M) + 9D3Ty (T — 2T%) — 16Dy (Co, Ty) V) (D? + 4T3)
+12D; (C1, Ts)® (C1 Dy — 2C5Dy) + 6Dy DoTy (Ty — 7D5 — 42T)
12D, (O, Ts)V (T4 + 2Dy Dy) + 96 D2 [Dl (C1, Te)™ + Dy (Cy, Tﬁ)“)} -
— 16D DT (2D3 + 3T3) — 4D3 Dy (D3 + 3T + 6Th) + 6D D3 (TTs + 2T%)
—252D1 DTy Ty} /(283%),
K =(Ts + 4Ty + 4D3)/72, H = (8Ty — Ts + 2D3)/72.

These polynomials in addition to (6) and (7) will serve as bricks in constructing affine invariant
polynomials for systems (5).

The following 42 affine invariants A1, ..., A4 form the minimal polynomial basis of affine invariants
up to degree 12. This fact was proved in [2] by constructing Aq,. .., Ase using the above bricks.

Ay = A, Ago = ﬁ[Czaﬁ)(l),D2)(1)7Dz)(l),DQ)(l)Dz)(l),
Ay = (Co, D)®/12, Ay = [F, )V K)P s,

Ay = [CQ,DQ)(I) D )(1),D )(1)/48, Agy = [0271’5)(2)7[?)(1)7‘f])(2)/327

Ay = (H,H)®, Ass = [D, D)@, E)? /16,

As = (H,K)@ )2, Agg = (B,D)® /36,

Ag = (B, H)? /2, Agr = [B, D), H)? 24,

Ar = [Co, )@, Dy) M8, Ags = [Co, )@, D)V EY® /16,

As = [D, H)®,D,)M /s, Agg = [D,F)D, D)® 96,

Ag = [D,Dy)M, Do)V D)V a8, Agy = [Co, D), D)V, DY®) 288,

Ay = [1’57 A)(2) Dz)(l)/& Ay = [ﬁ,ﬁ)@),l? (1),ﬁ)(2)/64,

Ay = (F,K)?/4, Agy = [D, D)@, Do) )Y D) s64,
A = (F,H)? /4, Ags = [D, Do), F)V D)W )M /128,
Az = [02’ ’\)(1)7}\])(2)’D2)(1)/24’ Agy = [ﬁ’ﬁ)(Q)’DQ)(1)7[’€)(1)7D2)(1)/647
Ay = (B, C5)® /36, Ags = [D,D)®,E)Y Dy)Y Dy)W /128,
A5 = (B, F)? /a4, Age = [D,E)», DYV H)® 16,

Ay = [E, D), )M K)? /16, Agr = [D, D), D) DYP /576,

A, = [f),f))@),Dg)(l),DQ)(”/64, Agg = [Cg,13)(2),13)(2),13)(1),?[)(2)/64,
Ay = [D,F)®»,Dy)"V /16, Agy = [D,D)®, F)V H)® j64,

Ay = [D,D)®, H)? /16, A =[D,D)®, F)V K)? 64,

Agy = [02’13)(2 ’ﬁ) (2)/16, Ay = [Cg,ﬁ)@),ﬁ)@),ﬁ)(”,Dg)(l)/64,
Ay = [D,D)®,K)® /16, A = [D,F)@, F)Y D))V /16,

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to
five parentheses “(”.



Using the elements of the minimal polynomial basis given above we construct the affine invariant
polynomials

1 (ZL) A%(?)A@ + 2A7) — 2A6(A8 + Alg),

Yo(@) =9A2 A3(23252A3 + 23689A4,) — 1440A5A5(3A10 4+ 13A11) — 1280A413(2417 + Agg
+23A19 — 4A20) — 320A24(50As + 3A10 + 45411 — 18A12) + 12047 Ag(6718 Ag
+ 4033 A9 + 354211 + 2786 A15) + 3047 A15(14980A3 — 20294, — 48266 A5)
— 3041 A7(76626 A% — 15173 Ag + 11797 Ao + 16427A1; — 30153 A15)
+ 843 A7(75515A¢ — 32954 A7) + 245 A3(33057 Ag — 98759 A15) — 60480A% Agy
+ As A4(68605Ag — 131816 Ag + 131073 A10 + 129953411 ) — 245(141267 A2
— 208741 A5A15 4+ 320042 A413),

v3(@) =843696 A5 Ag A1 + A1(—27(689078 Ag + 419172A9 — 2907149419 — 2621619411 ) A3
— 26(21057 A3 Aoz 4 4900544 Aoz — 166774 A3 Aoy + 115641 A4 Asy)).

v4(@) = — 9A2(14A 7 + Agy) + A2(—560A17 — 518A15 + 881A19 — 28450 + 509A451)
— A4(171A2 + 3A5(367Ag — 107 Ayo) + 4(99A2 + 9349 A1, + A5(—63A18 — 69419
+ TAgg + 24A51))) + 72493 Ay,

v5(@) = — 488A3 Ay + Ao (12(4468 A2 + 32A2 — 91547, + 32049 A1 — 3898A19 A1 — 333143,
+ 2A5(78Ag + 199A1¢ + 2433A11)) + 2A5(25488A415 — 60259419 — 16824497 )
+ T79A4 A21) + 4(7380A10 A3y — 24(A1g + 41A411) Az + Ag(33453A31 + 19588 A3
— 468433 — 19120 A34) + 96 Ag(—Aszs + Azy) + 556 A4 Ay — A5(27773A3g + 41538 A39
— 2304 A41 + 5544 A449)),

v6(a) =2A99 — 33441,

v7(@) =A1(64A3 — 541A4) A7 + 86Ag Ay + 12849 A1z — 54A19A13 — 128 A3 Aoy + 256 A5 Ago
+ 10143 A4 — 27T A4 Ay,

v(a) =3063A4 A2 — 42A2(304Ag + 43(Ag — 11A1g)) — 6A3A49(159Ag + 28Ag + 4094,0)
+ 210042 Ag A1 + 315042 A7 A1 + 24A3(34A19 — 11 As0) + 840AZ Aoy — 93245 A3 Aso
+ 52545 Ay Aoy + 84443, — 630A13A33,

Yo(a@) =2As — 6Ag + Ao,
Y10(@) =3Ag + A1,
71(a) = — 5A7As + A7Ag + 1043414,
Y12(@) =25A3 A3 + 1843,
Y13(
(



yr(a, z,y) = — (T11 + 12 T13),
F18(a, z,y) =C1(Co, Co)? — 205(Cy, Co) P,
Fo(@, z,y) =D1(Ch, Ca)?) — ((Co, C2)?, Co)W,
01(a) =9A4g + 3149 + 641,
do(a) =41Ag + 44Ag9 + 3241,
03(a) =3A19 — 4A17,
04(a) = — bAAs + 3A2A4 + Ago,
d5(a) =62A4g + 102A9 — 125A1,
d¢(a) =215 + 3Ty,
Bi(a) =3A% — 245 — 2415,
Ba(a) =2A7 — 9A,
B3(a) =As,
Ba(a) = — 5A4 + 845,
Bs(a) =Aq,
Be(a) =Ar,
Br(a) =8As — 3A, — 445,
Ps(a) =24As + 11A4 + 2045,
By(@) = — 843 + 11 A, + 445,
Bro(@) =843 + 27TA4 — 54 As,
Bi1(a,z,y) =T? — 20T — 8Ty,
Pra(a, xz,y) =11,
Bis(a, x,y) =13,
Ri1(a) = — 247(12A% + Ag + Apo) + 5A6( A1 + A1) — 241 (Ao — Agy) + 245(A1s + Ars)

+ A6(9A8 + 7A12),

Ro(@) =Ag + Ag — 2410,
Rs(@) =Ay,
Ry(a) = — 3A2 A1, + 4A4 A,

Rs(a, x,y) =(2Co(Ty — 8Ty — 2D32) + C1(6T7 — Tg) — (C1, T5)Y + 6D1(CLDy — Ts) — 9D3Ch),
Re(@) = — 21345 A¢ + A1(2057Ag — 1264 A9 + 677 Ao + 1107 A12) + 746( A7 — Agg),
Ry(a) = — 642 — AgAg + 2A3A9 — 5A4Ag + 444 A19 — 245 A13,

Rg(a) =Ajo,
Ro(@) = — 5Ag + 34,
Rio(a) =7TAg + 5A10+ 1141,
Rii(a,z,y) =Tie.
Hys(a, z,y) =(D, D),
Nr(a) =12D1(Co, Do)V + 2D3 + 9D1(C4, C2)® + 36[Co, C1) V), Do)V
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We remark the the last two invariant polynomials His(a,x,y) and N7(a) are constructed in [15].

2.3 Preliminary results involving the use of polynomial invariants

Considering the G L—comitant Csy(a, x,y) = ypa(a,x,y) — xqz2(a, z,y) as a cubic binary form of x and
y we calculate
n(a) = Discrim[Cy, €], M (a,x,y) = Hessian[Cs],

where £ = y/x or £ =z /y.

According to [17] we have the next result.

Lemma 1 ([17]). The number of infinite singularities (real and imaginary) of a quadratic system
i QS is determined by the following conditions:

(7) 3 real if n > 0;

(7i) 1 real and 2 imaginary if n < 0;

(7i1) 2 real if n =0 and M # 0;

() 1 real if n =M =0 and Cy # 0;

(v) 0 ifn=M=Cy=0.

Moreover, for each one of these cases the quadratic systems (5) can be brought via a linear transfor-
mation to one of the following canonical systems (S;) — (Sy):

i = a+cx+dy+gx’+ (h—1ay, (s1)
v = btex+ fy+(g—1zy+ hy* !
& = a+cx+dy+gz?+ (h+1Day, )

= b+texr+ fy—a®+ gzy + hy? "
& = a+cx+dy+ gx®+ hay, (Sur)
g = btex+ fy+(g—1)zy+ hy% m
& = a+cx+dy+gx?+ hay, (Sn)
U = btex+ fy—a®+ gzy+ hy? v
& = a+cx+dy+ x>, (Sv)
y = btex+ fy+xy. v

Lemma 2. If a quadratic system (9) possesses a non-parabolic irreducible conic then the conditions
Y1 =72 = 0 hold.

Proof: According to [5] a system (9) possessing a second order non-parabolic irreducible curve as an
algebraic particular integral can be written in the form

&= a®(x,y) + Oy (gr + hy + k), §=0b0(z,y) — P (g92 + hy + k),
where a,b, g, h, k are real parameters and ®(z,y) is the conic

®(x,y) = p+ gz +ry + s2? + 2twy + uy® = 0. (8)
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A straightforward calculation gives v; = 9 = 0 for the above systems and this completes the proof
of the lemma.

Assume that a conic (8) is an affine algebraic invariant curve for quadratic systems (5), which we
rewrite in the form:

Ccli_jf::a+c:c+dy+g$2+2hxy+ky2Ep(xay)a

(9)
d
d_zz:b+ex+fy+z:c2+2mxy+ny2EQ(x,y)-

Remark 4. Following [9] we construct the determinant

s t q/2
A=t u /2|,
/2 /2 p

associated to the conic (8). By [9] this conic is irreducible (i.e. the polynomial ® defining the conic
is irreducible over C) if and only if A # 0.

In order to detect if an invariant conic (8) of a system (9) has the multiplicity greater than one,
we shall use the notion of k-th extactic curve &;(X) of the vector field X (see (2)), associated to
systems (9). This curve is defined in the paper [6, Definition 5.1] as follows:

v V9 o)
£(X) = det X(jfl) X(jjz) X@z) |
Xl_i(vl) Xl_i(vg) Xl_‘l(vl)
where vy, vg,...,v; is the basis of C,[x,y], the C-vector space of polynomials in C,[z,y] and [ =

(k+1)(k +2)/2. Here X°(v;) = v; and X7 (vq) = X(X771(vy)).
Considering the Definition 1 of a multiplicity of an invariant curve, according to [6] the following
statement holds:

Lemma 3. If an invariant curve ®(x,y) = 0 of degree k has multiplicity m, then ®(x,y)™ divides
Er(X).
We shall apply this lemma in order to detect additional conditions for a conic to be multiple.

According to definition of an invariant curve (see page 2) considering the cofactor K = Uz + Vy+
W e Clz, y] the following identity holds:

0P 0P

This identity yields a system of 10 equations for determining the 9 unknown parameters p, ¢, r, s,
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tou, U, V, W:

Eqn =s(29g—U)+ 2t =0,

Eq =2t(g+2m —-U)+s(4h—V) +2lu =0,

Eqs =2t2h+n—V)+u(dm —U) + 2ks = 0,

Eqs =u2n—V) + 2kt =0,

Eqg =q(g—U)+s(2c— W) +2et +1lr =0,

Eq =r2m—-U)+q2h —-V)+2t(c+ f— W)+ 2(ds + eu) =0,
(n— V) +u(2f — W)+ 2dt + kq = 0,

Eqs = q(c—W)+2(as+bt) +er —pU =0,

Eqy =r(f —W)+2(bu+at)+dg—pV =0,

Eqio =aq+br—pW =0.

&
<
S

|

<

3 The proof of the Main Theorem

Assuming that a quadratic system (9) in QS has an invariant hyperbola (8), we conclude that this
system must possess at least two real distinct infinite singularities. So according to Lemmas 1 and
2 the conditions 1 = 79 = 0 and either 1 > 0 and M # 0 or Cy, = 0 have to be fulfilled.

In what follows, supposing that the conditions ;3 = 75 = 0 hold, we shall examine three families
of quadratic systems (9): systems with three real distinct infinite singularities (corresponding to the
condition n > 0); systems with two real distinct infinite singularities (corresponding to the conditions
n =0 and M # 0) and systems with infinite number of singularities at infinity, i.e. with degenerate
infinity (corresponding to the condition Co = 0).

3.1 Systems with three real infinite singularities and 6 # 0

In this case according to Lemma 1 systems (9) via a linear transformation could be brought to the
following family of systems

Ccll—f:a+cx+dy+gﬂs2+(h—1)xy, )
% =b+ex+ fy+ (9— Doy + hy’.
For this systems we calculate
Cow,y) = 2y(x —y), 0=—(9—1)(h—1)(g+h)/2 (12)

and we shall prove the next lemma.

Lemma 4. Assume that for a system (11) the conditions 6 # 0 and v1 = 0 hold. Then this system

via an affine transformation could be brought to the form

d d
d_:;:a—i-cx—i-g%j-i-(h—l)xy? d_g;:b_cy‘f‘(g—l)afy"‘hf- (13)

13



Proof: Since 6 # 0 the condition (¢ —1)(h — 1)(g + h) # 0 holds and due to a translation we may
assume d = e = ( for systems (11). Then we calculate

1
m= 6_4(9 —1)*(h — 1)*D1D5Ds,

where
Di=c+f, Do=clg+4h—1)+ f(1+g—2h),

Ds=c(l—2g+h)+ f(4dg+h—1).
So due to 8 # 0 (i.e. (¢g—1)(h—1) # 0) the condition v; = 0 is equivalent to D1 DyD3 = 0. We claim
that without loss of generality we may assume D; = ¢+ f = 0, as other cases could be brought to
this one via an affine transformation.

Indeed, assume first D; # 0 and Dy = 0. Then as g + h # 0 (due to 6 # 0) we apply to systems
(11) with d = e = 0 the affine transformation

d=y—z—(c—f)/lg+h), y=-= (14)
and we get the systems
dx’ dy’
d_g; _ a'+c’x'+g'x'2 + (h/ _ 1)1‘,3//, d_@; _ b'—i—f’y'—i— (g/ _ 1)x'y'+h'y'2. (15)

These systems have the following new parameters:
a' = [h— f*g+cf(g—h) —(a—b)(g+h)?]/(g+h)?
V'=—a, =(cg—2fg—ch)/(g+h), (16)
fl=(c—f—cg+2fg+ fh)/(g+h), g =h h=1-g—h

A straightforward computation gives
Dy=d+f =[clg+4h—1)+ f(1+g—2h)]/(g+h) =D2/(g+h) =0

and hence, the condition Dy = 0 we replace with D7 = 0 via an affine transformation.

Suppose now D; # 0 and D3 = 0. Then we apply to systems (11) the affine transformation

" =—y, y'=x-y+(c-[f)/(g+h)
and we get the systems

dx” dy”
ﬁ _ al/ + C”ﬂf” + g/ll,IIQ + (hl/ _ ]‘)x//y//7 % — b/l + f/ly// + (g// _ 1)ﬂfﬁy”

having the following new parameters:
o ==b ¥ =[flg = Fhtcf(—g+h)+(a=D)g+1)7]/(g+h)
' =(c—f—cg+2fg+fh)/(g+h),
f'=(cg—2fg—ch)/(g+h), ¢'=1-g—h h' =g

+ h// y//2’

We calculate
DY ="+ f"=[c(1-29+h)+ f(4g+h—1)]/(g+h)=Ds/(g+h) = 0.

Thus our claim is proved and this completes the proof of the lemma. ]
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Lemma 5. A system (13) possesses an invariant hyperbola of the indicated form if and only if the
corresponding conditions indicated on the right hand side are satisfied:

I. ®(z,y) =p+qr+ry+2zy < B =b2h—1)—a(29—1)=0, (2h—1)%+(29—1)? #0,
a?+b% #0;
II. &(z,y) =p+qr+ry+2z(x—y) <  either

(i) c=0, Bo =b(1 —2h) +2a(g+2h —1) =0, (2h — 1)2 + (g +2h — 1)2 # 0, a® + b2 # 0;
(ii) h =1/3, B, = (1 + 39)%(b — 2a + 6ag) + 6¢*(1 — 3g) = 0, a # 0;

IIL. ®(z,y)=p+qr+ry+2y(zr—y) <  either

(i) c=0,B3=a(l —29) +2b(29 +h—1)=0, (29 — 1)+ (29 + h — 1) #0, a® + b*> # 0;
(ii) g =1/3, By = (14 3h)*(a — 2b+ 6bh) + 6¢*(1 —3h) =0, b £ 0

Proof: Since for systems (13) we have Cy = xy(x — y) (i.e. the infinite singularities are located at
the “ends” of the lines x = 0, y = 0 and  —y = 0) it is clear that if a hyperbola is invariant for these
systems, then its homogeneous quadratic part has one of the following forms: (i) kxy, (ii) kx(z —
y), (i) ky(x — y), where k is a real nonzero constant. Obviously we may assume k = 2 (otherwise
instead of hyperbola (8) we could consider 2®(x,y)/k = 0).

Considering the equations (10) we examine each one of the above mentioned possibilities.
(i) ®(x,y) = p+ qr + ry + 2xy; in this case we obtain
t=1,q=r=s=u=0,U=29g—-1, V=2h—1, W =0,
Eqs = p(1 —2g) +2b, Eq9 = p(1 — 2h) + 2a,
Eq = Eqy = Eq3 = Equ = Eqs = Eqs = Eq7r = Eqi0 = 0.
Calculating the resultant of the non-vanishing equations with respect to the parameter p we obtain
Resy (Eqs, Eqy) = a(1 — 2g) + b(2h — 1) = By.

So if (2h — 1)2 4+ (29 — 1)® # 0 then the hyperbola exists if and only if B; = 0. We may assume
2h — 1 # 0, otherwise the change (z,y,a,b,¢c,g,h) — (y,z,b,a,—c, h,g) (which preserves systems
(13)) could be applied. Then we get

2a

p=2a/(2h—1), b=a(2g—1)/(2h —1), <I>(ﬂs,y)22h_1+2xy20

and clearly for the irreducibility of the hyperbola the condition a?+b% # 0 must hold. This completes
the proof of the statement I of the lemma.

(ii) ®(x,y) =p+ qr +ry + 2x(z — y); since g+ h # 0 (due to 6 # 0) we obtain
s=2,t=—-1, r=u=0, ¢q=4¢/(g+h), U=2g9, V=2h—-1, W = —hq/2,
Eqs = 4a — 2b — 2gp + 4¢* (g — h) /(g + h)?,
Eq9 = p(1 —2h) —2a, Eqo = 2c(2a —hp)/(g+ h),
Eq = Eq = Eq3 = Fqy = Eq; = Eqs = Eqr = 0.
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1) Assume first ¢ # 0. Then considering the equations Eqy = 0 and Eq19 = 0 we obtain p(3h—1) =
0. Taking into account the relations above we get the hyperbola

O(x,y)=p+dcx/(g+h)+2x(x—y)=0

which evidently is reducible if p = 0. So p # 0 and this implies A = 1/3. Then from the equation
Eq9 = 0 we obtain p = 6a. Since § = (g — 1)(3g + 1)/9 # 0 we have Eq9 = Eq¢ = 0, Eqs =
—2B4/(3g + 1)2. So the equation Eqg = 0 gives By = 0 and then systems (13) with h = 1/3 possess
the hyperbola

¢ x4 2zx(x —y) =0,

1
P =6

which is irreducible if and only if a # 0.

2) Suppose now ¢ = 0. In this case there remain only two non—vanishing equations:
Egqs=4a—2b—2gp =0, Eq9=p(l—2h)—2a=0.
Calculating the resultant of these equations with respect to the parameter p we obtain
Resy, (Eqs, Eqy) = b(1 — 2h) + 2a(g + 2h — 1) = Bs.

If (1 —2h)%+ (g+2h—1)% # 0 (which is equivalent to (1 —2h)? + g # 0) then the condition By = 0
is necessary and sufficient for a system (13) with ¢ = 0 to possess the invariant hyperbola

where p is the parameter determined from the equation Egq9 = 0 (if 2h — 1 # 0), or Egqg = 0 (if
g # 0). We observe that the hyperbola is irreducible if and only if p # 0 which due to the mentioned
equations is equivalent to a? + b% # 0.

Thus the statement IT of the lemma is proved.

(i1i) ®(z,y) = p+ qr + ry + 2y(x — y); we observe that due to the change (x,y,a,b,c,g,h) —
(y,x,b,a,—c, h,g) (which preserves systems (13)) this case could be brought to the previous one and

hence, the conditions could be constructed directly applying this change. This completes the proof
of Lemma 5. ]

In what follows the next remark will be useful.

Remark 5. Consider systems (13). (i) The change (x,y,a,b,c,g,h) — (y,z,b,a,—c, h,g) which
preserves these systems replaces the parameter g by h and h by g. (ii) Moreover if ¢ = 0 then having
the relation (2h —1)(2g — 1)(1 — 29 — 2h) = 0 (respectively (4h — 1)(4g — 1)(3 — 49 — 4h) = 0) due
to a change we may assume 2h — 1 = 0 (respectively 4h —1 =0).

To prove the statement (ii) it is sufficient to observe that in the case 2g — 1 = 0 (respectively
4g — 1 = 0) we could apply the change given in the statement (i) (with ¢ = 0), whereas in the case
1 —2g —2h = 0 (respectively 3 —4g — 4h = 0) we apply the change (z,y,a,b,g,h) — (y —z, —x,b—
a,—a,h,1 — g — h), which conserves systems (13) with ¢ = 0.

Next we determine the invariant criteria which are equivalent to the conditions given by Lemma 5.
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Lemma 6. Assume that for a quadratic system (9) the conditions 1 > 0, 6 £ 0 and 1 = 72 =0
hold. Then this system possesses at least one invariant hyperbola if and only if one of the following
sets of the conditions are satisfied:
(i) If 51 # 0 then either
(i.1) B2 #0, R # 0;
(i.2) B2 =0, B3 #0, y3 =0, R1 #0;
(i.3) B2 = B3 =0, BafsRa # 0;
(i.4) Bo=PB3=01=0,v3=0, Ry #0;
(ii) If B1 = O then either
(ii.1) Be # 0, B2 #0, 74 =0, R3 # 0;
(i4.2) Bs # 0, B2 =0, 75 =0, Ry #0;
(i4.3) Be =0, B7 #0, 75 =0, Rs # 0;
(ii.4) B =0, B7 =0, Bg #0, 75 =0, R5 # 0;
(i.5) B =0, Br =0, Bg =0, 76 =0, R5 # 0.

Proof: Assume that for a quadratic system (9) the conditions n > 0, 6 # 0 and v; = 0 are fulfilled.
According to Lemma 4 due to an affine transformation and time rescaling this system could be
brought to the canonical form (13), for which we calculate

Yo = — 1575¢*(g — 1)%(h — 1)*(g + h)(3g — 1)(3h — 1)(3g + 3h — 4)By,

o B (17)
Br=—c(g—1)(h—1)Bg—1)(Bh—1)/4, B2 =—c(g—h)(3g+3h—4)/2.

3.1.1 The case 1 #0

According to Lemma 2 the condition 75 = 0 is necessary for the existence of a hyperbola. Since
081 # 0 in this case the condition v = 0 is equivalent to (3¢g + 3h — 4)B; = 0.

3.1.1.1 The subcase (2 # 0. Then (3g + 3h —4) # 0 and the condition v = 0 gives B; = 0.
Moreover the condition B2 # 0 yields g—h # 0 and this implies (2h—1)%?+(2g—1)? # 0. According to
Lemma 5 systems (13) possess an invariant hyperbola, which is irreducible if and only if a? + b? # 0.

On the other hand for these systems we calculate
Ri=—3c(a—b)(g —1)°(h—1)*(g+h)(3g — 1)(3h — 1)/8

and we claim that for B; = 0 the condition R; = 0 is equivalent to a = b = 0. Indeed, as the equation
By = 0 is linear homogeneous in a and b, as well as the second equation a — b = 0, calculating the
respective determinant we obtain —2(g + h) # 0 due to 6 # 0. This proves our claim and hence the
statement (i.1) of Lemma 6 is proved.

3.1.1.2 The subcase 2 = 0. Since 51 # 0 (i.e. ¢#0) we get (9 —h)(3g 4+ 3h —4) = 0. On the
other hand for systems (13) we have

Pz =—clg—h)(g—1)(h—1)/4

and we consider two possibilities: f3 # 0 and B3 = 0.
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3.1.1.2.1 The possibility 53 # 0. In this case we have ¢ — h # 0 and the condition 85 = 0
implies 3¢ +3h —4 = 0, i.e. ¢ = 4/3 —h. So the condition (2h — 1) + (2g — 1)? # 0 for systems (13)
becomes (2h — 1) 4 (6h — 5)? # 0 and obviously this condition is satisfied.

For systems (13) with g = 4/3 — h we calculate

3 =22971c(h —1)3(3h — 1)3By, Ri = (a —b)e(h —1)3(3h —1)3/6,
Bi=—cA(h—1)2Bh—-1)%/4, B3=—c(h—1)(3h —2)(3h —1)/18.

So due to 1 # 0 the condition 3 = 0 is equivalent to By = 0. Moreover if in addition Ry = 0 (i.e.
a—b=0) we get a =0b =0, because the determinant of the systems of linear equations

381 = a(5—6h) —3b(2h —1) =0, a—b=0

with respect to the parameters a and b equals 4(3h — 2) # 0 due to the condition 83 # 0. So the
statement (4.2) of the lemma is proved.

3.1.1.2.2  The possibility f3 =0. Dueto f; # 0 (i.e. ¢(g—1)(h—1) # 0) we get g = h and
for systems (13) we calculate

Yo =6300c*h(h — 1)*(3h — 2)(3h — 1)?By, 6= —h(h —1)%,
Br=—cA(h—1)2*Bh—1)2/4, B4=2h(3h—2), Bs=—2n*2h—1).
So due to the condition 68; # 0 we obtain that the necessary condition v = 0 is equivalent to
B1(3h — 2) = 0 and we shall consider two cases: 4 # 0 and 4 = 0.

1) The case By # 0. Therefore 3h — 2 # 0 and this implies By = 0. Considering Lemma 5 the
condition (2h —1)% 4 (29 —1)? # 0 for g = h becomes 2h — 1 # 0. So for the existence of a invariant
hyperbola the condition f5 # 0 is necessary. Moreover this hyperbola is irreducible if and only if
a® + b? # 0. Since for these systems we have

Ro = (a+b)(h—1)*(3h —1)/2, By =—(2h —1)(a —1D)

we conclude, that when B; = 0 the condition Ry # 0 is equivalent to a? 4+ b # 0 and this completes
the proof of the statement (i.3) of the lemma.

2) The case 4 = 0. Then due to 6 # 0 we get h = 2/3 and arrive at the 3-parameter family of

systems

d d
d—i:a+cx+2x2/3—xy/3, d—?;:b—cy—xy/3+2y2/3, (18)

For these systems we calculate 43 = 7657cB1/9, 31 = —c?/36, R = (a + b)/18, where B =
(b—a)/3. Since for these systems the condition (2h — 1) + (29 — 1)? = 2/9 # 0 holds, according to
Lemma 5 we conclude that the statement (i.4) of the lemma is proved.

3.1.2 The case ;=0

Considering (17) and the condition 6 # 0 we get ¢(3g — 1)(3h — 1) = 0. On the other hand for
systems (13) we calculate

Bs = —clg —1)(h—1)/2

and we shall consider two subcases: g # 0 and g = 0.
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3.1.2.1 The subcase 5 # 0. Then ¢ # 0 and the condition 51 = 0 implies (3g —1)(3h—1) = 0.
Therefore due to Remark 5 we may assume h = 1/3 and this leads to the following 4-parameter
family of systems

d
ax =a+ cx + gz — 2zy/3,

d
dt Y—b—ey+(g—Day +12/3, (19)

dt

which is a subfamily of (13). According to Lemma 5 the above systems possess a hyperbola if and
only if either By = a(1 — 2g) — b/3 = 0 and a® + b? # 0 (the statement I), or By = (1 + 3g)*(b —
2a + 6ag) + 6c2(1 — 3g) = 0 and a # 0 (the statement IT). We observe that in the first case, when
a(l —2g) — b/3 = 0 the condition a® + b? # 0 is equivalent to a # 0.

On the other hand for these systems we calculate

v4=—16(g — 1)*(3g — 1)>B1B5 /81, Bs = c(g —1)/3,
By =c(g —1)(3g —1)/2, Rsz=a(3g—1)3/18.

So we consider two possibilities: G2 # 0 and [y = 0.

3.1.2.1.1 The possibility §2 # 0. In this case (¢ — 1)(3g — 1) # 0 and the conditions 4 = 0
and R3 # 0 are equivalent to B1B5 = 0 and a # 0, respectively. This completes the proof of the
statement (7.1).

3.1.2.1.2 The possibility 2 = 0. Due to the condition S5 # 0 we get g = 1/3 and this leads
to the following 3-parameter family of systems:

dv _ a+cx +2?/3 — 2xy/3,

d
= Y b ey — 2wy/3 +y2/3. (20)

dt

Since ¢ # 0 (due to fg # 0) according to Lemma 5 these systems possess an invariant hyperbola if
and only if one of the following sets conditions are fulfilled:

Bi=(a—b)/3=0, a®+b*#0;
By=4b=0, a#0; B;=4a=0, b#0.
We observe that the last two conditions are equivalent to ab = 0 and a? + b* # 0.
On the other hand for systems (20) we calculate
v5 =16B,B4BL /27, Ry = 128(a* — ab + b?)/6561.

It is clear that the condition R4 = 0 is equivalent to a® + b? = 0. So the statement (ii.2) is proved.

3.1.2.2 The subcase s = 0. Since § # 0 (i.e. (¢ —1)(h —1) # 0) the condition s = 0 yields
¢ = 0. Therefore according to Lemma 5 systems (13) with ¢ = 0 possess an invariant hyperbola if
and only if one of the following sets of conditions holds:

By =b(2h—1) —a(2g —1) =0, (2h —1)2 + (29 — 1)2 #0, a®>+ b #0;

By =b(1—2h) +2a(g+2h—1) =0, (2h—1)*+(g+2h—1)>#0, a®+b>#0;

Bs=a(l—29)+2b(2g+h—1)=0, (29—1)2+(29+h—1)2#0, a®>+b*#0.
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Considering the following three expressions
a1 =2g—1, as=2h—-1, az3=1-29g—2h

we observe that the condition (2h — 1) 4 (29 — 1)? # 0 (respectively (2h — 1)? 4 (g + 2h — 1)? # 0;
(29 — 1)? + (29 + h — 1)? # 0) is equivalent to a3 + a3 # 0 (respectively a3 + a3 # 0; a2 + a3 # 0).

On the other hand for these systems we calculate

s = — 288(g — 1)(h — 1)(g + h)B1 B2Bs,
0= (g )(h—1)g+h)/2.
fr =200203, P9 = 2(aran + ajas + asag),
R =36(bx — ay)[(g — 1)*2* +2(g + h + gh — D)zy + (h — 1)*y?].

We observe that if o = as = 0 (respectively as = a3 = 0; a1 = ag = 0) then the factor By
(respectively Bsy; Bs) vanishes identically. Considering the values of the invariant polynomials (37
and g we conclude that two of the factors a; (i=1,2,3) vanish if and only if 57 = B9 = 0. So we
have to consider two subcases: 32 + 82 # 0 and B2 + (3 = 0.

3.1.2.2.1 The possibility 32 + 53 # 0. In this case due to § # 0 the conditions 75 = 0 and
Rs5 # 0 are equivalent to B1B2Bs = 0 and a? + b # 0, respectively. So by Lemma 5 there exists at
least one hyperbola and hence the statements (ii.3) and (i7.4) are valid.

3.1.2.2.2 The possibility 82 + 2 = 0. As it was mentioned above, in this case two of
the factors «; (i=1,2,3) vanish. Considering Remark 5, without loss of generality we may assume
a1 — Qg = 0.

Thus we have g = h = 1/2 and we get the family of systems

d
& a+z%/2 — xy/2,

d
o —y*b—xy/2+y2/2. (21)

dt
Since ¢ = 0 and the conditions of the statement I of Lemma 5 are not satisfied for these systems,

according to Lemma 5 the above systems possess an invariant hyperbola if and only if a® 4 b? # 0
and either By = a =0 or B3 = b= 0. For systems (21) we calculate

Y6 = — 9BoBs, Rs =9(bx — ay)(z + y)*

and we conclude that the statement (ii.5) of the lemma holds.
As all the cases are examined, Lemma 6 is proved. m
The next lemma is related to the number of the invariant hyperbolas that quadratic systems with
n > 0 and 0 # 0 could have.
Lemma 7. Assume that for a quadratic system (9) the conditions n >0, 0 # 0 and v = v2 = 0 are
satisfied. Then this system possesses:

(A) two invariant hyperbolas if and only if either
(A1) if 1 =0, Be #0, B2 # 0, 74 =0, R3 # 0 and §; =0, or
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("42) Zfﬁlz(); 56:(); 57#07 75:0, R57£0 and,@gz(SQ:O, or
(As) if p1 =0, B =Br =0, By #0, 75 =0, Rs #0 and d3 = 0, Bs # 0;

(B) three invariant hyperbolas if and only if f1 = 0, fg = 7 =0, fg # 0, 75 = 0, R5 # 0 and
03 = s = 0.

Proof: For systems (13) we have

Po=—clg—1(h-1)/2, 0=—(g—-1)(h-1)(g+h)/2,
Br=—c(g—1)(h—1)(3g —1)(3h — 1)/4.

3.1.3 The case 5 # 0

Then ¢ # 0 and according to Lemma 5 we could have at least two hyperbolas only if the conditions
given either by the statements I and IT; (iz) (i.e. By = B, =0 and h = 1/3), or by the statements I
and ITI; (7) (i.e. By = B5 = 0and g = 1/3) are satisfied. Therefore the condition (3g—1)(3h—1) =0
is necessary. This condition is governed by the invariant polynomial 8. So we assume g1 = 0 and
due to Remark 5 we may consider h = 1/3. Then we calculate

vy =—16(g — 1)*(3g — 1)*B1B, /81, B =0,
0=(g—1)(1+39)/9#0, B2=clg—1)(3g—1)/2.

Solving the systems of equations By = B, = 0 with respect to a and b we obtain
6c*(3g — 1 18¢%(29 —1)(3g — 1
_ 6c(3g Q)EAO, p— _18c°(2g )(29 ) _ B,
(14 3g9) (1+3g)
In this case we get the family of systems
d d
d—f = Ao + cx + ga® — 2ay/3, d—i = By —cy + (9 — Vay +°/3, (22)
which possess two invariant hyperbolas:
36¢2(3g — 1)
Oy(z,y) =— ———————= + 22y =0,
36c%(3g — 1 12
D(ry) = - I I gaa -y =0,

(1+3g)? 1+ 3g
where ¢(3g — 1) # 0 due to a # 0. Thus for the irreducibility of the hyperbolas above, the condition
¢(3g — 1) #0 (i.e. B2 # 0) is necessary.

Since the condition v4 = 0 gives BB = 0 it remains to find out the invariant polynomial which

in addition to 74 is responsible for the relation B; = B, = 0. We observe that in the case B; = 0
(i.e. b=3a(1 —2g)) we have

51 = (39 —1)[a(l+39)> — 6¢*(3g — 1)] /18 = (3g — 1)B3/18.

It remains to observe that in the case considered we have R3 = a(3g — 1)3/18 # 0 and that due to
the condition 3 # 0 (i.e. ¢(3g —1) # 0) by Lemma 5 we could not have a third hyperbola of the
form ®(x,y) = p+ qz + ry + 2y(z — y) = 0. This completes the proof of the statement (A;) of the
lemma.
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3.1.4 The case 55 =0
Then ¢ = 0 and we calculate for systems (13)

Br =2c1asa3, B9 = 2(1a + ajas + asag),  Ps = 2(4g — 1)(4h — 1)(3 — 4g — 4h),
where a; =29 —1, ag =2h — 1 and a3 = 1 — 29 — 2h.

3.1.4.1 The subcase 7 # 0. Then ajasas # 0 and we consider two possibilities: fg # 0 and
Bs = 0.

3.1.4.1.1 The possibility s # 0. We claim that in this case we could not have more than
one hyperbola. Indeed, as ¢ = 0 we observe that all five polynomials B; (i = 1,2,3), B} and Bj are
linear (and homogeneous) with respect to a and b and the condition a? + b? # 0 must hold. So in
order to have nonzero solutions in (a,b) of the equations

UuU=v=_20, Z/{,VG{Bl,BQ,BSHBé;Bé}u u#yv

it is necessary that the corresponding determinants det(, V) = 0. We have for each couple, respec-

tively:
(w1) det(By,By) = —(2h —1)(4h —1) = 0;
(w2) det(B1,Bs) = —(29—1)(4g —1) =0;
(ws) det(Bg,B3) = (1 —2g—2h)(3—4g—4h) =0;
(wa) det(BhBQ){h:l/g = (Bg+1)*/3;
(ws) det(By,By)| _, 5= (3h+1)%/3; (23)
(we) det(By, Bs)| (g /sy = (1+39)%(6g —1)(129 —5)/3 = 0;
(wr) det(BQ,Bg){{C:Q o1z = I+ 3h)2(6h — 1)(12h — 5)/3 = 0;
(ws) det(Bé,Bg)hh:l/&g:l/?)} = —16 #0.

We observe that the determinant (wg) is not zero. Moreover since 7 # 0 and g # 0 we deduce that
none of the determinants (w;) (i = 1,2, 3) could vanish.

On the other hand for systems (13) with ¢ = 0 we have § = (¢ — 1)(3g + 1)/9 in the case h =1/3
and 0 = (h—1)(3h+1)/9 in the case g = 1/3. Therefore due to 6 # 0 in the cases (wy) and (ws) we
also could not have zero determinants.

Thus it remains to consider the cases (wg) and (w7). Considering Remark 5 we observe that the
case (wr) could be brought to the case (wg). So assuming h = 1/3 we calculate

Br =229 —1)(6g —1)/9, Pz =—2(49 —1)(129 —5)/9, 0= (9—1)(3g+1)/9

and hence the determinant corresponding to the case (wg) could not be zero due to 65755 # 0. This
completes the proof of our claim.
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3.1.4.1.2 The possibility s = 0. In this case we get (4g — 1)(4h — 1)(3 — 49 — 4h) = 0 and
due to Remark 5 we may assume h = 1/4. Then det(B1,B2) = 0 (see the case (w1)) and we obtain
B = (2a — b —4ag)/2 = —By = 0. Since in this case we have

2 =2(2g — 1)(4g — 1)(b — 2a + dag), Br= (29 —1)(4g —1)/2
we conclude that due g7 # 0 the condition 2a — b — 4ag = 0 is equivalent to do = 0. So setting

b = 2a(1l — 2g) we arrive at the family of systems

dz 9 dy
&b — 3au/4. 22
7 a+ gx xy /4, =

These systems possess the invariant hyperbolas

= 2a(1 — 2g) + (g — Vzy + y*/4. (24)

O (z,y) = —4a+ 22y =0, ®Y(x,y) =4a+2z(z —y) =0,
which are irreducible if and only if @ # 0. Since for these systems we have
R = 9a(2z — 497 — y)[16(g — 1)*2® + 8(5g — 3)zy + 9y*] /4
the condition a # 0 is equivalent to R5 # 0. On the other hand for these systems we calculate
B3 = —2a(2g — 1)(4g — 1), Bg]h:1/4 = 49a/24

and due to S7R5 # 0 we get BsBj # 0, i.e. systems (24) could not possess a third hyperbola. This
completes the proof of the statement (As).

3.1.4.2 The subcase 7 = 0. Then (29 — 1)(2h — 1)(1 — 2g — 2h) = 0 and due to Remark 5
we may assume h = 1/2. Then by Lemma 5 we must have g(2g — 1) # 0 and this is equivalent
to B9 = —4g(2g — 1) # 0. Herein we have det(B1,B2) = 0 and we obtain B; = a(1 — 2g) = 0 and
By = 2ag = 0. This implies a = 0, which due to B9 # 0 is equivalent to d3 = 16a?g*(2g — 1)? = 0.
So we get the family of systems

dx dy

el B A — 2 25
o =90 —ay/2, = =b4 (g Day +y°/2 (25)
which possess the following two hyperbolas
O (z,y) = — 20 +2zy =0, Do )*—9—1-2( —y)=0
1\, Y) = 29_1 Ty =Y, 2\2,Y) = q (T y)=Vu.

These hyperbolas are irreducible if and only if b # 0 which is equivalent to R5 = 9bx [4(9 —1)%2% +
4(3g — Vay + y2] # 0.

For the above systems we have By = b(4g — 1) and B; = 25b/4. Since b # 0 only the condition
Bs = 0 could be satisfied and this implies g = 1/4. It is not too hard to find out that in this case
we get the third hyperbola:

O3(x,y) = —4b+ 2y(x —y) = 0.

We observe that for the systems above g = —2(4g — 1)? and hence the third hyperbola exists if and
only if S = 0. So the statements (Agz) and (B) are proved.

Since all the possibilities are examined, Lemma 7 is proved. B
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3.2 Systems with three real infinite singularities and 6 =0

Considering (12) for systems (11) we get (¢ — 1)(h — 1)(g + h) = 0 and we may assume g = —h,
otherwise in the case g = 1 (respectively h = 1) we apply the change (x,y,9,h) — (—y,z —y,1 —
g — h,g) (respectively (z,y,g,h) — (y —x,—x,h,1 — g — h)) which preserves the quadratic parts of
systems (11).

So g = —h and for systems (11) we calculate N = 9(h? —1)(x —y)?. We consider two cases: N # 0
and N = 0.

3.2.1 The case N #0

Then (h — 1)(h+ 1) # 0 and due to a translation we may assume d = e = 0 and this leads to the
family of systems

d d
—x:a+cx—hx2+(h—1)xy, d_g;:

p b+fy—(h+1)xy+hy2. (26)

Remark 6. We observe that due to the change (x,y,a,b,c, f,h) — (y,z,b,a, f,c,—h) which con-
serves systems (26) we can change the sign of the parameter h.

Lemma 8. A system (26) with (h — 1)(h + 1) # 0 possesses at least one invariant hyperbola of the
indicated form if and only if the following conditions are satisfied, respectively:

I. ®(z,y)=p+qr+ry+2z2y & c+f=0,&E=alh+1)+b2h—1)=0,a®+b>+#0;
II. ®(z,y)=p+qr+ry+2x(x—y) < c— f=0 and either
(i) 2h—1)(3h —1) #0, & = 2c2(h — 1)(2h — 1) + (3h — 1)%(b — 2a + 2ah — 2bh) = 0, a # 0;
(ii) h=1/3, c=0, a # 0;
(i) h=1/2, a =0, b+4c> #0;
III. ®(x,y)=p+qr+ry+2y(x—y) < c— f=0 and either
(i) 2h+1)(3h+1) #0, & =2c¢*(h+1)(2h + 1) + (3h + 1)*(a — 2b — 2bh + 2ah) = 0, b # 0;
(ii) h=—-1/3, ¢=0, b#0;
(iii) h = —1/2, b =0, a+4c® # 0.
Proof: As it was mentioned in the proof of Lemma 5 (see page 15) we may assume that the quadratic

part of an invariant hyperbola has one of the following forms: (i) 2xy, (ii) 2z(z—1y), (iii) 2y(z—y).
Considering the equations (10) we examine each one of these possibilities.

(i) ®(x,y) = p+ qr + ry + 2zy; in this case due to N # 0 (i.e. (b —1)(h + 1) # 0) we obtain

t=1,g=r=s=u=0,U=-2h—1, V=2h—-1, W=c+ [,
Eqg = p(1+2h) +2b, Eqg=p(l—2h)+2a, Eqqo=—p(c+f),
Eq = FEq = FEq3 = Equ = Fqs = Eqs = Eq7 = 0.
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Since in this case the hyperbola has the form ®(x,y) = p 4+ 2zy it is clear that p # 0, otherwise we
get a reducible hyperbola. So the condition ¢ 4 f = 0 is necessary.

Calculating the resultant of the non-vanishing equations with respect to the parameter p we obtain
Resy, (Eqs, Eqy) = 2[a(2h + 1) + b(2h — 1)] = 2&;.

Since (2h —1)2+ (2h+1)? # 0 we conclude that an invariant hyperbola exists if and only if & = 0.
Due to Remark 6 we may assume 2h — 1 # 0. Then we get

2
p=2a/(2h—1), b=ah+1)/(2h-1), P(a,y)= 5 - - 20y =0

and clearly for the irreducibility of the hyperbola the condition a # 0 must hold.

This completes the proof of the statement I of the lemma.

(ii) ®(x,y) =p+ qr +ry + 2x(x —y); since (b —1)(h + 1) # 0 (due to N # 0) we obtain

s=2,t=—-1, r=u=0, U=-2h, V=2h—1, W = (4c+ hq)/2,
Egs =2(c— f), Eqg=4a —2b+ 2hp — cg — hq?/2,
Eqg =p(1 —2h) —2a, FEqo = —2cp+ aq— hpq/2,
Eq = Eqy = Eq3 = Eqqs = Eqs = Eq7 = 0.

We observe that the equation Fqgg = 0 implies the condition ¢ — f = 0.

1) Assume first (2h — 1)(3h — 1) # 0. Then considering the equation Fqg = 0 we obtain p =
2a/(1 — 2h). As the hyperbola ®(x,y) = p+ qx + 2z(x — y) = 0 has to be irreducible the condition
p # 0 holds and this implies a # 0. Therefore from

a(4c — g+ 3hq)

E = frng
a0 2h — 1 0
due to 3h — 1 # 0 we obtain ¢ = 4¢/(1 — 3h) and then we get
28
Eq8 = 2 0.

2h—1)(3h—1)2

So we deduce that the conditions ¢ — f = 0, & = 0 and a # 0 are necessary and sufficient for the
existence of a hyperbola of systems (26) in the case (2h — 1)(3h — 1) # 0.

2) Suppose now h = 1/3. Then considering (27) we have Eqg = (p — 6a)/3 =0, i.e. p =6a # 0
(otherwise we get a reducible hyperbola). Therefore the equation Egqig = —12ac = 0 yields ¢ = 0.
Herein the equation Egs = 0 becomes Eqg = [12(4a — b) — ¢*] /6 = 0, i.e. ¢ = +21/3(4a — b) and
obviously we get at leas one real hyperbola if 4a — b > 0 and two complex if 4a — b < 0.

Thus in the case h = 1/3 we have at least one hyperbola if and only if the conditions f =¢ =10
and a # 0 hold.

3) Assume finally h = 1/2. In this case we get Fq9 = —2a = 0, i.e. a =0 and we have

Eq8:—2b+p—cq—q2/4:0, Eqio = —pBc+q)/4=0, ®(x,y) =p+ qr+ 2z(x —y).
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Therefore p # 0 and we obtain ¢ = —8c and p = 2(b + 4c?) # 0. This completes the proof of the
statement 11 of the lemma.

(iii) ®(x,y) = p+ qx + ry + 2y(x — y); we observe that due to the change (z,y,a,b,c, f,h) —
(y,x,b,a,c, f,—h) (which preserves systems (26)) this case could be brought to the previous one and
hence, the conditions could be constructed directly applying this change.

Thus Lemma 8 is proved. m

We shall construct now the affine invariant conditions for the existence of at least one invariant
hyperbola for quadratic systems in the considered family.

Lemma 9. Assume that for a quadratic system (9) the conditions n > 0, 8 = 0, N # 0, and
Y1 = v2 = 0 hold. Then this system possesses at least one invariant hyperbola if and only if one of
the following sets of the conditions is satisfied:
(i) If Bg # O then either
(i.1) Bro #0, v7 =0, Re # 0;
(i.2) B0 =0, 74 =0, B2R3 # 0;
(i) If Be = O then either
(ii.1) B2 #0, Br #0, 58 =0, B1oR7 # 0;
(@@2) ﬁg 7é 0, 57 = 0, Y9 = 0, Rg 75 0;
(i.8) B2 =0, B7 #0, Pro # 0, y7798 = 0, R5 # 0;
(ii.4) B2 =0, Br #0, 1o =0, R3 # 0, v7 # 0;
(ii.5) B2 =0, Br #0, 1o =0, R3 # 0, v7 = 0;
(1.6) P2 =0, B7 =0, v7 =0, R3 # 0.

Proof: Assume that for a quadratic system (9) the conditions n > 0, § = 0 and N # 0 are fulfilled.
As it was mentioned earlier due to an affine transformation and time rescaling this system could be
brought to the canonical form (26), for which we calculate

mn =(c— f)P(c+ f)(h—1)*(h +1)*(3h — 1)(3h +1)/64,
B =(c— f)(h=1)(h+1)/4, P = —2(3h —1)(3h +1).

3.2.1.1 The subcase 5 # 0. By Lemma 2 for the existence of an invariant hyperbola of systems
(26) the condition ; = 0 is necessary and this condition is equivalent to (¢+ f)(3h—1)(3h+1) = 0.
We examine two possibilities: £19 # 0 and 519 = 0.
3.2.1.1.1 The possibility 519 # 0. Then we obtain f = —c (this implies y2 = 0) and we have
vr =8(h —1)(h+1)&;.

Therefore due to 5 # 0 the condition v; = 0 is equivalent to & = 0. So we have a = \(2h — 1),
b= —A(2h + 1) (where A # 0 is an arbitrary parameter) and then we calculate

Re = —632Xc(h — 1)(h + 1).

Since Bg # 0 we deduce that the condition Rg # 0 is equivalent to a? + b? # 0. This completes the
proof of the statement (i.1) of the lemma.
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3.2.1.1.2 The possibility 19 =0. Then we have (3h — 1)(3h + 1) = 0 and by Remark 6 we
may assume h = 1/3. Then we get the 4-parameter family of systems

d d
—=ater—a?/3-2uy/3, L =b+fy—dey/3+y*/3 (28)

for which we calculate v = 0 and

vo =44800(c — f)2(c+ f)(2c — £)/243, Bs=—2(c— f)/9, B2 = —4(2¢c— f)/9.

Since fg # 0 (i.e. ¢— f # 0) by Lemma 2 the necessary condition v = 0 gives (¢ + f)(2¢c — f) = 0.
We claim that for the existence of an invariant hyperbola the condition 2¢— f # 0 (i.e. B2 # 0) must
be satisfied. Indeed, setting f = 2¢ we obtain S5 = 2¢/9 # 0. However, according to the Lemma
8, for the existence of a hyperbola of systems (28), the condition (¢ + f)(c — f) = 0 is necessary ,
which for f = 2c becomes —3c?> = 0. The contradiction obtained proves our claim.

Thus the condition 85 # 0 is necessary and then we have f = —c. By Lemma 8 in the case h = 1/3
we have an invariant hyperbola (which is of the form ®(x,y) = p+ gz + ry + 2zy = 0) if and only if
&1 = (5a—1b)/3=0and a® + b* # 0.

On the other hand for systems (28) with f = —c we calculate
vy = — 4096¢2E1 /243,  Bg = —4c/9, Rz = —4a/9.

So the statement (i.2) of the lemma is proved.

3.2.1.2 The subcase 55 = 0. Then f = ¢ (this implies 7, = 0) and we calculate

V8 :42(h - 1)(h + 1)5253, Bo = c(h - 1)(h + 1)/2, Br = —2(2h - 1)(2h + 1),
B10 = — 2(3h —1)(3h + 1), R7=—(h—1)(h+1)U(a,b,c, h)/4,

where U(a, b, c,h) = 2c¢2(h —1)(h + 1) —b(h + 1)(3h — 1)? + a(h — 1)(3h + 1)2.

3.2.1.2.1 The possibility 52 # 0. Then ¢ # 0 and we shall consider two cases: 87 # 0 and
Br = 0.

1) The case 7 # 0. We observe that in this case for the existence of a hyperbola the condition
P10 # 0 is necessary. Indeed, since f = ¢ # 0 and (2h — 1)(2h + 1) # 0, according to Lemma 8 (see
the statements IT and III) for the existence of at least one invariant hyperbola it is necessary and
sufficient (3h — 1)(3h + 1) # 0 and either & =0 and a # 0, or €3 =0 and b # 0.

We claim that the condition a # 0 (when & = 0) as well as the condition b # 0 (when &3 = 0) is
equivalent to U(a,b,c,h) # 0. Indeed, as & as well as & and Ul(a, b, ¢, h) are linear polynomials in
a and b, then the equations & = U(a, b, ¢, h) = 0 (respectively &, = U(a, b, ¢, h) = 0) with respect to
a and b gives a = 0 and b = 2¢*(h—1)/(3h — 1)? (respectively b = 0 and a = —2c?(h+1)/(3h +1)?).
This proves our claim.

It remains to observe that the condition £E&3 = 0 is equivalent to vg = 0. So this completes the
proof of the statement (%i.1) of the lemma.
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2) The case B7 = 0. Then by Remark 6 we may assume h = 1/2 and since f = ¢, by Lemma 8
for the existence of a hyperbola of systems (26) (with h = 1/2 and f = ¢) the conditions a = 0 and
b+ 4c® # 0. On the other hand we calculate

Y9 =3a/2, Rg= (Ta+b+4c*)/8

and clearly these invariant polynomials govern the above conditions. So the statement (7i.2) of the
lemma is proved.

3.2.1.2.2 The possibility 82 = 0. In this case we have f =c¢ = 0.

1) The case f7 # 0. Then (2h — 1)(2h + 1) # 0.

a) The subcase 19 # 0. In this case (3h —1)(3h+1) # 0. By Lemma 8 we could have an invariant
hyperbola if and only if £E5E3 = 0. On the other hand for systems (26) with f = ¢ =0 we have

YrY8 = — 336(h — 1)2(1 + h)25152(€3,
R =36(bx — ay)(z — y)[(1 + h)*z — (h — 1)%y]
and therefore the condition Rs # 0 is equivalent to a? + b? # 0. This completes the proof of the

statement (7.3) of the lemma.

b) The subcase $10 = 0. Then we have (3h — 1)(3h + 1) = 0 and by Remark 6 we may assume
h =1/3. By Lemma 8 we could have an invariant hyperbola if and only if either the conditions I or
IT; (7i) of Lemma 8 are satisfied. In this case we calculate

Yr = — 6451/9, Rg = —40,/9

and hence, the condition R3 # 0 implies the irreducibility of the hyperbola. Therefore in the case
~v7 # 0 we arrive at the statement (7i.4) of the lemma, whereas for 77 = 0 the statement (7.5) of the
lemma holds.

2) The case 7 = 0. Then (2h — 1)(2h + 1) = 0 and by Remark 6 we may assume h = 1/2. By
Lemma 8 we could have an invariant hyperbola if and only if either the conditions £ = 2a = 0 and
b # 0 (see statement I) or a = 0 and b # 0 (see statement IT; (ii7) of the lemma) are fulfilled. As we
could see the conditions coincide and hence by this lemma we have two hyperbolas: the asymptotes
of one of them are parallel to the lines + = 0 and y = 0, whereas the asymptotes of the other
hyperbola are parallel to the lines x = 0 and y = .

On the other hand for systems (26) (with h =1/2 and f = ¢ = 0) we calculate
v7=—12a, R3= (ba—0b)/16
and this leads to the statement (ii.6) of the lemma.
Since all the possibilities are considered, Lemma 9 is proved. m

Lemma 10. Assume that for a quadratic system (9) the conditions n > 0, 6 = 0, N # 0 and

Y1 = v2 = 0 are satisfied. Then this system possesses:

(A) three distinct invariant hyperbolas if and only if Bg = P2 = P10 = 77 = 0, f7Rs # 0 and
~v10 # 0; more precisely all three hyperbolas are real (1 H and 2 HP) if y10 > 0 and one is real

C
and two are complex (1 H and 2 HP) if y19 < 0;
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(B) two distinct invariant hyperbolas if and only if g = 0 and either
(B1) Ba #0, B7 #0, v =0, S10R7 #0 and 0, =0 (= 2H), or
(By) Ba#0, B =0, 79 =0, Rg #0 and 65 =0 (= 2°H), or
(Bs) Ba =0, B7 #0, B10 # 0, v778 =0, R5 # 0 and fs =62 =0 (= 2°H), or
(Bi) By =0, Br £0, Bio =0, 77 £0, Ry £ 0 and 10 < 0 (= 2 H?)), or
(Bs) B2=0, B7 #0, B1o =0, 77 #0, Rg #0 and v10 > 0 (= 2°HP), or
(Bs) Bo=0, B7=0,77 =0, Rs #0 (= 2H);

(C) one double (H%) invariant hyperbola if and only if B = B2 = 0, B7 # 0, B9 = 0, v7 # 0,
Rg 75 0 and Y10 = 0.

Proof: For systems (26) we calculate

Bo =(c = f)(h=1)(h+1)/4,  fr=—=2(2h +1)(2h — 1),

, (29)
Bio=—2Bh+1)Bh—1), B2 =[(c+ f)(h* = 1) =8(c— f)h)] /4

According to Lemma 8 in order to have at least two invariant hyperbolas the condition ¢ — f = 0
must hold. This condition is governed by the invariant polynomial 3¢ and in what follows we assume

Bs =0 (ie. f=c).

3.2.1.3 The case (32 # 0. Then we have ¢ # 0 and the conditions given by the statement I of
Lemma 8 could not be satisfied.

3.2.1.3.1 The case (7 # 0. We observe that in this case due to ¢ # 0 we could have two
invariant hyperbolas if and only if (3h — 1)(3h + 1) # 0 (i.e Bi9 # 0), &2 = E3 = 0 and ab # 0. The

system of equations & = & = 0 with respect to the parameters a and b gives the solution
2c2(1+ h)3(2h — 1)

= — = b= —
T T B2 t3n2 Y

2¢2(h —1)3(1 + 2h) _
(3h —1)2(1 4+ 3h)2 — bo, (30)

which exists and ab # 0 due to the condition (2h — 1)(2h + 1)(3h — 1)(3h + 1) # 0.

In this case systems (26) with a = ag and b = by possess the following two hyperbolas

2 3
1) _ 4c (1 + h) B 4c B .
17 (z,9) “Bh_12(113h)2 31" 2o(@ —y) =0,
4c2(h —1)3 4c
o5 (z,y) = ( ) y+2y(r —y)=0.

(3h—1)2(1+3h)2 1+3h

Since ¢ # 0 by Lemma 8 we could not have a third invariant hyperbola.

Now we need the invariant polynomials which govern the condition & = & = 0. First we recall
that for these systems we have vg = 42(h—1)(h+1)&E2&3, and hence the condition g = 0 is necessary.
In order to set & = 0 we use the following parametrization:

c=c1(3h—1)% a=a;(2h—1)
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and then the condition & = 0 gives b = 2(h — 1)(ay + ¢}). Herein for systems (26) with
f=c=c(3h =12, a=ay;(2h—1), b=2(h—1)(a1 +c})

we calculate
E=3[2cF(1+h)> +a1(1+3h)%], 4= (h—1)(2h —1)&3/2
and hence the condition £5 = 0 is equivalent to d4 = 0.

It remains to observe that in this case Ry = —3aj(h — 1)*(h + 1)/4 # 0, otherwise a; = 0 and
then the condition §4 = 0 implies ¢; = 0, i.e. ¢ = 0 and this contradicts to S # 0. So we arrive at
the statement (Bj) of the lemma.

3.2.1.3.2 The case f; = 0. Then (2h — 1)(2h + 1) = 0 and by Remark 6 we may assume
h =1/2. In this case by Lemma 8 in order to have at least two hyperbolas the conditions IT; (i)
and III; (7) have to be satisfied simultaneously. Therefore we arrive at the conditions

a=0, b+4c® #0, & = (50a — 75b + 24¢?)/4 = 0

and as a = 0 we have b = 24¢? /75 and b + 4c® = 108¢% /25 # 0 due to B2 # 0. So we get the family

of systems
d d
d—f:cx—:c(x—i—y)/?, d—'qi:

which possess the following two invariant hyperbolas

8¢%/25 + cy — y(3z — y) /2 (31)

' (2,y) = 216¢2/25 — 8cx + 2x(x —y) =0, D (z,y) = —8c2/25 — 8cy/5 + 2y(z — y) = 0.

These hyperbolas are irreducible due to B2 # 0 (i.e. ¢ # 0).

We need to determine the affine invariant conditions which are equivalent to a = & = 0. For
systems (26) with f = c and h = 1/2 we calculate

Yo = 3a/2, &5 = —3(25b—8c?)/2

and obviously these invariant polynomials govern the conditions mentioned before. It remains to
observe that for systems (31) we have Rg = 108¢?/25 # 0 due to 2 # 0. This completes the proof
of the statement (B2) of the lemma.

3.2.1.4 The case 5 = 0. Then ¢ = 0 and by Lemma 8 systems (26) with f = ¢ = 0 could
possess at least two invariant hyperbolas if and only if one of the following sets of conditions holds:

(¢1) &4 =6 =0, (2h—1)(3h—1)#0, a#0;

(¢2) E1=E=0, 2h+1)Bh+1)£0, b#0;

(63) E2=E =0, (2h—1)(2h+1)(3h — 1)Bh+1) £0, ab#0;

(1) E=0, h=1/3, a+0; (32)
(bs) E=a=0, h=1/2, b#0;

(96) &1=0, h=-1/3, b#0;

(p7) E1=b=0, h=-1/2, a#0.
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As for systems (26) with f = ¢ =0 we have
Br=—202h +1)(2h — 1), Bio = —2(3h +1)(3h — 1)

we consider two subcases: 7 # 0 and 7 = 0.

3.2.1.4.1 The subcase ; #0. Then (2h + 1)(2h — 1) # 0 and we examine two possibilities:
B1o # 0 and B19 = 0.

1) The possibility B19 # 0. In this case (3h 4+ 1)(3h — 1) # 0. We observe that due to f =c =0
all tree polynomials &; are linear (homogeneous) with respect to the parameters a and b. So each
one of the sets of conditions (¢1)—(¢3) could be compatible only if the corresponding determinant
vanishes, i.e.

det(£1,&) = —(2h —1)(3h — 1)%(4h — 1) = 0,
det(&1,E3) = (2h+1)(3h + 1)*(4h +1) =0, (33)
det(£,E3) = —3(3h —1)?(3h+1)? =0,
otherwise we get the trivial solution @ = b = 0. Clearly the third determinant could not be zero due
to the condition 19 # 0, i.e. the conditions in the set (¢3) are incompatible in this case. As regard
the conditions (¢1) (respectively (¢2)) we observe that they could be compatible only if 4h — 1 =0
(respectively 4h + 1 = 0).
On the other hand we have 3 = —6(4h —1)(4h + 1) and we conclude that for the existence of two
hyperbolas in these case the condition Sg = 0 is necessary.

Assuming g = 0 we may consider h = 1/4 due to Remark 6 and we obtain
&1=(3a—-b)/2=-16& = 0.

So we get b = 3a and we arrive at the systems

d d
d—f:a—x2/4—3xy/4, d—z:3a—5xy/4+y2/4, (34)

which possess the following two invariant hyperbolas
q)gB) (x,y) = —4a+2zy =0, (I)gg) (z,y) =4a +2x(z —y) =0.

Clearly these hyperbolas are irreducible if and only if a # 0.
On the other hand for systems (26) with f = ¢ =0 and h = 1/4 we have

v7 =—15(3a — b), 73 = 15435(3a — 5b)(3a — b))/8192,
0o =—06(3a—10b), Rs=9(bx —ay)(25x — y)(z —y)/4.
We observe that the conditions & = & = 0 and a # 0 are equivalent to vz = 0 and Rs # 0.

However in order to insert this possibility in the generic diagram (see DIAGRAM 1) we remark that
these conditions are equivalent to y77s = d2 = 0 and R5 # 0.

It remains to observe that for the systems above we have & = 147a/8 # 0 and, hence we could
not have a third hyperbola. So the statement (B3) of the lemma is proved.
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2) The possibility f10 = 0. In this case (3h+1)(3h — 1) = 0 and without loss of generality we may
assume h = 1/3 due to the change (z,y,a,b, h) — (y,z,b,a,—h), which conserves systems (26) with
f = ¢ =0 and transfers the conditions (¢g) to (¢p4).

So h = 1/3 and we arrive at the following 2-parameter family of systems

Cfi—f =a—2%/3 - 2xy/3,

dy _

- =b—day/3+ y?/3, (35)

for which we have & = (5a — b)/3 and we shall prove the next statements:

o if & # 0, 4a — b < 0 and a # 0 we have 2 complex invariant hyperbolas 7:27’ ;

o if & # 0, 4a — b > 0 and a # 0 we have 2 real invariant hyperbolas H?;

o if & #0, 4a — b =0 and a # 0 we have one double invariant hyperbola H5.

e if & =0, 4a — b > 0 and a # 0 we have 3 real invariant hyperbolas (two of them being H?);

o if & =0, 4a —b < 0 and a # 0 we have 1 real and two complex invariant hyperbolas (of the
type ”;flp).

So we consider two cases: £ # 0 and & =0

a) The case & # 0. In this case by Lemma 8 we could not have an invariant hyperbola with the
quadratic part of the form xy. However systems (35) possess the following two invariant hyperbola:

‘I’(ﬁ%(%y) =3a+t+34a—-b)z+zxz(z—y)=0
and these conics are irreducible if and only if a # 0. Moreover the above hyperbolas have parallel

asymptotes and they are real if 4a — b > 0 (i.e . we have two HP) and complex if 4a — b < 0 (i.e. we
C
have two HP). We observe that in the case 4a — b = 0 the hyperbola @g%%(x, y) = 0 collapse and we
get a hyperbola of multiplicity two (i.e . we have H5).
b) The case & = 0. Then b = 5a and we get the following 1-parameter family of systems

Z—f =a—2%/3 - 2xy/3,

dy _

o = day /3 + 32 /3. (36)

which possess three invariant hyperbolas

@Yg(:c,y) =3a++vV-3azx+z(x—y)=0, <I>g4)(x,y) =3a — zy = 0.

These conics are irreducible if and only if @ # 0. Moreover the hyperbolas @g%%(az, y) = 0 have parallel
asymptotes and they are real if a < 0 and complex if a > 0.

Thus the above statements are proved and in order to determine the corresponding invariant
conditions, for systems (26) with ¢ = f = 0 and h = 1/3 we calculate

v7 =—64(5a — b)/27, 10 =8(4a —b)/27, Rz = —4a/9.

Considering the conditions given by the above statements it is easy to observe that the corresponding
invariant conditions are given by the statements (B4), (Bs), (C) and (A) of Lemma 10, respectively.
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3.2.1.4.2 The subcase 7 =0. Then (2h+ 1)(2h — 1) = 0 and by Remark 6 we may assume
h = 1/2. Considering (33) we conclude that only the case (¢5) could be satisfied and we get the
additional conditions: a = 0, b # 0. Therefore we arrive at the family of systems

dx

dt

which possess the following two hyperbolas

dy

— —22/9 _ 9 2 _
e°/2 —ay/2, —

b—3xy/2 +y*/2, (37)

<I>§5), (x,y) =—b+2zy =0, @55) (x,y) =2b+2x(x —y) = 0.

We observe that the condition @ = 0 is equivalent to 77 = —12a = 0. Regarding the condition
b # 0, in the case a = 0 it is equivalent to R3 = —b/16 # 0. Since for these systems we have
&3 = 75b/4 # 0 we deduce that we could not have a third invariant hyperbola. This completes the
proof of the statement (Bg) of the lemma.

Since all the cases are examined, Lemma 10 is proved. ]

3.2.2 The case N =0

As 6 = —(g—1)(h—1)(g + h)/2 = 0 we observe that the condition N = 0 implies the vanishing
of two factors of §. We may assume g = 1 = h, otherwise in the case g+h =0 and g—1# 0
(respectively h — 1 # 0) we apply the change (x,y,9,h) — (—y,z —y,1 — g — h,g) (respectively
(x,y,9,h) — (y — x,—x,h,1 — g — h)) which preserves the form of systems (11).

So g = h =1 and due to an additional translation systems (11) become

dx 5 dy 9
- A . 38
7 a+dy+ x°, 7 b+ex+y (38)

Lemma 11. A system (38) possesses at least one invariant hyperbola of the indicated form if and
only if the corresponding conditions on the right hand side are satisfied:

I. &(z,y) =p+qgr+ry+2zy < d=e=0anda—b=0;
IL. ®(z,y)=p+qr+ry+2z(x—y) < d=0, M;=64a—16b—e? =0, 16a + % # 0;
III. ®(x,y)=p+qr+ry+2y(x—y) < e=0, My=64b— 16a —d?> =0, 16b+ d*> # 0.

Proof: As it was mentioned in the proof of Lemma 5 (see page 15) we may assume that the quadratic
part of an invariant hyperbola has one of the following forms: (i) 2xy, (ii) 2z(z—1y), (iii) 2y(z—y).
Considering the equations (10) we examine each one of these possibilities.

(i) ®(z,y) = p+ qxr + ry + 2zy; in this case we obtain
t=1,s=u=0 p=U@b+¢®+qr)/2, U=1, V=1 W=—(q¢+7)/2,

Eqy = (da—4b— ¢* +17)/2, Eqio = 4aq + 4b(q + 2r) + q(q + )7,
Eqi = Eqs = Eq3 = Eqy = Eqs = Eqs = Eqr = Eqg = 0.

Calculating the resultant of the non-vanishing equations with respect to the parameter r we obtain

Res, (Eqy, Eqi0) = (a — b)(4b + q2)2/4-
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If b = —¢?/4 then we get the hyperbola ®(z,y) = (r + 2x)(q + 2y)/2 = 0, which is reducible.
Thus b = a and we obtain
Egy=—(¢—7)(g+7)/2=0, Eqo=(q+r)Ba+q"+qr)/4=0.

It is not too difficult to observe that the case ¢ + r # 0 (then g = r) leads to reducible hyperbola
(as we obtain b = a = —¢?/4, see the case above). So ¢ = —r and the above equations are satisfied.
This leads to the invariant hyperbola ®(z,y) = 2a — ra + ry + 2zy = 0. Considering Remark 4 we
calculate A = —(4a + r2)/2. So the hyperbola above is irreducible if and only if 4a + 72 # 0. Thus
any system belonging to the family

dx 2 Y 2 (39)
possesses one-parameter family of invariant hyperbolas ®(z,y) = 2a — r(z — y) + 22y = 0, where

r € R is a parameter satisfying the relation 4a + 72 # 0. This completes the proof of the statement
I of the lemma.

(ii) ®(x,y) = p+ qr + ry + 2z(z — y); in this case we obtain

s=2,t=—1, u=0, p=(8a—4b+ 4de — 2¢* + ¢*) /4,
r=2d—e—q, U=2 V=1 W=—-2e+q)/2, Eqr=-2d

and hence the condition d = 0 is necessary. Then we calculate

Eq = FEq = FEq3 = Equ = Eqs = Eqs = Eq7 = Eqg = 0,
Eqgy = —4a+ b — (2¢* + 6eq + 3¢°) /4,
Eqig = [16a(e + q) — 4b(4e + 3q) + (2¢ + q)(¢* — 2¢%)] /8

and
Res, (Bqo, Eqio) = —(64a — 16b — *)(4a — 4b — €2)? /256.

1) Assume first 64a — 16b — e? = 0. Then b = 4a — €2/16 and we obtain

Eqo = —3(e +2¢)(3¢ +2¢)/16 = 0, Eqio = —(3e + 2¢)(64a + 4€* — eq — 2¢*)/32 = 0.

la) If ¢ = —3e/2 all the equations vanish and we arrive at the invariant hyperbola
O(x,y) = —2a + /8 + e(=3x +y)/2 + 2z(x —y) = 0

for which we calculate A = (16a + ¢?)/8. Therefore this hyperbola is irreducible if and only if
16a + €2 # 0.

1b) In the case 3e+2q # 0 we have ¢ = —e/2 # 0 and the equation Fqio = 0 implies e(16a+€2) = 0.
Therefore due to e # 0 we obtain 16a + ¢? = 0. However in this case we have the hyperbola

®(z,y) = —(16a + 3¢2)/8 — e(x +y)/2 + 2z(x —y) = 0,

the determinant of which equals (16a + €?)/8 and hence the condition above leads to an irreducible
hyperbola.
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2) Suppose now 4a — 4b — e = 0, i.e. b = a — €?/4. Herein we obtain
Eqy = —3[4a+ (e + q)2]/4 =0, Eqo=ql[da+ (e+ q)2]/8 =0
and the hyperbola
O(z,y) =2z(z —y) +qr — (e + @)y + (4a — € + ¢*) /4 = 0,

for which we calculate A = —[4a + (e + ¢)?] /4. Obviously the condition Eqg = 0 implies A = 0 and
hence the invariant hyperbola is reducible. So in the case d = 0 and 4a — 4b — €? = 0 systems (38)
could not possess an invariant hyperbola and the statement IT of the lemma is proved.

(iii) ®(x,y) = p + qx + ry + 2y(x — y); we observe that due to the change (x,y,a,b,d,e) —
(y,x,b,a,e,d) (which preserves systems (38)) this case could be brought to the previous one and
hence, the conditions could be constructed directly applying this change.

Thus Lemma 11 is proved. ]

Lemma 12. Assume that for a quadratic system (9) the conditions n > 0 and 6 = N = 0 hold.
Then this system could possess either a single invariant hyperbola or a family of invariant hyperbolas.
More precisely, it possesses:
(i) one invariant hyperbola if and only if f1 = 0, Ro # 0 and either (i.1) f2 # 0 and v11 = 0, or
(i.2) B2 = v12 = 0;

(ii) a family of such hyperbolas if and only if 1 = B2 = y13 = 0.
Proof: For systems (38) we calculate

p1 =dde, Po=—2(d+e),

~v11 =19de(d + €) + eM; + d Mo,
Ro|,_o =[5(16a + €*) — My} /2,
Ry [5(16b + d*) — M) /2.

e=0 =

By Lemma 11 the condition de = 0 (i.e. 81 = 0) is necessary for a system (38) to possess an invariant
hyperbola.

3.2.2.1 The subcase 32 # 0. Then d?+e¢? # 0 and considering the values of the above invariant
polynomials by Lemma 11 we deduce that the statement (i.1) of the lemma is proved.

3.2.2.2 The subcase $2 = 0. In this case we get d = e =0 and we calculate
713 =4(a —b), Rog=8(a+b), vi2=-—128(a—4b)(4a —b) = M1 M>/2.

Therefore by Lemma 11 in the case 712 = 0 we arrive at the statement (i.2), whereas for v13 = 0 we
arrive at the statement (ii) of the lemma.

It remains to observe that if the systems (38) possess the family we mentioned of invariant hyper-
bolas, then they have the form (39), depending on the parameter a. We may assume a € {—1,0,1}
due to the rescaling (z,y,t) — (|a|'/%z, |a|"/?y, |a|~/%t).
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3.3 Systems with two real distinct infinite singularities and 6 # 0

For this family of systems by Lemma 1 the conditions n = 0 and M # 0 are satisfied and then via
a linear transformation and time rescaling systems (9) could be brought to the following family of

Systems:
dz 9
— =a+cx +dy+ gz + hay,
a (40)
d_gt/ =b+ex+ fy+ (9— Dy + hy’.
For this systems we calculate
Co(z,y) = a?y, 0= —h*(g—1)/2 (41)

and since 6 # 0 due to a translation we may assume d = e = 0. So in what follows we consider the
family of systems

dx 9

— =a+cx + gz° + hry,

a (42)
d—i:b—i-fy—i-(g—l)xy—i—hyQ.

Lemma 13. A system (42) could not posses more than one invariant hyperbola. And it possesses
one such hyperbola if and only if c+ f =0, G1 = a(1 — 2g) + 2bh =0 and a # 0.

Proof: Since Cy = 2%y we may assume that the quadratic part of an invariant hyperbola has the
form 2xy. Considering the equations (10) and the condition 6 # 0 (i.e. h(g — 1) # 0) for systems
(42) we obtain

t=1,s=u=q=r=0,p=a/h, U=29g—1, V=2h, W=c+ f,
Eqg = (a — 2ag + 2bh)/h = G1/h, Eqio = —alc+ f)/h,
Eq = FEq = Eqz3 = Equ = Eqs = Eqs = Eqr = Eqg = 0.

Since the hyperbola (8) in this case becomes ®(x,y) = a/h+2zy = 0 the condition a # 0 is necessary
in order to have an invariant hyperbola. Then the equation Fqi9 = 0 implies ¢ + f = 0 and the
condition Egg/h = 0 yields G; = 0. Since h # 0 we set b = a(2g — 1)/(2h) and this leads to the

family of systems

d
—x:a—i-cx—i-gxz—i-hxy,

dy a(2g—1) 2
o -1 h
o o cy + (g — zy + hy~,

which possess the following invariant hyperbola

O(z,y) = % + 22y = 0.

This completes the proof of the lemma. m

Next we determine the corresponding affine invariant conditions.

Lemma 14. Assume that for a quadratic system (9) the conditions n =0, M # 0 and 6 # 0 hold.
Then this system possesses a single invariant hyperbola (which could be simple or double) if and only
if one of the following sets of the conditions hold, respectively:
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(1) B2f1 #0, v1 =792 =0, Ry # 0: simple;
(1) B2 #0, B =71 =~ =0, Ry #0: simple if 61 # 0 and double if §; = 0;
(#11) Bo = P1 =14 =0, Rio # 0: simple if Bz # 0 and double if Bz s = 0.

Proof: For systems (42) we calculate

n =2~ f)le+ fh*(g—1)*/32, B2 =h*(2c— [)/2.

According to Lemma 2 for the existence of an invariant hyperbola the condition v; = 0 is necessary
and therefore we consider two cases: By # 0 and By = 0.

3.3.1 The case 52 #0

Then 2¢ — f # 0 and the condition vy, = 0 implies f = —c. Then we calculate

Yo =14175¢*1° (g — 1)%(3g — 1)G1, B = 3ch? /2,
B1=—3h%(g—1)(3g —1)/4, Ri= —9ach(g—1)*(3g —1)/8

and we examine two subcases 81 # 0 and 3 = 0.

3.3.1.1 The subcase 31 # 0. Then the necessary condition 79 = 0 (see Lemma 2) gives G; = 0
and by Lemma 13 systems (42) possess an invariant hyperbola. We claim that this hyperbola could
not be double. Indeed, since the condition 6 # 0 holds we apply Lemma 7 which provides necessary
and sufficient conditions in order to have at least two hyperbolas. According to this lemma the
condition 1 = 0 is necessary for the existence of at least two hyperbolas. So it is clear that in this
case the hyperbola of systems (43) could not be double due to 31 # 0. This completes the proof of
the statement (i) of the lemma.

3.3.1.2 The subcase ; = 0. Due to 3 # 0 (i.e. ¢ # 0) this implies ¢ = 1/3 and then v = 0
and

74 =16R°%(a + 6bh)? /3 = 48h°G?, Rz = 3bh3/2.
Therefore the condition 4 = 0 is equivalent to G; = 0 and in this case R3 # 0 gives b # 0 which is
equivalent to a # 0. By Lemma 13 systems (42) possess a hyperbola. We claim that this hyperbola
is double if and only if the condition a = —12¢? holds.

Indeed, as we would like after some perturbation to have two hyperbolas, then the respective
conditions provided by Lemma 7 must hold. We calculate:

B =0, Bo=3ch?/2, Bs=ch/3, 74=0, & =—(a+12¢%)h?/4

and since g # 0 (due to B2 # 0) we could have a double hyperbola only if the identities provided
by the statement (A;) are satisfied. Therefore the condition §; = 0 is necessary and due to 6 # 0
(i.e. h # 0) we obtain a = —12¢%.

So our claim is proved and we get the family of systems

dx

dt

d
= —12¢% + cx + 2%/3 + hay, d—'q; =2¢%/h — cy — 2xy/3 + hy?, (44)

37



which possess the hyperbola ®(x,y) = —12¢?/h + 22y = 0. The perturbed systems

dr  18¢%(2h +¢)(3h + ¢)

+cx +2%/3 + (h +¢)zy,

dt (3h — &)? (45)
dy  6c(3h +¢) 9

W _D2CONTE) o h |

e Gh— o) cy —2zy/3+ hy”, el <K

possess the following two distinct invariant hyperbolas:

36c*(3h +¢)
(3h —¢)?

36c(Bh+e) 12t

2 = O (I)E = —
+ xry ) Z(xuy) (3h—€)2 3h —

i (z,y) = 5y+2y(sﬂ+€y) =0.

It remains to observe that the hyperbola ®(z,y) = —12¢/h + 22y = 0 could not be triple, because
in this case for systems (44) the necessary conditions provided by the statement (B) of Lemma 7 to
have three invariant hyperbolas are not satisfied: we have Gg # 0.

Thus the statement (ii) of the lemma is proved.

3.3.2 The case 35 =0

Then f = 2c¢ and this implies 73 = 0. On the other hand we calculate
Yo = — 14175ac*(g — 1)>(1 + 39)R°, B = —9¢%(g — 1)*h%/16

and since f = 2¢, according to Lemma 13 the condition ¢ = 0 is necessary in order to have an
invariant hyperbola. The condition ¢ = 0 is equivalent to 5; = 0 and this implies 5 = 0. It remains
to detect invariant polynomials which govern the conditions G; = 0 and a # 0. For ¢ = 0 we have

Y14 =80h*[a(1 — 2g) + 2bh] = 80R*Gy, Rig = —dah®.
So for B1 = B2 =0, y14 = 0 and Ryp # 0 systems (43) (with ¢ = 0) possess the invariant hyperbola
O(x,y) =a/h+ 22y = 0.

Next we shall determine the conditions under which this hyperbola is simple or double. In accor-
dance with Lemma 7 we calculate:

B =B =0, = —8(29 — 1)h*.

We examine two possibilities: 57 # 0 and 7 = 0.

3.3.2.1 The possibility g7 # 0. According to Lemma 7 for systems (43) with ¢ = 0 could
be satisfied only the identities given by the statement (.A3). So we have to impose the following
conditions:

v5 = PBs = 02 = 0.
We have g = —32(4g — 1)h? = 0 which implies g = 1/4. Then we obtain 75 = d2 = 0 and we get

the family of systems

d d
d_j =a+ x2/4 + hay, d_g; - _a/(4h) - 3xy/4 + hy27 (46)
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which possess the hyperbola ®(z,y) = a/h + 2zy = 0. On the other hand we observe that the
perturbed systems

dx € 2 dy 2
Z=a+4+—4z/44+ (h + =~ = —qa/(4h) — 4+ 47
7 a 5% x*/ (h+ ¢e)xy, o a/(4h) — 3zy/ hy~, (47)

which possess the following two distinct invariant hyperbolas:
5 (z,y) =a/h+22y =0, P5(z,y) =a/h+2y(z+ecy)=0.

Since f7 # 0, according to Lemma 7 the hyperbola ®(x,y) = a/h + 22y = 0 could not be triple.

3.3.2.2 The possibility g7 = 0. In this case we get ¢ = 1/2 and this implies 75 = d3 = 0.
Hence the identities given by the statement (Aj3) of Lemma 7 are satisfied. In this case we obtain

the family of systems
which possess the hyperbola ®(z,y) = a/h + 2zy = 0. On the other hand we observe that the

perturbed systems

dx d
§=a+x2/2+(h+€):vy, d—i = —ay/2 + hy?, (49)
possess the following two distinct invariant hyperbolas:
2
O (z,y) = 57 i 5 +2zy =0, D5(z,y) =a/h+2y(z+ey)=0.

Since for systems (48) we have s = —32h% # 0, according to Lemma 7 the hyperbola ®(x,y) =
a/h + 2xy = 0 could not be triple.

It remains to observe that the conditions of the statement (B) of Lemma 7 in order to have three
invariant hyperbolas could not be satisfied for systems (43) (i.e. the necessary conditions for these
systems to possess a triple hyperbola). Indeed for systems (43) we have

Br=—8(29 - )h?, fs=—32(4g —h*, 0=—(g—1)h*/2
and hence the conditions g7 = 0 and g = 0 are incompatible due to 6 # 0.
As all the cases are examined we deduce that Lemma 14 is proved. B
3.4 Systems with two real distinct infinite singularities and 6§ =0

By Lemma 1 systems (9) via a linear transformation could be brought to the systems (40) for which
we have

0=—h*(g—1)/2, Pa=2h* N ={(¢°—1)%"+2h(g - Vay + by’ (50)
We shall consider to cases: N # 0 and N = 0.

3.4.1 The case N #0

Since 6 = 0 we obtain h(g — 1) = 0 and (g® — 1)?> + h? # 0. So we examine two subcases: (4 # 0
and ﬁ4 =0.
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3.4.1.1 The subcase (4 # 0. Then h # 0 (this implies N # 0) and we get ¢ = 1. Applying a
translation and the additional rescaling y — y/h we may assume ¢ = f =0 and h = 1. So in what
follows we consider the family of systems

sz—f:a+dy+:c2+xy, Z—?:“eﬂy?- (51)

Lemma 15. A system (51) possesses an invariant hyperbola if and only ife = 0, L1 = 9a—18b+d? =
0 and a + d? # 0.

Proof: Since Cy = z?y we determine that the quadratic part of an invariant hyperbola has the form
2xy. Considering the equations (10) for systems (51) we obtain
t=1,s=u=0, r=2d, p=2b+2de+dq+q*/2,
U=1, V=2 W=—(¢g+71)/2, Egs=c,
Eq = Eq = Eq3 = Equ = Eqs = Eqr = Eqz = 0.
Therefore the condition Fqs = 0 yields e = 0 and then we have
Eqy=2a—4b+2d* — ¢*,  Equ = aq+ b(4d + q) + q(2d + q)* /4.

Clearly in order to have a common solution of the equations Fq9 = Eqi9p = 0 with respect to the
parameter ¢ the condition

Res, (Bqo, Eqio) = (a + d?)*(9a — 18b +d?)/2 = 0

is necessary. We claim that the condition a + d> = 0 leads to a hyperbola. Indeed, setting a = —d?
we get Fgg = —(4b + ¢%) = 0. On the other hand we get the hyperbola

(z,y) = 2b+dq + ¢°/2 + qx + 2dy + 2y = 0
for which by considering Remark 4 we calculate A = —(4b + ¢?)/2. Therefore the equation Eqg =
—(4b + ¢?) = 0 leads to an invariant hyperbola. This proves our claim.
So a+ d* # 0 and we set b = (9a + d?)/18. Then Eqg = 0 gives (4d — 3¢)(4d + 3¢q) = 0 and we
examine two subcases: ¢ = 4d/3 and ¢ = —4d/3.

1) Assuming g = 4d/3 we get Eqio = 4d(a + d*) = 0. Since a + d? # 0 we have d = 0 and this
leads to the family of systems
dx

P R ) (52

These systems possess the invariant hyperbola ®(z,y) = a + 2zy = 0.
2) Suppose now ¢ = —4d/3. This implies Eq;p = 0 and we obtain the systems
dx

d
= —atdy+attay, d—i=(9a+d2)/18+y2, (53)

which possess the invariant hyperbola
®1(z,y) = (3a — d*)/3 — 2d(2x — 3y) /3 + 2zy = 0.
Its determinant A equals —(a + d?) and hence, the conic is irreducible if and only if a + d? # 0.

It remains to observe that the family of systems (52) is a subfamily of the family (53) (correspond-
ing to d = 0) and this complete the proof of the lemma. ]
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3.4.1.2 The subcase 3, = 0. This implies h = 0 and the condition N # 0 gives g — 1 # 0.
Using a translation we may assume e = f = 0 and we arrive at the family of systems

dz 5 dy
i -7 — — 1. 54
7 a+ cx +dy + gx°, = b+ (g — Dy (54)

Lemma 16. A system (54) possesses at least one invariant hyperbola if and only if d =0, 29—1 # 0
and either

(1) 3¢ —1#0, K1 =c2(1—-29) +a(3g—1)2=0 and b # 0, or
(i) g=1/3, ¢=0 and b#0.

c
Moreover in the second case we have two real hyperbolas (HP) if a < 0; two complex hyperbolas (HP)
if a > 0 and these hyperbolas coincide if a = 0.

Proof: As earlier we assumed that the quadratic part of an invariant hyperbola has the form 2zy
and considering the equations (10) for systems (54) we obtain

t=1, s=u=q=0,U=29g—1, V=0, W=c—gr/2,
Eq; =2d, Eqg=2b+p(1—2g), Eqg=2a—cr+gr?/2,
Eqio=br —cp+gpr/2, Eq = Eq = Eqs = Eqy = Eqs = Eqs = 0.

Therefore the condition Fg; = 0 yields d = 0 and we claim that the condition 2¢g — 1 # 0 must hold.
Indeed, supposing g = 1/2 the equation Egs = 0 yields b = 0 and then

Eqy=2a+r(r—4c)/4=0, FEqo=p(r—4c)/4=0.

Since p # 0 (otherwise we get a reducible hyperbola) we obtain r = 4¢, however in this case Fqg = 0
implies @ = 0 and we arrive at degenerate systems. This completes the proof of our claim.

Thus we have 2g — 1 # 0 and then the equation Fqs = 0 gives p = 2b/(2g — 1) and we obtain:
Eqip = b(2c+r —3gr))/(1 — 2g).

Since in this case the hyperbola is of the form

(I)(xvy) -

22y =0
2g_1+ry+ Ty

it is clear that the condition b # 0 must hold and, therefore we get 2¢+ r(1 — 3g) = 0.
1) Assume first 3¢ — 1 # 0. Then we obtain r = 2¢/(3¢g — 1) and the equation Fqg = 0 becomes

2
(3g —1)?

The condition K1 = 0 implies a = ¢?(2g — 1)/(3g — 1)? and we arrive at the family of systems

B = ¢ s[?(1—29) +a(3g —1)*] =

m IC1:O

de (29 -1)
dt — (3g —1)2

d
+ cx + ga®, d—i =b+ (9 — Dy, (55)
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possessing the invariant hyperbola

2b 2c
i = 221y = 0
(2, y) g1 31Vt =0

which is irreducible if and only if b # 0.

2) Suppose now g = 1/3. In this case the equation Egio = 0 yields ¢ = 0 and then we get p = —6b
and the equation Eqy = 0 becomes Fqy9 = (12a + r%)/6 = 0. Therefore for the existence of an

invariant hyperbola the condition a < 0 is necessary. In this case setting a = —32? < 0 we arrive at
the family of systems
dx 9 dy
— = 3, —=b-—2xy/3 56
g -ate/s o xy/3, (56)

possessing the following two invariant conics
®9(x,y) =30t V—-3ay—zy=0,

which are irreducible if and only if b # 0. Clearly these hyperbolas are real for a < 0, they are
complex for a > 0 and coincide (and we obtain a double one) if a = 0. B

Lemma 17. Assume that for a quadratic system (9) the conditions n =0, M # 0,0 =0 and N # 0
are satisfied. Then this system could possess either a single invariant hyperbola, or two distinct (HP)
such hyperbolas, or one triple invariant hyperbola. More precisely, it possesses:

(i) one invariant hyperbola if and only if either
(1.1) B4 #0, B3 =7v5=0 and Ry #0 (simple if o4 # 0 and double if 64 =0), or
(i.2) Bs = Bs =0, fr1R11 # 0, P12 # 0 and y15 = 0 (simple if V25 + 5% # 0 and double if
Y16 = 06 = 0);
(ii) two distinct invariant hyperbolas (both simple) if and only if B4 = Bs = 0, f11R11 # O,
B12 = v16 = 0 and y17 # 0. Moreover these hyperbolas are real (HP) if y17 < 0 and they are
complex (7-‘2”) if 7 > 0;

(iii) one triple invariant hyperbola (which splits into three distinct hyperbolas, two of them being
(Hp)) lf cmd only if 54 = 56 = 0, 5117?,11 7& 0, ,312 = Y16 = 0 and Y17 = 0.

Proof: Assume that for a quadratic system (9) the conditions n =0, M # 0, # =0 and N # 0.

3.4.1.3 The case 34 # 0. As it was shown earlier in this case via an affine transformation and
time rescaling the system could be brought to the form (51), for which we calculate

m=—9de*/8, B3 =—e/4,

and by Lemma 15 the condition 83 = 0 is necessary in order to have an invariant hyperbola. In this
case we obtain
vg = 42(9a — 18 4+ d?)? = 42£2, Ry = —L1/8 — (a + d?)/3

and considering Lemma 15 for f3 = 73 = 0 we get systems (53) possessing the hyperbola ®(z,y) =
(3a — d?)/3 — 2d(2z — 3y)/3 + 2xy = 0. To detect its multiplicity we apply Lemma 3 setting k = 2.
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So in order to have the polynomial ®(z,y) as a double factor in &, we force its cofactor in &, to be
zero along the curve ®(z,y) = 0 (i.e we set y = (—3a + d* + 4dz)/(6(d + z))). We obtain
& (a+ d*)*(81a + 17d?)

= 7d + 152)(3a + d? + 4dx + 62%)10 = 0
O(x,y) 211312(( + )10 (7d + 152)(3a + d* + 4dx + 622)

and since a + d? # 0 (see Lemma 15) we get 8la + 17d? = 0. So we obtain the family of systems

d d
d—f = —17d%/81 + dy + 22 + zy, d—z = —4d%/81 + 42, (57)

which possess the invariant hyperbola: ®(x,y) = —44d? /81 — 4dx /3 + 2dy + 2xy = 0. The perturbed
systems
dx d?(17 — 2e + £?) 4d? 5

possess the two hyperbolas:

4d?(11 — 4¢e + €2 4d 2d
oS = - 2xy = 0
e iy 7 el ey e Kl wr
4d?(11 + 4e + €2 4d 6d
5(z,y) = ( - T — y+2y(z+ey) =0,

(e2-9)2(—1) (1-¢)3—¢) e—3

We observe that for systems (53) we have &, = (81a + 17d?)/6 and 3; = —8. Therefore if 4 = 0 the
invariant hyperbola is double and by Lemma 7 it could not be triple due to $7 # 0. This completes
the proof of the statement (i.1) of the lemma.

3.4.1.4 The case 54 =0. Then we arrive at the family of systems (54), for which we have
o =d(g® —1)/4, N=4(g" - 1)a®, fu =429 - 1% pio= (3¢ -z,

So due to N # 0 the necessary conditions d = 0 and 2g — 1 # 0 (see Lemma 16) are equivalent to
Bs = 0 and P11 # 0, respectively.

3.4.1.4.1 The subcase (12 # 0. In this case 3g — 1 # 0 and then by Lemma 16 an invariant
hyperbola exists if and only if £; = 0 and b # 0. On the other hand for systems (54) with d = 0 we
calculate

Y15 = 4(g — 1)2(3g — 1)’C1{B5, RH = — 3b(g — 1)2$4

and hence the above conditions are governed by the invariant polynomials ;5 and R1;. So we get
systems (55) possessing the hyperbola ®(z,y) = 2b/(2g — 1) + 2cy/(3g — 1) + 22y = 0.

According to Lemma 3 we calculate the polynomial & and we observe that &5 contains the
polynomial ®(z,y) as a simple factor.

In order to have this polynomial as a double factor in &, we force its cofactor in & to be zero
along the curve ®(z,y) =0 (i.e we set y = b(3g — 1)/((29 — 1)(¢ — z + 3gx))). We obtain
& 28863 (g — 1)[c + (3g — 1)z]? 10
= 2g —1 3g—1
ey g—1p@Eg- w20 e D)
[c*(31 — 87g + 62¢°) + 6¢(3g — 2)(3g — 1)?z + (39 — 1)*(4g — 1)2*] =0
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and since (2g —1)(3g — 1) # 0 we get ¢ = 0 and either g = 1/4 or ¢ = 0. However in the second case
we get degenerate systems. So g = 1/4 and we arrive at the family of systems

dx 9 dy
L . (59)
which possess the hyperbola ®(z,y) = —4b + 2xy = 0. On the other hand the perturbed systems

dx dy
-~ —-_9 274, X —p— 4 60
o be + exy + x° /4, o b—3zy/ (60)

possess the two invariant hyperbolas
Of(z,y) = —-2b+2y=0, P5(z,y) =—-2b+y(z+ey)=0.

It remains to determine the invariant polynomials which govern the conditions ¢ = 0 and g = 1/4.
We observe that for systems (55) we have y16 = —c(g — 1)?23/2 and dg = (g — 1)(4g — 1)x2/2.
To deduce that the hyperbola ®(x,y) = —4b + 22y = 0 could not be triple it is sufficient to
calculate & for systems (59):
135215

— _ 2 —_ —
& = T O (z,y)°(5b — 3zy)(17b — Txy)

and to observe that the cofactor of ®(x,y)? could not vanish along the curve ®(z,y) = 0. This leads
to the statement (i.2) of the lemma.

3.4.1.4.2 The subcase 12 = 0. Then g = 1/3 and by Lemma 16 at least one invariant
hyperbola exists if and only if ¢ = 0, @ < 0 and b # 0. On the other hand for systems (54) with
d =0 and g = 1/3 we calculate

Y16 = —2cx3/9, Y17 = 32a2%/9, Ry = —4bz?/3

Therefore the condition ¢ = 0 (respectively b # 0) is equivalent to 716 = 0 (respectively Rq; # 0).
Considering the statement (i7) of Lemma 16 we examine two possibilities: v17 # 0 (i.e. a # 0) and
Y17 = 0 (1e a = 0)

1) The possibility v17 # 0. By Lemma 16 in this case we arrive at systems (56) possessing the
two invariant hyperbolas ®1 o(z,y) = 3b £ v/—3a y — 2y = 0. We claim that none of the hyperbolas
could be double. Indeed calculating & (see Lemma 3) we obtain:

~2560(x* £ 3a)°

& = 177147

1Dy (2bx — xy + ay) [3bx2 — 2%y + 9a(zy — b)].
So each hyperbola appears as a factor of degree one and we could not increase there degree because
of b # 0. This proves our claim and we arrive at the statement (i¢) of the lemma.

2) The possibility 17 = 0. In this case we have a = 0 and this leads to the systems

dx 9 dy
_ — ) 61
priak /3, p b—2xy/3, (61)
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possessing the hyperbola ®(x,y) = —3b+ xy = 0. Calculating &, for this systems we obtain that
®(x,y) is a triple factor of &. According to Lemma 3 this hyperbola is triple, as it is shown by the
following perturbed systems:

d d
d_f = —12b%% + 2%/3, d_?i =b— 2xy/3 + 3be’y?, (62)

possessing the three distinct invariant hyperbolas:
P1og=-3b+3bey+ay=0, ®3=—3b+y(x—3bey).

So we arrive at the statement (ii7) of Lemma 17 and this completes the proof of this lemma. ]

3.4.2 The case N =0

Considering (50) the condition N = 0 implies h = 0 and g = £1. On the other hand for (40) with
h = 0 we have (13 = (g — 1)222/4 and we consider two cases: 313 # 0 and B13 = 0.

3.4.2.1 The subcase ;3 # 0. Then g — 1 # 0 (this implies g = —1) and due to a translation
we may assume ¢ = f = 0. So we get the following family of systems

d
—x:a—i-cx—i-dy—xz,

dy
= =0b— 2. 63

dt

Lemma 18. A system (63) possesses at least one invariant hyperbola if and only if d = 0, 16a+3c> =
0 and b # 0.

Proof: We again assume that the quadratic part of an invariant hyperbola has the form 2zy and
considering the equations (10) for systems (63) we obtain

t=1, s=u=q=0, p=-2b/3, r=—c¢/2, U = -3,
V=0 W=c+r/2, Eq =2d, Eqy= (16a+ 3c%)/8,
Eq = Eqy = Eqs = Equ = Eqs = Eqs = Eqs = Eqio = 0.

Therefore the conditions Eg; = 0 and Eqg = 0 yield d = 0 and 16a + 3¢? = 0. In this case we get

the systems
d
d_:tc = —3¢*/16 + cx — 22,

which possess the invariant hyperbola

dy
= =bH-2 64
dt Yy, ( )

O(z,y) = —2b/3 — cy/2 + 22y = 0.

Obviously this conic is irreducible if and only if b # 0. So Lemma 18 is proved. ]

3.4.2.2 The subcase 13 = 0. Then g =1 and due to a translation we may assume ¢ = 0. So
we get the following family of systems

dx 5 dy
o =atdytat —h=btert fy (65)
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Lemma 19. A system (65) has an infinite family of invariant hyperbolas if and only if d = e =0
and 4a + f? = 0.

Proof: Considering the equations (10) and the fact that the quadratic part of an invariant hyperbola
has the form 2zy, for systems (65) we calculate

t=1 s=u=0,U=1, V=0, sz—’l”/2,

Therefore the conditions Fqs = 0 and Eq; = 0 yield d = e = 0 and then we have
Eqg =2b—p— fq+qr/2, Eqy= (4a+712)/2, Eqo=aq+br—p2f —r)/2.
The equations Fqg = Eq19 = 0 have a common solution with respect to the parameter ¢ only if
Res ¢(Eqs, Eqio) = —2ab+pla+ f?) — fr(b+p) +*(2b+ p)/4 = 0.

On the other hand in order to have a common solution of the above equations with respect to r the

following condition is necessary:
Res, (Eqo, Res o(Egs, Eqio)) = (4a + f?)(4ab® + f?p®)/4 = 0.

We claim, that the condition 4a + f? = 0 is necessary for the existence of an invariant hyperbola.

Indeed, supposing 4a + f? # 0 we deduce that the condition 4ab® + f?p? = 0 must hold.

1) Assume first f # 0. If b = 0 then we get p = 0 and the equation Eqip = 0 gives ag = 0. In the
case ¢ = 0 we obtain a reducible conic. If a = 0 then the equation Fqgg9 = 0 implies » = 0 and we
again get a reducible conic.

Thus b # 0 and hence a < 0. We set @ = —2? < 0 and then r = +2z and p = +2bz/f. It is
not too hard to convince ourselves that all four possibilities lead either to reducible conics, or to the
equality 4a + f2 = 0, which contradicts our assumption.

2) Suppose now f = 0. This implies ab = 0 and since b # 0 (otherwise we get degenerate systems)
we have a = 0 and this again contradicts to 4a 4+ f2 # 0. This completes the proof of our claim.

Thus 4a + f? = 0 and setting a = — f2/4 we arrive at the family of systems

dx d
=Pt =iy, (6)

which possess the following family of invariant hyperbolas
O(z,y) = (4b = fq)/2+ qu + fy + 22y =0,

depending on the free parameter g. Since the corresponding determinant A (see Remark 4) for this
family equals fq—2b, we conclude that all the conics are irreducible, except the hyperbola, for which
the equality fq — 2b = 0 holds. Thus the lemma is proved. m

We observe that in the above systems we may assume b = 1. Indeed, if b = 0 then f # 0 (otherwise
we get a degenerate system) and therefore due to the translation y — y + o'/ f with ¥’ # 0 and the
addition rescaling y — b'y we get b’ = 1. Moreover, in this case we may assume f € {0,1} due to

rescaling (z,y,t) — (fz, fy,t/f) in the case f # 0.
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Lemma 20. Assume that for a quadratic system (9) the conditions n = 0, M # 0 6 = 0 and
N =0 hold. Then this system could possess either a single invariant hyperbola, or a family of such
hyperbolas. More precisely this system possesses

(1) one simple invariant hyperbola if and only if S13 # 0, y10 = y17 = 0 and Rq1 # 0;
(ii) one family of invariant hyperbolas if and only if B13 = 9 = Y18 = 19 = 0.

Proof: Assume that for a quadratic system (9) the conditions n =0, M #0 § =0 and N = 0 hold.

3.4.2.3 The subcase 513 # 0. In this case we consider systems (63) for which we calculate
10 =14d*, Ry = —12b2? + 6dzy®(cx + dy), 17 = 8(16a + 3c*)2? — 4dy(14cx + 9dy).

So for v19 = 117 = 0 and R11 # 0 we get systems (64) possessing the hyperbola ®(z,y) = —2b/3 —
cy/2 + 2xy = 0. We claim that this hyperbola is a simple one. Indeed calculating & we obtain
that the polynomial ®(z,y) is a factor of degree one in &. So setting y = —4b/(3(c — 4z)) (i.e.
O(x,y) =0) we get

& 2413 3 12
—— = —27°*5b°(c — 42)°(3¢c — 4x 340
.y) e

due to b #£ 0. So the hyperbola above could not be double and this proves our claim.

Thus the statement (i) of lemma is proved.

3.4.2.4 The subcase 513 = 0. Then we consider systems (65) and we calculate
Y9 = — 6d2, :}/18 == 86564, ’3/19 = 4(4(1 + f2)SU

So the conditions d = e = 0 are equivalent to v9 = 715 = 0 and 4a + f? = 0 is equivalent to 19 = 0.
Considering Lemma 19 we arrive at the statement (i7).

It remains to observe that for systems (65) with d = ¢ = 0 and a = —f?/4 we have ;7 = 8f22>
and this invariant polynomial governs the condition f = 0.

As all the cases are examined, Lemma 20 is proved. m

To complete the proof of the Main Theorem we remark, that both generic families of quadratic
systems (with three and with two distinct real infinite singularities) are examined and now we could
compare the obtained results with the statements of the Main Theorem.

So comparing the statements of Lemmas 6, 7, 9, 10 and 12 with the conditions given by DIAGRAM 1,
it is not too difficult to conclude that the statement (B7) of the Main Theorem is valid.

Analogously, comparing the statements of Lemmas 14, 17 and 20 with the conditions given by
DIAGRAM 2 we deduce that the statement (Bgz) of the Main Theorem is valid.

3.5 Systems with infinite number of singularities at infinity: Cy; = 0

In this section we construct the conditions for a quadratic system with Cy = 0 to possess at least
one invariant hyperbola. So consider the family of quadratic systems (9) assuming Cy = 0 and we
prove the next assertion.
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Lemma 21. If for a quadratic system (9) the condition Co(x,y) = 0 holds, then this system possesses
imwvariant hyperbola if and only if N7 = 0.

Proof: Assume that for a quadratic system (9) the condition Cy(z,y) = 0 is satisfied. Then the
line at infinity is filled up with singularities and according to Lemma 1 in this case via an affine
transformation and time rescaling quadratic systems could be brought to the following systems

i=a+éx+dy+2?, §=>b+ay. (67)
We observe that for d = 0 these systems possess two parallel invariant lines and we consider two
subcases: d 40 and d = 0.

3.5.1 The subcase d #0

As it was shown in [15, page 749] in this case via some parametrization and using an additional
affine transformation and time rescaling we arrive at the following 2-parameter family of systems

t=a+y+ (x+c)? §=axy. (68)

Considering (10) for these systems we obtain Eq; = s(2 — U) = 0. We claim that U = 2 due to the
condition s? + t? 4+ u? # 0. Indeed, supposing U # 2 we get s = 0 and then calculations yield

Eqp=2t(2-U)=0 Eg=ul2-U)-2tV =0.

Clearly due to U # 2 we have t = u = 0 which contradicts to s + ¢ + u? # 0 and this completes
the proof of our claim. So we assume U = 2 calculations yield FEqgo = —sV =0, Eq3 = —2tV =0,
Eqy = —uV = 0. Since ®(z,y) = 0 must be a conic (i.e. 82+ 2+ u? # 0) the above relations imply
V' =0. Then we have

Eqgs = —q+4cs —sW =0, FEqs=—r+2s+4ct —2tW =0,
Eqr =2t —uW =0, Eqg= —2p+ 2cq + 2as + 2¢%s — ¢qW =0

and this gives
q=s(4c—W), r=25+2cuW —uW? t=uW/2, p=s(2a+10c* — 6cW + W?)/2.
Considering the values of the parameters we detected we finally obtain

Bqi=0,i=1,2,...,8 FEq=5(2c—W)(4a + 4c* — 4cW + W?)/2 = 0,
Eqg = 4cs + (au — 3s + u)W — 2cuW? + uW? = 0.

We observe that s # 0, otherwise we get ®(x,y) = uy(2cW — W?2 + Wax +y), i.e. the conic becomes
reducible. So we consider the two possibilities defined by the equality (2c— W) [4a+ (W —2¢)?] = 0.

3.5.1.1 The possibility W = 2c. Then we get Eqio = 0 and Eqg = 2c(au — s + c?u) = 0.
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3.5.1.1.1 The case ¢ =0. In this case we get the 1-parameter family of systems
t=a+y+a? y=uxy (69)

which possess the following 2-parameter family of invariant conics ®(z,y) = as+2sy+ sz? +uy? = 0
which will be of hyperbolic type if and only if the condition su < 0 holds. Moreover following
Remark 4 we calculate A = s?(au — s) and this conic is irreducible if and only if s(au — s) # 0.

Since su < 0 we may set a new parameter u = —sm? and this leads to the 1-parameter family of
hyperbolas
(s, x,y) = a+ 2y + 22 —m?y* = 0. (70)

3.5.1.1.2 The case au — s+ au+ c*u = 0. Then s = (a + ¢®)u and systems (68) possess the
following invariant conic ®(z,y) = (a + c?)(a+ %+ 2cx +2y) + (a + ¢?)x? + 2cxy + y? = 0 for which
we calculate A =0, i.e. by Remark 4 this conic is reducible.

3.5.1.2  The possibility 4a + (W —2¢)> =0. If a =0 then W = 2c and as it was shown above
for the existence of a hyperbola it is necessary ¢ = 0. So we arrive at the particular case of the
family of hyperbolas (70) defined by the condition a = 0. Therefore we consider two cases: a < 0
and a > 0.

3.5.1.2.1 The case a < 0. Then we may assume a = —k? and after the rescaling (z,y,t)
(kx, k*y,t/k) we obtain the systems

t=y—14(x+c)? g=uay, (71)

for which we have W = 2(c 4 1) and we get Eqio = 0, Eqg = 2(c+3)[(c +1)* —s] = 0. We consider
the two subcases given by two factors of Eqg.

1) The subcase ¢ =3 = 0. We may assume ¢ > 0 due to the rescaling (z,y,t) — (—z,y, —t) in the
above systems. Therefore we set ¢ = 3 and then systems (71) could be brought to system (68) with
¢ =0and a = —1 via the transformation (z,y,t) — (2(z—1), 4(y—xz—1), ¢/2). So we arrive at the
system (69) with a = —1 and as it was shown above this system possesses the family of hyperbolas
(70) with a = —1.

2) The subcase (c £1)2 —s = 0. Then s = (c & 1)? and this leads to the reducible conics
O(x,y) = (> —1+tz+cx+y)?=0.

3.5.1.2.2 The case a > 0. Then we may assume a = k? and applying the same rescaling as
above we arrive at the family systems @ =1+ y + (x +¢)?, ¥ = zy. So we have W = 2(c + i) and
we get Eqio =0 Eqg = 2(c£3i)[(c+£14)* —s] = 0. Since ¢ € R we obtain s = (¢ % 4)? and this
again leads to the reducible conics ®(z,y) = (¢ — 1+ iz + cx + y)? = 0.

Thus we detect that in the case d # 0 a system (68) could possesses an invariant hyperbola if and
only if either the conditions ¢ = 0 or a < 0 (then @ = —1) and ¢ —9 = 0 hold. On the other hand for
these systems we calculate N7y = ¢(9a + ¢?)/2 and we claim that the above conditions are equivalent
to N7 = 0. Indeed, if c =0 or a = —1 and ¢ — 9 = 0 we get N; = 0. Conversely, assuming N7y = 0
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we have either ¢ = 0 or 9a + ¢ = 0. However in the second case the condition a < 0 must hold. If
a = 0 we get ¢ = 0 and we arrive at the first case. If a < 0 as it was mentioned earlier due to a
rescaling we may assume a = —1 (see systems (71)) and then we get c? 4+ 9a = ¢ — 9 = 0 and this
completes the proof of our claim.

3.5.2 The subcase d = 0

In this case systems (67) become as systems
i =a+cér+a2% §=b+ay, (72)

for which following [15] we calculate the value of invariant polynomial His = —8a%z? and we consider
two possibilities: @ # 0 and a = 0.

3.5.2.1 The possibility a # 0. As it was shown in [15, page 750] in this case via an affine
transformation and time rescaling after some additional parametrization we arrive at the following
2-parameter family of systems

t=a+(r+c)? Y=uzy (73)
for which the condition Hyy = —8(a + ¢?)%x? # 0 must hold.

Next in order to determine the conditions for the existence of a hyperbola as earlier we apply
the equations (10). Since the quadratic parts of the above systems coincide with quadratic parts of
systems (68) by the same reasons from the first four equations (10) we determine that s # 0, U = 2
and V = 0 and then calculations yield

Eqgs=—q+4cs —sW =0, FEqg=—r+4ct —2tW =0,
Eqr = —uW =0, Eqs = —2p+ 2cq + 2as + 2c*s — qW = 0.
So we obtain ¢ = s(4c — W), r=2t(2c— W), p=s(2a+10c? —6cW + W?2)/2, uW =0 and we
consider two cases: u =0 and u # 0.

3.5.2.1.1 The case u =0. In this case we have Fq; =0, 1 =1,2,...,8 and
Eqy =2t(a+c* = 2cW + W?) =0, Eqo = 5(2c — W)(4a + 4¢* — 4cW + W?) =0
and we observe that ¢t # 0 otherwise we get
®(z,y) = s(2a + 10¢® — 6cW + W? + 8cx — 2Wx + 22%) /2 = 0,

ie. ®(x,y) is a product of two parallel lines. It was mentioned above that the condition s # 0
also must hold, i.e. st # 0 and we calculate  Res,, (Fqq, Eqip) = 25*t*(a + ¢*)?(9a + ¢*) and
clearly for the existence of a common solution of the equations Fqg9 = FEqig = 0 the condition
(a+c?)%(9a + ¢?) = 0 is necessary. However the condition His # 0 implies a + ¢ # 0 and therefore
we get 9a + c? = 0.

So a = —c?/9 and we detect that in this case the polynomials Egg and Eqjo have as a common
factor 4c — 3W. Therefore we get W = 4¢/3 and we arrive at the the systems

&= (2¢+ 3z)(4c+32)/9, Y=y,
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which possess the following family of hyperbolas ®(z,y) = 16¢?s +24csz +9sx? +12cty + 18txy = 0.
In order to have irreducible invariant conics we determine A = —324¢?st? # 0. So s # 0 and setting
a new parameter m = 6t/s we arrive at the 1-parameter family of hyperbolas

®(z,y) = 16¢> + 24cx + 2cmy + 922 + 3may = 0.

3.5.2.1.2 The case u # 0. Then we get W = 0 and we calculate
Bqgi=0,i=1,2,...,8, FEgy=2(a+c)t=0, Eqqo=4c(a+c*)s=0

and since s # 0 and a + ¢ # 0 (due to His # 0) we get t = ¢ = 0. So arrive at the 1-parameter
family of systems 4 = a + 22, ¥ = xy, which possess the following family of conics

®(x,y) = as + sz* +uy® = 0.

Clearly these conics are of hyperbolic type if su < 0 and they are irreducible if in addition we have

2

a # 0. So setting u = —m*s we get the following 1-parameter family of hyperbolas:

®(z,y) = a+2? —m?*y* = 0.

Thus we detect that in the case d = 0 and @ # 0 a system (72) could be brought to (73) which
possess an invariant hyperbola if and only if the condition ¢(9a + ¢?) = 0 holds. On the other hand
for these systems we have N7 = ¢(9a + ¢?)/2 and we deduce that in the case under consideration
Lemma 21 is valid.

3.5.2.2 The possibility ¢ = 0. This condition implies b # 0 (otherwise we get degenerate
systems (72)). So we may assume b = 1 due to the rescaling y — by and this leads to the 1-
parameter family of systems (we set ¢ = ¢)

t=cr+z%, y=1+uzy, (74)

And again, since the quadratic parts of the above systems coincides with quadratic parts of systems
(68) by the same reasons from the first four equations (10) we determine that s # 0, U = 2 and
V =0 and then calculations yield

EQ5:—Q+2CS—SW:O, Eq6:—r+20t—2tW:0,

So we obtain q = s(2c — W), r=2t(c—W), p=(2c%s+ 2t — 3csW + sW?)/2, uW =0 and we
claim that the condition « = 0 must hold. Indeed supposing u # 0 we get W = 0 and this implies
FEq9 = 2u = 0 and this contradiction proves our claim. So u = 0 and calculations yield Fq; = 0, i =
1,2,...,8, Eqg= —2t(c— W)W =0, and Eqyg = (4ct — 2¢*sW — 6tW + 3csW?2 — sW3)/2 = 0. We
observe that t # 0 otherwise we get ®(z,y) = s(2¢2 — 3cW + W2 + dex — 2Wa + 222)/2 = 0, i.e.
®(x,y) is a product of two parallel lines. So we obtain W (c—W') = 0 and we have to consider the two
subcases given by these two factors. However we get Eqig = 2ct =0if W =0 and Eqig = —ct =0
if W = ¢ and therefore due to ¢t # 0 in both cases we obtain ¢ = 0. So we arrive at the system

=2 §=1+ay,
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which possess the following family of hyperbolas ®(x,y) = t+sz?+2txy = 0 and for the irreducibility
of these conics the condition ¢ # 0 is necessary. Then setting m = s/t we get the 1-parameter family
of hyperbolas

O(z,y) = 1 +ma? + 2xy = 0.

Thus in the case d = @ = 0 a system (72) could be brought to (74) which possess an invariant
hyperbola if and only if the condition ¢ = 0 holds. On the other hand for these systems we have
N7 = —16¢? and this completes the proof of Lemma 21. ]

Then, we conclude that the Main Theorem is completely proved.
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