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Periodic solutions of a class of second–order differential equation
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We study the periodic solutions of the second–order differential equations of the form

ẍ+3xẋ+ x3 +F(t)(ẋ+ x2)+G(t)x+H(t) = 0,

where the functions F(t), G(t) and H(t) are periodic of period 2π in the variable t.
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1. Introduction and statement of the main results

In this paper we shall study the existence of periodic solutions of the second–order differential
equation of the form

ẍ+3xẋ+ x3 +F(t)(ẋ+ x2)+G(t)x+H(t) = 0, (1.1)

where the dot denotes derivative with respect to the time t, and the functions F(t), G(t) and H(t)
are periodic of period 2π in the variable t.

We note that the second-order differential equation (1.1) when F = G = H = 0 appears in the
Ince’s catalog of equations possessing the Painlevé property, see [5]. Moreover, the differential
equation ẍ+3xẋ+x3 = 0 is well known in many areas of mathematics and physics, and it possesses
the algebra sl(3,R) of Lie point symmetries, see for more details the paper [6] and the references
quoted there.

In a recent paper [2] (see also [3,4]) the second-order differential equation (1.1) has been studied
when F = H = 0. See also [7] for a study of coupled quadratic unharmonic oscillators in terms of
the Painlevé analysis and integrability.
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Here we study the periodic solutions of the second-order differential equation (1.1) when F(t) =

ε f (t), G(t) = 1+ εg(t), and H(t) = εkh(t) with k = 1,2. Our main results are the following ones.

Theorem 1.1. We define the functions

F1(X0,Y0) = −
∫ 2π

0
F(t,X0,Y0)sin t dt,

F2(X0,Y0) =
∫ 2π

0
F(t,X0,Y0)cos t dt,

(1.2)

where

F(t,X0,Y0) = −h(t)−g(t)A(t)− f (t)B(t)−3A(t)B(t),

A(t) = X0 cos t +Y0 sin t,

B(t) = −X0 sin t +Y0 cos t.

Assume that the functions F(t) = ε f (t), G(t) = 1+εg(t) and H(t) = ε2h(t) are 2π–periodic. Then
for ε ̸= 0 sufficiently small and for every (X∗

0 ,Y ∗
0 ) solution of the system F j(X0,Y0) = 0 for j = 1,2,

satisfying

det
(

∂ (F1,F2)

∂ (X0,Y0)

)∣∣∣(X0,Y0)=(X∗
0 ,Y ∗

0 )
̸= 0, (1.3)

the differential equation (1.1) has a 2π–periodic solution x(t,ε) = ε(X∗
0 cos t +Y ∗

0 sin t)+O(ε2).

Theorem 1.1 is proved in section 3 using the averaging theory described in section 2. Two
applications of Theorem 1.1 are the following.

Corollary 1.1. We consider the differential equation (1.1) with F(t) = ε (1 − cos2 t), G(t) = 1 +

ε sin2 t and H(t) = ε2 sin t. Then for ε ̸= 0 sufficiently small this differential equation has a 2π–
periodic solution x(t,ε) = ε2(sin t − cos t)/3+O(ε2).

Corollary 1.2. We consider the differential equation (1.1) with F(t) = ε (1 − cos2 t + 2cos4 t),
G(t) = 1 + ε(sin2 t + 2sin4 t) and H(t) = ε2(sin t + sin3 t). Then for ε ̸= 0 sufficiently small this
differential equation has a 2π–periodic solution x(t,ε) = ε(21cos t −7sin t)/20+O(ε2).

Corollaries 1.1 and 1.2 are proved also in section 3.

Theorem 1.2. Assume that
∫ 2π

0
h(t)sin t dt = 0,

∫ 2π

0
h(t)cos t dt = 0,

and set

F1(X0,Y0) = −
∫ 2π

0
f (t,X0,Y0)sin t dt,

F2(X0,Y0) =
∫ 2π

0
f (t,X0,Y0)cos t dt,

(1.4)
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with

f (t,X0,Y0) = −g(t)A(t)− f (t)B(t)−3A(t)B(t),

A(t) = X0 cos t +Y0 sin t −
∫ t

0
h(τ)sin(t − τ)dτ,

B(t) = −X0 sin t +Y0 cos t −
∫ t

0
h(τ)cos(t − τ)dτ.

Assume that F(t) = ε f (t), G(t) = 1+ εg(t) and H(t) = εh(t) are 2π–periodic functions. Then for
ε ̸= 0 sufficiently small and for every (X∗

0 ,Y ∗
0 ) solution of the system F j(X0,Y0) = 0 for j = 1,2

satisfying (1.3), the differential equation (1.1) has a periodic solution

x(t,ε) = ε
(

X∗
0 cos t +Y ∗

0 sin t −
∫ t

0
h(τ)sin(t − τ)dτ

)
+O(ε2).

Theorem 1.2 is proved in section 4. Two applications of Theorem 1.2 are the following.

Corollary 1.3. We consider the differential equation (1.1) with F(t) = ε (sin(2t)+cos(2t)), G(t) =

1+ε sin t and H(t) = ε 2cos2 t. Then for ε ̸= 0 sufficiently small this differential equation has a 2π–
periodic solution

x(t,ε) = ε
(
(−2cos t +15sin t)/31+2cos2 t(cos t −1)

)
+O(ε2).

Corollary 1.4. We consider the differential equation (1.1) with F(t) = ε sin t, G(t) = 1 + ε sin2 t
and H(t) = ε2cos(2t). Then for ε ̸= 0 sufficiently small this differential equation has a periodic
solution

x(t,ε) = ε
(

2(cos t −1)cos(2t)− 8
5

sin t
)

+O(ε2).

Corollaries 1.3 and 1.4 are proved also in section 4.

2. Basic results on averaging theory

In this section we present the results from the averaging method that we shall need for proving our
results.

We work with differential systems of the form

x′ = F0(t,x)+ εF1(t,x)+ ε2F2(t,x,ε), (2.1)

where ε is a small parameter, and the functions F0,F1 : R×Ω → Rn and F2 : R×Ω×(−ε0,ε0) → Rn

are C 2 functions, T –periodic in the variable t, and Ω is an open subset of Rn. We assume that the
unperturbed system

x′ = F0(t,x), (2.2)

has a submanifold of dimension n filled of T –periodic orbits, i.e. of periodic orbits of period T .
Let x(t,z,0) be the solution of system (2.2) such that x(0,z,0) = z. The first variational equation

of system (2.2) on the periodic solution x(t,z,0) is given by

y′ = DxF0(t,x(t,z,0))y, (2.3)

where y is an n × n matrix. Let Mz(t) be the fundamental matrix of system (2.3) satisfying that
Mz(0) is the identity matrix of Rn.
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By hypotheses there is an open set V such that Cl(V ) ⊂ Ω and for each z ∈ Cl(V ), x(t,z,0) is a
T –periodic solution. There is the following result.

Theorem 2.1. There exists an open and bounded set V with Cl(V ) ⊂ Ω satisfying that for each
z ∈ Cl(V ), the solution x(t,z,0) is T –periodic, and let F : Cl(V ) → Rn be the function

F (z) =
∫ T

0
M−1

z (t)F1(t,x(t,z,0))dt. (2.4)

If there exists α ∈V with F (α) = 0 and det((dF/dz)(α)) ̸= 0, then there is a T –periodic solution
x(t,ε) of system (2.1) such that x(t,ε) = x(t,z,0)+O(ε).

Theorem 2.1 was proved by Malkin [8] and Roseau [9], for a new and shorter proof see [1].

3. Proof of Theorem 1.1 and its two corollaries

Proof of Theorem 1.1. Introducing the variable y = ẋ, we can write the second–order differential
equation (1.1) as the following first-order differential system

ẋ = y,
ẏ = −3xy− x3 −F(t)(y+ x2)−G(t)x−H(t).

(3.1)

Doing the rescaling (x,y) = (εX ,εY ), we obtain the system

Ẋ = Y
Ẏ = −X + ε(−h(t)−g(t)X − f (t)Y −3XY )+ ε2(− f (t)X2 −X3).

(3.2)

System (3.2) with ε = 0 is the unperturbed system, otherwise system (3.2) is the perturbed
system. The unperturbed system has a unique singular point, the origin of coordinates. The solution
(X(t),Y (t)) of the unperturbed system such that (X(0),Y (0)) = (X0,Y0) is

X(t) = X0 cos t +Y0 sin t, Y (t) = −X0 sin t +Y0 cos t.

Note that all these periodic orbits have period 2π . Using the notation introduced in section 2. We
have that x = (X ,Y ), z = (X0,Y0), F0(x, t) = (Y,−X), F1(x, t) = (0,−h(t)−g(t)X − f (t)Y −3XY )

and F2(x, t) = (0,− f (t)X2 −X3).

The fundamental matrix solution Mz(t) is independent of the initial condition z, and denoting it
by M(t) we obtain

M(t) =

(
cos t sin t

−sin t cos t

)
.

Now we compute the function F (z) = (F1(X0,Y0),F2(X0,Y0)) given in (2.4), and we get the func-
tions (1.2) of the statement of Theorem 1.1.

By Theorem 2.1 each zero (X∗
0 ,Y ∗

0 ) of system F1(X0,Y0) = F2(X0,Y0) = 0 satisfying (1.3),
provides a 2π–periodic solution (X(t,ε),Y (t,ε)) of system (3.2) with ε ̸= 0 sufficiently small such
that

(X(t,ε),Y (t,ε)) = (X∗
0 cos t +Y ∗

0 sin t,−X∗
0 sin t +Y ∗

0 cos t)+O(ε).

Going back through the change of variables for every periodic solution (X(t,ε), Y (t,ε)) of system
(3.2) with ε ̸= 0 sufficiently small, we obtain a 2π–periodic solution x(t,ε) = ε(X∗

0 cos t +Y ∗
0 sin t)+
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O(ε2) of the differential equation (1.1) with ε ̸= 0 sufficiently small. This completes the proof of
Theorem 1.1.

Proof of Corollary 1.1. We must apply Theorem 1.1 with

f (t) = 1− cos2 t, g(t) = sin2 t, h(t) = sin t.

We compute the functions F1 and F2 of the statement of Theorem 1.1, and we obtain

F1(X0,Y0) =
π
4

(4−3X0 +3Y0), F2(X0,Y0) =
π
4

(−X0 −Y0).

System F1 = F2 = 0 has the zero (X∗
0 ,Y ∗

0 ) = (2/3,−2/3). Since the Jacobian (1.3) at this zero is
3π2/8, we obtain using Theorem 1.1 the periodic solution given in the statement of the corollary.

Proof of Corollary 1.2. We apply Theorem 1.1 with

f (t) = 1− cos2 t +2cos4 t, g(t) = sin2 t +2sin4 t, h(t) = sin t + sin3 t.

Computing the functions F1 and F2 of Theorem 1.1 we get

F1(X0,Y0) =
π
4

(7−4X0 +8Y0), F2(X0,Y0) = −π
2

(X0 +3Y0).

System F1 = F2 = 0 has the zero (X∗
0 ,Y ∗

0 ) = (21/20,−7/20). Since the Jacobian (1.3) at this zero
is 5π2/2 the corollary follows.

4. Proof of Theorem 1.2 and its corollaries

Proof of Theorem 1.2. As in the proof of Theorem 1.1 the second–order differential equation (1.1)
can be written as the first order differential system (3.1). Doing the rescaling (x,y) = (εX ,εY ), we
obtain the system

Ẋ = Y
ẏ = −X −h(t)+ ε(−g(t)X − f (t)Y −3XY )+ ε2(− f (t)X2 −X3).

(4.1)

System (4.1) with ε = 0 is the unperturbed system, otherwise it is the perturbed system.
The solution (X(t),Y (t)) of the unperturbed system such that (X(0),Y (0)) = (X0,Y0) is

X(t) = X0 cos t +Y0 sin t −
∫ t

0
h(τ)sin(t − τ)dτ,

Y (t) = −X0 sin t +Y0 cos t −
∫ t

0
h(τ)cos(t − τ)dτ .

Note that these periodic orbits have period 2π . Using the notation introduced in section 2. We have
that x = (X ,Y ), z = (X0,Y0), F0(x, t) = (Y,−X − h), F1(x, t) = (0,−g(t)X − f (t)Y − 3XY ) and
F2(x, t) = (0,− f (t)X2 −X3).

The fundamental matrix solution Mz(t) is independent of the initial condition z and it is

M(t) =

(
cos t sin t

−sin t cos t

)
.

We compute the function F (z) = (F1(X0,Y0),F2(X0,Y0)) given in (2.4), and we get the functions
(1.4) of the statement of Theorem 1.2.
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By Theorem 2.1 each zero (X∗
0 ,Y ∗

0 ) of system F1(X0,Y0) = F2(X0,Y0) = 0 satisfying (1.3),
provides a 2π–periodic solution (X(t,ε),Y (t,ε)) of system (4.1) with ε ̸= 0 sufficiently small such
that

(
X(t,ε)

Y (t,ε)

)
=




X∗
0 cos t +Y ∗

0 sin t −
∫ t

0
h(τ)sin(t − τ)dτ

−X∗
0 sin t +Y ∗

0 cos t −
∫ t

0
h(τ)cos(t − τ)dτ


+O(ε).

Going back through the change of variables for every periodic solution (X(t,ε), Y (t,ε)) of system
(4.1) with ε ̸= 0 sufficiently small, we obtain a 2π–periodic solution

x(t,ε) = ε
(

X∗
0 cos t +Y ∗

0 sin t −
∫ t

0
h(τ)sin(t − τ)dτ

)
+O(ε2)

of the differential equation (1.1) for ε ̸= 0 sufficiently small. This completes the proof of Theorem
1.2.

Proof of Corollary 1.3. We apply Theorem 1.2 with

f (t) = sin(2t)+ cos(2t), g(t) = sin t, h(t) = 2cos2 t.

We compute the functions F1 and F2 of the statement of Theorem 1.2, and we obtain

F1(X0,Y0) =
π
2

(2+X0 −4Y0), F2(X0,Y0) =
π
2

(1+8X0 −Y0).

System F1 = F2 = 0 has the solution (X∗
0 ,Y ∗

0 ) = (−2/31,15/31). Since the Jacobian (1.3) is
31π2/4, by Theorem 1.2 we obtain the periodic solution of the statement of the corollary.

Proof of Corollary 1.4. We apply Theorem 1.2 with

f (t) = sin t, g(t) = sin2 t, h(t) = 2cos(2t).

We compute the functions F1 and F2 of the statement of Theorem 1.2, and we obtain

F1(X0,Y0) =
3π
4

(8+5Y0), F2(X0,Y0) =
11π

4
X0.

System F1 = F2 = 0 has the solution (X∗
0 ,Y ∗

0 ) = (0,−8/5). Since the Jacobian (1.3) is −165π2/16,
by Theorem 1.2 we obtain the periodic solution of the statement of the corollary.
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